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Abstract - Power generation loading optimization problem will 
be of practical importance in the coming carbon constrained 
power industry. A major objective for the coal-fired power 
generation loading optimization is to minimize fuel consumption to 
achieve output demand and to maintain NO. emissions within the 
environmental license limit. This paper presents a multi-objective 
constraint-handling method incorporating the Particle Swarm 
Optimization (PSO) algorithm for the power generation loading 
optimization application. The proposed approach adopts the 
concept of Pareto dominance from multi-objective optimization, 
and uses several selection rules to determine particles' behaviors 
to guide the search direction. The simulation results of the power 
generation loading optimization based on a coal-fired power plant 
demonstrates the capability, effectiveness and efficiency of using a 
multi-objective constraint-handling method with PSO algorithm in 
solving significant industrial problems. 

I. INTRODUCTION 

Most power generation plants have a number of generating 
units. How to make the best use of the units directly affects a 
company's business bottom line. Increased pressures from 
environmental regulations, rising fuel costs, and green house 
gas emissions demand power generators to be more efficient 
and effective. For a typical power utility with a number of 
units, the unit thermal efficiencies (or unit heat rates) alter all 
the time. A unit's thermal efficiency is determined by many 
factors such as design, construction, fuel and ambient 
conditions, level of maintenance and operation skills etc. 
Monitoring and continuously adjusting operational strategies to 
optimize unit operation is of significant value to industry. For 
a large power company with different kinds of units, 
optimizing load distribution is of practical importance in terms 
of fuel saving and minimizing environmental harm [1]. 

Generally, a power generation company has a m-year (or m­

month) overhaul system, i.e. each time, a unit is through a 
major overhaul in tum and every m years (or months) the plant 
completes an overhaul cycle. The unit which was overhauled 
the most recently would have highest thermal efficiency and 
the one close to an overhaul will have lowest thermal 
efficiency. Units with higher thermal efficiency will consume 
less fuel and cause less environmental harm while units with 
lower thermal efficiency will consume more fuel and lead to 
higher environmental harm. In the normal operation range, unit 
thermal efficiency increases (or heat rate decreases) as load 
increases. The thermal efficiency for each unit is different 
depending on when the unit is last overhauled, what kind of 
problems it developed, what modifications it went through, and 
what operation mode a unit is operating under (such as mill 
pattern etc). The optimized loading can be achieved based on 
the units' thermal efficiency and NOx emission characteristics, 
i.e., heat ratelNOx vs. load, for a given plant condition. 

There are two objectives for the power generation loading 
optimization problem. One is to minimize the total heat 
consumption (fuel consumption) and another one is to 
minimize the total NOx emission. The second objective, 
however, can be treated as a constraint since there is an 
environmental license limit in practice. It is desirable that the 
unit with higher thermal efficiency (lower heat rate) receives 
higher workload and the unit with lower thermal efficiency 
(higher heat rate) receives lower workload. 

Over the last decade, evolutionary algorithms have been 
extensively studied as search and optimization tools in various 
problems domains[2]. Although evolutionary algorithms have 
been successful in many applications, their uses in solving 
constrained optimization problems remain problematic because 
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their versions lack of a mechanism to incorporate 
constraints into the fitness function l3-5]. There has been little 
work on handling constraints by the Particle Swarm 

(PSO) algorithm [5]. PSO is a relative new 
stochastic method for optimizing hard numerical functions 
based on metaphor of social behavior of Docks of birds and 
schools of fish l6]. The PSO technique has proven to be 
effective and efficient for solving real-valued global 
unconstrained optimization problems [7, 8J. For constrained 

problems, there have been only a few attempts. 
Hu and Eberhart [9] proposed a preserving feasibility strategy 
(0 handle constraints with PSO. This strategy has been adopted 
by our previous work II J. The drawback of this model is that 
the i mlializalion process may be impractically long or almost 

for those CNOPs (Constrained Nonlinear 
Problems) that have extremely small feasible 

spaces [!O1 . Parsopoulos and Vrahatis [11] adopted the penalty 
functions in a PSO. However, in this model the penalty factors 
need to be carefully fine-tuned [4] and they are problem­

[12, 13]. Pulido and Coello introduced a selection 
rule based on feasibility checking and constraint violation 
measurement to handle constraints with PSO [14]. However, it 
appears that it is not convenient to measure the constraint 
violation units, and the performance is not consistent. Wei and 

[J 5] integrated the multi-objective constraint handling 
mechanislTl with PSO, where a selection strategy similar to [14] 
is used for constraint handling. The approach is tested by four 
lower-constrained optimization problems with promising 
results. 

In this paper, based on the units' performance, a 
mathematical formulation is firstly carried out. We then 
propose a new method to integrate the multi-objective 
constraint handling mechanism with the PSO algorithm. By 

a single objective constrained optimization problem 
inlo a bi-objective unconstrained optimization problem, the 

approach ailTls to minimize the original objective 
function (heat consumption) and the total amount of constraint 
violations. The proposed approach adopts the concept of Pareto 
dominance from multi-objective optimization, and uses a few 
selection rules (0 determine particles' behaviors to guide the 
search direction. 

The rest of the paper is organized as follows: Section II 
presents the problem formulation; Section III describes the 

mUlti-objective constraint-handling method 
with (he PSO algorithm. Section IV presents the 

simulation results for the power generation loading 
problem. Section V concludes the paper and 

l!1dicales some future work. 

H. PROBLEM FORMULATION 

It is necessary to introduce some terms and notations for the 
power loading optimization problem. 

" Total load demand, denoted as M'Ofai (MW), is the total 
power demand by the market; 

• Unit load, denoted as Xi (MW), the workload allocated to 
unit i; 

• NO, emission license limit, denoted as P (g/m\ is the 
maximum emission allowed for each unit; 

• Unit heat rate, denoted as j; (KJ I KW. h), is the heat 
consumption for generating per unit (KW. h) electricity. 
For a given condition, the heat rate is a function of unit 
load and can be expressed by a polynomial format, 
which is obtained from field testing and unit modelling. 
The general expression for the heat rate function for unit 
i is 

f() "I> 
. i Xi a XI + (1/(A._Il X I + ... + arlx, + (liO 

where these ai are the coefficients of the polynomial, k is the 
order of polynomial function; 

• Heat consumption, denoted as h (MJ I h), is the unit heat 
consumption per hour at a given load. 

h, x,fi(x i ) 

• Unit NO, emission level, denoted as q (g/m\ is the 
amount of emission for a given load. Each unit has its 
own emission curve. It is generally a linear function in 
the normal operation range, which is obtained from the 
field testing and unit modelling. 

qi(X,) h'l x , + h,n 

where hi are the coefficients. 

The major objective for the loading optimization is to 
determine the optimal unit load so as to minimize the total heat 
consumption. The total heat consumption is the sum of all 
units' heat consumption, which can be expressed as the 
following 

F (X ) I h I x f, ( x , ) 

where n is the number of units, Xi is the workload allocated to 
unit number i. 

There are several constraints need to be identified: 
• The total load demand must be achieved at a given time. 

The constraint can be expressed as 

"x M ,L.,.; - 101,,1 

1-=1 

Considering the data type that will be implemented 111 

double precision, this constraint can be modified as 

I I x, - M ,,,,,,I I < E 
/=1 
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where ,: is a minimum error criterion for equality constraint. 
• The NOx gas emission for each unit has to be restricted 

within a license limit P. This constraint can be expresses 
as 

q,(X)-P :::; 0 (i = 1,2, ... n) 

• Unit capacity constraints. For stable operation, the 
workload for each unit must be restricted within its 
lower and upper limits. This is the range where a unit 
load can be readily adjusted without excessive human 
intervention, for example, a unit is operating between 
60% to 100% load without the need of mill change. Let 
M'min and Minlax represent the lowest and highest limits 
for unit number i respectively, the constraint then can be 
expressed as 

M imin S x, S M imali: (i = 1, 2, ... n ) 

The unit capacity constraints can be modelled as the 
boundary constraints in the optimization. 

The optimization problem can be stated as follows: 
Minimize 

n 

F (X ) L X,fi(X,) 
i = I 

subject to 

g,(X)= Itx,-M,owI1-£:,> ° 
1=1 

r, (X) = q,(x) - P :::; 0 (i = 1,2, ... n ) 

where 
f) k ('-1) 

i (Xi aikx i + ai(k_l)X j + ... + ai1x i + a iO 

M :'>x,:::;M'm" (i 1,2, ... n) 

This is a single objective constrained optimization problem. 

III. THE PROPOSED APPROACH 

A. The PSO Algorithm 

A PSO algorithm consists of individuals, called particles that 
form a swarm. Each particle represents a candidate solution to 
the problem. Particles change their positions by flying in a 
multi-dimensional search space looking for the optimal 
position. During flight, each particle adjusts its position 
according to its own experience and the experience its 
neighbouring particles, making use of the best position 
encountered by itself and the best position in the entire 
population (or its local neighbourhood). The performance of 
each particle is measured by a predefined fitness function 
(objective function) which is problem-dependent. 

Let i-th particle in a D-dimensional search space be 
represented as Xi = (Xii, Xib ... , xw). The best previous position 
of the i-th particle in the flight history is pBesti = (PiI, Pib ... , 

Pm). The position of the best particle of the neighborhood is 
IBesti = (pgj, Pg2, ... , PgD)' The velocity for particle i is Vi = (Vii, 
Vib ... , ViD)' In the PSO algorithm, the next position (t+ 1) of 
particle i on the dimension d is manipulated by the following 
equations (t denote the iteration): 

(t+l) [(t) (B (t) (I)) 
Vid = X WVid + CI rl P estid - Xid } 

(IB (t) (I))] + C2 r2 estid - Xid ( ) 
(1+1) _ V if (1+1) v: a 

Vid - max l Vid > max 

Vid(l+I)=-Vmax if Vid(I+I)<-V",ax 

Xid (t+1) = x,/t) + V,/I+I) (b) 

where d = 1,2, ... D, D is the search dimension; i = 1,2, ... N, 
and N is the number of particles in the swarm; W is the inertia 
weight; CI and C2 are two positive constants, called the 
cognitive and social parameters respectively; rl and r2 are two 
random numbers within the range [0, 1]. 

Clerc and Kennedy [16] suggested the use of a constriction 
coefficient X to the velocity formula and shows that the 
constriction coefficient can converge without using VmaX" In 
order to ensure convergence and explore a wider area, in this 
research, the X, Vma and W will be used together. 

As mentioned, the original PSO algorithm and its variations 
have no mechanism to handle constraints. In order to integrate 
constraints handling with PSO, we introduce a constraint 
handling method and several selection rules in the following 
sections. 

B. Constraint Handling Mechanism 

Multi-objective constraint-handling method has been studied 
in genetic algorithms [4, 17], in which a global optimization 
problem can be transformed into a bi-objective problem where 
the first objective is to optimize the original objective function 
and the second is to minimize 

<I> (X) = f max(O,g,(X» 
i=1 

where cD(X) is a total amount of constraint violations; m is 
number of constraints and gi(X) is the i-th constraint function. 
If a solution is feasible (total constraint satisfied), the second 
objective function cD should be zero. By adopting this idea, the 
power generation loading optimization problem can be 
transformed into 

minimize F,(X)=(F(X),¢>(X» 

where 

F (X) LX, f, ( x , ) 
, = I 

¢> (X) = max(O, g, (X)) + I max(O, ,,(X» 
i=1 

g,(X)=12: x,-M""II-E 
;"'[ 

r, (X)=q,(X,)-P (i=1,2, ... ,n) 
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M 

This a 
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-P::;O (i=1,2, ... n) 

(k -)) 

(likXi + Gi(k_I)X, + ... + aiJx 1 + a iO 

:s:xi:S:M,m,,, (i=I,2, ... n) 
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(,+IJ 
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The original single objective constrained optImIzation 
problem is transformed into a bi-objective unconstrained 
optimization problem. 

For a general multi-objective optimization problem, the ideal 
procedure is to find a set of Pareto-optimal solutions first and 
then to choose one solution from the set by using some other 
higher-level information [12]. However, the second objective 
should be given higher priority because constraint satisfaction 
is a must and it is more important than the real objective 
function minimization. That is, if a solution is not feasible, no 
matter how fit its objective function is, it is of little use. In 
other words, if a solution is feasible, even if it is not fit enough, 
it can be still considered as a candidate solution. Therefore, the 
second objective <D = 0 (totally constraint satisfied) or <D :s 8 
(total constraint nearly satisfied), can be used as higher-level 
information to guide decision making during the search. The 8 
is a small positive number which indicates the feasibility 
tolerance. 

Most multi-objective optimization methods use a dominance 
concept to search for non-dominated solution, since this 
concept allows a way to compare solutions with multiple 
objectives. The definition for dominance as stated below. 

Definition: A solution Xl) is said to dominate the other 
solution X2), if both conditions 1 and 2 are true: 

1. The solution Xl) is no worse than X2) in all objectives, 
(forallj =1,2, ... ,m). 

2. The solution Xl) is strictly better than X2) in at least 
oneobjective,foratleastone jE {l,2, ... ,m}" [12]. 

C. Selection Rules 

In the PSO algorithm, a particle's best past experience and 
its group's best experience playa key role in guiding its search 
direction. For a multi-objective optimization problem, due to 
many objectives involved, the notion of dominance comparison 
is adopted [12]. The following selection rules are defined: 

• Non-dominated particles are better than dominated ones. 
• A particle with lower <D (constraint violations) is better 

than a particle with higher <D. 
These two rules will be used in deciding which particle is 

better than the others. 

D. The Modified PSO Algorithm 

Fig. I illustrates the proposed modified PSO algorithm. It 
integrates the multi-objective constraint-handling method and 
the selection rules into PSO algorithm. Comparing with the 
original PSO, the algorithm has the following features: 

• When calculating fitness, both objectives F(X) and <D(X) 
need to be evaluated; 

• If a particle's new location is better than its best past 
location, the pBest is updated (decided by selection 
rules); 

GlobalF = POSITIVE_INFINITY; 
Po = URand (Li' U;) 
Vo = 0 
Fo = Fitness_F (Po) 
<Po = Fitness_ <1>( Po) 
pBesto= Po 
For i = OToN 

IBesti = LocalBest (Pi-!, Pi, Pi+!) 
End for 

(Selection rules) 

Do 
Fori = OToN 

Vi+! = Speed ( Pi" Vi, pBesti, IBesti) (Equation (a)) 
Pi+! = Pi+ V,+! (Equation (b)) 
F,+! = Fitness_F(Pi+!) 
<Pi+! = Fitness_<1>(P i+!) 
If (Pi+! isBetterThan pBesti ) (Selection rules) 

pBesti = Pi+! 
If (<Pi+! :S J) 

If (Fi+! < GlobalF) 
GlobalF = Fi+! 

End For 
For i = OToN 

IBest, = LocalBest (Pi-I> Pi, Pi+!) (Selection rules) 
End for 

While (iteration < max_iteration) 

Fig.!. Pseudo code of the proposed multi-objective constraint-handling method 
with PSO algorithm 

• A particle's best neighbouring particle is determined by 
the two steps: 
a) Find all the non-dominated particles in the 

neighborhood (by comparing two objective 
function); 

b) If there is only one non-dominated particle in the 
neighborhood, select it as IBest; otherwise select one 
with the lowest <D as IBest (the lower <D means closer 
to the feasible region). 

IV. SIMULATION RESULTS 

A. Unit Heat Rates and Unit Gas Emission Curves 

A local power plant has four 360MW and a total generation 
capacity of I 440MW. It has a four-year overhaul system, i.e. 
each year, a unit is through a major overhaul in tum and every 
four year the plant completes an overhaul cycle. 

The boundary constraints M min and Mmax for each unit are 
220 (MW) and 360 (MW). The total load output of the power 
station ranges from 4*220 = 880 (MW) as the minimum to 
4*360 =1440 (MW) as the maximum. It would be better to 
simulate a series of output (a dynamic MrowD so that to allow 
the power plant to choose from the optimal results according to 
the market demand. 

The heat rate functions and the NOx emission functions for 
the four generator units are provided from a local power plant 
setting. The heat rate functions are in the polynomial format 
with the power of two. The NOx emission functions are linear. 
Table I lists the sample functions. These functions can be 
modified when the units' performance are changed. Due to 
commercial reasons, the functions have been slightly modified. 
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Unit 
No. 

2 

4 

TABLE I 

UNIT HEAT RATE AND NOx EMISSION FUNCTIONS 

Type 

Heat Rate 

NOx 
Emission 

Heat Rate 

NOx 
Emission 

Heat Rate 

NOx 
Emission 

Heat Rate 

NOx 
Emission 

Function 

f(x,J = 0,0023x," 3,7835x, + 9021.7 

q(X,J = 0,0036x, -0,1717 

lex, J = 0,0238x, . 9,7773x, + 9432,6 

q(x,) = 0,0031x, -0,0226 

!(x)=0,0187x".5,3678x +10240,0 
, 3 ] 

q(x) = 0,0036x; - 0,1252 

l(x,] = 0,0120x," .5,7450x, + 9231.7 

q(x,) = 0,0039x, - 0,1706 

B, Parameter Setting 

The minimum error criterion for equality constraint is 
selected as £ =1,0£-3, The NOx license limits P is 1.3 g/m3, 
The PSO neighbourhood topology is set to ring topology with 
the neighbour size of 2, For example, if the neighbour size is 2, 
a particle with index i will have the particle index i-I and 
particle i + 1 as its neighbours. The PSO parameters are: w = 0; 
(Generally, w decreases from I to 0 gradually as iteration 
processes. In our experiment, it is found w = 0 works fine 
when Vmax and X to be used for restricting velocity together); 
c]=c2=2; X=0.63; Vmax = 0.5*(decision variable range); number 
of particles is 40; the maximum iteration is set to 10,000. The 
feasibility tolerance allowed t3 = 1.0£-8, that is, if a solution's 
total amount of constraint violation <l> :s 0, the solution is 
considered feasible. 

For each total load output Mtatal, the program runs ten times 
with the lowest heat consumption recorded as results. 

C. Results and Discussion 

Table II and Fig. 2 present the simulation results to the 
whole range of the generation capacity. For each total output 
demand, the optimal workloads to the four generators have 
been found based on their efficiency functions as listed in the 
Table I. After optimization, the unit with higher thermal 
efficiency will receive higher workload (such as Unit 1) while 
the unit with lower thermal efficiency will receive lower 
workload (such as Unit 3). In practice, when the total output 
load changes, the optimal load allocation can be found from 
these data. For the minimum (880MW) and maximum 
(I 440MW) loading conditions, there is no gain from the 
optimization since no options for loading at both ends. 

In previous work [I], the constraints was handled by 
adopting a preserving feasibility strategy. In order to see the 
difference between these two approaches, we have conducted 
an experiment to evaluate the computation time for each 

individual run. The PSO parameters for both approaches are 
the same, The 40 particles, 10000 maximum iterations have 
been used for both experiments. Based on ten independent 
runs, the minimum time, maximum time and the average time 
spent for the M tafal = 1000 MW is listed in Table III. 

TABLE II 
OPTIMIZED WORKLOAD DISTRIBUTION 

Mw1al Unit I Unit 2 Unit 3 
(MW) (MW) (MW) (MW) 

880 220.0000 220,0000 220,0000 
900 235.1297 222.3830 220.0131 
950 273.1694 220,7023 220.0023 

1000 326,7896 230,9750 220,0002 
1050 359,6199 224,8249 221.3988 
1100 359.9975 227,8653 221.2147 
1150 359.8885 235,5493 221.1815 
1200 359.9999 269.2535 247.5140 
1250 359,9937 326.3954 221.1032 
1300 358.9863 339.9221 241.0938 
1350 359.9939 325,3112 305.7268 
1400 358.4181 353,5454 328.0362 
1440 360.0000 360.0000 360,0000 

*Und1 ~Unlt2 tUnitl ,Unit4 

330 

350 

340 , ........... , ••. ,,,.;,., .. ,, .. ,., ..... ,, .. j!: .......... , 

i" 320 +.. ..... """+,,,.,,'" ."" Ii""""" .. 
:t 
:; 300 

! 2$0 
!; 
:it .bU 

~ 
:J 2W 

no 
200 + ... ""., .......... " .. .. 

BOO ~oo 1000 noo W)O 

Total Output IMw) 

BOO 

Unit 4 
(MW) 

220,000 
222.4746 
236,1254 
222.2353 
244,1572 
290.9222 
333,3800 
323,2334 
342,5064 
359.9969 
358,9679 
359,9999 
360.0000 

1400 ISOO 

Fig. 2. Optimal unit loading distribution for the whole range of the generation 
capacity 

Table III demonstrates the proposed multi-objective based 
constraint-handling method is much faster than the preserving 
feasibility method with PSO. The main reason is that the 
preserving feasibility approach assumes all particles starting at 
the feasible space which require a long initialization process. 
In other words, the iteration won't start until all particles are in 
the feasible space. It may be impractically too long or 
impossible for the problems that have large search spaces and 
with small feasible spaces. The multi-objective constraint­
handling approach, however, doesn't require the particles to be 
in feasible space at beginning. The initialization doesn't need 
to check if the particles satisfy all constraints which make the 
initialization easier and faster. 

It is worth mentioning that the current optimization process 
is in a static environment. That is, the objective function and 
constraints function are static for a specific case. In the real 
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world application, however, the output demand constraint can 
be time-varying. The objective function can be considered 
static or dynamic. It would be interesting to study methods to 
optimize such challenging problems in the dynamic 
environment. 

TABLE III 
TIME SPENT FOR TWO APPROACHES BASED ON 10 INDEPENDENT 

RUNS FOR M,o,"1=1000 MW 
CPU time *' Approach in this paper 

spent (ms) 
Minimum 31 
Maximum 156 
Average 68.9 

**Previous Approach [I] 
(ms) 

3016 
4204 

3925.3 
*' Multi-Objective Constraint-Handling with PSO 

** Preserving Feasibility Constraint-handling method with PSO 

V. CONCLUSIONS AND FUTURE WORK 

This paper has presented a multi-objective constraint­
handling method with the PSO algorithm for tackling power 
generation unit loading optimization problem. The proposed 
approach adopts the concept of dominance from multi­
objective optimization, and uses a few selection rules to guide 
the search direction. A four-unit loading optimization for a 
local power plant has been simulated. The result reveals the 
capability, effectiveness and efficiency of applying the 
proposed approach in the power industry. The methodology 
can be readily applied to a broad range of applications such as 
grid optimization. 

Comparing with the preserving feasibility constraint­
handling approach, the multi-objective constraint-handling 
based approach is faster (consume less CPU time). 
Furthermore, the multi-objective constraint-handling method 
has no problem-dependent parameters like those applied in the 
penalty function based constraint-handling approach. This will 
make the approach applicable to a wide variety of applications. 

Our future work will include an extensive study of multi­
objective constraint handling methods with the PSO algorithms 
and application of the proposed approach to more challenging 
real-world problems. Optimization in dynamic environments is 
also in our agenda. 
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