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Vibration intensity (VI) technique is an essential tool for locating and ranking vibration sources and 
sinks on structures. It can quantify vibration fields by plotting a vector map of energy transmission on 
the structures. In this paper, a new strategy, by changing coordinate systems of plate equations, is used 
to develop an intensity equation from shear force component both in x and y directions. The 
formulation is carried out in frequency domain considering flexural waves. Orthotropic plate theory, 
far-field conditions, Fourier transform, and finite difference approximation are considered. 

1. Introduction 

The vibration intensity (VI) is now considered to be a significant measurement tool for structure-borne sound. It 
yields not only the information of locations of vibration sources and sinks, but also the technique of estimating the 
reflection coefficients (edge effects), mechanical impedances of the structures. On the other hand, it can be 
effectively employed to identify the propagation paths of vibration energy transmission. This is possible by plotting 
x- and y- components of intensity vector on a number of points on the structures. As a result proper damping 
treatment can be employed to the area of energy transfer. 

The VI technique is well established. Most of the earlier methods using VI are useful for simple structures, 
typically beams and thin plates in flexure [I - 6]. Some of these formulations are in time domain [2] and others are 
in frequency domain [3,4]. Other than this contact method, non-contact such as acoustic holography [7 - 10] and 
optical measurements [II - 14] are also available. Numerical analysis using a finite element approach is a good 
alternative [15 - 16]. Recently, VI is employed for flexural waves in complex structures such as in orthotropic plates 
for far-field conditions [17] as an approximate method and in general field conditions [18] as an exact method. It 
requires simultaneous acquisition of all field signals at the same time and an ensemble averaging should be 
performed. Proper attention should be provided in instrumentation so as to minimize measurements errors. 

It is observed, through the literature search, that little research had been undertaken in orthotropic plates using 
VI. The orthotropic plates such as corrugated plates, beam-stiffened plates, and plate-grid structures are the most 
important components in industries. It is of the utmost importance to control noise and vibration of such structures. 
It is, therefore, necessary to get a useful measurement method for those structures. In this paper, VI is used to 
develop an intensity formulation for flexural waves applicable for thin naturally orthotropic plates from shear force 
component only using a new method. Through this paper, a preliminary result of shear force contribution of total 
power will be focused on. Later, contributions from moments will be considered along with the shear force part to 
obtain total energy transfer. Individual contribution on energy transfer both from shear force and moments is 
sometimes useful [4]. This research yields a new strategy to formulate a measurement model for vibration energy 
transmission in orthotropic plates. 

2. Theoretical Analysis 

2.1 Orthotropic plate equation 
This study considers a thin homogeneous orthotropic plate (Figure I) with small deflections compared to the 

uniform thickness. The idea of thin plate results when the thickness of the plate, h, is small enough compared to 
other dimensions. In thin plate flexural wave equation, the influences of rotary inertia and shear deformation are 
neglected. This approximation is valid when h« IL , the flexural wavelength [19]. 
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Figure 1 Co-ordinate system of naturally orthotropic plate 

The step and analysis of classical orthotropic plate theory can be found in many literatures [19, 20]. The 
orthotropic plate equation for harmonic flexural vibration can be obtained as [18], 

(Dx a4 w 
ax4 

+ 2H a4 w 
ax2 a/ 

+ D a4 w 
I a y4 ) m"OJ2 w (1) 

Where, OJ is the angular frequency, m" is the mass per unit area of the plate, Dx and Dy are called the flexural 
rigidities and quantity Dxy is the torsional rigidity of the plate, twice H is called the effective torsional rigidity of the 
orthotropic plate (equation 2), and w is the transverse deflection in z-direction. 

H = D,vy + 2G", (2) 

where Gxy is shear modulus of elasticity and v)' is the Poission's ratio. Due to the complexity of analysis with Hand 

different rigidity constants in equation (1), many researchers in the area of orthotropic plates consider an 

approximation of H such as H = ~ DXDJ' in the orthotropic plate equations. This approximation gives very good 

results for the analysis of orthotropic plates [19]. In this case, if the coordinate system changes to a new system such 

that x is unchanged and y is changed to y' = y (D x / Dr y I 4 , the flexural wave equation for orthotropic plate 

results in the same form as that of an isotropic plate [19]. Consequently, an exact solution of orthotropic plate 

problem is possible. This modified coordinate for the plate (Figure 1) takes another system of (x, y'). In the 

following section, this idea is used to modify the orthotropic plate equation (1) to obtain a far-field wave equation. 

2.2. Modified plate equation 
In an earlier analysis [17], the authors used dimensionless parameters [20] to model the orthotropic plate 

equation for approximate far-field fonnulation. Both x and y coordinates were transformed to non-dimensionless 
parameters. In this case, only the y coordinate is modified which is not dimensionless. As the plate flexural 

defonnation depends on both x and y' coordinates, the related terms in equation (1) can be obtained by partial 

differentiation with respect to y' . 

aw = aW(D,t4 a2w = a2w (Dx t2 a4w = a4w( D,) 
a a' D 'a 2 a,2 D ' ;::,.,4 ;::,.,'4 D Y Y J' Y Y )' vy vy y 

(3 a, b, c) 

Using the idea of equation (3 a, b, c) in equation (1), it is possible to obtain the orthotropic plate equation 

incorporating the new coordinate system (x, y' ). 

( a4 W 

ax4 + 2 a4 w 
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= ---w 
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(4) 

This equation (4) behaves like the isotropic plate equation. If k is a flexural wave number such 

m"oi 
that k 4 =---, the above plate equation may take a new factorized fonn as 

D, 

a2 a2
? 
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results in the same fonn as that of an isotropic plate [l9]. Consequently, an exact solution of orthotropic plate 
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section, this idea is used to modify the orthotropic plate equation (1) to obtain a far-field wave equation. 
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defonnation depends on both x and y' coordinates, the related tenns in equation (I) can be obtained by partial 

diJferentiation with respect to y' . 

,,= -CPt ).1/4 02w = _ ( D" )112 a4w = a4w( D,) 
, ",2 D ' 0 4 0'4 D c:y 1 Y Y 1 

(3 a, b, c) 

the idea of equation (3 a, b, c) in equation (I), it is possible to obtain the orthotropic plate equation 

[JUil<LIlHF: the new coordinate system (x, y'). 
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This behaves like the isotropic plate equation. If k IS a flexural wave number such 

that k :::;-"--, the above plate equation may take a new factorized form as 

(5) 

538 



Nirmal K. Mandai, M Salman Leong and Roslan Abd Rahman 

a2 a2 

The bracketed term may be denoted by V (such that V =--2 + --2 ), the Laplace operator. Although a ax 0;' 
different transformation is considered in this analysis, the definition of flexural wave number, k, is the same in 

present analysis and in [17] but V takes a new form. Further simplification of equation (5) is possible and can be 
transformed as 

(V + k2)(V - k 2 )w = ° (6) 

The equation (6) can be transferred to two equations as 

(V+k2)W=O, and (V_k2)W=O (7 a, b) 

Equation (7a) represents the condition of far-field where a free propagating wave exists. A complete solution of 
this equation may be possible. The equation (7b), on the other hand, is the condition of near-field [\9] as the 
disturbances decay exponentially from sources and boundaries. 

2.3. Modified shear force equation in the far-field conditions 
The equation of shear force in x-direction of orthotropic plate (Figure l) can be obtained [20] as 

Q = _~( D a2w + H a2w) 
x ax x ax2 al (8) 

Again, incorporating the new coordinate system (x, y'), the shear force equation (8) may change to another form as 

Qx =k 2D aw 
x ax 

The equation (9) is the equation of shear force for the condition of far-field. 

(9) 

Far-field equation for shear force in the y-direction can be obtained in a similar manner. The equation of shear 
force in y-direction can be presented in terms of spatial derivatives with Dy and H as [20] 

a a2w a2w 
Q . = --( D.-+ H-) (10) 

I ;::", ). a 2 a 2 . vy . y x 

If the new coordinate system is incorporated in the above equation, the shear force takes a different form with 
modified spatial derivatives. If the coordinate system changes back to original coordinate (x, y) using equation (3a), 
and putting the value of wave number, k, it is possible to get a new form ofy component shear force as 

Q _ ~m"D aw 
r- OJ )' . ay (11) 

If the value of wave number is put in the equation (9), a similar equation can be obtained like that of equation 
(11). It is the far-field equation of shear force in y-direction. 

3. Shear force power 

Now-a-days it is a common practice to use FFT analyzer for the detection of power flow in structures. Multiple 
signals can be accommodated in analyzer and analysis is performed in frequency domain, which replaces the time 
averaging steps of power flow formulation in time domain. In the frequency domain, the complex power from shear 
force is the cross-spectrum of velocity and force component and is given by the following relation as 

?s (f) == Gl'F (f) (12) 

where P" (I) is the complex power in x-direction of the plate, GVF (f) is the cross-spectrum of transverse velocity and 
shear force. 

Differentiating the equation (9) with respect to time and taking Fourier transform, it is possible to get the x
component of shear force equation in terms of transverse velocity as 
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If the new coordinate system is incorporated in the above equation, the shear force takes a different fonn with 
modified derivatives. If the coordinate system changes back to original coordinate (x, y) using equation (3a), 
and the value of wave number, k, it is possible to get a new form ofy component shear force as 

=(o~m"D. -
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If the value of wave number is put in the equation (9), a similar equation can be obtained like that of equation 
i 1). It is the far-field equation of shear force in y-direction. 

Shear force power 

it is a common practice to use FFT analyzer for the detection of power flow in structures. Multiple 
be accommodated in analyzer and analysis is performed in frequency domain, which replaces the time 

averaging steps of power tlow fonnulation in time domain. In the frequency domain, the complex power from shear 
is the cross--spcclrurn of velocity and force component and is given by the following relation as 

\'v"herc I\.~, (n the 
n:}fC(' 

(12) 

power in x-direction of the plate, GYF (f) is the cross-spectrum of transverse velocity and 

Ill,' tile (9) with respect to time and taking Fourier transform, it is possible to get the x-
j(!l'Cc equation in terms of transverse velocity as 
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D,k 2 

--- (13) 

The shear force components in equations (9) and (II) are based on transverse displacement, w. The spatial 
derivative of shear force equation (13) can he obtained using finite difference approximation (Figure 2). The x
cornponent of VI from shear force can thus be obtained as 

<~ > (l4) 

where < > represents ensemble average. The cross-spectrum of the equation (12) can be defined as in equation (14) 
[21 ],The sign is included to make power flow positive in a positive direction [2]. 
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p 
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d~+~ 
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Figure 2: Two-transducer array, measuring vibration power transmission fonn point 2 to I at a distance d, 
the spacing 

finite difference approximation, the transverse velocity and spatial derivatives of transverse velocity in 
and 14) can be obtained as (Figure 2) 

2 

aV VI -v2 -=--ax d 
(l5a, b) 

the complex far-field power from shear force in x-direction of the plate is as follows 

< _ (VI + }'2)* D,k2 
( VI - v2 ) > 

2 jm d 
(16) 

the ensemble averages tenn by tenn, the final complex fonn of structural intensity in the x-direction 
shear force only would be obtained as 

Pe(f)= ~'~d[(G22-GII)+2jlm{GI2}] (17) 

\vhere d is the distance between two successive points, ro, the angular frequency, G 12, the cross-spectrum of the 
at points I and 2: Gn and G I ], two auto-spectrum of the velocity signals. The real part of the above 

power flow equation (17) presents the power transmitting in the far-field of the orthotropic plates by shear 
force in the x-direction and it could be written as 

J (18) 

In the above equation, I is used to represent VI because It IS active component of complex power and to 
differentiate it from the complex power, P. Similarly, the y-component of shear force considering cross-spectrum of 

can be achieved as 

~Dmfl 
, (f) ~ Im{GI2 } (19) 

Since accelerometers are widely used in vibration measurements, it is therefore customary to use acceleration 
instead of signals in the formulation of vibration power. In the frequency domain, the relation 

between 
A a 

and acceleration is V=--, This leads to 
G G _ aa F" --,-- for power spectral densities of acceleration 

jm m-
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Since accelerometers are widely used in vibration measurements, it is therefore customary to use acceleration 
ins lead of signals in the formulation of vibration power. In the frequency domain, the relation 

, a 
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and where V and a are the signals of velocity and acceleration in the frequency domain respectively. The 

cross-spectmm Gij refers to the signals of acceleration rather than velocity. By using the acceleration 
based cross-spectrum, the stmctural intensity equation (18) could be rewritten as 

~Dm" I ( f):'- .\ 1m r G } (20) 
.c. d 7 l 12 

OF 

The orthogonal component (y component) of structural intensity from shear force can thus be achieved by 
ICA'vlWl"6H'b the letter x to y. 

4. Discussions 

In this paper, cross-spectrum density function is used to formulate far-field power flow equation from shear 
force in the frequency domain for orthotropic plates in x and y directions. A completely different approach is used to 
get the same relation as that obtained before [17). By changing the orthotropic plate equation to a form similar to 
thal of isotropic plate, the solution converges to exact [l9]. A dual channel FFT analyzer may be used to take 
smmltaneous acquisition of field data. Coefficients of spatial derivatives in orthotropic plate equation in bending are 
ditTerent from those for an isotropic plate. These derivatives are: D" Dy and H (equation 1). Only D applies for the 
case of isotropic plate. This enables the modification of isotropic plate equation to provide usable relations to solve 

applications in industry for NVH problems. This is not possible directly in the case of orthotropic plates. 

a result. researchers and engineers working in this area used some assumptions such as (H = ~ D xD, ) [19, 20 

17J and obtained good results. As the orthotropic plates such as corrugated plates (rectangular, trapezoidal, 
and beam stiffened plates are widely used in industries, it is necessary to simplify the theoretical 

fonnulations into useable equations for FFT analyser's usage. Therefore it yields a significant advantage in 
solutions with small errors in NVH problems. 

It is stated above that the t1exural wave equation in orthotropic plate is completely different to that of isotropic 
In the latter case, flexural figidity (D) comes out from each spatial term of the equations of shear force and 

and twisting moments as a common factor. As a result, it is very simple to replace far-field wave condition 
In shear force and modified moment relations [1]. It is not directly possible for orthotropic plates because of 
different rigidity values in their spatial terms such as D" Dy and H. 

Vector plot of VI represents its magnitude and direction at a point (resultant of x and y components). From 
source, vibration power is flowing out, meaning that all intensity vectors are going out from a point (location of 
attached electrical motor, for example). Sink (viscus damper for example), on the other hand, absorbs energy. In this 
location VI vectors flow to this point. Therefore vector map shows the location of sources and sinks. The magnitude 
of can be presented by its numerical or dB values, indicating its ranking. The propagation paths can also be 
identified from this plot. 

The model (equation 20) is applicable for orthotropic plates with uniforn1 thickness. The applicability of 
uniform orthotropic plate theory in rib-plates, and corrugated plates depends on the flexural wavelength. It is 
established that the flexural wavelength of these plates should be considerable greater than one repeating section of 
rib or corrugation [19]. This is very important in high frequency ranges when the associated wavelength is shorter. 

a filtering technique in data acquisition, it is possible to remove the frequency range where wavelength 
may not be considerably greater than the distance of one repeating section. Alternatively the idea of elastic 

can be useful fOf the model to technically orthotropic plates such as corrugated plates, ribbed 
grids, beam reinforced plates and similar other plates. This technique transfers a technically orthotropic 

orthotropic plate of uniform thickness [20). Therefore this model can be easily applied using FFT 
to estimate vibration power flow in industrial applications. 

CondusEons 

two-transducer technique for VI calculation is proposed considering a different approach. A change in the 
coordinate system enables the plate flexural wave equation to simplify to obtain a far-field condition. This VI 
formulation is from shear force only for both x and y directions incorporating a cross-spectrum method. The two 
transducer model helps to use FFT analyzer for practical data acquisition in the frequency domain. For complete 

it IS necessary to consider the contribution of moments, however, at this stage, it is put forward as a 
result 
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