
                      Artificial neural network techniques for  
               analysis of ion backscattering spectra 
 
 
                                   Michael Li, XiaoLong Fan, Brijesh Verma, Ron Balsys 
                     Faculty of Informatics and Communication, Central Queensland University 
                                                         Rockhampton, QLD 4701, Australia 
 
                                                                             D.J. O’Connor 
                         School of Mathematics and Physical Sciences, University of Newcastle 
                                                           Callaghan, NSW 2307, Australia 
 
Abstract-Ion backscattering spectrometry is an analysis technology that is dedicated to the compositional 
analysis of samples with the thickness of μm level. The problem of spectral data analysis, which is to 
determine the sample structure from the measured spectra, is generally ill-posed. In this study, artificial 
neural network (ANN) techniques have been developed for spectral data analysis. A multilayer feedforward 
neural network was constructed and applied to the specific case of SiGe thin films on a silicon substrate. 
The network was trained by the resilient backpropagation algorithm with hundreds of simulated spectra of 
samples for which the structures are known. Then the trained network was applied to analyse spectra with 
unknown structure of samples. The ANN prediction results are excellent. The constructed neural network 
can handle properly redundancies, which were caused by the constraint of output variables.  
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                                                            1.  Introduction 

 
Over past two decades, artificial neural networks (ANN) have been successfully applied to solve 
a wide scope of hard problems owing to its ability to approximate nonlinear behavior without a 
prior knowledge of relations between the problem representation and its solution. Now ANN has 
gradually become a generic mathematical method and tool for solving some of hard problems. In 
recent years, some attempts have been made to use ANN techniques for analysis of complex 
scientific data. Complex scientific data may come from experimental measurements in various 
areas such as in astronomy, geophysics, environmental science, chemical drug design, and 
spectrometry [1-3] etc. Analysis of spectral data is a typical category of scientific data handling. 
Problems of spectral analysis are seemingly simple but there often exist high computational 
complexities and uncertainties. Traditionally, numerical and statistical approaches are employed 
for data analysis and interpretation. However, standard numerical methods sometimes may be 
incapable of solving some of complex problems, in which an inference process or optimization 
strategy may be required to extract relevant information from a large amount of measured spectral 
data. On the other hand, the neural network technique could be a suited-well approach, because a 
constructed network is good at learning from known instances and making inference for unknown 
cases. The extraordinary ability of approximating, learning and generalization of ANNs motivates 
us considering its application for data analysis of ion backscattering spectra. 
 
Backscattering spectra of energetic ion beams come from experimental measurements based on 
the Rutherford backscattering spectrometry (RBS) principle [4]. Mathematically, for given 
experimental conditions, ion backscattering spectra are function curves of normalized yield Y(E) 
versus energy E. Information related to sample structure are implicitly contained in the spectra. 
Conventionally, data analysis of backscattering spectra requires the analyst to have high skills and 



much experience-based knowledge of what the spectra of known samples look like. In the present 
study, we demonstrate how artificial neural networks are used to analyze RBS spectral data to 
obtain the structural parameters of a sample. The spectra are as input data into a network with an 
appropriate architecture and the sample structural parameters are the output variables. 
Representative pairs of input and output are chosen for training the network. After adequate 
training, the constructed network is used to predict the sample structural parameters.  

 
 

               2.  ANN approach for ion backscattering spectral analysis 
 

2.1 Problem Definition 
 

Using the technology of ion backscattering spectrometry, the sample to be analyzed is bombarded 
by an energetic ion beam (usually He+ ion with MeV incident energy), the number and energy of 
backscattered ions are recorded by a spectrometer. The energy spectrum of the detected ions is a 
plot of the yield Y(E), which contains implicitly information about the sample depth profile and 
composition. The sample structure can be described with a few parameters. For general problems, 
the elemental concentrations with depth distributions are concerned in the analysis. For relative 
simple cases, only elemental concentrations and sample thicknesses are required. We focus on the 
latter cases in this investigation. 
 
From the mathematical transformation point of view, the problem of spectral data analysis can be 
abstracted as a pair of forward and inverse transformation between the input vector – the spectra 
data and the output vector – the structural parameters of a sample. A spectrum representing a 
physical process performs a smooth conversion of an input vector{c1, c2,…cn}, where c1, c2,…cn 
are structural parameters of a sample including concentrations and thicknesses, into an output 
vector {y(E1), y(E2) , .…y(Em)} , where y(E)  is a continuous function of energy E with the 
parameter set {c1, c2,…cn}. This input-output dependence can be written as a forward 
transformation equation y(E)=f(E, c1, c2,…cn) and an inverse transformation c=F(y). The inverse 
problem, which is to determine the sample structure from the spectra, can be solved by the neural 
network method.  
                                                                                 
2.2 ANN approach   
             
We have built a few multilayer feedforward perceptron networks (MLP) to tackle our analysis 
problem, where the structural information of a sample will be predicted from the corresponding 
spectra available. Initially a number of different network structures were explored. After some 
trials, three layer networks were found to be appropriate. The network consists of three layers of 
nodes: one input layer, one output layer and a hidden layer. All the nodes in one layer are 
connected the next layer (feedforward), as shown in figure 1. The spectral data are input from the 
nodes at the input layer. The sample structural parameters are as output variables at the nodes of 
output layer. The numbers of nodes in the input and output layers were determined according to 
the imposed task of a specific problem. The number of nodes at the hidden layer is adjustable so 
that an optimal network architecture can be achieved. 

 

 
After determination of the architecture of the network, a series of input data (i.e., spectra) with 
their corresponding expected output values (i.e. sample structural parameters) will be presented to 
the network for the purpose of training. There are a number of algorithms available for training a 
MLP network, such as Resilient Backpropagation, Conjugate gradient, Levenberg-Marquard, and 
Quasi-Newton etc. We adopted the Resilient Backpropagation algorithm for training our network. 



The main advantage of the Resilient Backpropagation algorithm is to eliminate the harmful 
effects of the Gradients methods, due to partial derivative problem of the sigmoid functions that 
are used as transfer functions in the hidden layer[5-7]. This algorithm directly adjusts the weights 
of the network based on the sign of the partial derivative of the error function with respect to each 
weight. This could accelerate learning process in the flat regions of the error function.  
 
2.3 Construction of the training set  
 
The training examples must contain the necessary information to generalize the problem. They 
normally consist of realistic data from experimental measurements. However, when a reliable and 
accurate computational model is available, the training data could be generated with simulated 
experimental data. We utilized the simulation program SIMNRA5.0 [8] to generate representative 
examples for training and testing. Since the SIMNRA 5.0 was based on an accurate 
computational model, the simulated spectra have been proven to be very close to experimental 
ones. We consider a specific example for the demonstration of the neural network technique 
applied to spectral analysis. In this example, we assume the sample consisting of a thin film SiGe 
on the Si substrate. The thicknesses of the sample are set between 1000 and 2500 (×1015at/cm2). 
The concentrations for Ge and Si both are between 0.2 – 0.8. There is a constraint, namely 
CGe+CSi=1.0. Fig.2 shows a typical training spectrum with corresponding structural parameters. 
The training set and testing set consist of 412 and 60 simulated spectra and corresponding sample 
structures respectively. Each spectrum was generated by SIMNRA 5.0 for sample structural 
parameters chosen at random in specific ranges. The spectral data, made up of 54 data points, are 
as input for the network. There are 3 outputs representing the concentrations of c1 (Ge), c2 (Si) 
and the thickness (t).  

  c1         c2         t 

Fig.1. Schematic diagram of neural network for solving spectral analysis problem. Values of 
spectra at energy position E1, E2,… Em are as input for the network. Structural parameters 
are the output. 
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Fig.2. A typical training spectrum corresponding to the sample 
structure ( t: 1700*1015at/cm2, c1: 0.59, c2: 0.41).
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                                                  3. Results and discussions 
 
We have used the MATLAB® neural network toolbox to perform the computer experiments. A 
number of trials with different number of hidden neurons between 8 and 80 have been tested. It 
was found that 48 hidden units were sufficient to obtain a good performance on the training and 
testing data set. Typically 250 epochs were completed before the performance ceased 
improvement. 
 
During training the mean squared errors (m.s.e) for the training set and the test set are plotted in 
Fig.3 as a function of epoch. This figure displays that a large initial value of errors is sharply 
decreased and followed by slow convergence to a minimum value. The final errors achieved on 
both the training and test set were 0.00038. In addition to the mean squared error curves, the 
performance of the network response can also be examined by analysis of predicted outputs 
versus the corresponding targets for some of test spectra or training data. We have performed 
some regression analysis for three output variables, using some of test spectra. As plotted in 
figures 4, all three outputs track the targets very well. Fig.4a shows that ANN can accurately 
predict the thicknesses of samples. Fig.4b and c also shows that AAN predictions for 
concentrations are also quite well. 
     
 
 
        



    
                            Fig.3. Mean squared errors for training and test data.  
 

        

Fig.4a. Predicted output of thickness.The values obtained with ANN 
are labelled 'NN'. The original values with which the data were 

constructed are labelled 'Data'.
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Fig4b. Predicted concentration c1. The values obtained with ANN are 
labelled 'NN'. The original values with which the data were constructed 

are labelled 'Data'.
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Fig.4c. Predicted output for concentration c2.The values 
obtained with ANN are labelled 'NN'. The origianl values with 

which the data were constructed are labelled 'Data'.
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The trained network, with the fixed weights obtained during the training phase, was applied to 
generalization cases in which we analyzed 9 spectra. The predicted outputs are summarized in 
table 1. The neural network predictions were compared with the values determined using 
numerical simulation (namely, nominal). Overall, the agreement is excellent. The relative errors 
for thicknesses and concentrations are less than 3% and 9% respectively. The network correctly 
analyzed all cases within acceptable errors. Note there is a constraint for each pair of c1 and c2 
and the summation of the network outputs of c1 and c2 meet the requirement of constraint 
(approximately equals to 1). This suggests that the constructed neural network can handle 
properly redundancies, which were caused by constraints of output variables.  
 



Table 1. Comparison of the neural network predictions with simulated results 
                     Nominal (Numerical simulation)                                 NN prediction 
 Sample No.        c1         c2       t (×1015 at/cm2)                  c1                  c2        t (×1015 at/cm2) 
       1              0.251     0.749          1173                          0.264            0.729            1142 
       2              0.540     0.460          1173                          0.545            0.453            1163 
       3              0.782     0.218          1173                          0.755            0.240            1144 
       4              0.251     0.749          1768                          0.261            0.737            1752 
       5              0.540     0.460          1768                          0.540            0.452            1766 
       6              0.251     0.749          1914                          0.262            0.738            1926                     
       7              0.540     0.460          1914                          0.549            0.461            1921 
       8              0.251     0.749          2211                          0.254            0.742            2212 
       9              0.540     0.460          2211                          0.539            0.457            2234 
 
 
                                                                  4. Conclusion 
 
The results of this investigation show that properly configured MLP network is capable of 
performing spectral data analysis to extract structural parameters of the sample. The neural 
network method doesn’t require any involvement of physics knowledge. The present study also 
shows that neutral network can be a new powerful tool for analysis of spectral data. In real data 
there is statistical error in the spectra – which is the input. It would be interesting to see what 
level of statistical uncertainty will hinder the accurate execution of the neural network algorithm. 
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