THE BIOLOGY OF THE FALSE SPIDER MITE DOLICHOTETRANYCHUS FLORIDANUS:

.

A PEST OF PINEAPPLES IN CENTRAL QUEENSLAND

.

.

Richard C.D. Poli. B.App.Sci. (Biol.)

1991

.

THE BIOLOGY OF THE FALSE SPIDER MITE DOLICHOTETRANYCHUS FLORIDANUS: A PEST OF PINEAPPLES IN CENTRAL QUEENSLAND.

A thesis submitted in part fulfilment of the requirements for the degree Master of Applied Science.

by

Richard C.D. Poli. B.App.Sci. (Biol.)

1991 Biology Department. School of Applied Science. University of Central Queensland. 'n

ş

Table of Contents:	Pa	ge
TITLE	I	
TABLE OF CONTENTS	п	
LIST OF FIGURES	VI	
LIST OF TABLES	IX	•
DECLARATION	X	
STATEMENT OF ACCESS	XI	
ACKNOWLEDGEMENTS	XI	Ι
DEDICATION	XI	II
ABSTRACT	XI	V
1.0INTRODUCTION		
1.1 History of the False Spider Mites in Au	stralia 1	
1.2 Mite Description and General Distribut	ion 1	
1.3 Economic Impact Assessment	6	
1.4 Background to the study	6	
1.5 Project Aims	7	
2.0 MATERIALS AND METHODS	9	
2.1 Extraction Methodology	9	
2.2 Enumeration Procedure	10)
2.3 Mite Identification	10)
2.4 A Preliminary Investigation; Mite Distribution along the Plant Axis	10)
2.5 Establishment of Field Trials	11	L
2.6 Selection of Sampling Sites	12	2
2.7 Sampling Procedure	12	2
2.8 Soil Moisture	16	3
2.9 Assessing Mite Presence in Soil	16	3
2.10Weather and Micro-climate Data	17	7
2.11Mite Movements	18	3

	Page
2.12Volunteer Assessment	19
2.13 Statistics	19
3.0RESULTS	20
3.1 Extraction Methodology	20
3.2 Mite Distribution in Stored Crowns	2^{1}
3.2.1 The False Spider Mite	2^{1}
3.2.2 The Predatory Mite	2 5
3.3 Variation Between Farms and Treatments	25
3.4 Intra-Plant and Inter-Plant Variability	37
3.4.1 Intra-Plant Variability	38
3.4.2 Inter-Plant Variability	40
3.5 Sex Ratios	40
3.6 Soil Moisture	44
3.7 Climate and the Effects on the Mites	45
3.7.1 Rainfall	48
3.7.2 Temperature	48
3.7.3 Correlations of Mite Numbers with Weather Data	48
3.8 Mite Presence in Soil	50
3.9 Mite Movements	51
3.10 Mites in Volunteers	52
3.11 Summary of Results	52
4.0 DISCUSSION	54
4.1 Mite Extractions	54
4.2 Mite Distribution Along the Plant Axis	55
4.2.1 The False Spider Mite Distribution	56
4.2.2 The Predatory Mite Distribution	58
4.3 Geographical Distribution	60

· · · · · · · · · · · · · · · · · · ·	Page
4.3.1 Variation in the Mite Distribution	60
4.3.2 General Seasonal Abundance Trends	61
4.3.3 Variations between Farms	6 3
4.4 Variation Between Treatments	65
4.4.1 The Effects of Reduced Pesticide	66
4.4.2 The Effects of Reduced Fertilizer	68
4.4.3 An Overview of Normal Farming Practices	70
4.5 Intra and Inter-Plant Variations in Distribution	73
4.5.1 Intra-Plant Variability	73
4.5.2 Inter-Plant Variability	74
4.6 Sex Ratios	75
4.7 Soil Moisture	76
4.8 The Effects of Rainfall	78
4.8.1 General Rainfall Patterns	78
4.8.2 Effects on the False Spider Mite Population	78
4.8.3 Effects on the Adult Mite	80
4.8.4 Effects on the Non-Motile Stages	82
4.9 The Effects of Temperature	83
4.9.1 An Overview of Response to Temperature	83
4.9.2 Response to Adverse Temperature	84
4.10 Mite Presence in the Soil	86
4.10.1 The False Spider Mite	87
4.10.2 The Predatory Mite	. 88
4.11 Mite Movements	89
4.11.1 Mite Transport in Crowns	89
4.11.2 Migration into New Crowns	90
4.11.3 Vector Dispersal	92
4.12 Volunteers as a Cause of Dispersal	92

Page
96
98
99
106
112
115
119

List of Figures		Page
Figure 1:	The False Spider Mite, <u>Dolichotetranychus floridanus,</u> adult male.	3
Figure 2:	The False Spider Mite, <u>Dolichotetranychus floridanus</u> , adult female, (top); stage 2, (middle); stage 1, (bottom).	3
Figure 3:	The False Spider Mite, <u>Dolichotetranychus</u> floridanus, egg.	4
Figure 4:	The Predatory Mite, <u>Amblyseius benjamini</u> , adult.	4
Figure 5:	Pineapple Growing Regions along the East Coast of Queensland, Australia.	5
Figure 6:	Formal Arrangement and Block Layout for the Field Trials Conducted on the Three Farms in the Yeppoon District.	13
Figure 7:	Field Trials and Sampling Site Situated at Farm One.	14
Figure 8:	Field Trials and Sampling Site Situated at Farm Two.	14
Figure 9:	Field Trials and Sampling Site Situated at Farm Three.	15
Figure 10	Spread of Adult Mites Along the Central Axis of the Pineapple Crown.	22
Figure 11	Spread of Juvenile Mites Along the Central Axis of the Pineapple Crown.	22
Figure 12	Spread of Mite Eggs Along the Central Axis of the Pineapple Crown.	23
Figure 13	Spread of Adult Predatory Mites Along the Central Axis of the Pineapple Crown.	23
Figure 14	Spread of Juvenile Predatory mite Along the Central Axis of the Pineapple Crown.	24

.

Figure 1	5: Spread of Predatory Mite Eggs Along the Central Axis of the Pineapple Crown.	24
Figure 1	16: Comparison of Crops 17 Months after Planting, a) this Crop is Relatively Healthy Despite Mite Infestations, b) this Crop has Failed due to Severe mite infestations.	26
Figure 1	17:Total Number of Male Mites. Treatments 1 to 3 on Farm One.	27
Figure 1	18: Total Number of Female Mites. Treatments 1 to 3 on Farm One.	27
Figure 1	19: Total Number of Stage 2 Mites. Treatments 1 to 3 on Farm One.	28
Figure 2	20: Total Number of Stage 1 Mites. Treatments 1 to 3 on Farm One.	28
Figure 2	21: Total Number of Mite Eggs. Treatments 1 to 3 on Farm One.	29
Figure 2	22: Total Number of Mites. Treatments 1 to 3 on Farm One.	29
Figure 2	23: Total Number of Male Mites. Treatments 1 to 3 on Farm Two.	30
Figure 2	24: Total Number of Female Mites. Treatments 1 to 3 on Farm Two.	30
Figure 2	25: Total Number of Stage 2 Mites. Treatments 1 to 3 on Farm Two.	31
Figure	26: Total Number of Stage 1 Mites. Treatments 1 to 3 on Farm Two.	31
Figure 2	27: Total Number of Mite Eggs. Treatments 1 to 3 on Farm Two.	32
Figure 2	28:Total Number of Mites. Treatments 1 to 3 on Farm Two.	32

.

.

Figure 29: Soil Moisture (%) over Time. Farm One.	46
Figure 30: Soil Moisture (%) over Time. Farm Two.	46
Figure 31: Soil Moisture (%) over Time. Farm Three.	47
Figure 32: Average Soil Moisture at Sample Date. Taken from Farms 1,2 and 3.	47
Figure 33: Mean Daily Rainfall Three Weeks Prior to the Sample Date.	49
Figure 34: Mean daily Temperatures Three Weeks prior to The Sample Date Figure 34a: Comparison of Figures 22, 28, 33 and 34.	49 49a
Figure 35: Standard Pineapple Crop Cycle for the Spring and Autumn Plantings.	114

:

•

*

List of Tables:

- Table 1:Probabilities calculated from Two-way ANOVA on cohort by
farm and treatment.35
- Table 2:Probabilities calculated from one-way ANOVA on cohort by
treatment.
- Table 3: Scheffe Multiple Range test performed on the means of each cohort, in each of the three treatments. Mean Values were taken from the one-way ANOVA.
- Table 4: Probabilities calculated from ANOVA, mean number of mites per leaf and homogeneous groupings, calculated on mite numbers obtained from leaf samples during "high" mite infestation levels on farms one and two.
- Table 5: Probabilities calculated from ANOVA, mean number of mites per leaf and homogeneous groupings, calculated on mite numbers obtained from leaf samples during "low" mite infestation levels on farms one and two.
- 39 Table 6: Probabilities calculated from ANOVA, mean number of mites per sample site and homogeneous treatments, calculated on mite numbers obtained from leaf samples during "high" mite infestation levels on farms one and two.
- Table 7:Probabilities calculated from ANOVA, mean number of mites
per sample site and homogeneous treatments, calculated on
mite numbers obtained from leaf samples during "low" mite
infestation levels on farms one and two.

42

39

- Table 8Mean sex ratio for farm one and two calculated at each
sample date. Mean Sex ratios fro each treatment on farms
one and two.
 - 43
- Table 9:Analysis results of average maximum and minimum
temperature, and average rainfall correlated at each cohort.
Adjusted Coefficient of Determination, Standard Error of
Estimates and Regression Equations summarized.

43

Page

Declaration:

I declare that the work described in this thesis is entirely my own and has not previously been submitted in any other form at any other university, institution or tertiary education centre for the award of a higher degree. The information derived from the published or unpublished work of any other person has been acknowledged.

& Pieli

Richard C.D. Poli.

.

Statement of Access.

I, the undersigned author of this thesis understands that the University College of Central Queensland will make this work available within the library, and that it will be accessible to library users and other approved libraries. This thesis should not be copied, or closely paraphrased without the consent of the author, and written acknowledgement of the assistance gained from this work. Beyond this, I do not wish to place any restrictions on this thesis.

R Puli

Richard C.D. Poli.

Acknowledgements:

I would like extend thanks and appreciation to my supervisor, Dr. Robert Newby for his advice, guidance and encouragement through all phases of this research project. I am also grateful to the members of the Yeppoon Fruit Growers and Local Producers Association who provided funding, their time and knowledge. In particular I would like to thank, Bob Burrowes, David and Graham Clayton and Peter Hutton who willingly provide their land, time and resources to make the project a success. Thanks to Dr. E. Schicha, B.C.R.I. New South Wales Agriculture and Fisheries, for the mite identifications.

I must also extend thanks to Mr. Barry Cochrane for his statistical advice and assistance and to Mr. Dave R. Cardnell for his help and advice on computing matters. I would like to thank Dr. Keith Harrower for reviewing this manuscript. I must also thank the staff at the Biology Department of the U.C.C.Q. for their encouragement, and assistance.

Thanks also to Carol J. Brodie for the encouragement, moral support and friendship constantly provided.

Dedication:

Their wisdom and knowledge was bestowed on me, their courage and strength was not all they gave.

.

Dino and Rose Poli.

Abstract

The false spider mite (or red mite) <u>Dolichotetranychus</u> <u>floridanus</u> has been recorded on pineapple crops throughout the world. It reaches pest proportions sporadically, particularly in areas with hot dry weather patterns. In the late 1980's <u>D</u>. <u>floridanus</u> caused significant economic losses in the Yeppoon district of Central Queensland. Current literature on the false spider mite biology is limited with most publications orientated to taxonomy or records of presence/absence in crops. Anecdotal evidence is often vague or contradictory.

In the current study, field populations of <u>D</u>. <u>floridanus</u> and the predatory mite, <u>Amblyseius benjamini</u> were studied using three experimental regimes: normal horticultural practices, reduced pesticide treatment and reduced fertilizer treatments. Extraction and sampling procedures were developed to estimate field populations of all life cycle stages. Populations were sampled at six week intervals on 3 farms * 3 treatments * 5 plants * three leaves * 2 duplicates.

The false spider mites distribution along the axis of the pineapple crown was highly aggregated on the fifth and sixth basal leaf axils. The predatory mite <u>A</u>. <u>benjamini</u> did not develop substantial and aggregated populations within the leaf axils of the crown. In contrast it was prevalent on the subterranean stems and root material.

A high degree of seasonality within the false spider mite population was evident as population densities increased to damaging levels during the summer months and decreased in the winter months. The correlations of population densities with seasonal weather agreed broadly with anecdotal evidence but the statistical level of significance was not high. The coefficients of determination between mite numbers and rainfall, maximum and minimum temperatures were 0.28, 0.21 and 0.081 respectively.

The intra-plant variability and inter-plant variability were high when populations were low (during winter) but markedly less during periods of high population densities (summer).

Normal farming practice incorporates high levels of fertilizer application and use of a wide range of pesticides directed at various insect pests. Populations densities of <u>D</u>. <u>floridanus</u> were reduced by routine pesticide regimes, however residual populations are always present. Population densities were also lower on minimal fertilizer treatments. Juvenile stages were generally more sensitive to these treatments than the adult stages.

Predatory mite numbers were low in all treatments and probably exerted minimal control on the false spider mite populations. The pathogenic fungua <u>Hirsutella</u> sp. was sporadically present on false spider mites but exerted minimal control.

False spider mite dispersal in space and time is strongly linked with the use of crowns for plant propagation. New crowns are colonized early by mites from both the parent plant and adjacent plants. Storage of the crowns influenced both the condition of the crowns and the mite infestation levels. Significant populations of false spider mites were found in soil and 'volunteer' plants. They provide intercrop and temporal dispersal. An additional important determinant of crop health and mite population densities is soil moisture. The level of which at planting and the time of year, may promote false spider mite infestations.

The results of the study provide foundations for future research into the effective control of the false spider mite. Further research is required on the detailed effects of temperature and rainfall (soil moisture and humidity) on population dynamics of <u>D</u>. <u>floridanus</u>. Such research will be required before an IPM program can be developed.