

Copyright © 2009 Institute of Electrical and electronics Engineers,
Inc.
All Rights reserved.
Personal use of this material, including one hard copy
reproduction, is permitted.
Permission to reprint, republish and/or distribute this material in
whole or in part for any other purposes must be obtained from the
IEEE.
For information on obtaining permission, send an e-mail message
to stds-igr@ieee.org.
By choosing to view this document, you agree to all provisions of
the copyright laws protecting it.
Individual documents posted on this site may carry slightly
different copyright restrictions.
For specific document information, check the copyright notice at
the beginning of each document.

mailto:stds-igr@ieee.org

A Multi-core Supported Intrusion Detection System

Tian Daxin1,2, Xiang Yang2

1. School of Computer Science and Technology, Tianjin University, 300072, China
2. School of Management and Information Systems, Central Queensland University, Queensland

4702, Australia
tiandaxin@gmail.com, y.xiang@cqu.edu.au

Abstract

Integrated multi-core processors with on-chip
application acceleration have established themselves as
the most efficient method of powering next-generation
networking platforms. New research has been conducted
for addressing the issues of multi-core supported network
and system security. This paper put forward an
asymmetrical multiprocessing architecture multi-core
supported anomaly intrusion detection system. The key
idea is to use an independent core to run the intrusion
detection system to monitor the host system. The detection
method is based on the Hebb rule and uses libpcap to
grab the network transmission packages. In the
experiments, we use VMware which is configured to run
the Ubuntu to simulate the IDS core. The results show
that when the intrusion threshold is 0.3-0.5 the system
performs best.

1. Introduction

The move by major microprocessor vendors toward
processors containing multiple homogeneous processor
cores is arguably the most important trend in
contemporary computer architectures, almost all major
processor vendors have already offered or released
roadmaps for their own multi-core designs [1-4]. Network
processors are typically characterized as distributed,
multi-processor, multi-threaded architectures designed for
hiding memory latencies in order to scale up to very high
data processing rates. For example, the architecture of
Intel IXP2850 is motivated by the need to provide a
building block for 10-Gbps packet processing
applications. Integrated multi-core processors with on-
chip application acceleration have established themselves
as the most efficient method of powering next-generation
networking platforms. For example, the Cavium
Networks’ OCTEON family of Multi-Core MIPS64
processors offers industry-leading performance,
scalability, low-power, and advanced hardware
acceleration for intelligent networking applications
ranging from 100Mbps to full-duplex 10Gbps. Recently,
new researches have been conducted for addressing the
issues of multi-core supported network and system
security.

Paper [5] proposes a new intrusion survivable
computing and self-healing scheme based on emerging
chip multiprocessor (CMP) or multi-core platforms.
Through the BIOS settings, some processor cores (or
monitor cores) can be configured to run at a higher
security or privileged level than the remaining cores (or
protected cores). These higher privileged cores can
monitor, reset, or recover the protected cores.

Paper [6] presents an integrated framework utilizing
multi-core processors to detect intrusions and recover
from infected states. The processor cores are divided as
resurrectors and resurrectees and memory space is also
insulated. Resurrectees cannot access resurrectors’
memory but resurrectors can access all the memory space.
Fine grain internal state logging for low privileged cores,
resurrectees, is employed. Resurrectors dynamically
check the states of resurrectees. If any suspicious
intrusions are detected, a logged state will be recovered.

Paper [7] presents a unique multi-core security
architecture based on Extensible Firmware Interface (EFI)
[8]. This architecture combines secure EFI environment
with insecure OS so that it supports secure and reliable
bootstrap, hardware partition, encryption service, as well
as real-time security monitoring and inspection. With this
architecture, secure EFI environment provides users with
a management console to authenticate, monitor and audit
insecure OS. This architecture also has a unique
capability to protect authentication rules and secure
information such as encrypted data even if the security
ability of an OS is compromised.

Paper [9] proposes a secure Chip-Multiprocessor
architecture (SecCMP) to handle security related
problems such as key protection and core authentication
in multi-core systems. It employs a distributed secret
sharing approach [10] to protect and distribute critical
secrets shared by all processor cores. Threshold secret
sharing scheme is employed to protect critical keys
because secret sharing is a distributed security scheme
that matches the nature of multi-core systems. A critical
secret is divided and distributed among multiple cores
instead of keeping a single copy that is sensitive to
exposure. The SecCMP can not only enhance the security
and fault tolerance in key protection but also support core
authentication.

2008 IFIP International Conference on Network and Parallel Computing

978-0-7695-3354-4/08 $25.00 © 2008 IEEE

DOI 10.1109/NPC.2008.19

50

2008 IFIP International Conference on Network and Parallel Computing

978-0-7695-3354-4/08 $25.00 © 2008 IEEE

DOI 10.1109/NPC.2008.19

50

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

In this paper an anomaly network intrusion detection
system based on multi-core is presented. The main
benefits of this system include:

Real-time: An independent core monitors the host
system’s network transmission by checking the passing
packets. If an intruder is trying to intrude the system
through network, the intrusion detection system can find
it in real time and alarm immediately.

Intelligent: The main task of intrusion detection system
is to distinguish abnormal behavior from normal behavior.
It can study the normal behavior of host system through a
Hebb neural network. Thus the intrusion detection system
does not need expert knowledge and it can find unknown
or novel intrusions.

Accurate: It uses packet capture library libpcap to grab
packets from the network card directly. Libpcap provides
implementation independent access to the underlying
packet capture facility provided by the operating system.

The rest of this paper is organized as follows. In
Section 2 we present the architecture of multi-core
intrusion detection system and the detection method based
on Hebb neural network. Detailed study of performance
and simulation experimental results are presented in
Sections 3, and conclusions are made in Section 4.

2. The design of multi-core supported IDS

2.1. The mutli-core IDS architecture

There are two types of software structures on a multi-
core processor: Asymmetrical Multiprocessing (AMP)
and Symmetrical Multiprocessing (SMP), illustrated in
Fig.1 and Fig.2. AMP is a function-distribution software
architecture that assigns fixed roles to each core. On the
other hand, SMP is a load-distribution software
architecture that determines the roles of CPU cores
dynamically. We use the AMP since this approach
enables security method to be independently executed on
one core.

Fig.1 AMP structure

Fig.2 SMP structure

To detect intrusions, we employ the system architecture
shown in Fig.3. The IDS core implements the intrusion
detection capability, and the other cores run the
application system. The IDS core can also run a different
operating system from the rest.

Fig.3 Multi-core IDS structure

2.2. Detection method based on Hebb rule

Intrusion detection techniques can be classified into
two categories: misuse detection and anomaly detection.
Misuse detection looks for signatures of known attacks.
Any matched activity is considered an attack. Examples
of misuse-detection techniques include the STAT [11]
and IDIOT [12]. They use patterns of known attacks or
weak spots of the system to match and identify known
intrusions. Misuse detection can detect known attacks
effectively, though it usually cannot accommodate
unknown attacks. Anomaly detection models a user’s
behaviors, and any significant deviation from the normal
behaviors is considered the result of an attack [13,14].
Anomaly detection techniques can be effective against
unknown or novel attacks since no a prior knowledge
about specific intrusions is required. However, anomaly
detection systems tend to generate more false alarms than
misuse detection systems.

2.2.1 Hebb rule neural network

Multi-core Processor

IDS Core

Application
System

Intrusion
Detection

Core-2 Core-1

Multi-core Processor

Core-1 Core-2 Core-3 Core-4

Task-1 Task-2 Task-3 Task-4

Multi-core Processor

Core-1 Core-2 Core-3 Core-4

Task-1 Task-2 Task-3

Task-4 Task-5 Task-6

5151

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

Artificial neural networks have been applied in many

fields. A neural network contains no domain knowledge
in the beginning, but it can be trained to make decisions
by mapping exemplar pairs of input data into exemplar
output vectors, and adjusting its weights so that it maps
each input exemplar vector into the corresponding output
exemplar vector approximately. Well-trained neural
networks represent a knowledge base in which knowledge
is distributed in the form of weighted interconnections
where a learning algorithm is used to modify the
knowledge base from a set of given representative cases.

In this paper the learning algorithm is based on the
Hebbian Postulate “When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.” [15]

 The learning rule for a single neuron can be derived
from an energy function defined as

() () 2

22
wxww αψ +−= TE (1)

where w is the synaptic weight vector (including a bias
or threshold), x is the input to the neuron, ()ψ is a
differentiable function, and 0≥α is the forgetting factor.
Also,

() ()vf
dv

vy == ψd
 (2)

is the output of the neuron, where xwTv = is the
activity level of the neuron. Taking the steepest descent
approach to derive the continuous-time learning rule

()ww
w E

t
∇−= μ

d
d

 (3)

where 0>μ is the learning rate parameter, we see that
the gradient of the energy function in (1) must be
computed with respect to the synaptic weight vector, that
is, () () wwww ∂∂=∇ EE . The gradient of (1) is

() () wxw
w

ww αα +−=+
∂
∂−=∇ yvvfE (4)

Therefore, by using the result in (4) along with (3), the
continuous-time learning rule for a single neuron is

 []wxw αμ −= y
td

d
 (5)

the discrete-time learning rule (in vector form) is
() () () () ()[]tttytt wxww αμ −+++=+ 111 (6)

In this paper, the inverse distance kernel function is
used in Hebb learning. The dissimilarity measure function
is Minkowski metric:

 ()
pl

i

p
iiip yxwd

1

1
, ⎟

⎠

⎞
⎜
⎝

⎛ −= ∑
=

yx (7)

where ix , iy are the i th coordinates of x and y ,

li ,,1= , and 0≥iw is the i th weight coefficient.

If set forgetting factor 1=α , When the neuron is
active 1=y , then the learning rule of thi neuron is

() () () ()[]tttt iiii wxww −+∗+=+ 11 γμ
(8)

where,

()⎩
⎨
⎧

≠=−
=

=
jimidK

ji

i
i and ,,1others, ,

, winner ,1
γ

(9)
and ()idK is the inverse distance kernel,

() pi d
dK

+
=

1
1

 (10)

If the winner’s dissimilarity measure ϑ<d (ϑ is the
threshold of dissimilarity), then update the synaptic
weight by learning rule (8), else add a new neuron and set
the synaptic weight xw = .

The main learning process is:
Step0: Initialize learning rate parameter μ , the threshold
of dissimilarity ϑ ;
Step1: Get the first input x and set xw =0 as the initial
weight;
Step2: If the training is not over, randomly takes a feature
vector x from the feature sample set X and computes
the dissimilarity measure between x and each synaptic
weight as (7);
Step3: Decide the winner neuron j and tests tolerance: If

(ϑ>=jd) add a new neuron and sets synaptic weight
xw = , goto Step2, else continue;

Step4: Compute iγ by using the result of inverse distance

()idK ;
Step5: Update the synaptic weight as (8) , goto Setp2.

2.2.2 Network behavior

In this paper, we form the network behavior vector

based on the character of network software structuring
technique. In the TCP/IP Reference Model, the Internet
layer defines an official packet format and protocol called
IP (Internet Protocol); the layer above the Internet layer is
transport layer, two end-to-end protocols have been
defined here. The first one, TCP (Transmission Control
Protocol) is a reliable connection-oriented protocol that
allows a byte stream originating on one machine to be

5252

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

delivered without error on any other machine in the
Internet. The second protocol in this layer, UDP (User
Datagram Protocol), is an unreliable, connectionless
protocol. We use the heads of packets to present the
network behavior.

typedef struct _EthernetBehavior
{
/* destination ethernet address */
u_int8_t ethernet_dest[12];
/* source ehternet address */
u_int8_t ethernet_sour[12];
/* packet type ID field */
u_int16_t ethernet_type;
}EthernetBehavior;
The ethernet_type shows the nested structure of

protocol headers. It may be an IP, ARP, or some other
protocols. For instance, an IP header can be defined as:

typedef struct _IPBehavior
{
/* the header length */
unsigned int header_len;
/* version of the protocol */
unsigned int version;
/* type of service */
u_int8_t tos;
/* total length of datagram */
u_short total_len;
/* identification */
u_short identification;
/* flags and fragment offset */
u_int8_t flag_off;
/* the limit of packet lifetimes */
u_int8_t time_live;
/* TCP or UDP */
u_int8_t protocol;
/* header checksum */
u_int8_t checksum;
/* source address */
struct in_addr source_addr;
/* destination address */
struct in_addr destination_addr;
} IPBehavior;
The variable protocol tells what type of protocol will

be used in the upper layer, it can be TCP, UDP, ICMP, etc.
For example the definition of TCP is:

typedef struct _TCPBehavior
{
/* source port */
u_int16_t sour_port;
/* destination port */
u_int16_t dest_port;
/* sequence number */
tcp_seq seq_num;
/* acknowledgement number */
tcp_seq ack_num;
/* flags */

u_int16_t flag;
/* window size */
u_int16_t win_size;
/* header checksum */
u_int16_t check_sum;
/* urgent pointer */
u_int16_t urg_pointer;
}TCPBehavior;
During the period of training, we use the behavior

variables of the normal packets to form the behavior
matrix. In the detection period, propose W is the weight
matrix of the stable neural network, jw is column j of

W . The IDS core grabs the packet transmitting in the
application system and the packet is translated into
behavior variable ip . If td ji >),(wp , where t is the
threshold value of intrusion, IDS will alarm and display
the detailed information of the intruder.

3. Experiments

In the experiments, we use VMware to simulate the
IDS core. The VMware is configured to run the Ubuntu
7.10 Linux OS, and the intrusion detection system is
implemented and run on Ubuntu. The underlying host
system that VMware is running on, is a 2.26GHz Intel
Pentium processor machine with 512MB RAM. The IDS
core monitors and detects the host system’s network
behavior using libpcap library which provides a flexible
filtering framework. The main functions we used are:

pcap_open_live() is used to obtain a packet capture
descriptor to look at packets on the network.

pcap_lookupnet() is used to determine the network
number and mask associated with the network device.

pcap_lookupdev() returns a pointer to a network device
suitable for use with pcap_open_live() and
pcap_lookupnet().

pcap_loop() is used to collect and process packets.
The network IDS needs to grab packets from network

card, but if the CPU is slow or network speed is high, the
IDS may dropping some packets thus may lose some
attacking information, which will increase false alarm rate.
We first do the experiment to evaluate the method’s real-
time performance. The TG2.0 [16] is used to generate
high volumes of traffic on the testing network. The TG’s
client is set to open a UDP socket to send packets to the
TG server waiting at 192.168.10.1 and port 4322, with
packet data length being 576 and packet number is 2000.
On the multi-core system, the odd number packets are
processed by one core and the even number packets are
processed by another core. The dropping rate under
different interpacket transmission time (0.02 secs equals
1/0.02=50 packets/sec) is shown Fig.4. From the result we
can find that multi-core can with low dropping rate than
one processor system.

5353

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

0.02 0.01 0.001 0.0005 0.0001

interpacket transmission time (secs)

dr
op

pi
ng

 ra
te

one core dual core

Fig.4 Dropping rate
Multi-core can increase the processing speed of the

whole system, so it will provide the IDS more calculation
time, thus can reduce the dropping packet number and
will decrease false rate. To evaluate the IDS core’s
performance, a series of experiments are conducted. IDS
errors consist of false positive errors and false negative
errors. The false positive errors occur because IDS
misinterprets normal packets as an attack, the false
negative errors occur because an attacker is misclassified
as a normal user. The recording format of the test results
is shown in Table 1. False alarm is partitioned into False
Positive (FP, normal is detected as intrusion) and False
Negative (FN, intrusion is not detected). True detect is
also partitioned into True Positive (TP, intrusion is
detected rightly) and True Negative (TN, normal is
detected rightly).

Table1. Recording format of test result

Detection Results

Normal Intrusion
-1

Intrusion
-2 ┅

Intrusion-
n

A
ct

ua
l B

eh
av

io
rs

Normal TN00 FP01 FP02 ┅ FP0n
Intrusion

-1 FN10 TP11 FP12 ┅ FP1n

Intrusion
-2 FN20 FP21 TP22 ┅ FP2n

┇ ┇ ┇ ┇ ┇ ┇

Intrusion
-n FNn0 FPn1 FPn2 ┅ TPnn

Definition 1. The right detection rate of ith

behavior ∑
=

=
n

j
ijii RTTR

1

, where iiT is the value lies in

table1’s ith row and ith column.
Definition 2. The right prediction rate of ith behavior

∑
=

=
n

j
jiii RTPR

1

, where iiT is the value lies in

table1’s ith row and ith column; jiR is the value lies in

table1’s jth row and ith column.

Definition 3. Detection rate (DR) is computed as the
ratio between the number of correctly detected intrusions
and the total number of intrusions. If regard Table1’s
record as an () ()11 +×+ nn metric R , then

∑∑∑∑
= == =

=
n

i

n

j
ij

n

i

n

j
ij RRDR

0 01 1

.

Definition 4. False positive rate (FPR) is computed as
the ratio between the number of normal behaviors that are
incorrectly classifies as intrusions and the total number of
normal connections, according to the Table1’s record,

0000
11

TNiFPiFPFPR
n

i

n

i
+= ∑∑

==

.

The anomaly intrusion detection method put forward in
this paper cannot classify what kind of intrusion is
happening, if the behavior value is bigger than the
intrusion threshold value we will believe that an intrusion
is happening. So there is only one column and one raw of
intrusion record. We first train the neural network with
different normal features, then use the stable neural
network to monitor the host system’s network
transmission where some abnormal behaviors may are
happening under the same environment. The experiments
are conducted to analyze the effects of varying the value
of intrusion threshold to system errors. The tests results
are graphically represented in Fig.5.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0.1 0.2 0.3 0.4 0.5 0.6 0.7
threshold

er
ro

r

false positive error
false negative error
total error

Fig.5 Test results
We can find that the performance of the method is

sensitive according to intrusion threshold. As the
threshold value increases, false positive errors increase
while false negative errors decrease. Since a false
negative error is more important in IDS, we need to
concentrate on the decrease of false negative errors
according to the change of the threshold value. The
optimal threshold value is 0.3-0.5.

5454

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

4. Conclusions

Recently, multi-core processors have been targeted for
use in a wide variety of networking and security
equipment, including routers, switches, unified threat
management (UTM) appliances, content-aware switches,
application-aware gateways, triple-play gateways, WLAN
and 3G/4G access and aggregation devices. This paper
presents a multi-core supported anomaly intrusion
detection system to provide highly reliable network
services and systems. It uses an AMP structure based
multi-core system to achieve real-time intrusion detection.
The IDS runs on a core and detects the host system’s
network behavior with libpcap library. The anomaly
detection method based on the Hebb rule neural network
can distinguish abnormal behavior from normal behavior.
In the experiment, we simulate the IDS core using
VMware. The VMware is configured to run the Ubuntu
7.10, and the intrusion detection system is implemented
and run on Ubuntu. The experimental results show that
when the value of intrusion threshold is 0.3 to 0.5 the
performance is optimal.

Acknowledgement

This work is supported by the "Personal Computer
Bodyguard: Using Multi-core to Support Security-Related
Applications", Central Queensland University, Research
Development and Incentives Program.

References

[1] Gelsinger P.P., Gargini P.A., Parker G.H., Yu A.Y.C.

Microprocessors circa 2000, IEEE Spectrum,
Volume 26, Issue 10, 1989, pp.43-47.

[2] AMD Multi-core White Paper, http://
www.sun.com/emrkt/innercircle/newsletter/0505mul
ticore_wp.pdf.

[3] Intel Multi-Core Processors, http://
www.intel.com/technology/architecture/downloads/q
uad-core-06.pdf.

[4] Tendler J.M., Dodson J.S., Jr.Fields J.S., Le H.,
Sinharoy B. POWER4 system microarchitecture.
IBM Journal of Research and Development, 46(1),
2002, pp.5-25.

[5] Shi W.D., Lee H.H.S., Gu G.F., Falk L., Mudge
T.N., Ghosh M. An intrusion-tolerant and self-
recoverable network service system using a security
enhanced chip multiprocessor. In Proceedings of the
Second International Conference on Autonomic
Computing, 2005, pp.263-273.

[6] Shi W.D., Lee, H.H.S., Falk L., Ghosh M. An
integrated framework for dependable and revivable
architectures using multicore processors. In
Proceedings of the 33rd International Symposium on
Computer Architecture, 2006, pp.102-113.

[7] Zhang X.Z., Xie Y., Lai X.J., Zhang S.S., Deng Z.J.
A multi-core security architecture based on EFI.
OTM Confederated International Conferences
CoopIS, DOA, ODBASE, GADA, and IS 2007,
pp.1675-1687.

[8] Intel. Extensible Firmware Interface Specification
Version 1.10 (December 2002),
http://developer.intel.com/technology/efi/

[9] Li Y., Lu P. SecCMP: a secure chip-multiprocessor
architecture. In Proceedings of the 1st Workshop on
Architectural and System Support for Improving
Software Dependability, 2006, pp.72-76.

[10] Pedersen T.P. A threshold cryptosystem without a
trusted party. In Proceedings of Advances in
Cryptology-EUROCRYPT, 1991, pp.522-526.

[11] Ilgun K, Kemmerer R.A, and Porras P.A. State
transition analysis: A rule-based intrusion detection
approach. IEEE Transactions on Software
Engneering, 21(3), 1995, pp.181-199.

[12] Kumar S, Spafford E.H. A software architecture to
support misuse intrusion detection. In Proceedings
of the 18th National Conference on Information
Security. 1995, pp.194-204.

[13] Denning D.E. An Intrusion-Detection Model. IEEE
Transaction on Software Engineering, Volume 13,
Issue 2, 1987, pp.222-232.

[14] Lee W.K., Stolfo S.J. A framework for constructing
features and models for intrusion detection systems.
ACM Transactions on Information and System
Security, Volume 3, Issue 4, 2000, pp.227-261.

[15] Hebb, Donald O. The Organization of Behavior.
New York: Wiley, 1949.

[16] McKenney P.E., Lee D.Y., Denny B.A. Traffic
generator software release notes
http://www.postel.org/services.html

5555

Authorized licensed use limited to: CENTRAL QUEENSLAND UNIVERSITY. Downloaded on April 16, 2009 at 02:15 from IEEE Xplore. Restrictions apply.

