A FITNESS ANALYSIS SYSTEM WITH AN INTELLIGENT INTERFACE

Thesis submitted by

ALFIO V PARISI BSc(Hons) MAIP

in fulfilment of the requirements of

MASTER OF APPLIED SCIENCE

University of Central Queensland Department of Mathematics and Computing School of Applied Science

November, 1991

ABSTRACT

One of the problems in the physiological assessment of an athlete is poor communication of the results of the physiological tests to the coach. This thesis describes the development of an expert system, EXFIT designed to bridge the gap between the scientist and the coach and facilitate the provision of scientific information in a systematic and coherent fashion in a report to the coach. The expert system provides generalized recommendations which the coach utilizes in developing specific training schedules suited to the particular athlete to enhance performance. The recommendations are based on a series of physiological analyses of the athlete.

The analyses available in EXFIT are: anaerobic power (peak and total), aerobic power, onset of blood lactate accumulation, maximum blood lactate, blood, muscle structure (fibre type), metabolic status of muscle - aerobic capacity and anaerobic capacity. For two of these analyses, namely the anaerobic power (peak and total) and the aerobic power, provision has been made to allow for both manual and automatic acquisition of the data from the tests for which the data acquisition system was developed as part of this project. The results of the test equipment not presently interfaced to the computer are collected and entered manually.

The implementation of the expert system is described with emphasis placed on recognition of the internal structure of the knowledge, independence from a particular expert system shell and the design for future expansion and maintenance. EXFIT has been split into the four separate modules of user interface, data, information and knowledge. The data and information have been normalized and stored using the knowledge dictionary concept. The design for maintenance was tested by writing a program that allows the domain expert to modify or add to the data and information of EXFIT without the requirement for a knowledge engineer.

TABLE OF CONTENTS

	Page
TITLE PAGE	. i
ABSTRACT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES AND ILLUSTRATIONS	. v
ACKNOWLEDGEMENTS	vi
DECLARATION	vi
CHAPTER	
I. INTRODUCTION	. 1
1.1 OVERVIEW	. 1
1.2 OBJECTIVES	1
1.3 OUTLINE	3
II. GENERAL DESCRIPTION	4
III. SURVEY OF RELEVANT RESEARCH	6
IV. DATA ACQUISITION	9
4.1 INTRODUCTION	9
4.2 EQUIPMENT	. 13
4.2.1 ANAEROBIC TEST EQUIPMENT	. 15
4.2.2 AEROBIC TEST EQUIPMENT	. 19
V. FITNESS TESTING SYSTEM	. 24
5.1 STRUCTURE	. 24
5.2 CHOICE OF SOFTWARE	. 27
5.3 DESCRIPTION OF SOFTWARE	. 27
5.3.1 DISC RECORDS	
5.3.2 OFFLINE DATA	. 28
5.3.3 COMPARISON SYSTEM - COMPARE	. 28
5.3.3.1 PROFILING SYSTEM	. 29
5.3.3.2 PERFORMANCE SYSTEM	. 34
5.3.4 AEROBIC TEST - AEROBIC	. 36
5.3.5 ANAEROBIC TEST - ANAEROBIC	. 41
5.3.6 TEST REPORT - PRINTREP	. 44
5.3.7 DISPLAY DATA RECORD - DISPLAY	. 46
VI. EXPERT SYSTEM	. 47
6.1 INTRODUCTION	. 47

	6.2 DESIGN OF THE ADVISORY SYSTEM	48
	6.2.1 OVERALL STRUCTURE	50
	6.2.2 KNOWLEDGE BASE - DATA, INFORMATION AND KNOWLEDGE .	51
	6.2.3 INFERENCE	55
	6.2.4 RECOMMENDATIONS REPORT	57
	6.3 CHOICE OF SOFTWARE PLATFORM	60
VII.	EXPERT SYSTEM MAINTENANCE	62
	7.1 INTRODUCTION	62
	7.2 MAINTAIN	63
VIII.	USER INTERFACE	70
	8.1 DESIGN	70
	8.2 IMPLEMENTATION	70
IX.	TESTS AND RESULTS	75
	9.1 EXPERT SYSTEM	75
	9.2 ON-LINE DATA ACQUISITION SYSTEM	78
x.	CONCLUSIONS	79
	10.1 CONCLUSIONS	79
	10.2 FURTHER DEVELOPMENTS	81
BIBL	IOGRAPHY	82
APPE	NDICES	86
	APPENDIX A.1 - SYSTEM COMPONENTS	86
	APPENDIX A.2 - ANAEROBIC TEST PROTOCOL	87
	APPENDIX A.3 - EXAMPLE OF NORMFILE.DOC	88
	APPENDIX A.4 - PROGRAMMING THE A/D CONVERTER	89
	APPENDIX B - PROGRAM LISTINGS	90
	APPENDIX C - USER MANUAL	91
	APPENDIX D - SAMPLE RECOMMENDATIONS	97

LIST OF TABLES AND ILLUSTRATIONS

		Page
Figure 2.1		Schematic of the application of EXFIT 5
Figure 4.1		Equipment for the on-line data acquisition system 14
Figure 4.2	-	Equipment for the Wingate anaerobic test 17
Figure 4.3	-	Timing diagram for detector on cycle ergometer 18
Figure 4.4		Subject on treadmill undertaking Aerobic test 21
Figure 5.1		The overall structure of the software of EXFIT \dots 26
Figure 5.2	-	Schematic of profiling system 30
Figure 5.3	- 1	Sample output of the profiling system
Figure 5.4		Sample output of the performance system
Figure 5.5	; -	Sample printout during the aerobic test
Figure 5.6	; -	Sample graph produced during the aerobic test 40
Figure 5.7	' -	Sample printout of the report of the aerobic test 45
		results
Figure 6.1		The overall structure of the software of EXFIT \dots 49
Figure 6.2	2 -	Internal structure of the knowledge in the advisory 54
		system
Figure 6.3	} -	Sample output of the expert system for the 59
		metabolic status of the muscle (aerobic capacity)
		analysis
Figure 7.1		Sample of the first screen in MAINTAIN
Figure 7.2	2 -	Sample of the second screen in MAINTAIN
Figure 8.1	-	Example of the user interface's flow from screen 72
		to screen
Table 1	-	Summary of responses from the coaches
Table 2	-	Summary of comments from the coaches 77

v

ACKNOWLEDGEMENTS

Thanks are due to: Associate Professor Graham Allen for the initial idea, suggestions during the project and the provision of the physiological expertise and knowledge required for the expert system, the Centre for the Assessment of Human Performance at the USQ for the equipment and purchase of additional equipment required to develop and complete the project, John Smith, Michael Murphy and George Blanas for assistance and supervision with the project, Ron Matthews and Keith Fleming for excellent craftmanship in the construction of any mechanical and electronic devices required, and finally Dina Parisi for considerable encouragement, support and motivation over the entire length of the project.

DECLARATION

This thesis has not been submitted in any form for another degree or diploma at any other University and the main text is an original work.