

Abstract-- In the area of SOA and Web Service Security,

many well defined security dimensions have been

established. However, current Web Security Systems

(WS-Security for example) are not equipped to handle

Distributed Denial of Service (DDoS) attacks. In this paper

we extend upon our previous work on, Service Oriented

Traceback Architecture (SOTA), in order to defend Web

Services against such attacks. SOTA’s main objective is to

identify the true identity of forged messages, since an

attacker tries to hide their identity, in which to avoid

current defence systems and escape prosecution. To

accomplish the main objective, SOTA should be attached as

close to the source of the attack. When an incoming SOAP

message comes into the router, it is tagged with our own

SOAP header. The header can be used to traverse the

network back to the true source of the attack. According to

our experimental evaluations we find that SOTA is simple

and effective to use against DDoS attacks.

Index Terms-- Traceback, Service-Oriented Architecture

(SOA), Service-Oriented Computing (SOC), Distributed Denial of

Service.

I. INTRODUCTION

 In recent events, a group called anonymous used a Distributed

Denial of Service attack, to bring down a prominent website

[30]. This attack is another example of the serious threat that

DDoS poses to information infrastructures [6][7]. The main

objective of a DDoS attack is to attempt to exhaust computer

resources (CPU time, Network bandwidth etc) [8][9]. Another

objective of DDoS, is for the attackers to hide their identity by

mimicking a legitimate web service [10][13]. Organizations,

through the use of Web Services, expose their core elements

over the Internet, via the use of Extensible Markup Language

(XML) in conjunction with HTTP and SMTP. With this

exposure, organizations open themselves up to those who have a

malicious intent.

 Current security for web services encompasses the areas of

This work was supported by the ARC Linkage grant (Project number

LP0562156).

Mr A. Chonka is a PhD candidate at the School of Engineering &

Information Techonology, Deakin University, Waurn Ponds, Australia,

(e-mail: ashley@deakin.edu.au).

Prof W. Zhou is currently the Chair Professor of Information Technology

and the Associate Dean (International), Faculty of Science and Technology,

Deakin University, Melbourne, Australia. (e-mail: wanlei@deakin.edu.au).

Dr Y. Xiang is currently with School of Management and Information

Systems, Central Queensland University. (e-mail: y.xiang@cqu.edu.au).

ICITA2008 ISBN: 978-0-9803267-2-7

integrity, confidentiality and availability [1][2]. WS-Security

[3], XML-Signature [14], XML-Encryption [15] employ these

areas. These standards work in conjunction with Simple Object

Access Protocol (SOAP) [5]. From these developments, a new

standard for Web Security has emerged, called Security

Assertions Markup Language (SAML) [16][18]. The major

problem of these security standards is the focus on protecting

message content, and not on the message itself [4]. The paper by

Jenson et. al. [1] discusses the depth of this problem.

 Our contribution in this paper is to expand upon our

previous research [28], in adopting a product-neutral approach,

called Service Oriented Traceback Architecture (SOTA).

SOTA can be used to prevent DDoS and XDoS (XML based

DoS) attacks on Web services. Current Web Security Services

show, that new enhancements are needed against the current

flow of attacks. SOTA provides the resources to traceback

through the network, so that the true source of DDoS attack is

identified. Upon the discovery of the identity of an attacker, the

appropriate preventive mechanisms can be triggered, like using

firewalls to filter out attack messages. The remainder of the

paper is made up of the following: Section 2 reviews the related

work on Web Security Services. Section 3 covers the details of

our SOTA framework. Section 4 presents our experiments and

performance evaluation. Lastly, Section 5 provides our

conclusions

II. PRCEDURE FOR PAPER SUBMISSION

Service-Oriented Computing (SOC) utilises services as the

cornerstone for developing Web Application solutions. With

DDoS attacks occurring on a daily basis [11][12][19], attackers

have discovered how easy it is to disrupt web services. In this

section we briefly discuss two defense systems that have been

developed to handle Web Based DDoS attacks, and their

problems in dealing with DDoS.

A. Current Web Service Defense Systems

Ye et al. [27] proposed a SOA approach to handle DDoS

attacks. Their Service Hub is built upon Web Services and

placed in between the client and the service provider. It contains

two modes, a normal and an attack mode. The messages go

through to the service provider in normal mode. In attack mode,

the Service Hub authenticates messages, authorizes it and

passes it onto the service provider. The main problem with this

system is that it is incapable of handling a reflective attack [20].

The second problem with the Ye’s system is that authenticator

Protecting Web Services from DDoS attacks by

SOTA

Ashley Chonka, Member, IEEE, Wanlei Zhou, Member, IEEE, Yang Xiang, Member, IEEE

can be spoofed with a forged legitimate user id. The

Padmanabhuni et. al. [17] framework is another Web Security

System. Its main task is to detect and filter out XDoS attacks

against web services. Their framework focuses on validating

XML, in order to authenticate legitimate users. An XML

message, with the forged id of a legitimate user, can be used to

get around this defence.

III. SOTA FRAMEWORK

A. SOTA Description

In our previous paper [28], we cover SOTA in-depth, so in

this section we briefly cover our model. SOTA is a web security

service application that is product-neutral. Its main objective is

to apply a SOA approach to traceback methodology, in order to

identify a forged message id, since one of the main objectives of

DDoS is hide the attacker’s true identity. Figure one displays

where SOTA is located within the network. The basis of SOTA

is founded upon the Deterministic Packet Marking (DPM) [23]

algorithm. DPM marks the ID field and reserved flag within the

IP header. As each incoming packet enters the edge ingress

router it is marked. The marked packets will remain unchanged

as they traverse the network. Outgoing packets are ignored.

DPM methodology is applied to our SOTA framework, by

placing the Service-Oriented Traceback Mark (SOTM) within

web service messages. If any other web security services

(WS-Security for example) are already being employed, SOTM

would replace the ‘token’ that contains the client identification.

Real source message identification are stored within SOTM,

and placed inside the SOAP message. SOTM, as in DPM tag,

will not change as it traverses through the network. The

composition of SOTM is made up of one XML tag, so not to

weigh down the message, and stored within a SOAP header.

Upon discovery of a DDoS attack, SOTM can be used to

identify the true source of forged messages.

SOTA does not directly eliminate a DDoS attack message;

this is left for the filter section of a defense system (Firewalls).

Instead SOTA main goal is to deal with one of the two main

objectives of DDoS, which is the forging the id. Spoofing an ID

is done for two reason, these are: exploit a known vulnerability,

in order to bring down system. These vulnerabilities could be

found in communication channels (flooding for example)

Figure 1. SOTA from the network service prospective Figure 1. SOTA from the network service prospective Figure 1. SOTA from the network service prospective Figure 1. SOTA from the network service prospective

or known exploits within the services provided (for example, an

attacker can Overload their messages, which will result in the

web server crashing). The second reason is that attackers try to

hide their identity. The reasons vary for this second reason,

which depends on what type of attack, but usually it is to cover

their crime or to bypass a known defense that is in place to

prevent it. It is with this second objective that SOTA attempts to

cover, as other traceback methods, like Probability Packet

Marking (PPM) [21][22] and DPM.

There are many reasons for to employ a SOTA type

framework, these are:

• Current web security is not up to handling an XDoS or

DXDoS attack. In fact, as Jension et al. shows how

WS-Security can be used in an XDoS attack.

• With IPv6 coming into fruition [29], current IP traceback

methods will no longer be viable. This is due to the

changes that IPv6 introduces, such as, IPSec and the

packet header format no longer holds support the fields

that are required for IP traceback.

• SOTA does not violate IP protocols, in order to store

information for traceback purposes.

Using the SOA model, SOTA can be employed on any

ubiquitous grid system.

B. SOTA approach to SOA

SOA organizes the infrastructure into a set of interacting

services for SOC. There are a number of basic properties and

services [24] contained in SOTA. These characteristics are as

follows [25]:

• Loosely Coupled – SOTA is made from the XML base

language. This means that it can be run on different

platforms, regardless of the programming language.

• Message based interaction – The interaction between the

client, SOTA, and service provider are all message based.

• Dynamic Discovery – WSDL is attached to SOTA so that

all services are known to the public. This means that any

client can connect to SOTA at any time over the internet.

• Late Binding – SOTA and the service provider all run in

real-time. This allows clients to access services anytime.

• Policy based behavior – SOTA aligns itself with

WS-Security Policy. It also implements its own policy

called SOTA-Policy. This policy dictates what messages

are marked.

IV. Performance Evaluation

A. Simulation Setup

Experiments were carried out to evaluate the performance of

the SOTA system. These experiments were performed on a Dell

Dimension DM501 Intel Pentium single-core CPU, 3.0 GHz, 2

GB of RAM and 2 300GB SATA hard-drives. All our programs

were implemented with .NET Web Services with the use of

VB.Net. Figures 2 and 3 display the algorithms used to insert

Figure 2Figure 2Figure 2Figure 2. . . . Pseudo Code to extract Header information Pseudo Code to extract Header information Pseudo Code to extract Header information Pseudo Code to extract Header information

Figure 3Figure 3Figure 3Figure 3. Pseudo Code to extract, store and display username . Pseudo Code to extract, store and display username . Pseudo Code to extract, store and display username . Pseudo Code to extract, store and display username
identificationidentificationidentificationidentification

and extract the SOTM tag.

The experiments we conducted were broken up into two

groups. The first group of experiments compared SOTA against

SOAP authentication and WS-Security. The second group of

experiments simulated XDoS attacks against the service

provider. We selected to simulate the oversize payload,

SOAPAction spoofing and XML injection from the Jenson et. al

[1] paper.

B. Assumptions used for our experiments

The following assumptions made about our first group of

experiments are that:

• An attacker may control any number of client

machines that are widely distributed across the

Internet.

• Attackers might know that they are being traced.

• It only takes a few messages to get to the SOTA

reconstruction for a traceback to begin.

• SOTA has not itself been compromised by the

attackers.

• That the service provider of web service has limited

resources.

• SOAP headers are being used by the client.

• Real Source ID is the location of the edge router.

With the second group of experiments we decided to simulate

three XDoS attacks. The reason for the simulations is due to the

legality of implementing such attacks. For simulating message

passing, we generated 20 messages within our code. 5 of these

messages were selected randomly to represent the attack. To

simulate the success of one attack, we introduced a 50/50

chance that the message might crash the web-service. If the web

server did not crash, the service provider was able to trace the

message source and initiate filtering procedures. However, if

the attack was successful no more messages will be generated.

Upon the web server crash, we assume the service provider

would restart it. Upon the restart, the service provider would

access SOTA reconstruction, find the source of the attack and

filter the messages out.

C. Evaluations of the first group of experiments

In our first experiment we developed a basic SOAP Web

Service using .Net and VB.Net. The program contained a basic

header for authentication purposes. To simulate SOTA, the

program extracted the name id from the header and replaced

with the real user id (010101). It is assumed that a one-way

transmission delay between client and Web Server is 10ms. The

delay is simulated by the program going into a wait mode for

10secs, and is added to the response time data. The

measurements we used in this experiment were the processing

time over the response time. The result shown in figure 4, was

that over a 2 seconds of processing time, SOTA was far more

effective then the SOAP authentication procedure. One of the

reasons for this is because of a quicker response time, due to

SOTA swapping the tag. Having the extra response time will

lead to a reduction of computer resources during a DDoS or

XDoS attack.

In our second experiment, we ran a WS-Security interaction

application against Amazon Elastic Compute Cloud (Amazon

EC2) [26]. The WS-Security application contained a signed

certificate for authentication purposes. SOTA, in this

experiment, was to exchange the username id for the

authentication name. This was done before it was sent to the

Amazon SOAP service, to ensure that the message would be

received and that we got a response. The results are based on

how long the application had taken to process a response from

Amazon. SOTA was used in conjunction with WS-Security, in

0

50

100

150

200

250

10 30 50 70 90 11
0

Processing Time (ms)

R
e
s
p
o
n
s
e
 T

im
e
 (
m

s
)

Authenication

SOTA

Figure Figure Figure Figure 4444. Results of SOAP Authentication and SOTA. Results of SOAP Authentication and SOTA. Results of SOAP Authentication and SOTA. Results of SOAP Authentication and SOTA

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80 90 100

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

WS-Security

SOTA (exchange)

SOTA(WS-

Security)

Figure Figure Figure Figure 5555. Results of WS. Results of WS. Results of WS. Results of WS----Security, SOTA(exchange) and Security, SOTA(exchange) and Security, SOTA(exchange) and Security, SOTA(exchange) and

SOTA(WSSOTA(WSSOTA(WSSOTA(WS----SecuritySecuritySecuritySecurity))))

Figure Figure Figure Figure 6666.... Event Descriptor Graph for Oversize payload attack Event Descriptor Graph for Oversize payload attack Event Descriptor Graph for Oversize payload attack Event Descriptor Graph for Oversize payload attack
(Client attack messag(Client attack messag(Client attack messag(Client attack messageeee (A) (A) (A) (A), SOTM tag, SOTM tag, SOTM tag, SOTM tag (B), T (B), T (B), T (B), True identity of the rue identity of the rue identity of the rue identity of the
messagemessagemessagemessage, requested by the service provider (C), requested by the service provider (C), requested by the service provider (C), requested by the service provider (C)....

0

100

200

300

400

500

600

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
) msg1

msg2

msg3

msg4

msg5

msg6

msg7

msg8

Figure Figure Figure Figure 7777.... Messages generated by our first simulation Messages generated by our first simulation Messages generated by our first simulation Messages generated by our first simulation
(Oversize Payload). (Oversize Payload). (Oversize Payload). (Oversize Payload).

0

100

200

300

400

500

600

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Figure Figure Figure Figure 8888.... 5 attack messages, o 5 attack messages, o 5 attack messages, o 5 attack messages, out of the 20 generated, were ut of the 20 generated, were ut of the 20 generated, were ut of the 20 generated, were
removed after traceback and filter protocols (Overaize removed after traceback and filter protocols (Overaize removed after traceback and filter protocols (Overaize removed after traceback and filter protocols (Overaize
Payload Attack). Payload Attack). Payload Attack). Payload Attack).

order to replace the name id for the real-source id. The results

show in figure 5, by introducing SOTA into WS-Security, an

increase in response time was up by thirty percent. This increase

means that during a DDoS attack, more processing time is

required to handle the extra burden. The benefits of taking on

this extra burden are: the true identification maybe found and

additional integrity is applied to the message.

Also in figure 5, we see a comparison between WS-Security

and SOTA (exchange). According to the results, WS-Security is

over twice the response time, shown in figure 9. The reason for

the increase was due to WS-Security having to build a security

token. This token was placed in the message before it was sent

to the Amazon Web Server. Upon the receipt of the token,

Amazon tested the authentication of the message. However, in

comparison, SOTA only has to exchange the identification

information. Assuming Amazon had SOTA on their system.

Traceback to the source of attack could occur instead of just

authenticating the message.

D. Evaluations of the Second group of experiments

The second group of experiments consists of implementing

three XDoS attacks. The first of these is the oversize payload

attack. Its objective is to exhaust web service resources.

Following Jenson et. al [1] in the construction of this attack,

Figure Figure Figure Figure 9999. . . . Event Descriptor Graph for SOAPaction attack Event Descriptor Graph for SOAPaction attack Event Descriptor Graph for SOAPaction attack Event Descriptor Graph for SOAPaction attack
(Spoofed SOAPAction message (A), SOTM tag (B), T(Spoofed SOAPAction message (A), SOTM tag (B), T(Spoofed SOAPAction message (A), SOTM tag (B), T(Spoofed SOAPAction message (A), SOTM tag (B), True rue rue rue
identity of the messageidentity of the messageidentity of the messageidentity of the message, requested by the service provider , requested by the service provider , requested by the service provider , requested by the service provider
(C)(C)(C)(C)....

0

100

200

300

400

500

600

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

msg1

msg2

msg3

msg4

FigureFigureFigureFigure 10 10 10 10.... Messages generated by our first simulation Messages generated by our first simulation Messages generated by our first simulation Messages generated by our first simulation
(SOAPAction attack)(SOAPAction attack)(SOAPAction attack)(SOAPAction attack)

0

100

200

300

400

500

600

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

FigureFigureFigureFigure 1 1 1 11111.... 5 attack messages, out of the 20 generated, were 5 attack messages, out of the 20 generated, were 5 attack messages, out of the 20 generated, were 5 attack messages, out of the 20 generated, were
removed after traceback and filter protocols (SOAPAction removed after traceback and filter protocols (SOAPAction removed after traceback and filter protocols (SOAPAction removed after traceback and filter protocols (SOAPAction
attack).attack).attack).attack).

we developed an oversize payload message (see Figure 6a).

Figure 7 displays the messages that our simulation generated.

As each message passed through SOTA it was marked with a

SOTM tag (see figure 6b). Further, we can see from figure 7 that

the messages stop at Msg8, this means that an attack was

successful. The service provider, in the light of a successful

attack would initiate the following procedures: Restart the

system, search SOTA reconstruction for the true source of the

attack (see figure 6c), and instigate filtering protocols (See

figure 8). To simulate these procedures, we restarted the

program to generate 20 more messages. With the traceback and

filtering controls in place, we found 5 attacks and 15 normal

messages (figure 8).

The next simulation was a spoofed SOAPaction attack. It

invokes an operation that is different within the SOAP body,

and usually results in a web server crash. Figure 9a displays our

spoofed SOAPAction message used in this simulation. The

message contains within the SOAPAction the author’s first

name, but only the author’s last name is within the SOAP body.

This message composition could result in the server behaving

erratically or crashing it. Figure 10 displays the messages that

our simulation generated. As each message passed through

SOTA it was marked with a SOTM tag (see figure 9b). Further,

we can see from figure 14 that the message stops at msg3, this

means that an attack was successful. The service

Figure 1Figure 1Figure 1Figure 12222. . . . Event Descriptor Graph for XML injection attack Event Descriptor Graph for XML injection attack Event Descriptor Graph for XML injection attack Event Descriptor Graph for XML injection attack
(Spoofed XML message (A), SOTM tag (B), T(Spoofed XML message (A), SOTM tag (B), T(Spoofed XML message (A), SOTM tag (B), T(Spoofed XML message (A), SOTM tag (B), True identity of rue identity of rue identity of rue identity of
the messagethe messagethe messagethe message, requested by the service provider (C), requested by the service provider (C), requested by the service provider (C), requested by the service provider (C)....

0

100

200

300

400

500

600

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Figure 1Figure 1Figure 1Figure 13333.... 4 attack messages, out of the 20 generated, were 4 attack messages, out of the 20 generated, were 4 attack messages, out of the 20 generated, were 4 attack messages, out of the 20 generated, were
removed after traceback and filter protocols (XML Injection removed after traceback and filter protocols (XML Injection removed after traceback and filter protocols (XML Injection removed after traceback and filter protocols (XML Injection
attack). attack). attack). attack).

0

500

1000

1500

2000

2500

10 20 30

Processing Time (ms)

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
)

Figure 1Figure 1Figure 1Figure 14444. . . . 84 normal messages were processed. 9 floods 84 normal messages were processed. 9 floods 84 normal messages were processed. 9 floods 84 normal messages were processed. 9 floods
were succwere succwere succwere successful in crashing the system. 7 attacks message essful in crashing the system. 7 attacks message essful in crashing the system. 7 attacks message essful in crashing the system. 7 attacks message
were filtered. were filtered. were filtered. were filtered.

provider will instigate the following procedures: Restart the

system, search SOTA reconstruction for the true source of the

attack (see figure 9c), and instigate filtering protocols (See

figure 11). To simulate these procedures, we restarted the

program to generate 20 more messages. With the traceback and

filtering controls in place, we found 5 attack and 15 normal

messages (figure 11).

An XML Injection attack was our last simulation of the 3

XDoS chosen. This attack tries to modify the XML structure of

our SOAP message. Figure 12a shows that the authorname tag

has another tag within it called authorlastname. The result of

this message could lead to a server crash, though it is unlikely.

Instead, as shown in figure 12a, the content has been changed.

This content change, would lead to incorrect information, being

displayed from the tag. Figure 13 displays the messages that our

simulation generated. As each message passed through SOTA it

was marked with a SOTM tag (Figure 12b). The result of the

XML injection attack, shown in Figure 13, is that 4 attack

messages were filtered. The first attack message signaled the

service provider to instigate SOTA reconstruction. With the

discovery of the attacker id, the service provider was able to

filter out the rest of the attack messages.

The final simulation we conducted was a message flood

attack, using XML Injection. The simulation program was setup

to generate a total of 100 messages. If one of those messages

was an attack, it had 50/50 chance to crash the system. If the

system did crash, a number between 100 and 300 ms was added

to the next lot of response time. This was to simulate the time

taken by the service provider to restart their system, locate the

source, and filter it. From our results, we got 84 normal

messages. Further, was the unusually high, 9 successful attacks

that crashed the system. The reason for the crashes was due to

the chance nature built within our code. These successful

attacks are displayed by the groupings within figure 14. Of the

attacks that got filtered, 7 attacks messages were discovered.

V. CONCLUSION AND FUTURE WORK

This paper builds upon our previous paper [36], in which

identifies the real source of DDoS attacks. SOTA is a traceback

system that is constructed on the basis of Web Services. Loose

Coupling, Policy Based, Message Based and Dynamic

discovery are some of criteria employed by the SOTA

framework. The empirical data from our experiments shows that

SOTA is efficient and effective. The experimental data also

shows that SOTA is able to traceback to the source. Once an

attack has been discovered and the attacker’s identity known,

counter measures can be initiated. The people, who will be

interested in this research, are those that want to their protect

web services in a cheap and efficient manner. In the future, we

will build a filtering application and extend SOTA to protect

grid networks.

REFERENCES

[1] Jensen, M., Gruschka, N., Herkenh¨oner, R., and Luttenberger, N.,

(2007), ” SOA and Web Services: New Technologies, New Standards –

New Attacks” Fifth European Conference on Web Services,

0-7695-3044-3/07, 2007.

[2] Bishop, M, ‘Computer Security’, Addison Wesley, 2003

[3] Nadalin, A., Kaler, C., Monzillo, R., and Hallam-Baker. P., (2008), ‘Web

Services Security: SOAP Message Security 1.1 (WSSecurity 2004)’,

http://docs.oasis-open.org/wss/v1.1/, 2008.

[4] Secure Socket Layer (SSL), (2008),

http://en.wikipedia.org/wiki/Secure_Sockets_Layer

[5] SOAP 1.1, (2008), http://www.w3.org/TR/soap/

[6] Bouzida, Y.; Cuppens, F.; Gombault, S., (2006), ‘Detecting and

Reacting against Distributed Denial of Service Attacks’
Communications, 2006 IEEE International Conference on Volume

5, June 2006.

[7] Trostle, J, (2006), ‘Protecting Against Distributed Denial of

Service (DDoS) Attacks Using Distributed Filtering’, Securecomm

and Workshops, 2006 Aug. 28 2006-Sept. 1 2006 Page(s):1 – 11.

[8] Poulsen. K., (2004), ‘FBI Busts Alleged DDoS Mafia’, 2004.

http://www.securityfocus.com/news/9411.

[9] Pappalardo, D., and Messmer, E., (2005), ‘Extortion via DDoS on the

rise, NetworkWorld’, May 2005. http://www.networkworld.

com/news/2005/051605-ddos-extortion.html.

[10] Bhaskaran, M., Natarajan, A.M. and Sivanandam, S.N., (2007),

‘Tracebacking the Spoofed IP Packets in Multi ISP Domains with

Secured Communication’ IEEE - ICSCN 2007, MIT Campus, Anna

University, Chennai, India. Feb. 22-24, 2007. pp.579-584.

[11] Digital Money, (2008), ‘C-Gold Chat Forum Crash’,

http://www.digitalmoneyworld.com/ , 11 January, 2008.

[12] SE-NSE Forums, (2008), http://forums.se-nse.net/index.php , 10

January, 2008.

[13] Trostle, J, (2006), ‘Protecting Against Distributed Denial of

Service (DDoS) Attacks Using Distributed Filtering’, Securecomm

and Workshops, 2006 Aug. 28 2006-Sept. 1 2006 Page(s):1 – 11.
[14] XML –Signature, (2008), ‘XML-Signature Syntax and Processing’

http://www.w3.org/TR/xmldsig-core/

[15] XML- Encryption, (2008), ‘XML-Signature Syntax and Processing’

http://www.w3.org/TR/xmlenc-core/

[16] Salz, R., (2005) “Essential XML Web Services Security Practices”,

http://www.idealliance.org/papers/dx_xml03/papers/05-2/05-04-

02.pdf

[17] Padmanabhuni, S.; Singh, V.; Senthil kumar, K.M.; Chatterjee,A.Web

Services, 2006, “Preventing Service Oriented Denial of Service

(PreSODoS): A Proposed Approach”, ICWS apos;06. International

Conference on Volume , Issue , Sept. 2006 Page(s):577 – 584

[18] Oasisopen.com, (2008), ‘Security Assertions Markup Language

(SAML)’,

http://www.oasisopen.org/committees/tc_home.php?wg_abbrev

=security , (2008)

[19] Prolexic Technologies, ‘Prolexic Technology Report,(2007),

http://www.prolexic.com/zr/zombie_july_2007.pdf
[20] He, Y., Chen, W., Peng, W., and Yang, M., (2005), “Efficient and

Beneficial Defense Against DDoS Direct Attack and Reflector Attack”,

ISPA, 2005, LNCS 3758, pp 576- 587.

[21] Adler, M, (2002),’Tradeoffs in Probabilistic Packet Marking for IP

Traceback,’ Proc. 34th ACM Symp. Theory of Computing, ACM Press,

2002, pp. 407–418.

[22] Peng,T., Leckie, C., and Kotagiri, R., (2002), ‘Adjusted Probabilistic

Packet Marking for IP Traceback’, Networking 2002.

[23] Belenky, A.,and Ansari, N., ‘Tracing Multiple Attackers with

Deterministic Packet Marking (DPM)’, Proc. of IEEE Pacific Rim

Conference on Communications, Computers and Signal Processing.

[24] Papazoglou, M.P., (2003), ‘Service-Oriented Computing: Concepts,

Characteristics and Directions’, Proc of the Fourth International

Conference on Web Information Systems Engineering (WISE’03), 2003

[25] Aiello, M and Dustdar, S, (2006), ‘Service-Oriented Computing: Service

Foundations’, Dagstuhl Seminar Proceedings,05462,

http://drops.dagstuhl.de/opus/volltexte/2006/528

[26] Amazon.com, (2008), ‘Amazon Elastic Compute Cloud’,

http://aws.amazon.com/ec2

[27] Ye, X And Singh, S, [2007], ‘A Soa Approach To Ddos Attacks’, IEEE

International Conference On Web Services (ICWS 2007), pp. 567-574,

2007

[28] Chonka,A., Zhou, W., and Xiang, Y., (2008), "Protecting Web Services

with Service Oriented Traceback Architecture", IEEE 8th

International Conference on Computer and Information

Technology, IEEE, 2008.

[29] Van Beignum, I, (2008), ‘IPv6: coming to a root server near you’, ARS

technical,

http://arstechnica.com/news.ars/post/20080102-icoann-to-add-ipv6-addr

ess-for-root-dns-servers.html , 02 January, 2008

[30] Brett, (2008), ‘Anonymous, scientology, and the story that the media is

too afraid to tell’,

http://www.associatedcontent.com/article/612153/anonymous_scientolo

gy_and_the_story.html , 20 February, 2008

