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Delay-Dependent Robust H Filtering for Uncertain
Discrete-Time Systems With Time-Varying Delay

Based on a Finite Sum Inequality
Xian-Ming Zhang and Qing-Long Han

Abstract—This brief is concerned with delay-dependent robust
filtering for uncertain discrete-time systems with time-

varying delay. The uncertainty is of convex polytopic type. By
establishing a finite sum inequality based on quadratic terms, a
new delay-dependent bounded real lemma (BRL) is derived. In
combination with a parameter-dependent Lyapunov–Krasovskii
functional, which allows the Lyapunov–Krasovskii matrices to
be vertex dependent, the obtained BRL is modified into a new
version to suit for convex polytopic uncertainties. Neither model
transformation nor bounding technique for cross terms is in-
volved. Based on the new BRL, the designed filter is provided in
terms of a linear matrix inequality (LMI), which is easily solved
by Matlab LMI toolbox. A numerical example is given to illustrate
the effectiveness of the proposed method.

Index Terms—Discrete-time linear systems, filtering, linear
matrix inequality (LMI), stability, time-varying delay.

I. INTRODUCTION

THE topic of filtering for systems has been widely in-
vestigated in the past decade (see, for example, [2], [5], [6],

[9], [12], and references therein). The aim is to design a suitable
and stable filter to minimize the norm such that the induced

gain from the noise signal to the estimation error is less
than a prescribed level. Some approaches to this issue, such as
the algebraic Riccati equations/inequalities, interpolation, and
linear matrix inequalities (LMIs), have been developed in the
recent years.

A great number of practical systems are unavoidably subject
to uncertainties and delays, which usually degrade the perfor-
mance of the systems under consideration. Therefore, the robust

filtering for uncertain systems with time delay have been
focused on recently. For discrete-time systems with time delay,
some sufficient conditions were obtained for the existence of
the desired filters [3], [4], [8], [10]. However, these conditions
are delay independent, which are conservative, especially for
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small delay. In [1], a model transformation approach incorpo-
rating with Moon’s inequality to bound some cross terms was
employed, and some delay-dependent conditions were derived
to design the desired filter. As is well known, these condi-
tions may be also conservative due to the model transformation
and bounding technique for cross terms. Moreover, the afore-
mentioned results were established under the assumption that
the delay was constant; when the delay is time varying, they
are inapplicable. To the best of our knowledge, no delay-depen-
dent filtering result for discrete-time systems with time-varying
delay has been reported in the open literature.

In this brief, we will design the delay-dependent filter for
discrete-time systems with time-varying delay. A new sufficient
criterion for the existence of a suitable filter will be ob-
tained by introducing a new finite sum inequality, which avoids
using both model transformation and bounding technique for
cross terms. A numerical example will be given to show that the
obtained results are less conservative than some existing ones.

Notation: The symmetric term in a symmetric matrix is de-

noted by , e.g., . The other notations

are routine ones.

II. PROBLEM STATEMENT

Consider the following uncertain discrete-time system with
time-varying delay:

(1)

where is the state vector, is the measured
output, is the signal to be estimated,
is assumed to be an arbitrary noise signal in

is a known given initial condition sequence,
and is a positive integer time-varying delay satisfying

(2)

Denote . Clearly, means that the time-delay
is time invariant.

The system matrices are supposed to be uncertain and un-
known but belong to a known convex compact set of polytopic
type, i.e.,

(3)

1057-7130/$20.00 © 2006 IEEE



ZHANG AND HAN: ROBUST FILTERING 1467

where

with , which
denotes the th vertex of the polyhedral domain .

Suppose that system (1) is robustly asymptotically stable over
the entire polytopic domain . In this case, we will design a full-
order filter with state-space realization of the following form:

(4)

where constant matrices , ,
, and are filter parameters to be determined.

Defining the augmented state vector
and the estimation error ,

one obtains the following filtering system:

(5)

where and

The purpose of this brief is to design a robust filter of the form
(4) such that the system (5) has a prescribed performance
for all uncertainties satisfying (3).

1) System (5) with is asymptotically stable.
2) System (5) has a prescribed level of noise attenua-

tion, i.e., under the zero initial condition,
is satisfied for any nonzero .

In the following, we introduce two vectors:

then

(6)
where

The following lemma gives the relationship between the vec-
tors and , which will play a key role in the delay-de-
pendent performance analysis.

Lemma 1: For any constant matrices
, , , with , and

a positive integer time-varying , then

(7)

where

(8)

(9)

Proof: Let , then

It follows that

(10)
Notice that

Rearranging (10) yields (7).

III. PERFORMANCE ANALYSIS

Based on Lemma 1, a new delay-dependent condition on
performance analysis is derived, which can guarantee that the
filtering system (5) has a prescribed performance .

Proposition 1: Given , the system (5) with
is asymptotically stable with a guaranteed performance
if there exist real matrices , , ,

, , and with appropriate dimensions such that

(11)

where
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Proof: Choose a Lyapunov–Krasovskii functional candi-
date as

(12)

where

with , , and are to be determined.
Taking the forward difference

along the trajectory of system (5) yields

(13)

(14)

Noting that from (2), we derive

(15)

Use Lemma 1 to obtain

(16)

where and are defined in (8) and (9), respectively. Similar
to [11], we have

(17)

Combining (13), (16), and (17), one obtains

(18)

where is defined in (11).
We first show that the system (5) with is asymptot-

ically stable. In fact, (11) implies

(19)

Using Schur complement and considering (18) with
yields , which guarantees the asymptotic stability
of (5) with .

Next, assuming that under zero initial condition,
is satisfied for any nonzero . Noting that

, rewrite (18) as

Thus, if (11) holds, using Schur complement yields

(20)

Summing both sides of (20) from 0 to , we obtain

(21)

Under zero initial condition, , one obtains

(22)

That is, is true for all nonzero , which
completes the proof.

Remark 1: From the proof process of Proposition 1, one can
clearly see that neither model transformation nor bounding tech-
nique for cross terms is involved. Therefore, the obtained result
is expected to be less conservative.

To exploit parameter-dependent Lyapunov–Krasovskii func-
tionals to handle the polytopic uncertainties, using the idea in
[7] by introducing two slack variables and , we can con-
clude that the matrix (11) is implied by

(23)

where

Then, employing parameter-dependent Lyapunov–Krasovskii
functionals yields the following conclusion.

Proposition 2: Given , the filtering system (5) with
(2) is asymptotically stable with a guaranteed level of noise
attenuation for all uncertainties satisfying (3) if there exist real

matrices , , , , ,
, and matrices such that for

(24)
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where

IV. FILTER DESIGN

In this section, based on Proposition 2, we present the fol-
lowing sufficient condition for the existence of a desired filter
of form (4).

Proposition 3: Consider the system (1) with uncertainties (3),
an admissible robust filter of the form (4) exists if there exist

matrix with , ,

, , , , , , , , and matrices
, , , and such that

for

(25)

where

Moreover, a suitable filter realization is given by

(26)

Proof: We are about to prove the conclusion using Propo-
sition 2. If the matrix inequality (24) is true, then .
Partition as

where . Then, , from which we
can deduce that is invertible. Define

and let

(27)

Then, we have

(28)

where and are defined in (24) and (25), respectively. If
(25) holds, i.e., , then is true. Therefore, the
filtering system (5) has a prescribed performance .

On the other hand, clearly, the filter parameters , , ,
and are implicit in (27) except that can be directly ob-
tained from (25). To solve the other filter parameters , ,
and , at first, it is obvious that is invertible from (28) if
(25) is feasible, then the filter parameters , , and can
be rewritten as

(29)

Since the following systems are algebraically equivalent:

(30)

thus a state-space realization as (26) of the desired filter is
readily obtained from (30), which completes the proof.

Remark 2: Proposition 3 provides a delay-dependent condi-
tion to design a suitable filter for uncertain discrete-time
systems with time-varying delay. This condition depends on the
upper bound as well as the lower bound of the time-varying
delay. Thus, when these bounds are available, Proposition 3 can
achieve less conservative results. Moreover, if the lower bound
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TABLE I
ACHIEVED MINIMUM H LEVEL 
 FOR DIFFERENT h WHEN �h = 5

TABLE II
ACHIEVED MINIMUM H LEVEL 
 OF H NOISE ATTENUATION

CORRESPONDING TO DELAY UPPER BOUNDS �h

is not exactly known, we can replace it with zero; if the lower
bound is equal to the upper bound, then the delay is time in-
variant. In this sense, Proposition 3 can handle the filtering
for a large class of discrete-time systems.

V. NUMERICAL EXAMPLE

Example : Consider system (1) with

(32)

The uncertain parameters satisfy and .
When is time varying, the results in [1] are inapplicable

to this case. However, using Proposition 3, the achieved
performances of the filtering system are listed in Table I
for different lower bounds when . It is clearly shown
from this table that decreases as increases.

We now suppose that the delay is time invariant.
We calculated the achieved performance of filtering
system (5) corresponding to different delay upper bounds by
using the approaches proposed both in this brief and [1], which
are listed in Table II, from which one can clearly see that Propo-
sition 3 obtains much less conservative results than that in [1].
Especially, when , Proposition 3 yields the minimum
level , and the corresponding filter parameters are
given in (33), whereas the method in [1] fails to make any con-
clusion, i.e.,

(33)

Connecting filter parameters (33) to the filtering systems (5)
and (32), we depicted the singular value curves of the transfer
functions at four vertices, which are shown in Fig. 1. Clearly,
all of the maximum singular values are less than 8.25, which
demonstrates the effectiveness of the proposed method in this
brief.

Fig. 1. Maximum singular value curves of the filtering transfer function at the
four vertices.

VI. CONCLUSION

The delay-dependent robust filtering for uncertain
discrete-time systems with time-varying delay has been inves-
tigated. By introducing a new finite sum inequality based on
quadratic terms, a new bounded real lemma (BRL) for the fil-
tering system has been obtained in combining with Lyapunov–
Krasovskii functional method. Neither model transformation
nor bounding technique for cross terms has been employed.
The new BRL has been modified to be an LMI, which enables
us to easily solve the filter. Finally, a numerical example
have been given to illustrate the effectiveness of the proposed
approach.
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