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Abstract 

Modelling of elastic contact problems is addressed with the aid of Hybrid-Trefftz (HT) and interface 
finite elements based on a simple interfacial constitutive relation. This paper presents the formulation 
of a four-noded HT finite element for discretizing the contacting bodies and a four-noded interface 
element that could be embedded in the prospective contact zone for simulating the interaction 
behaviour. Due to the superior performance, the Simpson-type Newton-Cotes integration scheme is 
utilized to compute interface element formulation numerically. In order to evaluate the applicability 
of the present approach two benchmark examples are investigated in detail. Comparisons have been 
made between the results by the present approach and analytical as well as traditional FE solutions 
using ABAQUS software. 

1 Introduction 
Contact problems have attracted much attention due to their inherent complexity and frequent 

occurrence in engineering practice. A variety of numerical approaches for calculating contact zones, and 
dividing them into stick and slip subzones, as well as determining the contact stresses, are available in the 
literature. Amongst these approaches the interface element (IE) methodology, due to its ease of numerical 
implementation, has been investigated by many researchers. Goodman et al [1] presented the pioneering 
work on such an element for evaluating the behaviour of jointed rock mass. However, the kinematic 
inconsistency associated with this element usually has resulted in spurious oscillations of tangential 
traction. To circumvent this difficulty, the Newton-Cotes integration scheme was used by several authors 
instead of the widely adopted Gaussian quadrature [2,4,5]. Day and Potts [2] argued that the reduced 
Gauss integration used by Gens et al [3] could not avoid the instability of the traction profile. Lei [4] 
illustrated the perfonnance of Newton-Cotes integration scheme through two examples of a smooth 
footing on elastic sub-soil and a pull-out problem. Schellekens and De Borst [5] specially discussed this 
integration scheme and provided an explanation for some numerical results. They pointed out that, for 
either linear or quadratic interface elements, the aforementioned instabilities can not be recovered in the 
case of high gradient tractions. Therefore, other types [6,7] of interface element were subsequently 
proposed in the literature. Herrmann [6] assumed each pair of matching nodes has been linked through 
fictitious springs - one normal and the other tangential to the interface. Although such treatment 
overcomes the disadvantage occurring in Goodman-type element, the uncoupling between links does not 
accord totally with the practice and often leads to unreliable normal response. In the light of this, Kaliakin 
and Li [7] have developed an improved type of element which possesses the normal response 
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literature. Amongst these approaches the interface element (IE) methodology. due to its ease of numerical 
has been investigated by many researchers. Goodman et al [I] presented the pioneering 

,vork on such an element for evaluating the behaviour of jointed rock mass. However, the kinematic 
associated with this element usually has resulted in spurious oscillations of tangential 

traction. To circumvent this difficulty, the Newton-Cotes integration scheme was used by several authors 
instead of the widely adopted Gaussian quadrature [2,4,5]. Day and Potts [2] argued that the reduced 
Gauss integration used by Gens et al [3] could not avoid the instability of the traction profile. Lei [4] 
illustrated the performance of Newton-Cotes integration scheme through two examples of a smooth 

on elastic sub-soil and a pull-out problem. Schellekens and De Borst [5] specially discussed this 
scheme and provided an explanation for some numerical results. They pointed out that, for 

linear or quadratic interface elements, the aforementioned instabilities can not be recovered in the 
case of gradient tractions. Therefore, other types [6,7] of interface element were subsequently 
nn}D()sed in the literature. Herrmann [6] assumed each pair of matching nodes has been linked through 
fictitious - one norma] and the other tangential to the interface. Although such treatment 
overcomes the disadvantage occurring in Goodman-type element, the uncoupling between links does not 
accord with the practice and often leads to unreliable normal response. In the light of this, Kaliakin 

have developed an improved type of element which possesses the nonnal response 
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characteristics of the Goodman element, and eliminates the kinematic deficiencies by employing 
tangential response similar to the Herrmann element [6]. 

As a promising technique for the numerical solution of a variety of problems encountered in 
engineering, HT FE approach assimilates the merits of the conventional FE and boundary element (BE) 
methods and, moreover, discards some of their drawbacks [8]: Firstly, the element formulation calls for 
integration along the element boundaries only, and secondly, some problems with singular or local effects 
can be treated easily if exact local solution functions are available. A general purpose HT FE formulation 
was first developed by lirousek and Leon [9] who studied the effect of mesh distortion on thin plate 
elements. Since then, the HT element concept has become increasingly popular, attracting a growing 
number of researchers into this field [8]. So far, HT elements have been successfully applied to numerous 
problems such as elasticity [10,11], elastoplasticity [12,13], plates [14,15], transient heat conduction 
analysis [16] and piezoelectric materials [17,18]. According to authors' knowledge, there are only a few 
papers [19,20] reporting application of HT FE technique to contact problems in the literature. Hochard 
[19] dealt with frictionless contact between an elastic domain and a rigid support by transforming the 
equations of contact to a problem of minimization under linear constraints. Recently, Wang et al [20] 
developed a HT FE interface model for contact problems with the aid of direct constraint approach. 

The purpose of this paper is to develop a HT FE model and apply it to elastic contact problems with 
the help of Kaliakin-Li (KL) interface elements [7]. In the model, a 4-node HT element has been 
formulated and applied for discretizing both contacting bodies; 4-node KL elements have been embedded 
for simulating the potential contact zone. To assess the reliability of the KL elements for predicting the 
contact behaviour, an interfacial constitutive relation, namely penalized normal contact and tangential 
friction law, has been adopted. In addition, the Simpson-type Newton-Cotes integration scheme [21] is 
recommended to evaluate the formulation of the KL element in this analysis. The HT FE-interface model 
presented in this paper has been implemented into a commercial FE package, ABAQUS, via user element 
subroutine (UEL). Two benchmark examples have been presented to illustrate the applicability of the 
overall model to contact problems. Good agreements have been achieved between the results from the 
present approach and analytical as well as the conventional FE solutions obtained from ABAQUS 
software. 

2 Hybrid Trefftz and interface element model 
2.1 HT element formulation 

Fig.J shows two linear elastic bodies QA and QB in closer contact. The boundary la of each body 

Qa (a = A, B) consists of three disjointed portions 1: ' lfa and 1; . l,~ and ita are respectively 

rA 

rB 
y 

ruB rB 
1 

x 

Fig. I Graphic representation of contact problem 
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prescribed displacement and traction boundaries, f,~ represents the prospective contact surface of each 

body which should be assumed large enough to contain the actual contact surface after deformation. The 
basic equations of HT FE model in the global Cartesian coordinates Xj(i = 1, 2) are summarized as 

follows: 

(J'I,I + b = 0 in nA u nB ,J I 
(la) 

(J'II = DJjkl&kl } 

GJj = CJjk!(J'k! in nA u nB 
Gil =t(UI'1 +uIJ 

(I b) 

U I = u j on f 1: u fl~ (I c) 

- A B 
tj = (J'IJn J = tl on fl ufl (ld) 

U ja = U Ib on fa nfh (Ie) 

flO + lib = 0 on fa n fh (1 f) 

Eqs.(l a-d) are the fundamental relations of conventional FEM, while Eqs.(l e, 1 f) are additional inter­
element continuity requirements for HT FEM. Where (J'u and Gij are respectively the stress and strain 

tensors, DJjk! and C ilk! the stiffness and compliance coefficient tensors, ui ' ti and hi denote respectively 

displacements, tractions and body forces and overhead bar stands for prescribed value, n I stand for 

direction cosines of the outward normal at a given point on the boundary, subscripts "a" and "b" represent 
any two adjacent elements. 

De = iie + i N,)ce; = fie + Nec, (OJ 
)~J '> 3 

\ .., 
re 

..,,3 .' ~, ~, 3(1 1) .' ryL 
~ 

~L 
? 

+ 
r;1f , 

2 1(-1,-1) 2(1,-1) 

(b) Trefftz field (c) Frame field 

Fig. 2 Four-noded HT element 
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(b) Trefftz field (c) Frame field 

Fig, 2 Four-noded HT element 
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To establish the formulation for a particular HT element 'e', two groups of distinct displacement fields 
[11] (see Fig.2): 

(i) a nonconforming intra-element displacement field (Trefftz field) 

m 

U - u~ + '" N c - u~ + N c in n e- e .L..J ejej- e ee e (2a) 
j~l 

(ii) an exactly and minimally conforming auxiliary frame field 

ue = Ned, on fe (2b) 

are assumed on the basis of the Trefftz method. Where iie and N e are, respectively, the particular and 

homogeneous solutions (so-called Trefftz functions) to Eq.(la), ce is a vector of unknown parameters, 

m is the number of Trefftz solutions, N" are the shape functions (frame functions) defined in the 

customary way, the tilde appearing in Eq.(2b) indicates that the frame field is defined on the element 
boundary only. 

A complete system of Trefftz functions Ne may be generated with the aid of Muskhelish's of complex 

variable formulation. The results presented in [11] are listed in Appendix A. It is important to determine 
the optimal value of m with respect to accuracy and computational effort in HT FE analysis. Wang et al 
[20] stated that the choice ofm =9 can produce robust 4-node plane HT element so that 

1 [(K-l)X 
N e =Ne(x,y)=2G (K-l)y 

y 

x 

-x 

y 

-2Kxy 

(K+2)X2 -(K-2)/ 
(K-2)X2 -(K+2)y2 

2KXY 

2xy y2 - X2 (3 - 3K)X2 Y + (K+ 3 )y3 (K- 3 )X3 - (3K+ 3 )Xy2] 

X2 _/ 2xy (K+3)X3 -(3K-3)xy2 (3K+3)X2Y_(K-3)/ (3) 

where G = E /(2 + 2v), K = 3 - 4v for plane stress whereas K = (3 -7v )/(1- v) for plane strain, E and 

v are respectively Young's modulus and Poisson's ratio and (x, y) is the local Cartesian coordinate 

system which originates at the element centroid: 

1 
1 4 

x=X-X =X--IX 
() 4 1=1 J 

1 4 
Y = Y - Yo = Y - - I Yz 

4 1~1 

(4) 

where Xu, ~ and Xi' Y, are, respectively, the global Cartesian coordinates of centroid and nodes of the 

element. In HT FE implementation, additionally, a so-called Trefftz dimensionless coordinate system 
(q,17 ): 

(=!.-,1]=y 
Ie Ie 

(5) 

together with 

1 ~ r 2 2 
Ie =-L."\jXi + Yi 

4 i~l 
(6) 

has to be used to ensure a good numerical conditioning of the element flexibility matrix He defined 

below. Where Ie denotes the average distance between the element nodes and its centroid (termed 

element characteristic length). In practice, replacing x and y in Eq.(3) by q and 17 and extracting Ie 
produces 
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Ne = Ne(x, y)= Ne(;, lJ)Le(lJ (7) 

where Le (lJ is a diagonal matrix with respect to the element characteristic length; for m = 9 , 

Le (lJ = diagVe ie ie i; I; I; I; I: In· 
According to the concept of isoparametric element, N e is given as 

~e=[~ ~ ~ ~ ~ ~ ~ 
o N] 0 N2 0 N3 0 ~J (8) 

for 4-node HT element. Here N; (~, if) = t(l + ~~ Xl + if T/;) (i = 1,2,3,4), (~, if) stands for 

isoparametric coordinate system for the frame. Alternative form of Ne which is equivalent to Eq.(8) is 

used by Qin [8]. 

For numerical computations, it is convenient to rewrite ~ e (~, if) in terms of; and lJ by a simple 

relation [22] 

{Z} lx = IN,.(Z,ll)x;) l; =~= X -Xv) :=::? ,=1 I I ~ 4 :=::? e e 

17 Y=LN,(Z.IJ)Y; lJ=Y= Y-Yo 

;=1 I I e e 

and thus 

~ e = ~e(~' if)= ~e(X, y)= ~e(;' lJ) 

The corresponding traction field te can be derived from Eqs.(l b,d) and (2a) such that 

m 

te = te + LQejc; = te +Qece 
j=l 

(9) 

(10) 

(II) 

where Q. = ADLN e' in which A , D and L are transformation, constitutive and differential operator 

matrices respectively [8]. 
According to the modified variational principles presented by Qin [23] 

II", = LIIme = L[IIe - JV; -lJ1, dr - Jt)i, dr] 
e e fell reJ 

(l2a) 

\.f'1I1 = L \.f'lI1e = L[\.f'e - J(u; - it); dr - Jt;u; dr] 
e e [e11 r,d 

(12b) 

where II" and \.f'e are, respectively, the minimum potential and complementary functionals, 

re = reu u rer u reI' while reu = ru (J re , reI = r, (J re, and ref is the inter-element boundary of 

element 'e'. 
Taking the vanishing variation of (l2a) or (12b) we can readily obtain the customary force­

displacement relationship, i.e. the element stiffness equation as 

Kede = Pe (13) 

where 

K =GTH-1G 
e e e e (l4a) 

P -GTH-1h e - e e c +ge (14b) 
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The derivation of the element stiffness equation from (12a) and the expressions for auxiliary 

matrices He' G e' he and ge are addressed in Appendix B. 

By using Eqs.(7) and (10) and making some manipulation, we obtain the following expressions of 

Ke and Pe: 

Ke = Ke(x, y)= Ke(;-' 77) 

Pe = Pe (x, y) = Pe (;-,77) 

(1 Sa) 

(ISb) 

It is obviously noted that Ke and Pe remain truly unchanged in their magnitude from the local 

Cartesian coordinate system to the Trefftz dimensionless one. Therefore, we can use the right hand side of 
Eqs.(1Sa,b) to evaluate the HT element stiffness equation directly. 

2.2 KL interface element formulation 
For completeness, an improved interface element proposed by Kalakin and Li [7] is briefly reviewed. 

A representative 4-node KL interface element is depicted in Fig.3. Such element possesses zero thickness 
before deformation. 

3 

y 

T 

x 

Fig. 3 Four-noded KL interface element 

Tn order to derive the element formulation KL element 1-2-3-4 (denoted by CD) is decomposed into 
two sub elements I-S-3-6 (denoted by @) and S-2-6-4 (denoted by @) in Fig.3. Adopting the idea of 

Goodman et al [1], the relative displacement vector, W = (wr WJT, at any generic point of interface 

with respect to the local system (T, n) may be defined as 

{w} {top bot} 
A r U r - U r cI>el ' 

W = w = lOp _ hOI = e 
n Un U" 

(16) 

where 

m2 o :J (17a) cI> =-M:M with M =[~' o m2 
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A, { }T de = U 1r U 1n U 2r U 2n U 3r U 3n U 4r u4n (l7b) 

in which m l = t{1- S-) , m2 = HI + S-), the superscript 1\ stands for variables of the interface. 

Accordingly, the traction vector, 0- = {a-, a-JT, is readily expressed as 

0- = Dw = DeDd' e (18) 

where D = diag{kr kJ is the interfacial constitutive matrix, kr and kn are respectively the tangential 

and normal penalty stiffness parameters of the interface. 
By using the virtual work principle, the stiffness equation of the Goodman-type element in the local 

system is defined as 

*K' *£1' =*P' e e e (19) 

together with 

L +1 

*K' = - feDTDeDd!' 
e 2 ':> , 

-I 

L +1 

*P' = - feDT o-d!' 
e 2 ':>' 

-I 

*d~ = Eq.(l7b) (20a,b) 

It is worth noting that the integrals appearing in the above equation are performed by the Simpson­
type of the Newton-Cotes integration scheme. All types of this scheme are provided in Appendix C. Next, 
using standard assembly procedure the stiffness equations of elements ® and ® can be combined into a 
form 

where 

**d' = {u1r e U1n UZr u2n 

**K' **d' =**P' e e e 

U3r U3n u4r u4n USr 

Eq.(21) can also be written in terms of submatrices as 

[ A A ]{A} {A} Krr K rc d r PI' 

Ker Kcedc - Pc 

(21) 

USn U6r u6n 
}T 

(22) 

(23) 

where subscript c stands for variables associated with nodes 5 and 6 whilst r with nodes 1,2,3 and 4. 

The solution of the second submatrix equation ofEq.(23) for de yields 

A A -1 (A A A) 
de = Kee Pc - Kcrdr (24) 

Substituting Eq.(24) into the first submatrix equation ofEq.(23) to eliminate de leads to 

K'd' =P' e e e (25) 

where 

K: = Krr - Kr£,K~:K:, P: = P,. - K,.eK~:P£, (26a,b) 

The elimination process from Eq.(23) to Eq.(25) is completed by static condensation [24]. Here, 

K: and P: are, respectively, the equivalent stiffness matrix and nodal force vector of KL interface 

element. 
For solution purpose, the KL element stiffness equation (25) must be transformed into the form in the 

global Cartesian coordinate system (X, Y) so that 

Kede = Pe (27) 

together with 

K = [R*]TK'R* P = [R*V'P' e e' e J e (28a,b) 
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e e c (21 ) 
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[ ~r.r ~rcl{~r} = f :.} 
K,., K" de 1 e 

(23) 

where c stands for variables associated with nodes 5 and 6 whilst r with nodes I, 2, 3 and 4. 

The solution of the second submatrix equation ofEq.(23) for de yields 

where 

(24 ) 

Eq.(24) into the first submatrix equation ofEq.(23) to eliminate d, leads to 

K'd' =p' e e e (25) 

(26a,b) 

elimination process from Eq.(23) to Eq.(25) is completed by static condensation [24]. Here, 

c are, respectively, the equivalent stiffness matrix and nodal force vector of KL interface 

solution purpose, the KL element stiffness equation (25) must be transformed into the form in the 

Cartesian coordinate system (X,Y) so that 

(27) 

'vvith 

K = [R*]TK'R* P = [R*]/p, e (:', e c (28a,b) 
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de = {U1X u1Y u2X u2Y u3X u3Y u4X u4Y Y (28c) 

in which 

R* = diag[R { cosB SinO} 
R R R] with R = . 

-smB cosB 
(29) 

2.3 Interface model and numerical implementation 
FigA shows a contact interface model, where a prospective contact zone ri' may be bounded by the 

boundaries r:4 , r,B, r l and r 2 • 4-node KL interface elements are embedded in the prospective contact 

zone for simulating the behaviour of interaction. 

3 

r A ruA 

t \\ ,,~--JULll' 
~~~,' ~ 

n(' 
nB : 

~
" :!..!: : 

Y ': HTFE-mesh /~_ ~~j 

',------~, ,,/ \\\\ 
lilll!' rB 

B t 
X ru 

Fig. 4 Two HT element subdomains in contact with KL elements 

In order to evaluate contact non-linearity, an appropriately interfacial constitutive relation, namely 
normal and tangential stress-relative displacement curves, is established for the KL element (see Fig.S). In 
accordance with FigA, the corresponding stresses 0" r , 0"" in Eq.( 18) can be rewritten as follows 

{O if wn > 0 sepration 
0" = (30a) 

n knwn otherwise contact 

r if wn > 0 sepration 

O"r = krwr if w" s; 0 and IWrl s; -I' ~: Wn stick (30b) 

- I'k"wn if Wn S; 0 and IWrl > -I' ~: wn slip 

It is clear from Eq.(30b) that the classical Coulomb friction law is considered for tangential behaviour 
of the interface. In addition, special attention must be paid to the choice of the optimum values of penalty 

parameters kr' kn. Excessively high values tend to provide ill-conditioned numerical problem whilst too 

small values could not prevent the penetration between the two contacting bodies. Although automatic 
calculations of the penalty parameters have been reported in the literature [25,26], these approaches have 
some limitations, such as not taking into account of the separation mode or frictional effects across the 
interface in the analysis. Therefore, in the next section a parametric study on kr' kn will be carried out in 

detail through numerical examples. 
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In order to evaluate contact non-linearity, an appropriately interfacial constitutive relation, namely 
and tangential stress-relative displacement curves, is established for the KL element (see Fig.5). In 

accordance with Fig.4, the corresponding stresses O'r ' 0'/1 in Eq.(18) can be rewritten as follows 

e if 111/1 > 0 sepration 
0' = (30a) 

n k) otherwise contact 11)1/1/ 

~c~t~,w, if wI! > 0 sepration 

if 111 ::::; 0 and Iw I::::; -Jl~w stick (30b) n - r k; n 

- Jlk n i1'/1 if 111 ::::; 0 and Ill' I > -Jl~w slip n r k, l/ 

It clear from Eq.(30b) that the classical Coulomb friction law is considered for tangential behaviour 
oflhe interface. In addition. special attention must be paid to the choice of the optimum values of penalty 

, kn . Excessively high values tend to provide ill-conditioned numerical problem whilst too 

values could not prevent the penetration between the two contacting bodies. Although automatic 
calculations of the penalty parameters have been reported in the literature [25,26], these approaches have 

such as not taking into account of the separation mode or frictional effects across the 

interface in the analysiso Therefore. in the next section a parametric study on kT , k" will be calTied out in 

numerical examples. 
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5 Schematic representation of interfacial constitutive relation 

WT 

The HT FE-interface model for contact problems has been implemented in ABAQUS via user element 
subroutine (UEL) including both HT and KL elements. The iterations for calculating the stresses of 

at the interface are completed within the UEL. 

3 Numerical examples 
In order to assess the HT FE-interface contact model developed in this paper, two benchmark 

were considered. The assumption of plane strain condition was made in the subsequent 
It should be noted that all results obtained from ABAQUS are based on the contact property 

"hard"' contact pressure-overclosure and penalty friction formulation. 

L;,.wmptt:: L A block resting Oil a substratum 
As shown in Fig.6, a block is pressed on a substratum with the pressure of q = 1 00 MPa on its top 

surface. The geometry and boundary conditions are also shown in the figure. Material properties of both 

bodies are the same with Young's modulii EA = EB = 2000MPa and Poisson's ratios VA = V13 = 0.3. 
Three different meshes used in the analyses are illustrated in Fig.7. Care was taken to keep the mesh 

fine in the vicinity of singularity point P and the potential stick-slip boundary in all cases of 
Table 1 shows the mesh properties, the CPU time and convergence of displacements and shear 

stress at P Although the problem is very small, the saving in CPU time is apparent with the use of 
[he l-rr FE and KL interface element modelling against the current ABAQUS surface contact modelling 

comolex problems, the reduction in CPU time might be significant. 

CPU time I Horizontal Disp. Vertical Disp. Shear Stress 
Mesh [ No. Dr Elements 

(s) (mm) (mm) (MPa) 
HT KL Abaqus Present Abaqus Present Abaqus Present Abaqus Present 

I 396 28 21 20 0.835 0.836 -0.685 -0.682 36.466 35.452 
2 1044 36 25 23 0.816 0.814 -0.689 -0.687 31.075 30.764 
-, 3096 52 35 ~o 0.806 0.810 -0.692 -0.695 28.715 28.077 .' J .' ;........ 

Table 1: Mesh properties, CPU time and convergence for Example 1 

Since the interface stiffnesses kr and kn playa significant role in the numerical analysis, their 

int1uence on the contact behaviour was first examined. First, normal stiffness to elastic modulus ratio was 
varied from 0.5 interface) to 50 (hard interface) for frictionless contact and the results are shown in 

8. 
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Fig.8 shows the penetrations of the KL elements along the interface for a wide range of the ratio of 

normal stiffness to Young's modulus CL:, ) in the frictionless case, where Emax = max(EA , EB ). It can be 

observed that as the ratio F::" increases from O.S ~ 50 the penetration decreases. To search an 

appropriate value of kn' an error norm was defined as follows: 

Error = max( w" w" J x I 00% 
uIOP' U hOI 

n n sp 

where the SUbscript 5p stands for the sampling (or herein Simpson) points. 
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Fig. 9 Error of penetration for different kn in the frictionless case 

(31) 

From Fig.9, it can be seen that for -P- ~ 3 the maximum error has remained less than 2% which is 
'mll)( 

acceptable for most practical applications. Therefore, a reasonable choice for k" may be postulated as 

kn = (3 ~ 5)Emax (32) 

Note that Eq.(32) is just an equality in magnitude or an empirical relationship, the coefficient has 
length dimension (mm). In this paper we have chosen the relation k n = SEmax for all the analyses. 

Next a frictional case with a frictional coefficient Ii = 0.1, as illustrated in Fig.l 0, was considered. 

The penalty normal stiffness was chosen as k" = 104 N/mm whilst three penalty tangential stiffnesses of 

kr were employed: 102 , 103 and 10 4 N/mm, namely ~: = 100, 10 and 1 in the HT FE-interface analysis 

for investigation of optimal value. Comparison of the results indicates that the choice of ~: = 10 can 

capture the contact behaviour accurately. In order to verity the convergence of the HT FE-interface 

model, numerical calculations have been carried out with different meshes (see Fig.6) for ~; = 10. The 

results in Fig.11 illustrate good agreement with the results of the conventional FE modelling obtained 
from ABAQUS with increase of the density of mesh. 
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shows the penetrations of the KL elements along the interface for a wide range of the ratio of 

normal stiffl1CSS to Young's modulus (J.,k n ) in the frictionless case, where E ,= max(£A, Eli). It can be 
lllJ, tna-x 

observed that as the ratio /,:',. increases from 0.5 ~ 50 the penetration decreases. To search an 

value of kIT' an error norm was defined as follow's: 

Error = max( wIT ~: x 100% 
u10P ' U h ()1 

11 n sp 

(31 ) 
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From it can be seen that for ~ 3 the maximum error has remained less than 2% which is 

for most practical applications. Therefore, a reasonable choice for kIT may be postulated as 

(32) 

that Eq.(32) is an equality in magnitude or an empirical relationship, the coefficient has 

dimension (mm). In this paper we have chosen the relation kIT = 5Emax for all the analyses. 

Next a frictional case with a frictional coefficient J-L = 0.1, as illustrated in Fig.l0, was considered. 

The normal stiffness was chosen as kl1 = 104 N/mm whilst three penalty tangential stiffnesses of 

10 2 , I and 10 4 N/mm ,namely ~'~ = 100, 10 and 1 in the HT FE-interface analysis 

of optimal value. Comparison of the results indicates that the choice of ;" == 10 can 

capture the contact behaviour accurately. Tn order to verify the convergence of the HT FE-interface 

nurnerical calculations have been carried out with different meshes (see Fig.6) for ~; == 10. The 

11 illustrate good agreement with the results of the conventional FE modelling obtained 
with increase of the density of mesh. 
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In Fig. 10 and Fig. 11, the variation of normal and shear stress in the contact zone (determined by the 
KL interface element) is graphically illustrated. The effect of meshing and the ratio of normal to 
tangential stiffness are presented in Figs II and 10 respectively. It could be seen that the normal stress 
(pressure) in the contact zone almost remained constant except the last 5mm length of contact (singularity 
zone). The shear stress, on the other hand exhibits rapid raise from zero to a compatible value to normal 
stress. The point where the shear stress curve meets the normal stress curve is thurs regarded as the point 
of separation of the slip zone from the stick zone. 

Numerical Methods in Continuum Mechanics 2005, Zilina, Slovak Republic 

k Ik=10 
n , 

30 k Ik=1 
n , 

35 400r~~~ 
350 

300 
Detailed figure near 

-ABAQUS 
-0- - k Ik=100 

n , 

the singular point 25 

20 

15 

10 

5 

O~~~-L--~~--~--L-~--~--~-L--~~ 0 
o 10 20 30 40 50 60 

Contact zone X (mm) 

10 Effect of interface stiffnesses on the contact behaviour (J-l = 0.1 ) 

40 

Contact zone X (mm) 

50 
o 

60 

11 Convergence study of different meshes (kn / kr = 10; J-l = 0.1) 

12 

----cu 
CL 
~ 
'-" 

b~ 

Cf) 
Cf) 
Q) ..... -Cf) 

..... 
cu 
Q) 
.r: 
(f) 

11, the variation of normal and shear stress in the contact zone (determined by the 
is graphically illustrated. The effect of meshing and the ratio of normal to 

stiffness are in Figs 11 and 10 respectively. It could be seen that the normal stress 
the contact zone almost remained constant except the last 5mm length of contact (singularity 

The shear stress, on the other hand exhibits rapid raise from zero to a compatible value to normal 
where the shear stress curve meets the normal stress curve is thurs regarded as the point 

oftbe zone from the stick zone. 
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]L,UU"l'11:: 2. An inclusion inserted in an infinite plate 
An inclusion problem subjected to a uniform tension of q=IOOOMPa together with geometry and 

conditions is shown in Fig, 12, The radius r of inclusion with perfect fit to the hole of an intlnite 
set as 25.4mrn, Linear elastic material properties characterized by Young's modulus of 

40001\1Pa and Poisson's ratio ofO,35 were taken for both constituent bodies, 

Matrix 
---

4~"-- --
~--,---, --
""._-- ---- Q --
-- ftl (EA, V'I) q 

~,-~~~-" -_.- --
"'--- --
<>I--- --

Infinite plate 
r 

b 
(a) Infinite model (b) Finite model 

Fig. 12 An inclusion inserted in an infinite plate and its simplified model 

For numerj,cal purpose a simplified finite element model was employed (see Fig.12(b)). Due to 
a quarter of the problem has been discretised, The simplitled model consisted of 8231 HT 

elements and 40 KL interface elements (each of 0.52mm long). To conform to the results given in the 
r27281. the tl'ictionless case was first considered. Based on the parametric study of Example I, 

was used in the following analysis and the corresponding mesh is used for Example 

shown in 13. As only the contact zone was of interest, the contact zone was meshed using high 
elements with the other regions meshed with course element size, 
14 the results with a range of size of inclusion size to matrix size, expressed as ratios of 

r/b=OS 0, 1,0,083 and 0.05. Numerical results presented in Fig.14 reveal that the real contact arc and 
maximum contact pressure decrease with the reduction in rib, A stable value of 19.62° and 609MPa 

et al [27] was apparently achieved in this analysis as shown in Fig.14. For the ratio 
the results (stable contact angle and the corresponding contact pressure) did not change 

It can therefore be claimed that in this study, we have reconfinned the ratio of rlb=0.083 
an infinite model shown in Fig, 12(a) accurately. as proved earlier by Knight et al[28]. 

The results for a frictional coefficient of )1 = 1.8 (representing rough contact or snug fit) are 

15, In the HT FE-interface analysis the penalty normal and tangential stiffnesses were 

chosen as kn = 2 x 10 4 N/mm and kr = 2 x 10 3 N/mm , Comparison of the results was 

made between the present model and conventional FE model (ABAQUS) and only small deviations have 
been found. It is also found that the maximum contact pressure decreases due to the influence of friction 
but the real contact arc remains almost identical to that in the frictionless case. 



Numerical Methods in Continuum Mechanics 2005, Slovak Ie 14 

Detailed mesh near the 
contact zone 

]3 of mesh for Example 2 (r/b=O.083) 

~ =0.5 

0.1 

o [ --d\o,~ __ -L.-_~c_-.L~ __ .L..... --.L,~".,~~_...d 

o 5 

arc a (Degrees) 

! 4 Effect of r / b on the contact behaviour in the frictionless case 



Numerical Methods in Continuum Mechanics 2005, Zilina, Slovak Republic 

400 r-"' i I i , i I i i i I I i i i I 1 I 1 I i I 1720 
Stick subzone Slip subzone 

--ABAQUS 350 ~ ---- J630 ?' Present approach 
300 ~ u ll co 

540 0.. 
~ 

c 250 / '-" 

tJ 

f!:l ~) 
450 b u t 

:J 200 
IJ) 

if! IJ) 
(j) 360 Q) 

f!:l I L.. 

/ -CL 150 ! 
IJ) ... 

(3 

100 ~ / 
270 co 

ro Q) 

C .!: 
0 (j) 

0 

50~/ 
180 

\ 90 
0 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Contact arc a (Degrees) 

15 Contact behaviour of Knight model in the frictional case (r/b=O.083, J1 = 1.8) 

4 Concluding remarks 
An interface model for elastic contact problems using HT FE has been developed in this paper. Four­

noded HT elements were formulated and used in the discretisation of the contacting bodies whereas four-
Kl interface elements were formulated and embedded in the prospective contact zone for 

the behaviour of interaction. In order to ensure better performance of the KL element in the 
of contact problems, an interfacial constitutive relation, viz. normal and tangential stress vs 

curves, was appropriately facilitated. Additionally, the Simpson-type New10n-Cotes 
scheme has been utilized for the KL element stiffness equation. 

The HT FE-interface model was implemented in the ABAQUS (via UEL). Two benchmark examples 
and all computed results have proved their reliability with respect to the relevant 

or conventional FE (ABAQUS) solutions. Especially, the effect of penalty stiffnesses on the 
results and the characteristic of convergence have been studied in detail. 

Further extension of the model to 3D case is feasible once the 3D HT FE and interface elements are 
introduced. 

In ... ,,.,,hv A, Trefftz function matrix N e 

to Muskhelishvili's complex variable formulation, a complete system of homogeneous 

Trefftz functions N"I can be generated in a systematic way. For conciseness, only the 

results are listed below 

1 {ReZlk } 

Ne/ = 2G ImZlk ' 

1 {ReZ2k } 

N el +1 = 2G ImZ2k ' 

Z . k k' -k-i 
ik = lKZ + lZZ 

k k -k-I Zlk = KZ - ZZ 

(A.I) 

(A.2) 
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1 {ReZ3k } 

N e/+ 2 = 2G IrnZ3k ' 
Z -k 

3k = 1Z (A.3) 

N. --1 {ReZ4k } 

e}+3 - 2 G IrnZ4k ' 
Z -k 

4k =-z (AA) 

where Z = Xl + iX2 ' Z = XI - iX2' i = ~, k = 1,2, .... 

Appendix B. Derivation of the element stiffness equation 
The element stiffness equation can be formulated by setting (5 ITme = 0 or (5 \f'me = 0 . Using 

divergence theorem, the functional IT me can be rewritten as in (8.1) 

ITm('=tf~u,dn+t ftju,df- ft;l';df- f(t,-iJu,df- ft;ii,df (B.1) 
0, r, rell feu rcl 

By substituting Eqs.(2a,b) and (11) into (B.1), we obtain 

-.1 T T T r· B2 IT",,, - 2ceHece +ceGed e +cehe +deg" +terrnswlthoutc" andd" (. ) 
where 

He = fQ;N e df = fN;Qe df (B.3) 

r" r, 

f T~ G e = QeNe df (804) 
reJufel 

1 ff T- 1 ff T~ T~ ) f T-h e =-"2 N e bedn-"2 \Qeue+Nete df+ Q"udf 
at' f" feu 

(B.5) 

ge = fN; (te - tJdf - fN;te df (B.6) 
ret ref 

Note that numerical integrals in (B.3-B.6) are performed using Gaussian quadrature rule. In absence of 

body forces he vanishes while ge is evaluated by the following simple form 

f~T-ge = - N e te df (8.7) 
ref 

To enforce inter-element continuity on the common element boundary, the unknown vector ce should 

be expressed in terms of nodal DOF de' An optional relationship between ce and de in the sense of 

variation can be evaluated as 

aITOle 0 H-I (G d ) --= => ce = e e e+ge 
aCe 

(B.8) 

Substituting (B.7) into (B.2) and making similar manipulation yields the element stiffness equation 
aIT 
_n_" = 0 => K d = P (B 9) ad e e e • 

e 

Appendix C. Newton-Cotes integration scheme 

The general form of Newton-Cotes rules can be written as follows: 

!f(x)ix == Coh IWJ(xJ+ Clhk+lf(k)(t;) (C.l) 
j=1 
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N .. ___ l_{ReZ3k } Z -k 
,L = lZ 

"1+2 2G ImZ3k '" 

I {Rez4k } 
N e/+3 = ') G I Z ' 

~ m-l k 

Z == XI + , Z = XI - iXl' i = P, k = 1,2,' ... 

R Derivation of the element stiffness equation 

Z -k 
4k ==-z 

16 

CA.3) 

(A.4) 

The element stiffness equation can be formulated by setting 8 n lile = 0 or 8 q1me = 0 . Using 

the functional n,"c can be rewritten as in (B. 1 ) 

TIme =+ ffb:u,dO++ ft,u,dl- f',u,dl- j(l,-l,)u,dl- Yu/dr (B.l) 
.0" f(, f(,11 rL>l{ ref 

Eqs.(2a,b) and (11) into (B.l ), we obtain 

TIIII< = +<Hece + c~G "de + <he + d~ge + terms without c" and de (B.2) 

where 

(B.3) 

(B.4) 

he = -* ffN~-be dO -~ f(Q;u e + N;tJdl + fQ;u dl 
- 0, r, f,,, 

(B.5) 

ge = fN;- (te - (Jdl- fN;,t e dl (B.6) 
fef 

l'\Jote that numerical integrals in (B.3-B.6) are performed using Gaussian quadrature rule. In absence of 

forces vanishes while ge is evaluated by the following simple form 

ge = - fN;'t e dr (B.7) 
rcl 

enforce inter-element continuity on the common element boundary, the unknown vector ce should 

in terms of nodal OOF de' An optional relationship between Cc and de in the sense of 

variation can be evaluated as 

an me . = 0 
aCe 

(B.8) 

(B.7) into (B.2) and making similar manipulation yields the element stiffness equation 

(B.9) 

Newton-Cotes integration scheme 

The form of Newton-Cotes rules can be written as follows: 

ft(x}ix ~ Coh i TflJ(x') + Cjhk+1f'k)(() (C.l) 
I~I 
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c;; rp!'~H~p,pn1" a value of x in the range of integration, and h represents the distance between 

A summary of the values of Cu ' C1 ' the W,s and k for the first five formulae 

tne l'\jew1on~Cotes series is given in Table C.l. 

n Co WI W2 W3 W4 W5 C I k Name 
1. Rectangle 2 

2 1. -~ 2 Trapezium 2 12 

"' .1 4 -~ 4 Simpson ..J 
" 90 

4 "- 3 3 3 4 4-point 8 -go 

5 l 7 32 12 32 7 
__ 8_ 

6 5-point 45 945 

Table C.l: Summary of Newton-Cotes rules 
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