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Abstract 
 

Integrated multi-core processors with on-chip 
application acceleration have established themselves as 
the most efficient method of powering next-generation 
networking platforms. New research has been conducted 
for addressing the issues of multi-core supported network 
and system security. This paper put forward an 
asymmetrical multiprocessing architecture multi-core 
supported anomaly intrusion detection system. The key 
idea is to use an independent core to run the intrusion 
detection system to monitor the host system. The detection 
method is based on the Hebb rule and uses libpcap to 
grab the network transmission packages. In the 
experiments, we use VMware which is configured to run 
the Ubuntu to simulate the IDS core. The results show 
that when the intrusion threshold is 0.3-0.5 the system 
performs best. 
 
1. Introduction 
 

The move by major microprocessor vendors toward 
processors containing multiple homogeneous processor 
cores is arguably the most important trend in 
contemporary computer architectures, almost all major 
processor vendors have already offered or released 
roadmaps for their own multi-core designs [1-4]. Network 
processors are typically characterized as distributed, 
multi-processor, multi-threaded architectures designed for 
hiding memory latencies in order to scale up to very high 
data processing rates. For example, the architecture of 
Intel IXP2850 is motivated by the need to provide a 
building block for 10-Gbps packet processing 
applications. Integrated multi-core processors with on-
chip application acceleration have established themselves 
as the most efficient method of powering next-generation 
networking platforms. For example, the Cavium 
Networks’ OCTEON family of Multi-Core MIPS64 
processors offers industry-leading performance, 
scalability, low-power, and advanced hardware 
acceleration for intelligent networking applications 
ranging from 100Mbps to full-duplex 10Gbps. Recently, 
new researches have been conducted for addressing the 
issues of multi-core supported network and system 
security.   

Paper [5] proposes a new intrusion survivable 
computing and self-healing scheme based on emerging 
chip multiprocessor (CMP) or multi-core platforms. 
Through the BIOS settings, some processor cores (or 
monitor cores) can be configured to run at a higher 
security or privileged level than the remaining cores (or 
protected cores). These higher privileged cores can 
monitor, reset, or recover the protected cores. 

Paper [6] presents an integrated framework utilizing 
multi-core processors to detect intrusions and recover 
from infected states. The processor cores are divided as 
resurrectors and resurrectees and memory space is also 
insulated. Resurrectees cannot access resurrectors’ 
memory but resurrectors can access all the memory space. 
Fine grain internal state logging for low privileged cores, 
resurrectees, is employed. Resurrectors dynamically 
check the states of resurrectees. If any suspicious 
intrusions are detected, a logged state will be recovered. 

Paper [7] presents a unique multi-core security 
architecture based on Extensible Firmware Interface (EFI) 
[8]. This architecture combines secure EFI environment 
with insecure OS so that it supports secure and reliable 
bootstrap, hardware partition, encryption service, as well 
as real-time security monitoring and inspection. With this 
architecture, secure EFI environment provides users with 
a management console to authenticate, monitor and audit 
insecure OS. This architecture also has a unique 
capability to protect authentication rules and secure 
information such as encrypted data even if the security 
ability of an OS is compromised. 

Paper [9] proposes a secure Chip-Multiprocessor 
architecture (SecCMP) to handle security related 
problems such as key protection and core authentication 
in multi-core systems. It employs a distributed secret 
sharing approach [10] to protect and distribute critical 
secrets shared by all processor cores. Threshold secret 
sharing scheme is employed to protect critical keys 
because secret sharing is a distributed security scheme 
that matches the nature of multi-core systems. A critical 
secret is divided and distributed among multiple cores 
instead of keeping a single copy that is sensitive to 
exposure. The SecCMP can not only enhance the security 
and fault tolerance in key protection but also support core 
authentication. 
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In this paper an anomaly network intrusion detection 
system based on multi-core is presented. The main 
benefits of this system include:  

Real-time: An independent core monitors the host 
system’s network transmission by checking the passing 
packets. If an intruder is trying to intrude the system 
through network, the intrusion detection system can find 
it in real time and alarm immediately. 

Intelligent: The main task of intrusion detection system 
is to distinguish abnormal behavior from normal behavior. 
It can study the normal behavior of host system through a 
Hebb neural network. Thus the intrusion detection system 
does not need expert knowledge and it can find unknown 
or novel intrusions. 

Accurate: It uses packet capture library libpcap to grab 
packets from the network card directly. Libpcap provides 
implementation independent access to the underlying 
packet capture facility provided by the operating system.  

The rest of this paper is organized as follows. In 
Section 2 we present the architecture of multi-core 
intrusion detection system and the detection method based 
on Hebb neural network. Detailed study of performance 
and simulation experimental results are presented in 
Sections 3, and conclusions are made in Section 4.  
 
2. The design of multi-core supported IDS     
 
2.1. The mutli-core IDS architecture  
 

There are two types of software structures on a multi-
core processor: Asymmetrical Multiprocessing (AMP) 
and Symmetrical Multiprocessing (SMP), illustrated in 
Fig.1 and Fig.2. AMP is a function-distribution software 
architecture that assigns fixed roles to each core. On the 
other hand, SMP is a load-distribution software 
architecture that determines the roles of CPU cores 
dynamically. We use the AMP since this approach 
enables security method to be independently executed on 
one core. 

 
Fig.1 AMP structure 

 
 

 
Fig.2 SMP structure 

To detect intrusions, we employ the system architecture 
shown in Fig.3. The IDS core implements the intrusion 
detection capability, and the other cores run the 
application system. The IDS core can also run a different 
operating system from the rest. 

 
Fig.3 Multi-core IDS structure 

 
2.2. Detection method based on Hebb rule  
 

Intrusion detection techniques can be classified into 
two categories: misuse detection and anomaly detection. 
Misuse detection looks for signatures of known attacks. 
Any matched activity is considered an attack. Examples 
of misuse-detection techniques include the STAT [11] 
and IDIOT [12]. They use patterns of known attacks or 
weak spots of the system to match and identify known 
intrusions. Misuse detection can detect known attacks 
effectively, though it usually cannot accommodate 
unknown attacks. Anomaly detection models a user’s 
behaviors, and any significant deviation from the normal 
behaviors is considered the result of an attack [13,14]. 
Anomaly detection techniques can be effective against 
unknown or novel attacks since no a prior knowledge 
about specific intrusions is required. However, anomaly 
detection systems tend to generate more false alarms than 
misuse detection systems. 

 
 

2.2.1 Hebb rule neural network 
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Artificial neural networks have been applied in many 

fields. A neural network contains no domain knowledge 
in the beginning, but it can be trained to make decisions 
by mapping exemplar pairs of input data into exemplar 
output vectors, and adjusting its weights so that it maps 
each input exemplar vector into the corresponding output 
exemplar vector approximately. Well-trained neural 
networks represent a knowledge base in which knowledge 
is distributed in the form of weighted interconnections 
where a learning algorithm is used to modify the 
knowledge base from a set of given representative cases. 

In this paper the learning algorithm is based on the 
Hebbian Postulate “When an axon of cell A is near 
enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic 
change takes place in one or both cells such that A’s 
efficiency, as one of the cells firing B, is increased.” [15] 

  The learning rule for a single neuron can be derived 
from an energy function defined as 

( ) ( ) 2

22
wxww αψ +−= TE                   (1) 

where w is the synaptic weight vector (including a bias 
or threshold), x is the input to the neuron, ( )ψ is a 
differentiable function, and 0≥α is the forgetting factor.  
Also, 

( ) ( )vf
dv

vy == ψd
                          (2) 

is the output of the neuron, where xwTv =  is the 
activity level of the neuron. Taking the steepest descent 
approach to derive the continuous-time learning rule 

( )ww
w E

t
∇−= μ

d
d

                        (3) 

where 0>μ is the learning rate parameter, we see that 
the gradient of the energy function in (1) must be 
computed with respect to the synaptic weight vector, that 
is, ( ) ( ) wwww ∂∂=∇ EE .  The gradient of (1) is  

( ) ( ) wxw
w

ww αα +−=+
∂
∂−=∇ yvvfE       (4) 

Therefore, by using the result in (4) along with (3), the 
continuous-time learning rule for a single neuron is        

 [ ]wxw αμ −= y
td

d
                    (5) 

the discrete-time learning rule (in vector form) is  
( ) ( ) ( ) ( ) ( )[ ]tttytt wxww αμ −+++=+ 111     (6) 

In this paper, the inverse distance kernel function is 
used in Hebb learning. The dissimilarity measure function 
is Minkowski metric:   
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where ix , iy are the i th coordinates of x and y , 

li ,,1= , and 0≥iw is the i th weight coefficient.   

If set forgetting factor 1=α , When the neuron is 
active 1=y , then the learning rule of thi neuron is  

( ) ( ) ( ) ( )[ ]tttt iiii wxww −+∗+=+ 11 γμ      
(8) 

where, 
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(9) 
and ( )idK  is the inverse distance kernel, 

( ) pi d
dK

+
=

1
1

                           (10) 

If the winner’s dissimilarity measure ϑ<d  (ϑ is the 
threshold of dissimilarity), then update the synaptic 
weight by learning rule (8), else add a new neuron and set 
the synaptic weight xw = . 

The main learning process is: 
Step0: Initialize learning rate parameter μ , the threshold 
of dissimilarity ϑ ; 
Step1: Get the first input x and set xw =0 as the initial 
weight; 
Step2: If the training is not over, randomly takes a feature 
vector x  from the feature sample set X and computes 
the dissimilarity measure between x and each synaptic 
weight as (7); 
Step3: Decide the winner neuron j and tests tolerance: If 

( ϑ>=jd ) add a new neuron and sets synaptic weight 
xw = , goto Step2, else continue; 

Step4: Compute iγ  by using the result of inverse distance 

( )idK ; 
Step5: Update the synaptic weight as (8) , goto Setp2. 

 
2.2.2 Network behavior 

 
In this paper, we form the network behavior vector 

based on the character of network software structuring 
technique. In the TCP/IP Reference Model, the Internet 
layer defines an official packet format and protocol called 
IP (Internet Protocol); the layer above the Internet layer is 
transport layer, two end-to-end protocols have been 
defined here. The first one, TCP (Transmission Control 
Protocol) is a reliable connection-oriented protocol that 
allows a byte stream originating on one machine to be 
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delivered without error on any other machine in the 
Internet. The second protocol in this layer, UDP (User 
Datagram Protocol), is an unreliable, connectionless 
protocol. We use the heads of packets to present the 
network behavior.   

typedef  struct  _EthernetBehavior 
{ 
/* destination ethernet address */ 
u_int8_t  ethernet_dest[12];    
/* source ehternet address */ 
u_int8_t  ethernet_sour[12];    
/* packet type ID field */ 
u_int16_t  ethernet_type;      
}EthernetBehavior; 
The ethernet_type shows the nested structure of 

protocol headers. It may be an IP, ARP, or some other 
protocols. For instance, an IP header can be defined as: 

typedef  struct  _IPBehavior 
{ 
/* the header length */ 
unsigned int  header_len;      
/* version of the protocol */ 
unsigned int  version;         
/* type of service */ 
u_int8_t  tos;      
/* total length of datagram */           
u_short  total_len;            
/* identification */ 
u_short  identification;        
/* flags and fragment offset */ 
u_int8_t  flag_off;      
/* the limit of packet lifetimes */       
u_int8_t  time_live;          
/* TCP or UDP */ 
u_int8_t  protocol;         
/* header checksum */    
u_int8_t  checksum;         
/* source address */   
struct in_addr  source_addr;     
/* destination address */ 
struct in_addr  destination_addr;  
} IPBehavior; 
The variable protocol tells what type of protocol will 

be used in the upper layer, it can be TCP, UDP, ICMP, etc. 
For example the definition of TCP is: 

typedef  struct  _TCPBehavior 
{ 
/* source port */ 
u_int16_t  sour_port;     
/* destination port */      
u_int16_t  dest_port;          
/* sequence number */ 
tcp_seq  seq_num;  
/* acknowledgement number */           
tcp_seq  ack_num;           
/* flags */ 

u_int16_t  flag;               
/* window size */ 
u_int16_t  win_size;  
/* header checksum */          
u_int16_t  check_sum;      
/* urgent pointer */ 
u_int16_t  urg_pointer;         
}TCPBehavior; 
During the period of training, we use the behavior 

variables of the normal packets to form the behavior 
matrix. In the detection period, propose W  is the weight 
matrix of the stable neural network, jw  is column j  of 

W . The IDS core grabs the packet transmitting in the 
application system and the packet is translated into 
behavior variable ip . If td ji >),( wp , where t  is the 
threshold value of intrusion, IDS will alarm and display 
the detailed information of the intruder. 
 
3. Experiments  
 

In the experiments, we use VMware to simulate the 
IDS core. The VMware is configured to run the Ubuntu 
7.10 Linux OS, and the intrusion detection system is 
implemented and run on Ubuntu. The underlying host 
system that VMware is running on, is a 2.26GHz Intel 
Pentium processor machine with 512MB RAM. The IDS 
core monitors and detects the host system’s network 
behavior using libpcap library which provides a flexible 
filtering framework. The main functions we used are: 

pcap_open_live()  is used to obtain a packet capture 
descriptor to look at packets on the network.  

pcap_lookupnet()  is used to determine the network 
number and mask associated with the network device. 

pcap_lookupdev() returns a pointer to a network device 
suitable for use with pcap_open_live() and 
pcap_lookupnet().   

pcap_loop()  is used to collect and process packets. 
The network IDS needs to grab packets from network 

card, but if the CPU is slow or network speed is high, the 
IDS may dropping some packets thus may lose some 
attacking information, which will increase false alarm rate. 
We first do the experiment to evaluate the method’s real-
time performance. The TG2.0 [16] is used to generate 
high volumes of traffic on the testing network. The TG’s 
client is set to open a UDP socket to send packets to the 
TG server waiting at 192.168.10.1 and port 4322, with 
packet data length being 576 and packet number is 2000. 
On the multi-core system, the odd number packets are 
processed by one core and the even number packets are 
processed by another core. The dropping rate under 
different interpacket transmission time (0.02 secs equals 
1/0.02=50 packets/sec) is shown Fig.4. From the result we 
can find that multi-core can with low dropping rate than 
one processor system. 

5353

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore.  Restrictions apply.



 

0

0.2

0.4

0.6

0.8

1

0.02 0.01 0.001 0.0005 0.0001

interpacket transmission time (secs)

dr
op

pi
ng

 ra
te

one core dual core

Fig.4 Dropping rate 
Multi-core can increase the processing speed of the 

whole system, so it will provide the IDS more calculation 
time, thus can reduce the dropping packet number and 
will decrease false rate. To evaluate the IDS core’s 
performance, a series of experiments are conducted. IDS 
errors consist of false positive errors and false negative 
errors. The false positive errors occur because IDS 
misinterprets normal packets as an attack, the false 
negative errors occur because an attacker is misclassified 
as a normal user. The recording format of the test results 
is shown in Table 1. False alarm is partitioned into False 
Positive (FP, normal is detected as intrusion) and False 
Negative (FN, intrusion is not detected). True detect is 
also partitioned into True Positive (TP, intrusion is 
detected rightly) and True Negative (TN, normal is 
detected rightly).  

 
Table1. Recording format of test result 

 
Detection Results 
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Intrusion
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, where iiT  is the value lies in 

table1’s ith  row and ith  column.   
Definition 2. The right prediction rate of ith  behavior 

∑
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1

, where iiT  is the value lies in 

table1’s ith  row and ith  column; jiR  is the value lies in 

table1’s jth  row and ith  column. 

Definition 3. Detection rate ( DR ) is computed as the 
ratio between the number of correctly detected intrusions 
and the total number of intrusions.  If regard Table1’s 
record as an ( ) ( )11 +×+ nn metric R , then 
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Definition 4. False positive rate ( FPR ) is computed as 
the ratio between the number of normal behaviors that are 
incorrectly classifies as intrusions and the total number of 
normal connections, according to the Table1’s record, 
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==
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The anomaly intrusion detection method put forward in 
this paper cannot classify what kind of intrusion is 
happening, if the behavior value is bigger than the 
intrusion threshold value we will believe that an intrusion 
is happening. So there is only one column and one raw of 
intrusion record. We first train the neural network with 
different normal features, then use the stable neural 
network to monitor the host system’s network 
transmission where some abnormal behaviors may are 
happening under the same environment. The experiments 
are conducted to analyze the effects of varying the value 
of intrusion threshold to system errors. The tests results 
are graphically represented in Fig.5. 

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.1 0.2 0.3 0.4 0.5 0.6 0.7
threshold

er
ro

r

false positive error
false negative error 
total error

Fig.5 Test results 
We can find that the performance of the method is 

sensitive according to intrusion threshold. As the 
threshold value increases, false positive errors increase 
while false negative errors decrease. Since a false 
negative error is more important in IDS, we need to 
concentrate on the decrease of false negative errors 
according to the change of the threshold value. The 
optimal threshold value is 0.3-0.5.   
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4. Conclusions  
 

Recently, multi-core processors have been targeted for 
use in a wide variety of networking and security 
equipment, including routers, switches, unified threat 
management (UTM) appliances, content-aware switches, 
application-aware gateways, triple-play gateways, WLAN 
and 3G/4G access and aggregation devices. This paper 
presents a multi-core supported anomaly intrusion 
detection system to provide highly reliable network 
services and systems. It uses an AMP structure based 
multi-core system to achieve real-time intrusion detection. 
The IDS runs on a core and detects the host system’s 
network behavior with libpcap library. The anomaly 
detection method based on the Hebb rule neural network 
can distinguish abnormal behavior from normal behavior. 
In the experiment, we simulate the IDS core using 
VMware. The VMware is configured to run the Ubuntu 
7.10, and the intrusion detection system is implemented 
and run on Ubuntu. The experimental results show that 
when the value of intrusion threshold is 0.3 to 0.5 the 
performance is optimal. 
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