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Abstract: The robust stability of uncertain linear neutral systems with time-varying discrete and
neutral delays is investigated. The uncertainties under consideration are nonlinear time-varying
parameter perturbations and norm-bounded uncertainties, respectively. Both delay-dependent and
delay-derivative-dependent stability criteria are proposed and are formulated in the form of linear
matrix inequalities. The presented results contain some existing results as their special cases.
Numerical examples are also given to indicate significant improvements over existing results.

Nomenclature

R : the set of real numbers
R

n : the set of real n-dimensional
vectors

R
n�m : the set of real n � m-dimensional

matrices
WT : transpose of matrix W
W>0 ðW < 0Þ : W is a symmetric positive

(negative) definite matrix
W � 0 ðW � 0Þ : W is a symmetric positive

(negative) semi-definite matrix
lmaxðWÞ ðlminðWÞ : the maximum (minimum) eigen-

value of a symmetric matrix W
kMk : the Euclidean vector norm or its

induced matrix 2-norm of a vector
or a matrix M

I : identity matrix of appropriate
dimensions

1 Introduction

The problem of the stability of delay-differential neutral
systems has received considerable attention in the last two
decades; for example, [1]. Practical examples of neutral
systems include distributed networks containing lossless
transmission lines [2], and population ecology [3]. Depend-
ing on whether or not the stability criterion contains delay
information, it can be divided into one of two categories;
namely, either a delay-independent stability criteria [4, 5]
or a delay-dependent stability criteria [6–10]. However, to
date only neutral systems with a constant neutral delay have
been considered.

In recent years, the problem of the robust stability of
retarded systems with nonlinear parameter perturbations has
also received considerable attention. In [11], for example,
delay-independent and delay-dependent stability criteria

are obtained by using matrix properties and a comparison
theorem. In [12], based on matrix measure, matrix norm
and a decomposition technique, two stability criteria are
derived. The results in [11] and [12] are very conservative
since they required the matrix measure to be negative.
In [13], a model transformation technique is used to
transform a system with a discrete delay to a system with
a distributed delay, and delay-dependent stability criteria
are obtained by using a Lyapunov-Krasovskii functional
approach. Although the results in [13] are less conservative
than many existing ones, they are still conservative since the
model transformation introduces additional dynamics as
discussed in [14]. In [15], based on a descriptor model
transformation [9] and the decomposition of a discrete delay
term matrix, the robust stability of uncertain systems with
a single time-varying discrete delay is investigated by
applying an integral inequality as compared to the bounding
of cross-terms used in [16]. Numerical examples show that
the results obtained in [15] are less conservative than
existing ones in the literature. To the best of our knowledge,
the problem of the robust stability of neutral systems with
nonlinear parameter perturbations has not been addressed in
the case of a time-varying neutral delay.

We will now investigate the robust stability of uncertain
neutral systems using the Lyapunov-Krasovskii functional
approach. We will consider both nonlinear parameter
perturbations and norm-bounded uncertainties. The delays
under considerations will include time-varying discrete and
neutral delays. We will consider the robust stability problem
in terms of symmetric positive-definite matrices. Both
delay-dependent and delay-derivative-dependent stability
criteria will be proposed and formulated in the form of
linear matrix inequalities (LMIs), which can be effectively
solved using interior-point optimisation algorithms [17].

In this work, a delay-dependent stability criterion for
linear systems with a time-varying delay means that the
criterion itself contains information on both the bound and
delay-derivative bound of the time-varying delay whereas
a delay-derivative-dependent criterion only contains
information on the delay-derivative bound of the
time-varying delay. For the case of a constant time-delay,
the delay-derivative-dependent criterion reduces to delay-
independent one.

2 Problem statement

Consider the following linear neutral system with time-
varying discrete and neutral delays:
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_xxðtÞ ¼ AxðtÞ þ Bxðt 	 rðtÞÞ þ C _xxðt 	 tðtÞÞ
þ fðxðtÞ; tÞ þ gðxðt 	 rðtÞÞ; tÞ þ hð_xxðt 	 tðtÞÞ; tÞ

ð1Þ

where xðtÞ 2 R
n is the state, A 2 R

n�n; B 2 R
n�n and

C 2 R
n�n are constant matrices. The time-varying vector-

valued functions fðxðtÞ; tÞ 2 R
n; gðxðt 	 rðtÞÞ; tÞ 2 R

n and
hð_xxðt 	 tðtÞÞ; tÞ 2 R

n are unknown and represent the
parameter perturbations with respect to the current state
x(t) and delayed state xðt 	 rðtÞÞ and _xxðt 	 tðtÞÞ of the
system, respectively. They satisfy that f ð0; tÞ ¼ 0; gð0; tÞ ¼
0 and hð0; tÞ ¼ 0: The delay r(t) is a time-varying discrete
delay and tðtÞ is a time-varying neutral delay, which satisfy:

0 � rðtÞ � rM _rrðtÞ � rd 0 � tðtÞ � tM _ttðtÞ � td ð2Þ

where rM; rd; tM and td are constants, and 0 � rd < 1 and
0 � td < 1:

The initial condition of system (1) is given by:

xðt0 þ yÞ ¼ wðyÞ _xxðt0 þ yÞ ¼ _wwðyÞ
8y 2 ½	maxfrM; tMg; 0� ð3Þ

where wð�Þ is a vector-valued initial function.
The aim of this work is to formulate some practically

computable criteria to check the stability of the system
described by (1)–(3).

3 Nonlinear time-varying parameter perturbation

In this Section, we assume that fðxðtÞ; tÞ; gðxðt 	 hðtÞÞ; tÞ
and hð_xxðt 	 tðtÞÞ; tÞ represent the nonlinear parameter time-
varying perturbations of system (1) which satisfy that:

k f ðxðtÞ; tÞk � akxðtÞk ð4aÞ

kgðxðt 	 rðtÞÞ; tÞk � bkxðt 	 rðtÞÞk ð4bÞ

khð_xxðt 	 tðtÞÞ; tÞk � gk_xxðt 	 tðtÞÞk ð4cÞ

where a � 0; b � 0 and g � 0 are given constants.
Constraint (4) can be rewritten as:

f TðxðtÞ; tÞf ðxðtÞ; tÞ � a2xTðtÞxðtÞ ð5aÞ

gTðxðt 	 rðtÞÞ; tÞgðxðt 	 rðtÞÞ; tÞ
� b2xTðt 	 rðtÞÞxðt 	 rðtÞÞ ð5bÞ

hTð_xxðt 	 tðtÞÞ; tÞhð_xxðt 	 tðtÞÞ; tÞ
� g2 _xxTðt 	 tðtÞÞ_xxðt 	 tðtÞÞ ð5cÞ

For the robust stability of system (1)–(3), with uncertainty
(4), we have the following delay-dependent stability result.

Proposition 1: The system described by (1)–(3), with
uncertainty described by (4) is asymptotically stable if
kCk þ g< 1 and there exists a real matrix X, symmetric
positive definite matrices P, R, S, Y and scalars e1 � 0;
e2 � 0 and e3 � 0 such that the following LMI holds:

ð1; 1Þ 	XT B PC P P P

	BT X ð2; 2Þ 0 0 0 0

CT P 0 ð3; 3Þ 0 0 0

P 0 0 	e1I 0 0

P 0 0 0 	e2I 0

P 0 0 0 0 	e3I

SA SB SC S S S

YBA YBB YBC YB YB YB

rMðX þ PÞ 0 0 0 0 0

0
BBBBBBBBBBBBBBBB@

AT S AT BT Y rMðXT þ PÞ
BT S BT BT Y 0

CT S CT BT Y 0

S BT Y 0

S BT Y 0

S BT Y 0

	S 0 0

0 	Y 0

0 0 	Y

1
CCCCCCCCCCCCCCCCA

< 0 ð6Þ

where

ð1; 1Þ¼D ðA þ BÞTP þ PðA þ BÞ þ R þ XT B þ BT X þ e1a
2I

ð2; 2Þ¼D 	ð1 	 rdÞR þ e2b
2I

ð3; 3Þ¼D 	ð1 	 tdÞS þ e3g
2I

Proof: Choose a Lyapunov-Krasovskii functional candidate
for system (1) as:

VðtÞ ¼ V1ðtÞ þ V2ðtÞ þ V3ðtÞ þ V4ðtÞ
where

V1ðtÞ ¼ xTðtÞPxðtÞ

V2ðtÞ ¼
Z t

t	rM

ðrM 	 t þ �Þ_xxTð�ÞBT QB_xxð�Þd�

V3ðtÞ ¼
Z t

t	rðtÞ
xTð�ÞRxð�Þd�

V4ðtÞ ¼
Z t

t	tðtÞ
_xxTð�ÞS_xxð�Þd�

where symmetric positive definite matrices P, R, S, Y
ð¼ rMQÞ are solutions of (6).

It is easy to see that:

lminðPÞkxðtÞk2

� VðtÞ � o kxðtÞk2þ
Z 0

	maxfrM;tMg
k_xxðt þ yÞk2dy

� 	1=2
 !2

where o¼D maxflmaxðPÞ þ 2rMlmaxðRÞ; rMlmaxðBTQBÞ þ
2r2

MlmaxðRÞ þ lmaxðSÞg:
The derivative of V(t) along the trajectory of system (1)

is given by _VVðtÞ ¼ _VV1ðtÞ þ _VV2ðtÞ þ _VV3ðtÞ þ _VV4ðtÞ: To derive
discrete-delay-dependent stability condition, which
includes the information of the time-delay r(t), one usually
uses the fact
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xðt 	 rðtÞÞ ¼ xðtÞ 	
Z t

t	rðtÞ
_xxð�Þd�

to transform system (1) to the following one:

_xxðtÞ ¼ ðA þ BÞxðtÞ 	 B

Z t

t	rðtÞ
_xxð�Þd� þ C _xxðt 	 tðtÞÞ

þ f ðxðtÞ; tÞ þ gðxðt 	 rðtÞÞ; tÞ þ hð_xxðt 	 tðtÞÞ; tÞ

We have

_VV1ðtÞ ¼ 2xTðtÞPðAþBÞxðtÞ	 2xTðtÞPB

Z t

t	rðtÞ
_xxð�Þd�

þ 2xTðtÞPC _xxðt	 tðtÞÞþ 2xTðtÞPf ðxðtÞ; tÞ
þ 2xTðtÞPgðxðt	 rðtÞÞ; tÞþ 2xTðtÞPhð_xxðt	 tðtÞÞ; tÞ

Define að�Þ ¼ B_xxð�Þ; bð�Þ ¼ PxðtÞ and use lemma 1 in [16]
to obtain:

	2xTðtÞPB

Z t

t	rðtÞ
_xxð�Þd�

� rMxTðtÞPðMT Q þ IÞQ	1ðQM þ IÞPxðtÞ

þ2xTðtÞPMT QB

Z t

t	rðtÞ
_xxð�Þd� þ

Z t

t	rðtÞ
_xxTð�ÞBT QB_xxð�Þd�

Let X ¼ QMP and Y ¼ rMQ; then:

_VV1ðtÞ � xTðtÞðPðA þ BÞ þ ðA þ BÞT P

þ r2
MðXT þ PÞY	1ðX þ PÞ þ XT B þ BXÞxðtÞ

	 2xTðtÞXT Bxðt 	 rðtÞÞ þ 2xTðtÞPC _xxðt 	 tðtÞÞ

þ 2xðtÞPf ðxðtÞ; tÞ þ 2xTðtÞPgðxðt 	 rðtÞÞ; tÞ

þ 2xTðtÞPhð_xxðt	tðtÞÞ; tÞþ
Z t

t	rðtÞ
_xxTð�ÞBT QB_xxð�Þd�

Noting that using (2), one can easily compute _VV2ðtÞ; _VV3ðtÞ
and _VV4ðtÞ as:

_VV2ðtÞ ¼ _xxTðtÞBT YB_xxðtÞ 	
Z t

t	rM

_xxTð�ÞBT QB_xxð�Þd�

_VV3ðtÞ � xTðtÞRxðtÞ 	 ð1 	 rdÞxTðt 	 rðtÞÞRxðt 	 rðtÞÞ
_VV4ðtÞ � _xxTðtÞS_xxðtÞ 	 ð1 	 tdÞ_xxTðt 	 tðtÞÞS_xxðt 	 tðtÞÞ

Then we have

_VVðtÞ � xTðtÞðPðA þ BÞ þ ðA þ BÞT P þ R þ XT B

þ BX þ r2
MðXT þ PÞY	1ðX þ PÞÞxðtÞ

	 2xTðtÞXT Bxðt 	 rðtÞÞ þ 2xTðtÞPC _xxðt 	 tðtÞÞ
þ 2xTðtÞPf ð_xxððtÞ; tÞ þ 2xT Pgðxðt 	 rðtÞ; tÞ
þ 2xTðtÞPhð_xxðt 	 tðtÞÞ; tÞ 	 ð1 	 rdÞxTðt 	 rðtÞÞ
� Rxðt 	 rðtÞÞ 	 ð1 	 tdÞ_xxTðt 	 tðtÞÞS_xxðt 	 tðtÞÞ
þ _xxTðtÞðS þ BT YBÞ_xxðtÞ

Noting that using (1), we further have:

_VVðtÞ � qTðtÞJqðtÞ

where qðtÞ ¼ ðxTðtÞ xTðt 	 rðtÞÞ _xxTðt 	 tðtÞÞ f TðxðtÞ; tÞ
gTðxðt 	 rðtÞÞ; tÞ hTð_xxðt 	 tðtÞÞ; tÞÞT and:

J ¼

J11 J12 J13 J14 J15 J16

JT
12 J22 J23 J24 J25 J26

JT
13 JT

23 J33 J34 J35 J36

JT
14 JT

24 JT
34 J44 J45 J46

JT
15 JT

25 JT
35 JT

45 J55 J56

JT
16 JT

26 JT
36 JT

46 JT
56 J66

0
BBBBBBBBB@

1
CCCCCCCCCA

where

J11 ¼ PðA þ BÞ þ ðA þ BÞT P þ XT B þ BX þ R

þ r2
MðXT þ PÞY	1ðX þ PÞ þ ATðS þ BT YBÞA

J12 ¼ 	 XT B þ ATðS þ BT YBÞB
J13 ¼ PC þ ATðS þ BTYBÞC
J14 ¼ P þ ATðS þ BT YBÞ
J15 ¼ P þ ATðS þ BT YBÞ
J16 ¼ P þ ATðS þ BT YBÞ
J22 ¼ 	 ð1 	 rdÞR þ BTðS þ BT YBÞB
J23 ¼ BTðS þ BT YBÞC
J24 ¼ BTðS þ BT YBÞ
J25 ¼BTðS þ BT YBÞ
J26 ¼ BTðS þ BT YBÞ
J33 ¼ 	 ð1 	 tdÞS þ CTðS þ BT YBÞC
J34 ¼ CTðS þ BT YBÞ
J35 ¼ CTðS þ BT YBÞ
J36 ¼ CTðS þ BT YBÞ

J44 ¼ S þ 1

1 	 rd
BT YB

J45 ¼ S þ BTYB

J46 ¼ S þ BTYB

J55 ¼ S þ BTYB

J56 ¼ S þ BTYB

J66 ¼ S þ BTYB

By theorem 1.6 in [18], a sufficient condition for asymptotic
stability of system (1) is that if kCk þ g< 1 and there exist a
real matrix X, symmetric positive definite matrices P, R, S
and Y such that:

_VVðtÞ � qTðtÞJqðtÞ< 0 ð7Þ
for all qðtÞ 6¼ 0 satisfying (5), where (7) means that V(t) is
negative definite whenever neither x(t) nor xðt 	 rðtÞÞ; nor
_xxðt 	 tðtÞÞ is zero. Using the S-procedure [19], we see that
this condition is implied by the existence of non-negative
scalars e1 � 0; e2 � 0 and e3 � 0 such that:

qTðtÞJqðtÞ þ e1

�
a2xTðtÞxðtÞ 	 f TðxðtÞ; tÞfðxðtÞ; tÞ


þ e2

�
b2xTðt 	 rðtÞÞxðt 	 rðtÞÞ

	 gTðxðt 	 rðtÞÞ; tÞgðxðt 	 rðtÞÞ; tÞ


þ e3ðg2 _xxTðt 	 tðtÞÞ_xxðt 	 tðtÞÞ
	 hT

�
_xxðt 	 tðtÞÞ; tÞhð_xxðt 	 tðtÞÞ; tÞ


< 0

for all qðtÞ 6¼ 0: Therefore, if kCk þ g< 1 and there exist a
real matrix X, symmetric positive definite matrices P, R, S,
Y and scalars e1 � 0; e2 � 0 and e3 � 0 such that the LMI
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(6) is satisfied, then system (1)–(3), with uncertainty (4), is
asymptotically stable.

Remark 1: The condition kCk þ g< 1 in proposition 1
guarantees that the Lipschitz constant for the right-hand side
of (1) with respect to _xxðt 	 tðtÞÞ is less than one.

If we choose the following Lyapunov-Krasovskii
functional candidate for system (1) as:

VðtÞ ¼ xTðtÞPxðtÞ þ
Z t

t	rðtÞ
xTð�ÞRxð�Þd�

þ
Z t

t	tðtÞ
_xxTð�ÞS_xxð�Þd�

Similar to the proof of proposition 1, we have the following
delay-derivative-dependent stability result.

Proposition 2: The system described by (1)–(3), with
uncertainty described by (4) is asymptotically stable if
kCk þ g< 1 and there exist symmetric positive definite
matrices P, R, S and scalars e1 � 0; e2 � 0 and e3 � 0
such that the following LMI holds:

ð1; 1Þ PB PC P P P ATS
BT P ð2; 2Þ 0 0 0 0 BTS
CT P 0 ð3; 3Þ 0 0 0 CT S

P 0 0 	e1I 0 0 S
P 0 0 0 	e2I 0 S
P 0 0 0 0 	e3I S

SA SB SC S S S 	S

0
BBBBBBBB@

1
CCCCCCCCA

< 0

ð8Þ
where

ð1; 1Þ¼D AT P þ PA þ R þ e1a
2I

ð2; 2Þ¼D 	ð1 	 rdÞR þ e2b
2I

ð3; 3Þ¼D 	ð1 	 tdÞS þ e3g
2I

If C � 0 and hð_xxðt 	 tðtÞÞ; tÞ � 0; then system (1)
reduces to the following system:

_xxðtÞ ¼ AxðtÞ þ Bxðt 	 rðtÞÞ þ f ðxðtÞ; tÞ þ gðxðt 	 rðtÞÞ; tÞ
ð9Þ

with initial condition

xðt0 þ yÞ ¼ jðyÞ 8y 2 ½	rM; 0� ð10Þ
According to proposition 1, we have the following
corollary for the delay-dependent stability of system (9)
and (10).

Corollary 1: The system described by (9), (10) and (3),
with uncertainty described by (4a) and (4b) is asympto-
tically stable if there exists a real matrix X, symmetric
positive definite matrices P, R, Y and scalars e1 � 0;
e2 � 0 such that the following LMI holds:

ð1;1Þ 	XT B P P AT BT Y rMðXT þPÞ
	BT X ð2;2Þ 0 0 BT BT Y 0

P 0 	e1I 0 BT Y 0

P 0 0 	e2I BT Y 0

YBA YBB YB YB 	Y 0

rMðXþPÞ 0 0 0 0 	Y

0
BBBBBB@

1
CCCCCCA
<0

ð11Þ
where

ð1;1Þ¼D ðAþBÞT PþPðAþBÞþRþXT BþBT Xþ e1a
2I

ð2;2Þ¼D 	ð1	 rdÞRþ e2b
2I

Remark 2: If f ðxðtÞ; tÞ � 0; gðxðt 	 hðtÞÞ; tÞ � 0; and rðtÞ
� r (constant), system (9) and (10) becomes:

_xxðtÞ ¼ AxðtÞ þ Bxðt 	 rÞ ð12Þ
with initial condition

xðt0 þ yÞ ¼ jðyÞ 8 y 2 ½	r; 0� ð13Þ
By corollary 1, we can conclude that system (12) and
(13) is asymptotically stable if there exists a real matrix
X, and symmetric positive definite matrices P, R, and Y
such that:

ð1; 1Þ 	XT B AT BT Y rðXT þ PÞ
	BT X 	R BT BT Y 0

YBA YBB 	Y 0

rðX þ PÞ 0 0 	Y

0
BB@

1
CCA< 0 ð14Þ

where

ð1; 1Þ¼D ðA þ BÞT P þ PðA þ BÞ þ R þ XT B þ BT X

Then theorem 1 in [16] is recovered.
By proposition 2, the following corollary is easily

obtained for the delay-derivative-dependent stability of
system (9) and (10).

Corollary 2: The system described by (9), (10) and (3), with
uncertainty described by (4a) and (4b) is asymptotically
stable if there exist symmetric positive definite matrices P,
R, and scalars e1 � 0; e2 � 0 such that the following LMI
holds:

AT PþPAþRþe1a
2I PB P P

BT P 	ð1	rdÞRþe2b
2I 0 0

P 0 	e1I 0

P 0 0 	e2I

0
BBBB@

1
CCCCA<0

ð15Þ

Remark 3: Corollary 2 is theorem 1 in [13]. This means that
proposition 2 extends the result in [13] to neutral systems.

4 Norm-bounded uncertainty

In this Section we will handle the case that f ðxðtÞ; tÞ;
gðxðt 	 hðtÞÞ; tÞ and hð_xxðt 	 tðtÞÞ; tÞ are norm-bounded
uncertainties that are well known in robust control of
uncertain systems [17]. Then system (1) becomes the
following system:

_xxðtÞ ¼ ðA þ LFðtÞEaÞxðtÞ þ ðB þ LFðtÞEbÞxðt 	 rðtÞÞ

þ ðC þ LFðtÞEcÞ_xxðt 	 tðtÞÞ ð16Þ

where FðtÞ 2 R
p�q is an unknown real and possibly

time-varying matrix with Lebesgue measurable elements
satisfying:

FTðtÞFðtÞ � I ð17Þ
and L, Ea; Eb and Ec are known real constant matrices
which characterise how the uncertainty enters the nominal
matrices A, B and C.
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System (16) can be written as:

_xxðtÞ ¼ AxðtÞ þ Bxðt 	 rðtÞÞ þ C _xxðt 	 tðtÞÞ þ Lu ð18aÞ

y ¼ EaxðtÞ þ Ebxðt 	 rðtÞÞ þ Ec _xxðt 	 tðtÞÞ ð18bÞ
with the constraint

u ¼ FðtÞy ð19Þ

We further rewrite (18) and (19) as:

_xxðtÞ 	 AxðtÞ þ Bxðt 	 rðtÞÞ þ C _xxðt 	 tðtÞÞ þ Lu ð20aÞ

uT u � ðEaxðtÞ þ Ebxðt 	 rðtÞÞ þ Ec _xxðt 	 tðtÞÞÞTðEaxðtÞ
þ Ebxðt 	 rðtÞÞ þ Ec _xxðt 	 tðtÞÞÞ ð20bÞ

We now state and establish the following delay-
dependent stability result.

Proposition 3: The system described by (16), (17), (2)
and (3) is asymptotically stable if there exist a scalar
d>0 satisfying dI 	 LT L>0; and a real matrix ~XX;
symmetric positive definite matrices ~PP; ~RR; ~SS and ~YY such
that the following LMIs hold:

CT C 	 I þ dET
c Ec CTL

LC 	ðdI 	 LT LÞ

� �
< 0 ð21Þ

ð1; 1Þ 	 ~XXT B ~PPC ~PPL AT ~SS

	BT ~XX 	ð1 	 rdÞ ~RR 0 0 BT ~SS

CT ~PP 0 	ð1 	 tdÞ ~SS 0 CT ~SS

LT ~PP 0 0 	I LT ~SS

~SSA ~SSB ~SSC ~SSL 	 ~SS

~YYBA ~YYBB ~YYBC ~YYBL 0

rMð ~XX þ ~PPÞ 0 0 0 0

ET
a ET

b ET
c 0 0

0
BBBBBBBBBBBBBBB@

AT BT ~YY rMð ~XXT þ ~PPÞ Ea

BT BT ~YY 0 Eb

CT BT ~YY 0 Ec

LT BT ~YY 0 0

0 0 0

	 ~YY 0 0

0 	 ~YY 0

0 0 	I

1
CCCCCCCCCCCCCCCA

< 0

ð22Þ
where

ð1; 1Þ¼D ðA þ BÞT ~PP þ ~PPðA þ BÞ þ ~RR þ ~XXT B þ BT ~XX

Remark 4: Although norm-bounded uncertainties can be
treated as a special case of nonlinear parameter pertur-
bations, one can get a less conservative result using
proposition 3 than proposition 1.

Similar to proposition 2.2(b) in [20], we have the
following lemma.

Lemma 2: Let A, L, E and F(t) be real matrices of
appropriate dimensions with FTðtÞFðtÞ � I: Then for
any symmetric positive definite matrix P>0 and a scalar

e>0 such that eI 	 LT PL>0; the following inequality
holds:

ðA þ LFðtÞEÞT PðA þ LFðtÞEÞ
� ATPA þ AT PLðeI 	 LTPLÞ	1LT PA þ eET E

Proof of Proposition 3: Similar to the proof of proposition 1,
we can conclude that the system described by (16), (17),

(2) and (3) is asymptotically stable if ðC þ LFðtÞEcÞT ðC þ
LFðtÞEcÞ< I (which means that kC þ LFðtÞEck< 1)
and there exist a real matrix X, symmetric positive definite
matrices P, R, S, Y and a scalar e � 0 such that the following
LMI holds:

ð1; 1Þ 	XT B PC PL AT S

	BT X 	ð1 	 rdÞR 0 0 BT S

CT P 0 	ð1 	 tdÞS 0 CT S

LT P 0 0 	eI LT S

SA SB SC SL 	S

YBA YBB YBC YBL 0

rMðX þ PÞ 0 0 0 0

eET
a eET

b eET
c 0 0

0
BBBBBBBBBBBBB@

AT BT Y rMðXT þ PÞ eEa

BT BT Y 0 eEb

CT BT Y 0 eEc

LT BT Y 0 0

0 0 0

	Y 0 0

0 	Y 0

0 0 	eI

1
CCCCCCCCCCCCCA

< 0

ð23Þ
where

ð1; 1Þ¼D ðA þ BÞT P þ PðA þ BÞ þ R þ XT B þ BT X

Noting that (23) implies that e>0 and introducing new
variables ~PP ¼ e	1P; ~RR ¼ e	1R; ~SS ¼ e	1S; ~YY ¼ e	1Y; ~XX ¼
e	1X yields (22).

By lemma 2, we have:

ðC þ LFðtÞEcÞTðC þ LFðtÞEcÞ

� CT C þ CT LðeI 	 LTLÞ	1LT C þ eET
c Ec

If (21) is satisfied, then we have that ðC þ LFðtÞEcÞTðCþ
LFðtÞEcÞ< I:

Similar to proposition 2, we have the following delay-
derivative-dependent stability result.

Proposition 4: The system described by (16), (17), (2)
and (3) is asymptotically stable if there exist a scalar
d>0 satisfying dI 	 LT L>0; and symmetric positive
definite matrices ~PP; ~RR; ~SS; such that (21) and the
following LMI is satisfied:

ð1; 1Þ ~PPB ~PPC ~PPL AT ~SS Ea

BT ~PP ð2; 2Þ 0 0 BT ~SS Eb

CT ~PP 0 ð3; 3Þ 0 CT ~SS Ec

LT ~PP 0 0 	I LT ~SS 0
~SSA ~SSB ~SSC ~SSL 	 ~SS 0

ET
a ET

b ET
c 0 0 	I

0
BBBBBB@

1
CCCCCCA

< 0 ð24Þ
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where

ð1; 1Þ¼D AT ~PP þ ~PPA þ ~RR

ð2; 2Þ¼D 	ð1 	 rdÞ ~RR
ð3; 3Þ¼D 	ð1 	 tdÞ ~SS

If C � 0 and Ec � 0; then system (16) reduces to the
following system:

_xxðtÞ¼ ðAþLFðtÞEaÞxðtÞþðBþLFðtÞEbÞxðt	 rðtÞÞ ð25Þ
with initial condition

xðt0 þ yÞ ¼ w ðyÞ 8y 2 ½	rM; 0� ð26Þ
For the stability of system (25) and (26), in light of
propositions 3 and 4, we have the following corollaries.

Corollary 3: (Delay-dependent stability). The system
described by (25), (26), (17) and (2) has an asymptotically
stable dependence if there exist a real matrix ~XX; symmetric
positive definite matrices ~PP; ~RR and ~YY such that the following
LMI holds:

ð1; 1Þ 	 ~XXT B ~PPL AT BT ~YY

	BT ~XX 	ð1 	 rdÞ ~RR 0 BT BT ~YY

LT ~PP 0 	I LTBT ~YY

~YYBA ~YYBB ~YYBL 	 ~YY

rMð ~XX þ ~PPÞ 0 0 0

ET
a ET

b 0 0

0
BBBBBBBB@

rMð ~XXT þ ~PPÞ Ea

0 Eb

0 0

0 0

	 ~YY 0

0 	I

1
CCCCCCCCA

< 0 ð27Þ

where

ð1; 1Þ¼D ðA þ BÞT P þ PðA þ BÞ þ R þ XT B þ BTX

Corollary 4: (Delay-derivative-dependent stability). The
system described by (25), (26), (17) and (2) is asymptoti-
cally stable if there exist symmetric positive definite
matrices ~PP and ~RR such that the following LMI is satisfied:

AT ~PP þ ~PPA þ ~RR ~PPB ~PPL Ea

BT ~PP 	ð1 	 rdÞ ~RR 0 Eb

LT ~PP 0 	I 0

ET
a ET

b 0 	I

0
BB@

1
CCA< 0 ð28Þ

Remark 5: It should be pointed out that the results in
propositions 1 and 3 can be further improved by instead of
using Park’s inequality, one uses the inequality
(lemma 1) in [21] to estimate the bound of the cross-term
	2xTðtÞPB

R t
t	rðtÞ _xxð�Þd�:

5 Examples

In order to use proposition 1 to test the stability of the
system described by (1)–(3), with nonlinear parameter
perturbations described by (4), a Matlab m-function is
written which automatically generates LMI (6), and then
solves this LMI using the LMI solver FEASP in the Matlab

LMI toolbox [22]. The inputs to the function are system
matrices A, B, C, and rd; rM; td; and a; b; g: The function
returns whether or not the LMI is feasible. If feasible, it also
gives symmetric positive definite matrices P, R, S, Y and
scalars e1 � 0; e2 � 0 and e3 � 0 as outputs. We also have
written Matlab m-functions for the remaining propositions
and corollaries. The following examples are generated using
those MATLAB m-functions.

Example 1: Let the system consist of a long electrical
cable of length l, one end of which is connected to a
power source E with resistance R, while the other end is
connected to an oscillating circuit formed by a condenser
C1 and a nonlinear element, the volt-ampere character-
istic of which is i ¼ gðvÞ; see Fig. 1. Let L and C denote
the linear inductance and capacitance of the cable,
respectively, and assume that it is lossless. The processes
in such a system are described by the following system
of partial differential equations:

L
@iðx; tÞ
@t

¼ 	 @vðx; tÞ
@x

C
@vðx; tÞ

@t
¼	@iðx; tÞ

@x

0<x< l; t>0

with boundary conditions

E 	 vð0; tÞ 	 Rið0; tÞ ¼ 0 C1

dvðl; tÞ
dt

¼ iðl; tÞ 	 gðvðl; tÞÞ

Let s ¼ 1=
ffiffiffiffiffiffi
LC

p
; z ¼

ffiffiffiffiffiffiffiffiffi
L=C

p
; K ¼ ðz 	 RÞ=ðz þ RÞ and

a ¼ 2E=ðz þ RÞ: Using transformations yields [3]:

_uuðtÞ 	 K _uuðt 	 2l=sÞ ¼ f ðuðtÞ; uðt 	 2l=sÞÞ
where

C1 f ðuðtÞ; uðt 	 rÞÞ ¼ a	 1

z
uðtÞ 	 K

z
uðt 	 rÞ

	 gðuðtÞÞ þ Kgðuðt 	 rÞÞ

Letting yðtÞ ¼ uðtÞ 	 ðazÞ=ð1 þ KÞ; we further have:

_yyðtÞ 	 K _yyðt 	 2l=sÞ ¼ 	yðtÞ=ðC1zÞ 	 Kyðt 	 2l=sÞ=ðC1zÞ

	 gðyðtÞÞ þ Kgðyðt 	 2l=sÞÞ

Choosing l ¼ 0:1006; L ¼ 0:2; C ¼ 0:1; R ¼ 0:12; and
C1 ¼ 0:1; and assuming that kgðyðtÞÞk � 0:1kyðtÞk; by
proposition 1 we can conclude that the considered system
is asymptotically stable.

Example 2: Consider system (1) with:

A ¼
	1:2 0:1

	0:1 	1

� �
B ¼

	0:6 0:7

	1 	0:8

� �
C ¼

c 0

0 c

� �
kf ðxðtÞ; tÞk � akxðtÞk

kgðxðt 	 rðtÞÞ; tÞk � bkxðt 	 rðtÞÞk and

khð_xxðt 	 tðtÞÞ; tÞk � gk_xxðt 	 tðtÞÞk

where 0 � jcj< 1; a � 0; b � 0; g � 0:

Fig. 1 System with a lossless transmission line
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Case I: For c � 0 and hð_xxðt 	 tðtÞÞ; tÞ � 0; the system
under consideration reduces to the system studied in [13].
Applying criteria in [13], [15] and in this work, the
maximum value of rM for the stability of the system is
listed in Table 1. It is easy to see that our proposed stability
criterion gives a much less conservative result than one in
[13] and [15]. Other results surveyed in [13] are even more
conservative.

Case II: For hð_xxðt 	 tðtÞÞ; tÞ � 0 and td ¼ 0; the maximum
value rM is listed in Table 2 for different c. As jcj increases,
rM decreases.

Case III: For c ¼ 0:1 and=or td ¼ 0 ðtd ¼ 0:5Þ; we now
consider the effect of an uncertainty bound g on the
maximum value rM: Tables 3 and 4 illustrates the numerical
results for different g; td � 0 and td ¼ 0:5; respectively. We
can see that rM decreases as g increases.

Example 3: Consider the following uncertain linear neutral
system with a time-varying discrete delay:

_xxðtÞ ¼
	2 þ d1 0

0 	1 þ d2

 !
xðtÞ

þ
	1 þ d3 0

	1 	1 þ d4

 !
xðt 	 rðtÞÞ

þ
c 0

0 c

 !
_xxðt 	 tðtÞÞ ð29Þ

where 0 � jcj< 1 and d1; d2; d3 and d4 are unknown
parameters satisfying:

jd1j � 1:6 jd2j � 0:05 jd3j � 0:1 and jd4j � 0:3

Case I: For c ¼ 0 and rd � 0; applying criteria in [10] and
[23], the maximum value of rM for stability of system (29) is
0.2412 and 1.0, respectively. By proposition 3, it is found
that the maximum value of rM is 1.0345.

Case II: For rd ¼ 0:1 and td ¼ 0; the maximum value of
rM is listed in Table 5 for various values at the parameter c.
As jcj increases, rM decreases.

Case III: For c ¼ 0:1 and td ¼ 0; we obtain the maximum
value of rM in Table 6. One can see that as rd increases, rM
decreases.

Case IV: For c ¼ 0:1; rd ¼ 0:1; the effect of td on the
maximum value rM is listed in Table 7. One also sees that
as td increases, rM decreases.

Table 1: Bound rM for c � 0 and h( _xx (t � t(t)),t) � 0

� ¼ 0; 	 ¼ 0:1 � ¼ 0:1; 	 ¼ 0:1

rd ¼ 0 rd ¼ 0:5 rd ¼ 0 rd ¼ 0:5

Cao and Lam [13] 0.6811 0.5467 0.6129 0.4950

Han [15] 1.3279 0.6743 1.2503 0.5716

This work 2.7424 1.1365 1.8753 0.9952

Table 2: Bound rM for h( _xx (t � t(t)),t) � 0, td = 0 and
different c

� ¼ 0; 	 ¼ 0:1 � ¼ 0:1; 	 ¼ 0:1

rd ¼ 0 rd ¼ 0:5 rd ¼ 0 rd ¼ 0:5

jcj ¼ 0:1 2.0366 0.9328 1.4753 0.8148

jcj ¼ 0:2 1.5009 0.7429 1.1390 0.6460

jcj ¼ 0:3 1.0924 0.5680 0.8587 0.4897

jcj ¼ 0:4 0.7774 0.4090 0.6260 0.3470

jcj ¼ 0:5 0.5314 0.2670 0.4312 0.2188

jcj ¼ 0:6 0.3342 0.1430 0.2673 0.1059

jcj ¼ 0:7 0.1765 0.0374 0.1336 0.0090

jcj ¼ 0:8 0.0566 – 0.0302 –

Table 5: Bound rM for rd = 0:1 and td = 0 and various
values of the parameter c

jcj 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

rM 0.97 0.78 0.60 0.45 0.31 0.19 0.10 0.02

Table 3: Bound rM for c = 0:1 and td = 0

� ¼ 0; 	 ¼ 0:1 � ¼ 0:1; 	 ¼ 0:1

rd ¼ 0 rd ¼ 0:5 rd ¼ 0 rd ¼ 0:5


 ¼ 0:0 2.0366 0.9328 1.4753 0.8148


 ¼ 0:1 1.4937 0.7402 1.1356 0.6439


 ¼ 0:2 1.0838 0.5637 0.8451 0.4864


 ¼ 0:3 0.7697 0.4042 0.6215 0.3433

Table 7: Bound rM for c = 0:1 and rd = 0:1, and different values of td

�d 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rM 0.78 0.77 0.76 0.74 0.73 0.70 0.68 0.63 0.57 0.42

Table 6: Bound rM for c = 0:1 and td = 0, and different values for rd

rd 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rM 0.82 0.78 0.74 0.69 0.63 0.57 0.50 0.42 0.32 0.17

Table 4: Bound rM for c = 0:1 and td = 0:5

� ¼ 0; 	 ¼ 0:1 � ¼ 0:1; 	 ¼ 0:1

rd ¼ 0 rd ¼ 0:5 rd ¼ 0 rd ¼ 0:5


 ¼ 0:0 1.7967 0.8524 1.3287 0.7434


 ¼ 0:1 1.1481 0.5936 0.8995 0.5131


 ¼ 0:2 0.7054 0.3686 0.5718 0.3112


 ¼ 0:3 0.3923 0.1795 0.3166 0.1398

IEE Proc.-Control Theory Appl., Vol. 151, No. 5, September 2004 545

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on October 14, 2009 at 00:47 from IEEE Xplore.  Restrictions apply. 



6 Conclusions

The robust stability problem of uncertain linear systems
with time-varying discrete and neutral delays has been
studied. Some practically computable stability criteria have
been obtained. The results have included some existing
results as their special cases. Examples have also been given
to show significant improvements over existing results in
the literature.
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