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Abstract - Hierarchical and wider applications of robots, 
manipulators, and pick and place machines are facing challenges 
in industrial environments due to their insufficient intelligence 
for appropriately recognizing objects for grasping and handling 
purposes. Since robots do not posses self-consciousness, 
estimation of adequate grasping force for individual objects by 
robots or manipulators is another challenge for wider 
applications of robots and manipulators.  
 
   This article suggests a mathematical model, recently developed, 
for computation of scattered energy of vibrations sensed by the 
stylus during an object slippage in robot grippers. The model 
includes in it dynamic parameters like trial grasping force, object 
falling velocity, and geometry of object surface irregularities. It is 
envisaged that using the said mathematical model, with the help 
of robust decision making capabilities of artificial neural network 
(NN), a robot memory could be able to estimate 
appropriate/optimal grasping force for an object considering its 
physiomechanical properties.  

 
   On the basis of above mentioned mathematical model, this 
article demonstrates an experimental methodology of estimating 
adequate grasping forces of an object by robot grippers using 
Backpropagation (BP) neural networks. Four different 
algorithms have been explored to experiment the optimal 
grasping force estimation. 
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I. INTRODUCTION AND PROBLEM ORIENTATION 

Robots, and pick and place machines are designed and 
manufactured as non-compliant systems. By virtue of their stiff 
joints, actuators and flexible control systems, robots, and pick 
and place machines can be used to perform repetitive 
superhuman-like operations. Examples of these operations are 
very wide spread starting from diversified materials handling in 
manufacturing sectors to fruit and vegetable harvesting. 
Another special purpose application of robots is performing 
humanlike operations at hazardous environment including 
remote and inaccessible area operations. Collecting the right 

samples of right materials or minerals from space locations as 
well as underwater and mining areas is a group of problems 
requiring humanlike intelligence for robots. Participation in 
surgical operations in human organisms is another splendid 
activity of robot technology. The end-effectors of robots are the 
most responsible unit in all these operations.  This decides how 
to grasp the object, from which direction and how much force 
to be applied in grasping and how to incur motions. The safe 
and non-dependable handling of unknown objects, including 
delicate objects, is a challenge in the field of robot technology. 
Intelligent grasping devices are used to handle unknown 
objects. 

   Estimation of adequate grasping force, by a robot itself, is 
essential for grasping an object properly, neither dropping the 
object due to inadequate grasping force nor smashing it 
applying overestimated force by the robot grippers. 
 
   It is anticipated that in object sensing activities the following 
main problems may arise and need to be solved: 
 

• Object recognition 
• Shape, size and mass estimation 
• Status of environment of the object 
• Object slippage during grasping 
• Determination of necessary grasping force 
• Determination of handling motions. 

 
   The information quality needed to perform certain robotic 
manipulation and grasping tasks still remains unknown. 
Neither it is known how exactly human manipulate objects [1]. 
First of all it is essential that a robot can recognize that it is 
using appropriate force during grasping so that the object 
attempted to grasp is not slipped down. At the same time the 
robot does not imply excessive force that can damage the 
object. In this article an attempt has been made to recognize 
object slippage during grasping by robot end-effectors using a 
tactile and to estimate necessary grasping forces using tactile 
data by the help of artificial Neural Network (NN) 
computational technique.  



         

II. LITERATURE PREVIEW 

   Many robot tasks require contact between the robot and its 
environment. Such tasks include object manipulation by a 
robot hand – in an assembly operation, and probing an 
unknown environment through the robot end-effectors. 
Physical contact between a robot and its rigid environment 
requires the robot to be mechanically compliant, in order to 
avoid excessive contact force control based on force sensing. 
 
   Literature study shows that control of contact has been 
studied largely in the context of robot force control based on 
force sensing. A number of control schemes have been 
successfully developed.  
 
   The concept of the generalized surface is essential to all of 
the force control schemes. In this case motion is possible along 
the directions tangential to the surface, and force is possible 
along the directions normal to the surface. The knowledge of 
the generalized surface allows one to define the constraint 
coordinate, and a force control scheme can then be formulated 
by regulating the behavior of the robot end-effectors along the 
axes of constraint coordinate.  
 
   There are three methods [2] of detection of displacement of 
object due to slip during grasping: 
 

A. Detection from an oscillation at the slip 
 
   This method is based on the detection of surface roughness 
on the object as an oscillation and its principle is analogous to 
that of a record player. In Reference [2] the authors used a 
Rochelle salt crystal supported by a rubber damper and a 
sapphire needle attached to the point. The sapphire needle, 
while slides on an object surface, the surface texture make the 
needle to oscillate which indicates the object slippage.  
 

B. Detection from a moved distance by transforming a linear 
slip displacement into rolling motion 

 
   In this method the detection of a rolling displacement by a 
roller covered by an elastic body with a large coefficient of 
friction so that it rolls with the moving object surface. The 
authors [2] used a magnetic type A-D converter and in 
separate example used a photoelectric type A-D converter to 
detect slip signal without touching the object. 

C. Detection from a change in grasping pressure or pressure 
distribution of fingers. 

   This method is based on physiological phenomenon of 
human skin sensation [2]. In this method pressure sensors act 
as neurons surrounded as on human body. It is assumed that 
bumps/ridges on our hands, along with other sensing elements, 
are used in most of the cases to recognize object surfaces. 
Changes of pressure in any of the sensors of arrays of pressure 

sensors witness the object slippage during grasping by robot 
end-effectors.  
 
   However, inabilities of sensors to differentiate between 
pressure changes caused by object slippage or pressure 
changes caused by operational vibrations appear to be the 
main disadvantages of this method. 
 

III. SLIPPAGE RECOGNITION BY SCATTERED       
ENERGY OF VIBRATION 

 
Robots, and pick and place machines are not capable by 

themselves of recognizing objects nor can they take an 
intelligent decision for grasping objects. For grasping purposes 
robots need to learn the nature and type of the object to be 
grasped, as well as robot must be able to determine the 
grasping force/s necessary and suitable for the object to be 
grasped and manipulated. 

During grasping of unknown non-fluidic objects it is vital 
to avoid the object slippage from the fingers of the grippers due 
to inadequate grasping force. It is also essential not to damage 
the object by over-estimated grasping force applied. For 
intelligent machines, it is a factor that they demonstrate human-
like performances while grasping and/or handling an object. In 
these cases a human, after recognizing an object, uses test and 
trial method to estimate the necessary grasping force to avoid 
slippage. One option for an intelligent machine may be to use 
test and trial approach during grasping as an object by sensing 
its surfaces, mass, and other required factors. 

Solid object surfaces, even machined surfaces have varying 
degrees of irregularities. As in Figure 1, irregularities of 
surfaces are explained [3] by surface texture, which is again 
explained by surface waviness and surface roughness. Surface 
roughness has peaks and valleys. Surfaces of almost all metal 
objects particularly pins, shafts, axles, bushes, bolts, levers, or 
any metal blocks surrounding us can be modeled as shown in 
Figure 1. 

RoughnessWaviness

 
Figure 1. Nature of object surface texture 

 

The tactile / stylus method is a recognized and widely used 
method to determine the grade of surface texture in 
manufacturing industries. If a stylus slides across a surface it 
goes through the peaks and valleys of that surface. This across-
surface motion of a stylus following peaks and valleys creates 
reciprocating vibratory motions of the stylus itself along its axis 
perpendicular to the nominal surface as depicted in Figure 2.  



         

 
Figure 2. Sensing slippage by a stylus 

   Again surface roughness or waviness is characterized by the 
geometry of peaks and valleys of waviness. A tactile/stylus 
embedded into the gripper or fingers of a robot can sense any 
slippage of grasped object while the stylus slides across the 
peaks and valleys of surface irregularities or surface waviness. 
The linear reciprocating motion of a stylus can be modeled in 
the form of newly developed scattered energy of vibrations.  

A.  Scattered Energy of Vibration emanated during Object 
Slippage 

A novel parameter, called scattered energy of vibration, is 
philosophically the energy that is emanated during vibration [4] 
by the motion of a body to a particular displacement due to a 
particular cause and instantly it is disbursed around in the 
environment or in the bodies in contact. 

In this particular case, the Scattered Energy of Vibration 
(Esc) is the amount of energy emanated, as well as instantly 
dissipated, due to vibrations of stylus, which could be 
determined [4] by a newly developed equation expressed as 
follows: 
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Where,   
Esc - Total scattered energy of vibration; 

Ftr - Trial-grasping force possible to manipulate by a control 
system;  

n – Number of irregularities a stylus has sensed during an 
object slippage; 

v – Falling velocity of the slipping object; 
δ1i, s1i - Geometry of surface irregularities of the object. 

Equation (1) demonstrates that, Esc is directly proportional 
to the number of peaks and valleys, and their geometry sensed 
by the stylus during slippage, and also the falling velocity of 
the object.  

Since it is a necessity to apply enough grasping force 
instantly, when the object demonstrates any incipient slip to 
stop slippage, the displacement travelled by a falling body can 
be considered as a micro-displacement. In cases of micro-

displacement the falling velocity v of any body of any mass can 
be again considered to be the same and it is a constant vector. 

IV. GRASPING FORCE ESTIMATION BY  
NEURAL NETWORK   

In recently years, artificial neural networks (NNs) have 
drawn tremendous interest due to the demonstrated successful 
applications in process industry [5], financial modeling [6], 
biomedical engineering [7], manufacturing [8], and so on. 
Neural network soft computational techniques can be a 
convenient method to estimate the appropriate grasping force to 
grasp objects by robot end-effectors. Backpropagation (BP) 
algorithm to train neural networks has been used in a large 
number of problems dealing with class discrimination and 
pattern recognition. Some authors have used NN in solving 
tactile related problems [9], even in noisy environment. In this 
paper, a study has been carried out to assess the possibility of 
using neural networks to estimate optimal grasping force that 
can grasp an object without damaging it as well as without 
slippage. The NNs were trained using Backpropagation 
algorithms and tested and found reasonably good results as an 
introductory experiment.  

A. Input Vector and Associated Output for Training Neural 
Networks 

   Data for training and testing the NNs are the input vectors 
consisting of two variables such as object falling velocity (x1) 
and the scattered energy of vibrations (x2) caused by surface 
roughness (Equation 1) and slippage of object touched by 
stylus. Calculation of these two input vector components (x1, 
x2) was determined using information of the surface roughness 
and frictional force of slipping objects. The associated force 
(f) required to hold the object adequately were determined 
using the Equation 1.  

Numerical values of vector components (x1, x2) and their 
associated grasping force (f) as output forms the data sets to 
train and test NNs. NNs were trained using 100 numbers of 
data labeled as train data and tested by 60 numbers of data 
labeled as test data.  

B. Backpropagation Learning Algorithm  

   In Backpropagation learning weights and biases of the neural 
network are updated in the direction to decrease the 
performance function most rapidly by using negative gradient. 
For one iteration, the simplest learning algorithm of 
Backpropagation is given as in Equation 2 as follows: 

ŵt+1 =ŵt - αtgt                                                                                    (2) 

Where,  

ŵt - a vector of current weights and biases,  

gt  -  the current gradient, and  



         

αt - the learning rate. 

 

   There are many variations of Backpropagation (BP) 
algorithms; four of them have been used in these experiments, 
which are briefly described as follows.  

 
   Gradient Descent Algorithm: In gradient descent 
Backpropagation (BP), learning rate is simply multiplied with 
the negative of the gradient to determine the changes to the 
weights and biases. It needs a proper choice of learning rate 
[10] since larger learning rate may lead the algorithm to 
become unstable and smaller learning rate may take long time 
to converge. Despite the fact that the Backpropagation [11] 
has previous reports of successful implementation on various 
complex problems, the standard Backpropagation (BP) with 
the gradient descent learning algorithm is found to be too slow 
in the training phase [12, 13]. 
 
   Gradient Descent with Momentum Algorithm: In this a 
momentum [10] is added to gradient descent Backpropagation 
learning that makes weight changes equal to the sum of a 
fraction of the last weight change and the new changes 
suggested by the gradient descent Backpropagation (BP) rule. 
Simple gradient descent algorithm network may stuck in a 
shallow local minimum which can be overcome by addition of 
a momentum that allows network to respond to recent trends 
in the error surface in addition to the local gradient. This way, 
gradient descent with momentum often provides faster 
convergence.   
 

   RPROP: The resilient Backpropagation (RPROP) training 
algorithm eliminates some harmful effects arises from the 
magnitudes of the partial derivatives using in gradient descent 
algorithm. In the RPROP the sign of the derivative is used to 
determine the direction of the weight update and the size of the 
weight change is determined by a separate update value 
instead of the magnitude of the derivative. The following 
update principles are considered in RPROP. 

 

• If the derivative of the performance function with respect 
to the weight remains same sign for two successive 
iterations, the weight and bias is increased by a factor ∆i. 

• If the sign of the derivative of the performance function 
changes with respect to that of the previous iteration, the 
update value of weights and biases is decreased by a factor 
∆d. 

 

• If the derivative is zero then the same update value of 
weights and biases is applicable. 

 

• The weight change needs reduction if the weights 
oscillate. 

 

• The weight change needs an increase in magnitude, if the 
weight continues to change in the same direction for 
several iterations. 

 

   RPROP generally converges much faster than the previous 
algorithms [14]. 

   Scaled Conjugate Gradient Algorithm: In the training 
algorithms discussed in the previous sections, a learning rate is 
used to determine the change of the weight for update. This is 
actually termed as the step size in the weight surface. In the 
conjugate gradient algorithms [15, 16], a search is made along 
the conjugate gradient direction to find out the step size that 
minimizes the performance function along that line. 

    In literature there exist other methods to accelerate training 
(e.g. using variation of activation function [17]) as well as 
improving performance (e.g., using synthesis of multiple 
networks [18]) which can also be explored to address the 
current problem. 

V. EXPERIMENTS USING NN 

   In these experiments, the Backpropagation (BP) algorithms 
stated in previous section were used to determine the optimal 
grasping force to hold objects by a robot.  Input vectors (x1, x2) 
and the corresponding force (f) of the trained data set were 
used to train networks until it reaches a set value of minimum 
error or maximum epoch. Four nets M1, M2, M3, and M4 
were trained using the algorithms as shown in Table 1. 

 
Table 1.  NN nets and the training algorithm 

Nets Backpropagation Training Algorithms 

M1 Gradient Descent 

M2 Gradient Descent with Momentum 

M3 RPROP 

M4 Scale Conjugate Gradient 

   Each of the learning process of the nets was repeated 20 
times and the one that provides near to the average response 
was selected. Figures 3-6 show the Error versus Epoch curves 
for each of the nets before termination of the training process. 
The first three curves show that nets M1, M2 and M3 did not 
reach the minimum error settings and terminated the training 
process when reaches maximum epochs. The curve for M4 
terminated the training process when reaches the minimum 
error settings. 

   



         

0 2000 4000 6000 8000 10000

0.04

0.06

0.08

0.1

Epochs

E
rr

o
r

(a)

 
Figure 3. Typical learning characteristics 

by Gradient Descent Algorithm 
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Figure 4. Typical learning characteristics  

by Gradient Descent with Momentum 
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Figure 5. Typical learning characteristics by RPROP 
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Figure 6. Typical learning characteristics 
by Scale Conjugate Gradient Algorithm 

 
The mean square error (MSE) or the nets are shown in Fig 7. 
Net M3 has the minimum mean square error for train data but 
it is too high for the test data that indicates it has low 
generalization capacity than other nets.  MSE for test data 
slightly varies for M1, M2, and M4 nets whereas for train data 
it is lower for M4. Variation of MSE between train and test 
data is similar for M1 and M2 nets. 

   Table 2 shows the correct responses of the nets in estimating 
the grasping force. The responses are satisfactory as a 
preliminary experiment. It needs to be explored more with 
other algorithms of NN or has to be developed a new 
algorithms for better performances. 
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Figure 7. The MSE of the trained NNs to find out grasping forces required 
holding objects by robots 

Table 2 Responses of NNs for train and test data 

Correct Responses in Percent 
Nets 

Train Data Test Data 

M1 53 63.97 

M2 51 58.92 

M3 63 69.02 

M4 56 67.34 

 

VI. CONCLUSSIONS 

   Theoretical basis of a new methodology for slip detection, 
based on scattered energy of vibration, during grasping by 
robot end-effectors has been proposed. 
 
   Scattered energy of stylus vibration due to object surface 
texture has been modeled, and has been successfully used to 
detect object slippage using NN computational techniques. 
With the help of NN optimal grasping force estimation has 
been demonstrated with reasonable accuracy of operations and 
it has been proved that the methodology is capable to work in 
real life robotic applications. 
 
   The trained NN could correctly estimate the grasping force 
from trained objects with 51-63% accuracy, and testing objects 
they can estimate the grasping force with 60-70% accuracy. 
However, further improvement is expected when neural 



         

network architecture is optimized using genetic algorithm [19] 
or other machine learning algorithm, such as, support vector 
machine (SVM) is used [20]. Higher number of data may also 
yield better results. 
 
   The newly developed model and the methodology is a 
breakthrough scientific achievement in the areas of robotized 
manufacturing and assembly operations, and can be used in 
the robotic technology as well as in machine manufacturing 
industry. 
 
   This is a prototype work and the results of experiments have 
proved that further development may allow applying the 
methodology in real life robotic applications in industries. 
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