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Abstract - This paper discusses the framework of an expert 
lu:!visory system designed to provide expert knowledge in the 
control and management of a sugar mill crystallization stage. The 
S!tlart Supervisory Control System (SSCS) is fundamentally a 
liybl'id fuzzy logic based expert system that incorporates fuuy 
logic, expianatory capabilities and dynamic interrelational 

models of the crystullisation stage. The primary topic of 
paper will be 1I description of the framework of the SSCS 

with focus on: (1) modular design, (2) system layering, and 
system features. 

I. INTRODUCTION 

Raw sugar production from cane is a nominally continuous 
with 120-168 hours of processing per week, 
over 20-25 weeks of the harvest season. The 

section, often loosely referred to as the pan 
stage, is the most complex part of the factory process where 
there are several batch wise or continuous crystallisation steps 
taking place concurrently [I}. 

In current Australian practice, two operators are normally 
employed on the pan stage and usually their duties extend no 
fhrther than this section. There is considerable process 
interaction between the pan stage and centrifugal stage 

management of the centrifugals is undertaken by 
different operators, The overall strategic management of the 
pan stage is quite difficult because of the very large number of 
process SlTcams of varying compositions and crystal growth 
rate characteristics which must be managed [2}. Often the pan 
stage is managed in a sub-optimal manner because an overview 
of operations encompassing various sections - cane receival 
section, juice processing stations, the pan stage and centrifugal 
station - is not available. 

The pressures on the Australian sugar industry to reduce the 
costs of sugar manufacture and increase the consistency of 
"",dn",,, cr sugar of high quality require a smarter strategy for 

This paper reports on the framework of a SSCS for 
sugar mill crysulllizatioD stage that has not been attempted in 
the world CUlTcntly, there is no such supervisory 
control system for pan stage operations neither in the 
Australian sugar industry nor, as best as kno\vn to the 
collaborator;;, in the world sugar industry. The SSCS uses 
[iLdvanced intelligent technologies to provide a standardised 

approach for pan operations by integrating data. from a variety 
of information sources from different sections of the sugar 
mill, along with dynamic process models of the pan stage and 
the collective knowledge and expertise of pan stage operators 
[3]. The integration of such features leads to a challenge in the 
design and development of the SSCS. Previous research [3} 
acknowledges that no conventional software engineering 
methods exist to provide a solution to this problem. 

This paper is organised as follows. Section II discusses a 
system overview of the SSCS and explains how it fits into 
current sugar mill operations. Section III presents the basic 
framework used and the extensions required to the standard 
fuzzy logic based expert system approach. Section IV 
discusses the modular architecture of the application design 
with Section V then presenting a discussion and conclusions. 

II. BACKGROUND 

The system specifications for key SSCS features require that 
the system recommendations and expert advice provide four 
core control strategies [4]. 

The four core control strategies for the primary system 
output are: 

1. Pan duty management; 
2. Pan control strategy; 
3. Pan schedule management; and 
4. Stock tank: management. 
Additionally, these core control strategies are supported by a 

further two secondary system outputs: 
5. Prediction of future pan stage operating conditions for 

offered system recommendations compared to current 
operations; and 

6. ExplanatOlY and justification capabilities. 
These secondary outputs are critical in providing reasoning 

and justifications for the recommended system advices. The 
system recommendations, prediction of future pan stage 
operating conditions and advice justifications that the pan stage 
operators receive from the SSCS will: 

1. Result in a fonnal structure to the decision making 
procedure and reduce the number of ad hoc decisions 
and, consequently, the number of incorrect decisions; 
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employed on the pan stage and usually their duties extend no 
fhrther than this section. There is considerable process 
interaction between the pan stage and centrifugal stage 

management of the centrifugals is undertaken by 
different operators, The overall strategic management of the 
pan stage is quite difficult because of the very large number of 
process SlTcams of varying compositions and crystal growth 
rate characteristics which must be managed [2}. Often the pan 
stage is managed in a sub-optimal manner because an overview 
of operations encompassing various sections - cane receival 
section, juice processing stations, the pan stage and centrifugal 
station - is not available. 

The pressures on the Australian sugar industry to reduce the 
costs of sugar manufacture and increase the consistency of 
producing sugar of high quality require a smarter strategy for 
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sugar mill. crystallization stage that has not been attempted in 
the world previously. ClllTently, there is no such supervisory 
contTol system for pan stage operations neither in the 
Australian sugar industry nor, as best as known to the 
collaborators, in the world sugar industry. The SSCS uses 
advanced intelligent technologies to provide a standardised 

approach for pan operations by integrating data. from a variety 
of information sources from different sections of the sugar 
mill, along with dynamic process models of the pan stage and 
the collective knowledge and expertise of pan stage operators 
[3]. The integration of such features leads to a challenge in the 
design and development of the SSCS. Previous research [3} 
acknowledges that no conventional software engineering 
methods exist to provide a solution to this problem. 

This paper is organised as follows. Section II discusses a 
system overview of the SSCS and explains how it fits into 
current sugar mill operations. Section III presents the basic 
framework used and the extensions required to the standard 
fuzzy logic based expert system approach. Section IV 
discusses the modular architecture of the application design 
with Section V then presenting a discussion and conclusions. 

II. BACKGROUND 

The system specifications for key SSCS features require that 
the system recommendations and expert advice provide four 
core control strategies [4]. 

The four core control strategies for the primary system 
output are: 

1. Pan duty management; 
2. Pan control strategy; 
3. Pan schedule management; and 
4. Stock tank management. 
Additionally, these core control strategies are supported by a 

further two secondary system outputs: 
5. Prediction of future pan stage operating conditions for 

offered system recommendations compared to current 
operations; and 

6. Explanatory and justification capabilities. 
These secondary outputs are critical in providing reasoning 

and justifications for the recommended system advices. The 
system recommendations, prediction of future pan stage 
operating conditions and advice justifications that the pan stage 
operators receive from the SSCS will: 

1. Result in a formal structure to the decision making 
procedure and reduce the number of ad hoc decisions 
and, consequently, the number of incorrect decisions; 
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2. Achieve increased productivity with the existing 
equipment, by employing strategies that are 
recommended by the SSCS; 

3. Make improved use of the equipment capabilities to 
achieve sugar recovery, sugar quality and stearn 
consumptlon targets while fulfilling the production rate 
requirements; and 

4. Forewarn of potential problems with the current 
operating strategies. 

In order to achieve these objectives the SSCS uses the 
infonnation in its determination: 

L Projected cane crushing conditions and calculation of 
syrup input to the pan stage; 

2, production loading on the different pan stage 

3, Status of each pan, buffer storage tank and product 
receiver - accounting for the stage in production cycle 
or level of equipment; 

4, status of the centrifugal station; 
5. Serviceabihly of all equipment items; 
6, Minimum cycle times for each pan for current operating 

circumstances (for defined levels of yield and sugar 
and 

7, Stearn consumption requirements for the individual 
pans to meet different target production rates. 

The SSCS works in tandem with the pan stage operator and 
current pan stage computer control systems to perform the 

mentioned objectives and system advice. Fig. I 
a visual depiction of interactions between the current 

systems and the operator. Existing pan stage infrastructure 
consists of sugar mill control system that interfaces directly 
with, and controls the pan stage operations. A pan stage 
operator interacts directly with this system. 

The SSCS is part of a cooperative control strategy and works 
in conjunction with the sugar mill control system and pan stage 
operators. It takes operator input along with information from 
the existing sugar mil1 control system via a real time parasitic 
data feed from the sugar mill control system databases. The 
SSCS influences pans stage processes tlrrough the actions 
performed by the operators. The operators use 
advicesirecommendations, in line with the reasoning process 
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Fig, 1. Smart supervisory contro~ system interaction diagram. 

from the SSCS, to influencing pan stage operations through 
their interaction with the sugar mill control system. Such an 
arrangement also serves to keep human decision making as 
part of the process. 

IlL OVERVIEW OF THE FRAMEWORK 

The SSCS is essentially a hybrid fuzzy logic based expert 
system incorporating fuzzy logic, explanatory capabilities and 
industrial process models of the pan stage. TI1e knowledge base 
is composed of human operator knowledge coupled with 
mathematic dynamic models describing the crystallization 
process. The integration of such features leads to a challenge in 
the design and development of the SSCS. Previous research [3] 
acknowledges that no conventional software engineering 
methods exist to provide a solution to this problem. 

A. Modular Architecture 
The SSCSs modular architecture is based upon conventional 

expert systems [5,6] and conventional If-Then fuzzy rule based 
systems design [7,8]. 

As depicted in Fig. 2 the SSCS is designed as a modular 
architecture with clustered elements performing layered tasks. 
The partitioning of the system architecture aids in 
maintenance, accountability, upgrade ability, adaptability and 
flexibility [9]. 

Fig. 2 provides a simplified representation of the overall 
system design. This representation gives a clear comparison to 
the "standard" fuzzy logic expert system framework that is 
commonly used and highlights the extensions that have been 
engineered. 

Compared to the conventional fuzzy logic expert system 
design, the editor layer is essentially unchanged with only the 
addition of an editor to customize parameters of the industrial . 
process models of the pan stage. The data layer now also 
includes the dynamic interrelation models of the crystallisation 
stage. The defuzzification component that is typical of fuzzy 
logic expert systems has been replaced by a meta-consequent 
function [10]. The support and real-world layers have also been 
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added. The input and output layers have also been separated. 
The industrial process models of the pan stage are now tightly 

with the expert system lule base and work in 
tandem. 

B. 
TIlis unique modularity gives rise to the following modified 

Editor Layer - Fuzzy variable function editor, If-Then 
mle editor and dynamic pan stage process model 
parameter editor. 
Data Layer - Knowledge base and process model 
components. 
System Layer - Fuzzifier, inference engine and meta­
consequent components. 

- Parasitic data link to sugar mill control 
system information sources. 
Output layer - Discourse advices and output for 
process control components. 

layer - Discourse semantics and discourse 
explanatory components. 
Real world layer - Data from external information 
sources via user interface component 

IV. MODULAR ARCHITECTURE 

displays the modular architecture of the application 
This application design follows the framework 

,w,·~p'n,pr! in Fig. 2. The design architecture is modular with 
clustered elements performing layered tasks. This architecture 
is based upon r I I J but with extension in order to merge the 
dynamic interrelational process models of the pan stage with 
the fuzzy mle base, Associated changes also include an 
innovative blackboard system for information storage of 
process model results predicting future pan stage operating 
conditions, databases for parameter storage of the dynamic 
interrelationaI pan stage models and editing facilities for 
parameter tuning ofthe dynamic pan stage process models. 

A, Input Layer 
The input layer draws its infoD11ation directly from the sugar 

mill online control system having been published as a series of 
relational databases. This in formation provides current real 
time factory data on the cane receival sections, juice processing 
station, the pan stage and centrifugal station. Further 
information from the crystallisation stage operators, through 
the user interface, can be provided to assist in 
determination of equipment performance ratings and 

problems and characteristics of the syrup, molasses 
and sugar process streams along with crushing season 
information. 

B. 
provides the knowledge engineer with the 

modify the fuzzy membership function 
parameters and rule associations with the dynamic process 
models, This laver also provides the facilities to tune the 

dynamic pan stage process model parameters that aTe 
associated with the rule base and also to assign or modify the 
explanations tagged to each of the rules. 

C. Data Layer 
The data layer consists of a series of databases for 

information storage, All databases use a standard RDBMS for 
interoperability and system interfacing. The final membership 
functions and fuzzy If-Then rule base are stored in the 
knowledge base at the data layer along with parameters 
specific to the industrial pan stage models and discourse 
knowledge bases, The data layer also includes an innovative 
blackboard system that acts as a dynamic storage repository for 
results from the dynamic interrelational models of the pan 
stage. The blackboard system stores all major results for each 
future time interval prediction of process model variables. 
Sugar mill control system data containing information ft"om 
cane receival, juice processing station, the pan stage and the 
centrifugal station is also stored. Dynamic user input from th.e 
pan stage operator is also captured for later use. 

D. System Layer 
The SSCS utilizes four key subsystems to carry out data 

processing of the two major sources of system input. These are 
transfonned into the six required system outputs. The system 
layer is the most complex of the layers in the SSCS 
architecture and essentially comprising the majority of system 
software operations. These four innovative modules utilize 
multithreading for each subsystem. Each module runs as part 
of a separate thread to ensure system execution will continue 
even under the event of a subsystem failure. Furthermore these 
modules feature extensive use of exception handing for failure 
prevention and each is based, as is the rest of the software 
development, on object oriented design. These core subsystems 
as shown in Fig. 3 are: 

1. Dynamic interrelational process models of the pan 
stage; 

2. Inference engine delivering fuzzy meta results; 
3. Prediction of future pan stage operating conditions; 

and 
4. Explanatory and justification facilities. 

The process models developed to describe the dynamic 
features of the pan stage process and forming one of the key 
subsystems in this layer are: 
1) Pan and fugal phase determination models. This model 

detennines the status and phase of schedule that vacuum 
pan and centrifugal station is currently at. The current 
operating status of the vacuum pans can be determined 
using a simplified classification procedure based upon 
steam usage, level and change in Level as presented in 
[12]. Receiver levels allow fugal station status to be 
inferred, Once this detern1ination is made this model is 
coupled with the pan stage schedule and the further 
described process models for prediction of future pan 
stage operating conditions. 

2) Syrup prediction model. This model detennines the 
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Fig. 3. Detailed application design diagram. Dashed lines indicate that the supporting subsystem modules, providing the secondary system outputs, do not 
influence primary system outputs. 

466 



3) 

4) 

5) 

future !low of syrup 10 the pan stage for bins of cane 
the factory after the harvesting process. The 

of the quantities of sucrose and impurities in 
SYnIp allows a forward forecasting of the future pan stage 

of syrup [13]. The syrup prediction model uses 
cane receival data combined with juice processing station 
information and pan stage operator knowledge to forward 

syrup quantities and composition. This model is of 
key importance as syrup comprises the basic input to the 
pan stage. 
A, R, C Massecuite model. This steady-state model of the 
pan stage has been developed to calculate average flow 
rates of process streams using mass balances at each 
vacuum pan, stock tank and fugal [13J. The model 
detennines the average production rates of vacuum pan 
massecllite, C sugar remelt, molasses and sugar streams 

the syrup purity and flow rate to the pan stage. 
determinations assist in calculating the 

necessary quantities of C sugar needed for the A and B 
pans to ensure final product sugar is of the required size. 

conditions for crystal content, sugar size and 
coefficient of size variation have been assumed in this 
model and the purity rise of sugar at the fugals has also 
been taken into account. 

vacuum pan models.· Individual pan 
rates have been modeled by constructing 

relationships [14J for the rate at which each pan 
takes reed material (liquor, A molasses or B molasses) 

the different phases of the pan's operation. The 
CUlT'cnt operating phase being detennined by the pan phase 
determination models described previously. This boil-on 
rate for feed materials is a fUllction of the massecuite level 
and phase of the pan, steam rate, head space pressure 

brix and purity of the feed liquor/molasses. 
this method it is possible to construct a piece-wise 

model of pan feed rate characteristics during each phase of 
the pan's operation for each of the vaCllum pans. 
Stock tank prediction models. With the empirical model 
for each vacuum pan having been established by the 
empirical pan models, the boil-on rates for each feed 
stream at the different stages of the pan stage schedule can 
be determined by summing the liquor, A molasses and B 
mo lasses feed rates for all the pans at that point in the 
schedule. Given the expected liquor production rate and C 
sugar remelt production rate to the liquor tank during this 
interval, the predicted tank levels can be determined for 
the tank. Similarly the predicted tank levels for the 
A and B molasses streams can be calculated from the 

rates of the molasses at the centrifugal station 
and the sum of the consumption rates on the individual 

point in the pan stage schedule. 
model. Using the previously 

established models in conjunction with genetic algorithm 
nizatiol1, the scheduling of when pans should start and 

strikes can be made in order to avoid vacuum 

pan idling time, while mmlmlzmg steam usage on the 
overall pan stage and adhering to sugar production 
productivity, recovery and quality requirements. 

This information in conjunction with other information 
sources gathered through the input layer work collectively with 
the inference process and process models to provide 
information on: 

Recommended steam rate usage for the vacuums pans 
phase given current operating conditions; 
Choice of A/B massccuite duties for "swing" vacuum 
pans; 
Forecasting of stock tank levels and future 
disturbances; 
Footing quantities to the vacuum pans; and 
Scheduling when pans should start and complete 
strikes. 

The fuzzy inference engine is another core subsystem in the 
system layer. The meta-consequent component in this 
subsystem replaces the defuzzier found in traditional fuzzy 
logic based expert systems and instead of providing defuzzified 
results it produces meta-results through the use of fuzzy meta­
consequent functionality [10). The meta-consequent 
functionality provides an adjustment to the results of the 
inference process and modifies the dynamic pan stage process 
models output to correlate with information provided by the 
pan stage operators through the input layer. 

This subsystem is complimented by the real world input 
from the input layer to provide a method for mapping 
information on equipment performance ratings and operational 
problems and characteristics of the syrup, molasses and sugar 
process streams to the dynamic process models. 

This provides meaningful interpretation of the inference 
process output by matching it to the operating conditions at the 
crystallisation stage. 

The inference engine subsystem involving meta-consequent 
functions works in tandem with dynamic interrelational 
process models of the pan stage to determine the primary 
system output control strategies. 

These outputs are further justified by the explanatory 
subsystem which provides system explanation of final control 
strategies. Previous research [9] has show the need for expert 
system recommendations to be further accompanied by 
explanations to aid in the understanding and justification of 
presented advices to gain user acceptance. Limited research 
into explanatolY capabilities for fuzzy expert systems has been 
carried out [15]. In recent times some innovation has been 
perfonned [16]. 

Explanations tagged to each rule in the If-Then fuzzy rule 
base are triggered and propagate through the inference 
mechanism upon a rule firing. This infonnation is further 
passed to the support layer for further processing. 

A prediction subsystem is also provided as secondary system 
output to support the primary control strategies. This 
subsystem provides a prediction of future pan stage operating 
conditions for offered system recommendations compared to 
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functionality provides an adjustment to the results of the 
inference process and modifies the dynamic pan stage process 
models output to correlate with information provided by the 
pan stage operators through the input layer. 

This subsystem is complimented by the real world input 
from the input layer to provide a method for mapping 
information on equipment performance ratings and operational 
problems and characteristics of the syrup, molasses and sugar 
process streams to the dynamic process models. 

This provides meaningful interpretation of the inference 
process output by matching it to the operating conditions at the 
crystallisation stage. 

The inference engine subsystem involving meta-consequent 
functions works in tandem with dynamic interrelational 
process models of the pan stage to determine the primary 
system output control strategies. 

These outputs are further justified by the explanatory 
subsystem which provides system explanation of final control 
strategies. Previous research [9] has show the need for expert 
system recommendations to be further accompanied by 
explanations to aid in the understanding and justification of 
presented advices to gain user acceptance. Limited research 
into explanatolY capabilities for fuzzy expert systems has been 
carried out [15]. In recent times some innovation has been 
perfonned [16]. 

Explanations tagged to each rule in the If-Then fuzzy rule 
base are triggered and propagate through the inference 
mechanism upon a rule firing. This infonnation is further 
passed to the support layer for further processing. 

A prediction subsystem is also provided as secondary system 
output to support the primary control strategies. This 
subsystem provides a prediction of future pan stage operating 
conditions for offered system recommendations compared to 
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current operations. A forecast of current operations is made 
against operations utilizing the system recommended control 
strategies. 

£. Output Layer and Support Layer 
On the completiOll of the system layer processes the final 

results are passed to the output and support layers. The four 
primary control strategy recommendations are passed to the 
output layer for formatting. The secondary supporting results 
are passed to the support layer for formatting and display. 

The support layer works to consolidate the inference process 
by formatting justifications for the presented advice in the most 
appropriate format. The method of presentation is an integral 
part of the output layer. The justification process is 
independent of the inference process which provides the final 
control output values that are recommended. 

Aside from English based textual justification, justification 
for recommendation can be provided as a series of graphs or 
measures to show previous data trends on the pan stage 
schedule, productivity and steam rate usage. These can be 
presented against forward predictions of current pan stage 
operations and depict how the system recommendations can 
provide improvements. 

V. DISCUSSION AND CONCLUSIONS 

The overall strategic management of the pan stage is quite 
difficult because of the very large number of process streams 
of varying compositions and crystal growth rate characteristics 
which must be managed. Often the pan stage is managed in a 
SUb-optimal manner because an overview of operations 
encompassing various sections - cane receival sections, juice 
processing stations, the pan stage and centrifugal station - is 
not available. 

This paper reports a work in progress in the development of 
a SSCS for sugar mill crystallization stage support. The SSCS 
framework presented is an innovative architecture to unify 
fragmented systems of data from pan stage operators, fuzzy 
rule base, developed industrial process models of the pan stage 
and information sources across varying sections of the sugar 
mill to solve an important industrial control problem. An 
innovative modular system architecture based upon a layered 
system framework has been presented along with major system 
features. 

This system seeks to provide a unifYing structure to assist 
pan stage operators in making early decisions, such as changes 
to steam rates, or allocation of pans to different duties to avoid 
production rate difficulties, and maintain good operational 
performance with respect to sugar quality, sugar recovery and 
minimization of steam consumption on the total pan stage. 

The SSCS is a hybrid fuzzy expert system incorporating 
fuzzy logic, explanatory capabilities and industrial process 
models of the crystallisation stage. Presently the most difficult 
part of process modelling has been completed and the 
construction of the advisory system is being undertaken. 
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A forecast of elUTent operations is made 
utilizing the system recommended control 

E. and Support Layer 
On the completion of the system layer processes the final 

results are passed to the output and support layers. The four 
control strategy rCGommendations are passed to the 

for formatting. The secondary supporting results 
are to the support layer for formatting and display. 

The support layer works to consolidate the inference process 
justifications for the presented advice in the most 

"'''·,,·''nnMp format. The method of presentation is an integral 
part of the output layer. The justification process is 

of the inference process which provides the final 
control output values that are recommended. 

Aside from English based textual justification, justification 
t')f recommendation can be provided as a series of graphs or 

measures to show previous data trends on the pan stage 
schedule, productivity and steam rate usage. These can be 

against forward predictions of current pan stage 
operations and depict how the system recommendations can 

improvements. 

V. DISCUSSION AND CONCLUSIONS 

Ibe overall strategic management of the pan stage is quite 
difficult because of the very large number of process streams 
of varying compositions and crystal growth rate characteristics 
which must be managed. Often the pan stage is managed in a 
sub-optimal manner because an overview of operations 
encompassing various sections .. cane receival sections, juice 
processing stations, the pan stage and centrifugal station - is 
not available. 

This paper repOlts a work in progress in the development of 
a SSCS for sugar mil! crystallization stage support. The SSCS 
tiramework presented is an innovative architecture to unifY 
fillgmented systems of data from pan stage operators, fuzzy 
rule base, developed industrial process models of the pan stage 
and information sources across varying sections of the sugar 
mil! to solve an impOliant industrial control problem. An 
inn()vative modular system architecture based upon a layered 
system fi-amework has been presented along with major system 
features. 

TIds system seeks to provide a unifying structure to assist 
pan stage operators in making early decisions, such as changes 
to steam rates, or allocation of pans to difterent duties to avoid 

rate difficulties, and maintain good operational 
with respect to sugar quality, sugar recovery and 

minirmzation of steam consumption on the total pan stage. 
The SSCS is a hybrid fuzzy expert system incorporating 

explanatory capabilities and industrial process 
models of tlle crystallisation stage. Presently the most difficult 
part of process modelling has been completed and the 
construction ofthe ad visory system is being undertaken. 
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