
2008 Institute of Electrical and Electronics
, Inc.

reserved.
I use of this material, including one hard copy
tion, is permitted.

to reprint, republish and/or distribute this
in whole or in part for any other purposes must

ined from the IEEE.
information on obtaining permission, send an e-mail

to stds-igr@ieee.org.
~~~~sing to view this document, you agree to all

of the copyright laws protecting it.
.~~..41 documents posted on this site may carry

ifferent copyright restrictions.
ific document information, check the copyright
the beginning of each document.

2008 Institute of Electrical and Electronics
t:nalrleE~rs, Inc.

riahts reserved.
I use of this material, including one hard copy
tion, is permitted.

on to reprint, republish and/or distribute this
"~IiIlIll~' in whole or in part for any other purposes must

lJeoOltained from the IEEE.
rmation on obtaining permission, send an e-mail

111.::;~~,aUI~ to st -i rieee.or .
ene)osing to view this document, you agree to all

ns of the copyright laws protecting it.
...._"'-"..... __ 1documents posted on this site may carry

different copyright restrictions.
~lIL.I'C:;"",,,ific document information, check the copyright
Ice~ at the beginning of each document.



Real-time antialiasing of Edges and Contours of Point Rendered Implicit
Surfaces

Dirk J. Harbinson, Ron J. Balsys,
Faculty of Business and Informatics, Central Queensland University,

Rockhampton M.C., Qld. 4702, Australia.
Kevin G. Suffern

Faculty of Information Technology, University of Technology Sydney,
P.O. Box 123, Broadway NSW 2007, Australia.

d.harbinson@cqu.edu.au, balsys@cqu.edu.au, kevin@it.uts.edu.au

Abstract
We present various algorithms for antialiasing silhou-

ette edges of manifold and non-manifold implicit sur-
faces. The algorithms are: object space, edge blur,
super-sampling, adaptive pixel-tracing, and jitter-based
antialiasing. We discuss the strengths and weaknesses of
the approaches and compare the results. We also discuss
the antialiasing of contours rendered on implicit surfaces.

The algorithms for antialiasing and rendering contours
take place in the GPU and so are performed in real time.
This allows us, for instance, to animate contours on a sur-
face in real time by changing contour parameters. We
give examples showing the results of our antialiasing tech-
niques for various types of contours rendered on surfaces.

Keywords— antialiasing, points, edges, contours, implicit
surfaces, non-manifold surfaces, octree, interval

1 Introduction and previous work
An implicit surface is a level (iso-valued) surface of a

3D scalar field f(x, y, z), which we take to be the specific
surface f(x, y, z) = 0. Implicit surfaces can be regular,
singular, or non-manifold. Singular surfaces include those
that self intersect, and non-manifold surfaces have regions
where they are locally non Euclidean, for example, points
of infinite curvature.

There are a number of techniques in common use for
rendering surfaces, the main ones being polygonisation,
scan line, ray tracing, and point based techniques. They
all have their advantages, disadvantages, and limitations.
Gross[1] recently discussed the growing use of points as a
display primitive.

Balsys et al.[2] used point based algorithms for render-
ing the intersections of a surface with a series of level sur-
faces of other scalar fields gi(x, y, z), i = 1..n. These are
the surfaces gi(x, y, z) = c for different values of c. The

intersections are rendered as contour lines on f(x, y, z) =
0. Alternatively, the scalar fields may be functions related
to the implicit surface, which we wish to visualize on the
surface.

The examples we consider here are the Gaussian and
mean curvatures of f(x, y, z) = 0, which are intrinsic
properties of the surface. Spivac[3] gives general formu-
lae and examples for the Gaussian and mean curvature of
implicit surfaces; see also Mitchell and Hanrahan[4] for
an independent derivation of the formulae. Potzmann and
Opitz[5] presented formula for curvature analysis of curva-
ture functions. Guid, Oblosek and Zalig[6] asserted curva-
ture is one of the most important tools for surface analysis.
Balsys and Suffern[7] presented general implicit forms for
the analysis of curvature.

Balsys et al.[8] rendered antialiased contours on ray-
traced surfaces. In that work a slab algorithm was used to
ensure that the contour slabs drawn on the surface have an
apparent constant thickness. Formulae for curved and non
curved slabs where given. These are used in this work to
control the thickness of the contours rendered on the sur-
faces. In the same work reference is made to antialiasing
of the surfaces. In ray tracing extra rays are shot into each
pixel to allow for a calculation of the average colour of a
pixel. The number and distribution of these rays determine
the quality and nature of the resulting antialiasing, see for
example Foley et al.[9] or Whitted[10]. It is not clear how
anti-aliasing should proceed on point based surfaces and
this is a major contribution of this work.

Stolte et al.[11], and Stolte[12] used interval arithmetic
for voxelising implicit surfaces and he used interval meth-
ods with rectangular coordinates. The voxel space has a
resolution of 5123, and the painter’s algorithm is used for
rendering the voxels. Antialiasing is not discussed.

Bloomenthal[13] discusses antialiasing of z-buffer pro-

Fifth International Conference on Computer Graphics, Imaging and Visualization

978-0-7695-3359-9/08 $25.00 © 2008 Crown Copyright

DOI 10.1109/CGIV.2008.12

38

Fifth International Conference on Computer Graphics, Imaging and Visualisation

978-0-7695-3359-9/08 $25.00 © 2008 Crown Copyright

DOI 10.1109/CGIV.2008.12

38

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



grams. This work developed a simple algorithm that can
be used to antialiase the silhouette edges of complex con-
nected regions. This work is an important original contri-
bution to antialiasing what are essentially bitmaps.

Balsys et al.[14] developed a sampling technique that
uses octree space subdivision with a natural interval exclu-
sion test to minimise the octree subdivision process. The
intention was to produce high quality images where there
is no possibility that portions of the surface are either ren-
dered incorrectly or are missed. Interval techniques are
ideal for this purpose. Criteria for the complete pixel cov-
erage of implicit surfaces was given. This algorithm was
a major contribution of the paper. A disadvantage of the
work was that for certain surfaces, rendering artifacts oc-
curred due to the use of the interval subdivision method,
for example singular lines (rays) where rendered as tubes.
Also aliasing was evident on silhouette edges, along sur-
face contours, and along the singular lines.

Harbinson et al.[15] reduced the rendering artifacts by
using gradient and point sampling information in the plot-
ting node to trim the interval voxels found at the plotting
depth. This results in fewer points being rendered around
non-manifold features. The new algorithm also resulted in
the rendering of singular lines as lines of constant finite
thickness. The resultant surfaces are of much improved
visual quality and accuracy. However a disadvantage of
the work was that the images still suffered aliasing issues
along silhouette edges, around surface contours, and along
the singular lines.

From previous work it is apparent that it is not clear
how antialiasing should proceed on point based surfaces.
We report here on a number of approaches to antialiasing
along silhouette edges and give recommendations as to the
best antialiasing approach. We also consider methods to
remove aliasing in contours rendered on the surface and in
doing so, show how contours can be rendered in real time.
Finally and we show how antialiasing can be done along
singular lines. Showing how antialiasing can proceed on
point based implicit surfaces is the major contribution of
this work.

2 Point based antialiasing methods
We are concerned with the quality of the images pro-

duced by our point based method and the speed of the anti-
aliasing technique, as we wish to apply it to rendering man-
ifold and non-manifold implicit surfaces.

Aliasing occurs on the silhouette edges of surfaces,
where the surface meets the background or self occludes.
Aliasing also occurs along contour edges when contours
are rendered on the surfaces. Aliasing along the silhouette
edge can be very prominent, as can be seen in Figure 6(a).
Aliasing along contour edges can be just as prominent.

Zwicker et al.[16],[17] used the elliptical weighted av-
erage filter, EWA, of Heckbert[18] to avoid aliasing prob-
lems with textures when using splatting to render point
clouds. Antialiasing for polygonal surfaces can be per-
formed using the built-in features of modern graphics hard-
ware. Multi-sampling (or super-sampling, see Foley &
Van Dam[9]) of scenes composed of polygons is very ef-
fective. When antialiasing polygon scenes the geometry’s
complexity remains constant, regardless of the antialiasing
method being applied. The performance is satisfactory as
the bottleneck lies in the graphic cards memory bandwidth.

The point based methods used in previous work [8], [2],
[14], and [15], where not antialiased, as it was not clear
how to proceed with antialiasing point rendered scenes.
We can’t use n rooks or multi-jittered approaches, Chui et
al.[19], as these require the re-rendering of the entire scene
with slightly different projection matrices. We can’t store
the sampled points in memory when rendering complex
surfaces because point counts are too high. We would need
to re-sample points on the surface when re-rendering the
scene. As the sampling of the points is the major bottle-
neck, these methods are not efficient. As we are not using
splatting, the antialiasing scheme of Zwicker et al.[16] and
Heckbert[18] is not applicable and in neither of these is
aliasing on the silhouette edge, or contour edges, fixed.

2.1 Object space antialiasing
Aliasing of an implicit function occurs as we are point

sampling the function. Take, for example, the curved 2D
function in Figure 6(a) where each pixel is fully rendered
when the surface covers at least 50% of the pixel bound-
aries and otherwise is not rendered at all. This creates
jaggy edges, causing the well known staircase effect which
is visually unpleasing. A better approach would be to tex-
ture the surface based on the percentage coverage of the
pixel by the surface. This is illustrated in Figure 6(b). The
normal way of achieving this is to blend the background
and surface texture based on the surface coverage. Ef-
fectively this can be achieved by blending the surface and
background colours of the affected pixel.

In our work we consider the surface colour to have a
certain opacity value, ω. The edge pixels’ colour is com-
bined with the background pixel colour to determine the
boundary pixel colour. For each pixel we need to calculate
the opacity level based on surface coverage in the pixel.
In our system each pixel is a projection of an octree node
onto a regular grid of pixels, so this can be accomplished
by analysing each octree node at the final rendering depth.
Each octree node has 8 vertices which may or may not be
inside the surface. We can divide the number of vertices
which are within the surface by 8 to obtain a fraction be-
tween 0 and 1 which will be used to represent the opacity

3939

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



of the surface pixel.
A problem arises in that only octree nodes along the

silhouette edge of the surface (or a contour) need to be
antialiased and these need to be found. This is done by
first creating an image where the value of the pixel is 0
or 1 depending on whether the pixel is along a silhouette
or contour edge. In the rendering path, for pixels on the
silhouette edge we blend the ω times surface colour with
the background colour based on this value. The final result
is shown in Figure 1.

Figure 1: Object space anti-aliasing applied to curved
surface.

This result was not considered effective, as the resultant
anti-aliasing edges where faint and inconsistent.

2.2 Edge blur method
Edge blurring is a post-process technique that reduces

aliasing along the edge geometry. The method is applied
after the all the points in the complete scene has been
found. It is implemented as a filter in image space. This is
common in deferred shading applications that, under Di-
rect X 9.0, cannot perform multisampling with multiple
render target (MRT) hardware.

Typically a renderer that uses MRT defers the lighting
stage to the end of the rendering chain. This significantly
reduces lighting computations to O(1) time from O(n). In
our work lighting calculations are not the bottleneck, so we
do not defer the lighting stage to the end of the rendering
pipeline. We do however use a second render target to store
the point type (surface or contour) and depth information.

We begin by looking at a figure of the Buckyball sur-
face (C60) which is the iso-potential surface defined by 60
point charges in 3D given by

f(x, y, z) = (1)
60∑

j=1

qj
(x− xj)2 + (y − yj)2 + (z − zj)2

− c = 0.

Here, (xj , yj , zj) is the location of the charge, with charge
value qj , and c is the value of the potential surface. We pro-
duce an image showing where the edges are located (see

Figure 2(a)). This is done by comparing the depth value
between neighbouring pixels in horizontal, vertical and di-
agonal directions. If the depth offset between these pixels
is outside a tolerance value, α, the pixel is an edge pixel
(rendered green in Figure 2(a)).

(a) (b)

Figure 2: Edge detection of bucky ball surface (1): (a)
silhouette edges in green, (b) aliased surface image.

Pixels that are part of the contour are detected as given
in Balsys et al.[2]. Pixels that are detected as being part
of a contour have a depth offset added to them so that they
can be detected in the final edge detection pass and thus be
antialiased.

In the next stage we take the image (Figure 2(b)) and
overlay it with the edge map (Figure 2(a)). For each pixel
not on an edge, the output colour is the same as the source
pixel colour. If a pixel lies on an edge then a 3×3 kernel, as
shown in Figure 3, is used to average the colour samples.

Figure 3: The 3 × 3 blur kernal used in weighting pixel
colour contributions from adjacent pixels.

The colour contribution of the neighbouring pixels is
calculated using the pre-computed weighting values shown
in Figure 3. We have found this method to be successful in
removing sharp aliasing features in an image. However the
antialiasing quality appears to be dependent upon the an-
gle of the edge; it works best on irregular pixel lines. Steep
edges produce a very harsh staircase effect, and in our tests
the blur method does not handle this well, and only softens
/ accentuates the problem, as shown in Figure 4.

4040

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



Figure 4: Edge blur is OK for moderate slopes in either
direction but not for steep or shallow edges.

As a result we don’t consider the visual quality of this
method to be satisfactory compared to other antialiasing
methods we explored. The positive aspect of this method
is that it is compatible with both standard and deferred
rendering systems, and can be applied with moderate effi-
ciency in real-time.

2.3 Super sample antialiasing (SSAA).
The classic brute force method of anti aliasing is known

as super sampling and is discussed in Foley et al.[9]. Su-
per sampling involves rendering the scene to a much higher
resolution than required, and then down sampling this im-
age to a smaller size. Each pixel is a result of multiple
samples averaged together from the over-sampled image
using some form of weighted average.

Super sampling is very slow, as it significantly increases
memory bandwidth. In respect to our point based method,
rendering a larger image requires sampling many more
points to ensure there are no holes in the final image. To
achieve this we need to increase the octree depth, with
an exponential increase in running time. For example a
surface that takes 5 minutes to render at 512 × 512 pixels
could take over 30 minutes to render at 1024×1024 pixels
with 2 × 2 super-sampling applied. While the result will
be of high quality, this is impractical for complex surfaces.

2.4 Adaptive pixel-tracing method
Our next method begins by creating an edge map, sim-

ilar to that for the edge blurring method with but with an
alteration. When a surface self occludes we want to blend
the edge of the front surface with the back surface colour.
This enables us to fade out the edge of the surface in front,
into the colour of the surface in the back. Edge pixels are
blended with the background colour.

The edge blur method’s limiting factor is that it ap-
plies a constant level of colour averaging on detected edges
through a 3 × 3 kernel. In contrast the pixel-trace method
is an adaptive technique that tries to locate jagged edges
and then soften them, much as in traditional antialiased
systems. The pixel-trace method produces sharper and
smoother images than the edge blur method. This method
is also compatible with both standard and deferred shad-

ing systems, although real-time performance has not been
a goal, as we focus on image quality.

In this approach a shader algorithm is used to antialias
pixels so that they are shaded in relation to surrounding
pixels. The shader algorithm determines what surface edge
the pixel is located on and how many other pixels share
that edge in a particular relationship with the pixel to be
antialiased. The shader uses this information to determine
the opacity factor applied to the pixel based on its position
and style. Position and style is based on the run length of
the row of pixels in the same horizontal / vertical line and
how the run is terminated.

Figure 5: The four position and style types for pixel
antialiasing cases in the adaptive pixel-tracing method,
labeled as Case 1, 2, 3 and 4.

The different styles of edges that are handled by the
shader are listed in Figure 5. The technique begins by
detecting monotonically increasing or decreasing edges
(Case 2 & 4) as illustrated in Figure 6(a).

(a) (b)

Figure 6: (a) Common Aliased staircase effect and (b) the
result of our pixel-traced antialiasing pass.

For each pixel on a front surface edge (sampled from
the previously described edge map texture), we trace a hor-
izontal row of pixels, left and right, to find the start and end
of the horizontal row of pixels along the monotonically in-
creasing or decreasing surface edge. If the width of the row
is 1 then we alternately check if the pixel is the start of a
vertical column of pixels instead.

If we have detected a horizontal row it needs to be
smoothed out at its ends. The start of the edge will have
the lowest opacity level and the end of the edge will have
the highest opacity level (the opacity is 1 − alpha value

4141

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



of the pixel).

(a)

(b)

(c)

(d)

Figure 7: Edge smoothing groups (a) opacity highest at
left (bottom) of row (column), (b) opacity highest at right
(bottom) of row (column), (c) opacity highest at ends, and
(d) opacity highest at centre.

There are four possible positions of horizontal / vertical
runs of pixels, see Figure 7. How we calculate the opacity
depends on the position, which we label left (case 2), right
(case 4), top (case 1) and bottom (case 3) given in Figure
5. Analogous cases are used for column runs of pixels.

For a pixel in the column of Figure 7(a) each pixels
opacity value, ω, is found by dividing the number, x, of
the run of pixels up to the pixel whose opacity is being
calculated by the total number of pixels, L, in the row of
pixels (see Figure 8).

Figure 8: Row of pixels of length L.

ω = x/L (2)

Once the opacity value, ω, has been found we use it to cal-
culate the final pixel colour using;

Color.rgb = (sourceColor.rgb ∗ ω)
+ (edgeColor.rgb ∗ (1− ω) (3)

If the opacity change is reversed, as in Figure 7(b), we
simply invert the opacity value, ω, and use it in Equation
3.

We now consider cases (c) and (d) when an edge is
either on the outside of a surface or ”inside the surface.
These cases must be specially coded as the aliasing needs
to fade in and then out again, or vice versa.

(a) (b)

Figure 9: (a) Inside edge shown in dark grey. (b) Outside
edge shown in dark grey.

Figure 9(a) illustrates an inside edge occurrence (case
3 in Figure 5) in dark grey, the light grey areas show the
surface pixels. In this case the edge does not simply fade
out into nothing. It must fade / blend between both sides
of the surface to ensure a smooth appearance, as shown in
Figure 7(c). Figure 9 (b) illustrates an outside edge occur-
rence (case 1 in Figure 5). The outside edge in dark grey
needs to be faded as shown in Figure 7(d) for a resulting
smooth appearance.

For case 3 we modify the existing opacity value, ω,
found in Equation (1) and recalculate ω’s value as

ω = abs((ω − 0.5) ∗ 2) (4)

For case 1 we invert the opacity value calculated in
Equation (3) and use it in equation (4).

If a pixel has been found to lie on a column edge rather
than a row edge as described previously, we perform the
same procedure but scan up and down the column rather
than left and right as in the row. The process is then ex-
actly the same as just described for the rows.

In antialiasing care must be taken when a surface self
occludes to avoid problems. Our edge map only includes
pixels along the surface edge and has no contribution from
background pixels. This solves potential problems and en-
sures we only smooth the edge.

Figure 10: Demonstrating antialiasing on the inside and
outside surface edges. (Top) aliased image and (Bottom)

4242

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



antialiased image of the Cyclide (2) surface.

We conclude by showing an aliased (Figure 10 (Top))
and antialiased version of the Cyclide surface (Figure 10
(Bottom)) given by

f(x, y, z) = (x2 + y2 + z2)2

− 2(x2 + r2)(f2 + a2)− 2(y2 − z2)(a2 − f2)
+ 8afrx+ (a2 − f2)2 (5)

with a = 10, f = 2 and r = 2.

2.5 Jitter based antialiasing
In OpenGL the frame buffer object allows you to attach

a separate z-buffer to each vertex buffer object (VBO). We
use this to our advantage, as follows. Typically we create
sixteen frame buffer objects each with its own z-buffer and
colour buffer. Each frame buffer object has its camera ori-
gin jittered with respect to the pixel grid. The jittering val-
ues should make an irregular pattern to make them ”noisy”
to avoid artifacts. The process, and OpenGL code for jit-
tering using an accumulation buffer is given at the OpenGL
website[21], as is a table for sample jittering values. The
16 jitter values we used come from this table.

We cannot use an accumulation buffer as discussed on
this website as the accumulation buffer requires the z-
buffer be cleared before each pass. The use of a z-buffer
attached to each vertex buffer object (VBO) allows us to
get around this problem.

The image is rendered into each of the 16 z-buffer and
colour buffers. The colour values in the separate VBO’s are
averaged to give the final colour to be assigned to the pixel.
This results in antialiasing of the pixels colour. It works
equally well for antialiasing silhouette edges and contour
edges.

Essentially this is a super-sampling approach, the view-
point is rendered multiple times, each time the viewpoint is
offset by amounts smaller than a pixel, and the colour val-
ues are then averaged to give the pixel colour. The method
requires the entire scene geometry to be determined before-
hand, so each render pass has exactly the same geometry.
This can be performed while the samples are being gener-
ated, thereby making the sampling process interactive and
able to be run in real time.

3 Contour antialiasing
Rendering contours onto surfaces can present problem-

atic aliasing artefacts. Originally we tried to offset the
depth of a pixel on a contour away from the object’s sur-
face. The contour edge could then be identified in the
edge antialiasing pass. However, the erratic nature of runs
of pixels sampled along contour edges resulted in severe
pixellation artifacts. To solve this problem we moved the

contour generation phase from object space into image
space.

Previously we tested if a sampled point lay on a contour
strip, and changed that pixel colour to the contour colour.
This has the limitation of having to test every point in the
scene, most of which are not directly visible from the view-
point. By moving this test into image space, we only test
each visible pixel on the screen, eliminating the bottleneck.
A simple surface such as a sphere takes the same amount
of processing time to contour as a complex surface such
as the bucky-ball surface. This opens up the possibility of
rendering contours in real-time on a scene, no matter how
complex the scene.

Figure 11: Illustration of the distance, x, of the surface
point P from the centre of the contour slab.

To smooth (antialias) the contours appearance we inter-
polate the distance, x, between each point in the plotting
node and the center origin of the contour slab, with D the
distance between the centre of the slab and the outside of
the slab. This is illustrated in Fugure 11. The pixel colour
is the average of x

x+D times the background colour plus
x

x+D times the surface colour. The distance value x de-
termines the pixel colour based on a linear average of the
surface and contour colours.

This means that:

• as explained above we dont test every sampled point
in the octree, only the points visible from the camera.
This results in large speedups in contour rendering
times.

• contour calculation is just as fast on a simple surface
as it is on a very complex surface.

• deferred shading lets us smooth out the contour
values based on all the visible points, and so the
smoothing can vary depending on the plot depth in
the octree.

• using a deferred renderer means we can render a
complex surface from a specific viewpoint and then
use the points seen from this viewpoint to perform

4343

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



real-time visualisation of contours. We can also ro-
tate and modify lights in real-time. In particular
we can animate moving contours across a surface at
real-time speeds (regardless of how long the surface
originally took to sample).

3.1 Examples from real-time visualisation of con-
tours

First, in Figure 12(a) we show anti-aliasing of planar
contours such as planes orthogonal to the y and z axes, and
in Figure 12(b), we show lines of Gaussian curvature ren-
dered on an ellipse. To smooth (antialias) the contours ap-
pearance, we test the distance between each pixel and the
center of the contour slab. This distance value determines
the strength of the contour colour opacity, ω, overlaying
the surface. The width of the contour slab is set using the
formulae for curved (Gaussian curvature) and non-curved
(planar contours) slabs given in Balsys and Suffern[8].

(a) (b)

Figure 12: (a) Planes parallel to the y and z coordinate
axes rendered on a buckyball surface (1) and (b) lines of
constant Gaussian curvature rendered on an ellipse.

As the renderer defers the lighting calculations to the
contouring pass, surface lighting and changing contours
can be rendered in real time using this approach.

4 Filling missing pixels

Figure 13: Demonstrating missing pixel filling: (a)
rendered image with missing pixels, (b) missing pixels
detected in bright green, (c) final surface with missing
pixels blended out.

Our renderer represents each surface sample in the plot-
ting node by a single pixel on the image plane. It is well
known that point rendering can result in missing pixels on
the surface image, indicating we needed to render the sur-
face at a higher plot depth (see figure 13(a)). We can fill in
missing pixels without significantly increasing our render-
ing times in the antialiasing pass as follows.

After the lighting stage in the viewing pipeline we loop
through each pixel and compared neighboring pixels for
depth changes. If we find a pixel is surrounded by 5 or
more points closer to the camera (within a tolerance α)
than itself the pixel is considered a missing pixel (hole)
in the surface. The colour of the pixel is calculated as a
weighted blend of the neighboring pixels colours. Figure
13(b) shows missing pixels in green for a sample sphere.
Figure 13(c) shows the final sphere rendering with the
missing pixels colour blended out as specified.

5 Summary and Discussion
In this work we have explored a number of methods for

antialiasing edges and contours of implicitly defined sur-
faces. We did not find that an object space method based
on counting the number of nodes that project onto a single
pixels produced satisfactory results. We then turned our
attention to image space methods.

Originally we developed an edge blur method that an-
tialiased pixels around silhouette edges based on a 3 × 3
weighting kernel. Whilst this produced better results than
our object based approach is still suffered when the slope
of the silhouette edge was either steep of shallow. Next
we looked at super-sample antialiasing, which does pro-
vide good results but suffers in that it takes up to four times
longer to produce the final result.

We then considered a more in depth analysis of pixel
runs in the image in an attempt to improve antialiasing of
the point based images. The antialiasing resulting from the
adaptive pixel-tracing approach was superior to the edge
blur method, in that it did not suffer from systematic prob-
lems related to the slope of the surface edge.

Finally we developed an approach based on the func-
tionality of current GPU’s. Our jitter based method’s an-
tialiasing performance was as good as the previous pixel-
tracing method but was simpler to implement and faster, as
it runs completely on the GPU.

We then discussed contour antialiasing. We compared
two methods for contour antialiasing. The first method
used a weighted average of the distance from the point,
P , over the slab half-width to weight pixels colour. This
worked well for the non-curved contours we used. How-
ever adapting this method for use with curved contours,
such as occur when rendering lines of constant Gaussian
curvature, was non-trivial and was not implemented. For
these surfaces we used the jitter based antialiasing meth-

4444

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



ods described previously for silhouette edges, to antialiase
the surface, as this method is simple and provides good re-
sults.

Finally, in Figure 14, we present a number of antialiased
images on non-manifold implicit surfaces to demonstrate
the improvements we have achieved in rendering these sur-
faces. The interested reader should compare this figure
to the results shown in Figure 12 of the work by Singh
and Narayanan[20] on real-time ray-tracing of Implicit sur-
faces on the GPU. We have significantly improved the ren-
dering of many of these images compared to this work. Our
point based method produces images comparable in quality
to ray-traced algorithms.

In future we wish to improve on the accuracy with
which we render implicit surfaces, particularly non-
manifold surfaces. In current work their are still a num-
ber of issues in rendering surfaces such as Steiner’s Roman
surface.

6 Acknowledgment
The authors wish to acknowledge the support given for

this work by their respective universities.

References
[1] Gross, M., Getting to the Point...?, IEEE Computer

Graphics and Applications, 26:5, pp. 96–99. 2006.

[2] Balsys, R.J., and Suffern, K.G. Point Based Ren-
dering of Non-Manifold Surfaces With Contours.
ACM/GRAPHITE2004, 15-19 June 2004, Singapore.
7-14, 2004. pp. 1–8.

[3] M. Spivac. A Comprehensive Introduction to Differ-
ential Geometry. Publish or Perish Inc., Berkeley.
Volume III, Second Edition, Chapter 3, 1979.

[4] D. Mitchell and P. Hanrahan. Illumination from
Curved Reflectors, Computer Graphics, 26(4): 283–
291, 1992.

[5] H. Pottmann and K. Opitz. Curvature Analysis
and visualisation for functions defined on Euclidean
spaces or surfaces. Comp. Aided Geom. Design, (11):
655–674, 1994.

[6] N. Guid, C. Oblonsek, B. Zalik. Surface Interroga-
tion Methods. Comput. & Graphics, 19(4):557–574,
1995.

[7] Balsys, R.J., and Suffern, K.G. Visualisation of im-
plicit surfaces, Computers and Graphics, 25:89–107.
2001.

[8] Balsys, R.J., Suffern, K.G. Ray Tracing Surfaces
With Contours, Computer Graphics Forum, 24:4, pp.
1–10. 2003.

[9] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes.
Computer Graphics Principles and Practice, Second
Edition, Addison-Wesley, New York, pp. 714–715,
1990.

[10] T., Whitted. An Improved Illumination Model for
Shaded Display, Computer Graphics (SIGGRAPH 83
Conference Proceedings), pp. 151–156, 1983.

[11] Stolte, N., Kaufman, A. Parallel Spatial Enumera-
tion of Implicit Surfaces using Interval Arithmetic for
Octree Generation and its direct Visualization, In Im-
plicit Surfaces’98, 81-87, Seattle, 1998.

[12] Stolte, N. Graphics using Implicit Surfaces with In-
terval Arithmetic based Recursive Voxelization, in
Computer Graphics and Imaging CGIM 2003, 398-
024, Honolulu, 2003.

[13] Bloomenthal, J. Edge Interference with Applications
in Antialiasing, Computer Graphics, 17:3, 157-162,
1983.

[14] Balsys, R.J., Suffern, K.G., Jones, H. Point Based
Rendering of Non-Manifold Surfaces, Computer
Graphics Forum, 27:1, pp. 63-72. 2008.

[15] Harbinson, D., Balsys, R., Suffern, K.G Render-
ing Surface Features Using Point Based Methods,
ACM/GRAHITE2007, 1-4th Dec 2007, Perth, West-
ern Australia. pp. 47–53. 2007.

[16] Zwicker, M., Pfister, H., Van Baar, J., Gross, M. Sur-
face splatting, In SIGGRAPH 2001, 371–378. 2001.

[17] Zwicker, M., Rasanen, J., Botsch, M., Dachsbacher,
C., Pauly, M. Perspective Accurate Splatting, Euro-
graphics Symposium on Point-Based Graphics, 247–
254. 2004.

[18] Heckbert, P. Fundamentals of texture mapping and
image warping. Masters thesis, University of Cali-
fornia at Berkeley, Dept. of Elec. Eng. and Computer
Science, 1989.

[19] Chiu K., Wang C., and Shirley, P. Multi-Jittered Sam-
pling, In Heckbert P. S. Ed., Graphics Gems IV, AP
Professional, Boston, MA, 370-374. 1994.

[20] Singh, J.M., and Narayanan, P.J. Real-Time Ray-
Tracing of Implicit Surfaces on the GPU, Report no:
IIIT/TR/2007/72, Report Date: 31-07-2007.Available
at http://www.iiit.net/techreports/reports.html

[21] Available at opengl.org:
http://www.opengl.org/resources/code/samples/advanced/
advanced97/notes/node63.html, visited March 2008.

4545

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.



(a)Cassini (b)CrossCap (c)Bicorn

(d)Hunt (e)BarthSextic (f)KleineBottle

(g)Miter (h)Steiner′sSurface (i)Boys

Figure 14: 600x600 images of non-manifold surfaces: (a) Cassini, ((x + a)2 + y2)((x − a)2 + y2) = z2, (b) Cross cap,
4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0, (c) Bicorn, y2(a2 − (x2 + z2))− (x2 + z2 + 2ay − a2)2 = 0, (d) Hunt,
4(x2+y2+z2−13)3+27(3x2+y2−4z2−12)2 = 0, (e) Barth Sextic, 4(φ2x2−y2)(φ2y2−z2)(φ2z2−x2)−(1+2φ)(x2+
y2+z2−1)2 = 0 where φ = (1+

√
5)/2, (f) Kleine bottle (x2+y2+z2+2y−1)((x2+y2+z2−2y−1)2−8z2)+16xz((x2+

y2+z2−2y−1) = 0, (g) Miter, 4x2(x2+y2+z2)−y2(1−y2−z2) = 0, (h) Steiners surface, x2y2+x2z2+y2z2−2xyz = 0
and (i) Boys surface, 64(1 − z)3z3 − 48(1 − z)2z2(3x2 + 3y2 + 2z2) + 12(1 − z)z(27(x2 + y2)2 − 24z2(x2 + y2) +
36
√

2yz(y2 − 3x2) + 4z4) + (9x2 + 9y2 − 2z2(−81(x2 + y2)2 − 72z2(x2 + y2) + 108
√

2xz(x2 − 3y2) + 4z4) = 0.

4646

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 19:25 from IEEE Xplore.  Restrictions apply.


	copyright notice
	real-time antialiasing of edges .pdf

