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ABSTRACT 

The limitations of current simulation packages in addressing the true longitudinal behaviour of 

railway bogie dynamics during braking/traction has prompted the development of a Rail Bogie 

Dynamics (RBD) program in this thesis. The RBD program offers novel features for the 

calculation of the speed profile as a function of the brake torque as well as explicitly determining 

wheelset angular velocity. With such capability, the speed profile is no longer treated as an input 

calculated as a priori as required by most of the current simulation systems. The RBD program 

has been developed using a formulation that includes the wheelset pitch degree of freedom 

explicitly with a coordinate reference system that is fixed in space and time. The  formulation has 

made the simulation of the bogie dynamics during braking/traction possible in a natural way 

using the brake/traction torque as the input and the resulting speed profile as the output without 

any need for working out the speed profile as a priori. Consequently, severe dynamics during 

braking such as the wheelset skid and the onset of wheel climb derailment can be modelled and 

critical parameters investigated using the RBD program. 

The RBD program has been validated, where possible, through a series of simulations using a 

commercial software package (VAMPIRE). For cases which cannot be simulated by VAMPIRE 

such as the wheelset skid, a novel experimental program has been designed and commissioned in 

the Heavy Testing Laboratory of the Central Queensland University as reported in this thesis. 

One of the possible applications of the RBD program in examining the effect of asymmetric 

brake shoe force in bogies equipped with one-side push brake shoe arrangement is illustrated in 

this thesis.  It is believed that the model and RBD program will have significant benefit in 

understanding the true longitudinal behaviour of wagons in suburban passenger trains that 

operate under braking/ traction torques for most of their travel.  Similar studies will also be 

useful to freight train wagon dynamics during entry and exit of speed restriction zones and tight 

curves.  
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1. INTRODUCTION 

Suburban passenger trains operate under braking / traction condition during most of 

their travel. Most heavy haul and long haul trains are also operated under similar 

condition when they enter and exit speed restriction zones and/or tight curves. 

Although braking/ traction torques modify the operating speed in a complex manner, 

which could only be realistically evaluated using rigorous calculations, current 

simulations are routinely carried out for constant speed conditions with the speed 

profile input as a priori.  

With a view to providing a simulation platform which truly accounts for 

traction/braking torque induced dynamics of wagons, this thesis formulates a model 

that explicitly accounts for the wheelset pitch degree of freedom. The formulation is 

provided with reference to a coordinate system that is fixed in space and time. The 

formulation enables the simulation to be performed in a natural way using the 

brake/traction torque as the input and the resulting speed profile as the output without 

any need for working out the speed profile as a priori. A MATLAB computer program 

titled Rail Bogie Dynamics (RBD) program which uses the formulation is developed 

and reported in this thesis.  

1.1. AIM AND OBJECTIVES 

The aim of the thesis is to formulate a model with the potential for simulating true 

longitudinal dynamics of bogies under braking/traction torque. This aim is achieved 

through the enabling objectives listed below: 

 1



1. Review the dynamics of rail bogies including the effect of braking/traction 

through literature study. 

2. Review the theory of wheel-rail rolling contact available in the literature to 

incorporate suitable criteria in the model developed. 

3. Formulate the system dynamic equations and their solution technique capable of 

truly modelling the longitudinal dynamics of bogies subjected to 

braking/traction torque.  

4. Develop the Rail Bogie Dynamics (RBD) program based on the formulation 

and solution technique as per objective 3. 

5. Validate the RBD program against VAMPIRE where possible 

6. Validate the other and most severe cases using a full-scale laboratory test. 

7. Apply the RBD program to evaluate the severe dynamics of bogies induced due 

to asymmetric brake shoe forces.    

1.2. SCOPE AND LIMITATION 

The scope of this thesis is to investigate the dynamics of railway bogies subjected to 

traction/braking torque. The severe bogie dynamics involving wheelset skid will be 

investigated through simulation and experiments. The effect of the asymmetric braking 

due to error in the distribution of the brake shoe normal force within a single wheelset 

in bogies equipped with one-side push brake shoe will also be examined. 

The limitations are: 

i. Only tangent track will be considered. 

ii. Only simple and most common bogies will be considered. 

iii. Whole wagon dynamics will not be considered. 
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1.3. OUTLINE OF THE THESIS 

This thesis contains 10 chapters that cover the formulation, validation, and application 

of the RBD program. 

Chapter 1 outlines the aim, objectives, scope and limitation of the thesis. 

In Chapter 2, the basic terminologies used in wagon and bogie dynamics are reviewed. 

The mechanics of wheel-rail contact, which is fundamental to the bogie and wagon 

dynamics, is discussed. The wagon braking and traction systems and their principle of 

working are reviewed briefly for completeness. In the last part of this chapter, a review 

of the current railway wagon simulation software systems and their limitations to 

perform true longitudinal dynamics of wagon simulation is presented. 

Chapter 3 describes in detail the formulation of the RBD program. The coordinates of 

reference and the formulation of multibody system equations are presented in detail. 

The law of contact between rigid bodies contact and its mathematical formulation 

applied to the wheel-rail contact patch are described. The calculation of creep forces 

using the Polach formulation is presented. The technique for solving the system 

equations that involves the differential equilibrium equations and algebraic constraint 

equations in the augmented form is exhibited. Finally, the algorithm for the railway 

bogie dynamic analysis is presented in a flow chart. 

Validation of the RBD program against VAMPIRE, where possible, is contained in 

Chapters 4 and 5. The simulations in Chapter 4 deals with the dynamics of the wheelset 

within a bogie frame whilst Chapter 5 deals with the dynamics of simplified two axle 

bogies. A series of simulations with or without the application of braking/traction 

torque with various track irregularities are presented.   
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Chapter 6 describes the design of an experimental program to validate the novel 

features of the RBD program for the calculation of the speed profile as a function of the 

brake torque as well as explicitly determining wheelset angular velocity. The concept 

of the measurement system and the specification of measurement devices used in the 

experiments are presented. The modifications of the bogie used in the experiment to 

suit the mounting of the measurement devices and the construction of the test track are 

also explained.  

Chapter 7 presents the results of the experimental program described in Chapter 6. For 

convenience, the data obtained from the experiments is categorised into two parts. The 

first part presents the primary data which is gathered directly from the measurement 

devices and the second part presents the derived data which is manipulated from the 

primary data. Three brake cylinder pressure cases have been examined from the 

experimental data; they are 130 kPa, 150 kPa, and 180 kPa. These cases represent the 

condition below the skid limit, at the skid limit, and above the skid limit respectively. 

The comparison of the experimental results with the results obtained through the 

simulation using the RBD program is exhibited in Chapter 8. The input for the 

simulation is the measured experimental brake torque and the output is the longitudinal 

acceleration / deceleration, speed profile, angular velocity and slip. 

Chapter 9 presents the application of the RBD program to simulate the severe bogie 

dynamics due to application of asymmetric brake normal forces within a single 

wheelset in bogies equipped with a one-side push brake shoe arrangement. The effect 

of various levels of asymmetric brake shoe forces and application time is examined and 

reported in this chapter.  
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Chapter 10 provides the summary of the thesis and lists the conclusions that have 

emerged from this research. Some recommendations for further research are also 

offered in this chapter.   
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2. LONGITUDINAL DYNAMICS OF RAILWAY BOGIES: A 

LITERATURE REVIEW 

2.1. INTRODUCTION 

Railway bogies are often subjected to longitudinal forces due to a number of train 

related dynamics including braking and traction. These longitudinal forces affect the 

dynamics of bogies in a complex manner. Severe braking or traction may affect the 

safety and stability of bogies adversely. Thus, there is a need to study the bogie 

dynamics as a function of the longitudinal forces with a view to minimising the risk to 

railway transportation. 

For the proper analysis of the dynamic performance of bogies under braking or traction, 

basic understanding of the vertical and lateral dynamics of the wagon is required. The 

first part of this chapter introduces some important terms that relate to the dynamics of 

wagons. The mechanics of wheel-rail contact, which is fundamental to the bogie and 

wagon dynamics, is also discussed in this chapter. The wagon braking and traction 

systems and their principle of working are reviewed briefly for completeness. In the last 

part of this chapter, a review of the current railway wagon simulation software systems 

and their limitation to perform wagon longitudinal dynamics simulation is presented. 

2.1.1. Basic Axis System and Terminologies 

To discuss the dynamics of the wagon a coordinate system containing six degrees of 

freedom as shown in Fig 2.1 is normally used.  Linear motion along the X, Y and Z 

axes are termed as longitudinal, lateral, and vertical translations respectively.  
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Figure 2.1. Six degrees of freedom of wagon movement 

The rotations are defined in accordance to the right hand screw rule where the positive 

rotation is seen as clockwise if the observer is stationed at the origin and looks at the 

axes in the positive direction. Rotary motions about the X, Y and Z axes are termed as 

roll, pitch and yaw respectively (see Fig.2.1). 

2.1.2. Wagon Assembly and Tracks Construction 

Wagon components and assembly 

Most wagons that are currently in use consist of a body and two bogies that provide the 

necessary suspension. Each bogie basically consists of two wheelsets, a bogie frame 

consisting of two side frames and one bolster, as well as spring nests. A few commonly 

available bogies are exhibited in Fig.2.2 - 2.4. 

Two common types of bogies widely used in freight trains are three-piece bogies and 

Y25 bogies.  The first is widely used in the United States, Australia, and Asia while the 

second in Europe (Harder (2000), Bosso et al. (2000)). Fig.2.2 shows a typical three-

piece bogie and Fig.2.3 shows a typical Y25 bogie.  
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Figure 2.2. Typical design of three-piece bogie (Company Standard Car Truck (2000)) 
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igure 2.3. Typical design of Y25 bogie (Website K. Industrier. AB (2005)) 

piece bogies consist of a bolster, two side frames and two wheelsets. This type of 

oes not have primary suspension while the secondary suspension is made from 

rings that connect the bolster with the side frame. Damping is provided by 

 wedges, which are placed between the side frame and the bolster.  
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In contrast to the three-piece bogies, Y25 bogies do not have secondary suspension. 

They have only primary suspensions that connect the wheelsets and the side frame. The 

primary suspensions are formed from coil springs and Lenoir links which provide 

friction damping. The bogie frame is constructed from two side beams, one transverse 

beam or bolster and two end beams. 

The three-piece bogies and the Y25 bogies are very popular as they are cheap to 

purchase and maintain. However, their simple design leads to low levels of lateral 

stability and ride quality, and higher levels of track forces due to vertical and lateral 

impacts as well as the angle of attack in curved tracks (Stichel (1999)). Although the 

performance of both bogies fulfils most of the requirements for freight wagon 

operations, in some cases a higher performance bogie will be needed. In such cases, at 

the expense of initial cost, bogies containing both primary and secondary suspensions 

are used. An example of this type of bogie is shown in Fig 2.4. 

Secondary 
suspension 

 

Primary 
suspension 

Figure 2.4. Bogie with primary and secondary suspension (Ikamoto (1998)) 
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Track construction 

Track is one of the most important technical elements required for the railway 

operation. Its main function is to provide guidance for the wagons in addition to 

supporting the heavy mass of the running train and absorbing the induced vibration. 

Track possesses a complex structure with elastic and dissipative properties. Fig. 2.5 

(Profilidis (2000)) exhibits the basic construction of a traditional railway track that 

consists of a pair of rails, sleepers and track support. 

 

Figure 2.5. A Typical Track Structure (Profilidis (2000)) 

The requirements for the strength and quality of the track depend to a large extent on 

the following load parameters (Esveld (2001)): 

− axle load: static vertical load per axle 

− tonnage borne: sum of the axle loads 

− dynamic and / or impact load 
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The static axle load level, to which the dynamic increment is added, in principle 

determines the required strength of the track. The dynamic load components, which 

depend on the operational speed and horizontal and vertical track geometry, are also 

essential factors in the track structure design. 

2.2. DYNAMICS OF THE BOGIES  

Train-track dynamics is largely due to the interaction between the complex geometries 

of the wheel and the rail within the contact patch that generates much high levels of 

contact forces.  It also involves many degrees of freedom and forces that change rapidly 

and act at the same time at many points in the suspension system and couplers between 

wagons. The existence of track irregularities and wheel defects makes the problem 

more challenging to mathematically formulate. Hence an in depth understanding of the 

subject of the dynamics of multibody systems is essential.   

2.2.1 Principles of Wheelset Dynamics 

The dynamic characteristics of a railway bogie are defined by the interaction between 

the wheel and the rail, the configuration of suspensions and the articulation with 

adjacent wagons. Among these, the interaction between the wheel and the rail that 

characterises the dynamic behaviour of the railway wheelset running along the track is 

the most fundamental factor that affects the bogie dynamics. 

The wheelset provides basic guidance of travel to railway bogies. The dynamics of a 

bogie is primarily affected by the dynamic behaviour of the wheelset and the track 

characteristics. Fig 2.6 depicts a railway wheelset positioned on the track. It could be 

seen that the conventional wheelset consisting of two conical wheels separated by a 
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distance compatible to the gauge width of the track fixed to a common axle.  This form 

has a long history and seems to have evolved by a process of trial and error (Wickens 

(1998)). 

 

Figure 2.6. Wheelset on the track (Ikamoto (1998)) 

The observation of the dynamic behaviour of wheelsets has begun since the early years 

of the railway history. Marshal (1938) has reported that, not long after the conical 

wheel tread was established in 1821, George Stephenson in his Observation on Edge 

and Tram Railway had stated a very clear description of kinematic oscillation as shown 

in Fig.2.7. This kinematic oscillation could cause stability problem in the tangent track. 

The statement of George Stephenson can be found in Wickens (1998) and Wickens 

(2003). 
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Figure 2.7. Wheelset Kinematic Oscillation (Wickens (2003)) 

Klingel (1883) formulated the first mathematical relationship for this kinematic 

oscillation and derived the relationship between the wavelength HL  and the wheelset 

conicity wλ , nominal wheel radius  and lateral distance between the wheel-rail 

contact points  as shown in Eq.2.1. 

wr

l2

1 / 22 ( )w
H

w

r lL π
λ

=          (2.1) 

This simple formula is derived purely from the geometry analysis.    

Although the conical wheel causes stability problems in the tangent track, it helps the 

wheelset to negotiate the curves with ease. A wheelset with conical wheels can 

maintain a pure rolling motion while running on a curve if it moves outward and takes 

the radial position. In his book, Wickens (2003) reported that Redtenbacher (1885) had 

performed a theoretical analysis to improve the understanding of the conical wheelset 

negotiating curves as illustrated in Fig.2.8.  
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Figure 2.8. Conical wheelset on a curve (Wickens (2003)) 

From the geometry in Fig. 2.8 it can be seen that there is a simple relationship between 

the lateral movement of the wheelset , the radius of curve y R , the wheel radius , the 

lateral distance between the points of contact of the wheels with the rails , and the 

conicity 

wr

l2

wλ  of the wheels in order to sustain pure rolling that is shown in Eq.2.2. 
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As can be seen, the above two analyses of kinematic oscillation and curving are purely 

based on geometries of the wheel and the track. More detailed analysis of the dynamic 

behaviour of railway wheelset must be performed if the forces acting at the wheel-rail 

contact patch are desired.  
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2.2.2. State-of-the-art of the Study of Wagon and Bogie Dynamics  

History and development 

The revolution in the analysis of railway wagon dynamics started when the theory of 

creep (further discussed in Section 2.3) was first introduced by Carter (1926). With this 

theory, the wheel-rail contact forces can be determined and the equations of motion that 

describe the wheelset dynamics can also be derived.  

Following the development of the creep theory that defines the interaction between the 

wheel and the rail, extensive studies of wagon dynamics were undertaken. In general 

the problem of wagon dynamics can be divided into two parts: the hunting or the 

stability problem which deals with the tangent track, and the curving behaviour which 

deals with curved track. Unfortunately there is a conflict between stability on the 

straight track and curving behaviour on the curved track. For example a softer and more 

flexible primary spring will give a better curving performance but it will reduce the 

lateral stability in the tangent track. Similarly harder springs will improve the lateral 

stability but lead to poor curving performance (defined by increase in angle of attack). 

Gilchrist (1998) has presented a good paper that reviews the history and the 

development of the research on the optimisation of the hunting and curving problems. 

Matsudaira (1952) was the first to solve the complexity of the wheelset equation of 

motion and concluded that through proper design, a spring-restrained wheelset could be 

made stable up to any required critical speed as demonstrated by his theoretical work 

and experiments on a roller rig, where the stability was observed directly. Using his 

theory, he specified the suspension design parameters for the bogies of the first 

Shinkansen high speed train that was successfully introduced into service in 1964.  
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Following Matsudaira’s work, from the mid fifties until the mid sixties most of the 

research on railway wagon dynamics were focused on the subject of stability. For 

example, de Pater (1956, 1961) investigated the non-linearity of the wheel-rail profile 

and its effect to wagon stability, and Wickens (1965-6) proved the importance of lateral 

damping of the primary suspension for the dynamic stability of the wheelset.  

However, the more extensive study on wagon dynamics came after Kalker (1967), who 

studied the rolling contact between two elastic bodies, provided a theory that could be 

used to calculate forces generated in the wheel-rail rolling contact patch. The work of 

Kalker and the development in numerical techniques have widely opened the 

possibility of studying wagon dynamics through computer modelling to obtain better 

results. Since the pioneering work of Kalker, a large amount of research on wagon 

dynamics has been reported. It is impossible to present all of them in this review; a 

brief summary, however, is provided. The research covers the study on stability, 

curving performance, wagon-track dynamic interaction and control. 

Hunting and stability 

Rinehart (1978) has examined the hunting stability of three-axle locomotive bogies. 

Due to symmetry, he has simplified the system using an eleven DOF model 

representing a “half locomotive” (one bogie only). A set of laboratory test data of 

natural frequency and mode shapes was used to validate the model. The results showed 

that a hunting frequency of more than 4 Hz was obtained and the predicted hunting 

frequency from the mathematical model had good agreement with the measurement. 

Tuten et al. (1979) investigated how various wheel profiles and asymmetric loading 

affected the stability of wagons. The investigation used a nine DOF wagon model. The 
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results showed that the wagon stability strongly depended on the location of axles 

having different values of effective conicity and contact angles. The wheel profile mix 

of a particular bogie was shown to be of much greater importance than whether the 

bogie was put in the leading or trailing location. The asymmetric loading was also 

found to affect the lateral stability.  

Renger (1984) modelled a railway vehicle with two-axle bogies to examine its lateral 

stability and ride quality. The vehicle response against the lateral centre line and the 

cross-level deviations of the track were evaluated. A few important results provided by 

the simulation are as follow:  

(i) The stability and the riding quality could be improved by optimising the 

secondary lateral damping. 

(ii) Instead of using the primary damping, the stability and lateral ride quality could 

be better improved through the optimisation of the primary stiffness. 

De Pater (1989) studied the lateral stability of wagons containing two axle bogies. The 

study was purely analytical using a mathematical model. He showed that an appropriate 

choice of the lateral stiffness connecting the two wheelsets could increase the critical 

speed.  

Ahmadian (1998) investigated the non-linear oscillation of the wheelset with flange 

contact. Bifurcation theory was applied to analyse the instability due to hunting. The 

studied case was a rail wheelset containing nonlinear primary yaw dampers. The result 

of the study showed that hunting could occur at speeds below the critical speed 
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computed through a linear analysis due to nonlinearities caused by flange contact, 

gauge clearance and yaw dampers.  

Yabuno et al. (2001) studied the stabilisation control for the hunting motion of the 

wheelsets. They proposed a control strategy to limit the hunting motion of the 

wheelsets. The control method focused on the asymmetry in the stiffness matrix that 

was the principal cause of hunting. In order to reduce the effect of the asymmetrical 

component of the matrix, a lateral force proportional to yaw motion was applied. An 

experimental study was also conducted to validate the theoretical result. It was 

concluded that the control strategy significantly increased the critical speed.  

Mohan (2003) reported an investigation on the nonlinear analysis of the controllable 

primary suspensions to improve hunting stability of wagons through the use of various 

primary and secondary stiffness and damping parameters. It was concluded that the 

critical velocity of wagons was more sensitive to the primary longitudinal stiffness 

compared to other parameters. He also proposed a method to control hunting stability 

using semi-active control of the primary longitudinal stiffness. 

Curving and derailment 

Sweet et al. (1984) studied the running safety of wagons against wheel-climb 

derailment. The study employed theoretical modelling and experiments. The results 

showed that the derailment quotient or the ratio of the lateral to the vertical force (L/V 

ratio) at the wheel-rail interface alone was not sufficient to predict the safety against 

derailment. Under dynamic conditions, a significantly larger derailment quotient could 

occur without causing actual derailment if it only occurred for a very short time. Hence 
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the criterion for derailment was accounted for by both the derailment quotient and the 

corresponding duration.  

Effects of wheel-rail contact geometry to the wheelset steering forces was studied by 

Mace et al. (1996). The study involved both field experiments and theoretical analysis. 

It was reported that the hollow worn wheel adversely affected the wheelset steering 

during negotiating curves, leading to the generation of large negative steering moments. 

These negative steering moments caused a number of undesirable effects such as the 

track gauge widening, the rail roll over, the extensive wear of the wheel and the rail, 

and the increased train rolling resistance.     

Haque et al. (1996) reported a non-linear wheelset model for derailment prediction. The 

modelling provided special emphasis on safety-related behaviour of the wheelset 

negotiating both the tangent and curved tracks. The wheelset models accounted for 

non-linearities due to wheel-rail profile geometry and creep force and the longitudinal 

translation of the contact patch as a function of wheelset yaw angle. The wheelset 

model was claimed to have lateral, yaw, and spin degrees of freedom and considered 

single-point and two-point contact as well as transition from one to the other. The 

authors exhibited that the model was capable of predicting the wheelset dynamic 

behaviour during wheel climb, wheel lift, steering characteristics during curve 

negotiation and also limit cycle behaviour on the tangent track. 

Nagase et al. (2002) reported experimental results of the wheel climb derailment. The 

experiment was performed using a model bogie and a model track (1:5 scale). The risk 

of the derailment was evaluated using Nadal formula (ratio of the lateral force to the 

vertical force applied to the wheel) as well as by measuring the wheel vertical 
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displacement using a high-precision laser displacement sensor.  As a result, it was 

found that the adhesion coefficient had a major influence on the occurrence of wheel 

climb derailment.  

Optimisation of hunting and curving behaviour 

Wickens (1991) provided a detailed review on optimisation of the hunting and curving 

behaviour through suspension design using sophisticated mathematical modelling. 

Current suspension technology has opened possibilities to develop innovative bogie 

designs with optimal performance in both tangent and curved tracks. 

Matsumoto et al. (1999) proposed some methods to optimise the curving behaviour 

without reducing the hunting speed of the wagon. These methods included optimised 

worn tread profiles of wheels, independently rotating wheels in the rear axle, and 

asymmetric arrangement of the longitudinal primary suspension. The third method had 

earlier been proposed by Suda and Anderson (1994).    

The improvement of the compatibility of the lateral stability and the curving 

performance of a railway passenger bogie was recently reported by Dukkipati and 

Narayanaswamy (2004). The authors proposed that the stiffness of the primary 

suspension of the leading axle be set different to the trailing axle.  

Wagon and track interaction 

All of the above reported research works have been focusing on the study of wagon 

and/or bogie dynamics without providing much attention to the track structure by 

assuming the track as a rigid or a simple elastic support. There are several studies, on 

the other hand, that focus only on the railway track dynamics by simplification of input 
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disturbance from the measurement or pre-calculated wagon dynamic characteristics 

(Grassie (1992), Luo et al. (1996), and Kerr (2000)). Some other studies on track 

dynamics have considered the track and the wagon as a multi-body system but 

simplified the case to only the vertical interaction between the wagon and the track  

(Zhai and Sun (1993)and Ripke and Knothe (1995)). 

However, sometimes it is necessary to fully describe both the wagon and the track 

structures in 3D to examine their interaction with each other in all directions. This is 

because the track structure can affect the wheel rail interaction forces that play an 

important role in determining the dynamic behaviour of wagons. On the other hand, 

wagon suspension design can also affect the forces imposed on the track.  

Sun and Dhanasekar (2001) introduced a three dimensional wagon track system 

dynamics (3D-WTSD) model, which fully describes the dynamic behaviour of the 

wagon and the track when the wagon runs under constant speed on tangent tracks. The 

3D-WTSD model can be used, for example, to investigate the effect of track design 

parameters both on the wagon and the track dynamics or vice versa to investigate the 

effect of suspension design parameters on both the wagon and the track dynamics. It 

also can be an effective tool to investigate the effect of track on wagon dynamics and 

the effect of lateral and vertical impact applied by the wagon to track dynamics (Sun 

(2002)). From the results of simulations using 3D-WTSD model, Sun and Dhanasekar 

(2004) also reported the importance of track modelling for the determination of the 

critical speed of wagons. A similar example of the simulation that takes into account 

the 3D dynamic behaviour of the wagon and the track was presented by Anderson and 

Abrahamsson (2002). 
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In the case of wagon dynamics under traction/braking condition, the vertical and the 

lateral impact forces applied to the track may not be an issue. However, when the 

traction/braking force is applied to the wheels a large longitudinal creep force arises in 

the wheel-rail contact area. This force will dissipate through the structure below the rail 

such as the sleepers and the ballast. If this longitudinal force is big enough, the sleepers 

can be displaced from their position. If a train is braked or accelerated on the 

construction such as the railway bridge, the longitudinal force generated will be also 

passed through the construction. Therefore, in designing the track structure and the 

railway bridge this longitudinal force is required to be accounted for. 

All of the above described simulation models deal with only constant speed without 

any reference to deceleration or acceleration. The dynamics of wagons under 

braking/traction is reviewed in Section 2.5. 

2.3. THEORY OF WHEEL-RAIL ROLLING CONTACT 

This section briefly reviews the development of wheel-rail rolling contact theory, which 

forms the foundation for determining the wheel-rail interaction forces. The accurate 

calculation of the wheel-rail interaction forces is very important in the modelling of the 

railway wagon and bogie dynamics. Kalker (1991) has provided a very good 

presentation on this subject. Another good reference is a book by Garg and Dukkipati 

(1984). Details of the mathematical analysis on rolling contact phenomena can be 

found in Jacobson and Kalker (2000) and  Kalker (1990).  
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2.3.1. The Concept of Creep 

Consider two rigid bodies that are in contact at a point. If any one or both of these 

bodies are rotated and/or moved relative to each other, the contact point will also shift 

its original position; the resulting velocities of the contact point over each body might 

or might not be equal to each other. When the velocities are equal, the bodies are said 

to be undergoing pure rolling (with no creep); under unequal velocities, they are said to 

be undergoing rolling coupled with sliding (i.e., with creep). Creep or creepage is a 

dimensionless term (except for spin creepage) defining the deviation of the actual 

rolling condition between two rigid bodies from pure rolling to rolling coupled with 

sliding. 

In the case of the wheelset running over the rails, creepage is defined in both the 

longitudinal and the lateral directions and also about the common normal of the contact 

patch (spin) as shown in Fig.2.9 (Dukkipati (2000)). The formulation is provided in 

Garg and Dukkipati (1984) and Dukkipati (2000) as in Eq.(2.3.a-c). 

 
 

(a) Longitudinal creepage   (b) Lateral creepage   (c) spin creepage 
 

Figure 2.9. Creepage (Dukkipati (2000)) 
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(longitudinal velocity of wheel – longitudinal velocity of rail) at the point of contact 
=xξ  

Nominal Velocity 
 
 
 

(lateral velocity of wheel – lateral velocity of rail) at the point of contact 
=yξ  

Nominal Velocity 
 
 
 
 

(angular velocity of wheel – angular velocity of rail) about normal axis at the point of contact 

(2.3.b) 

(2.3.a) 

(2.3.c) =spξ  
Nominal Velocity 

 

where xξ  , yξ , spξ  are the longitudinal, the lateral and the spin creepages respectively. 

It is important to note that the longitudinal and the lateral creepages are dimensionless, 

whereas the spin creepage has the dimension of L-1. 

2.3.2. The Development of Wheel-Rail Rolling Contact Theory 

The wheel-rail rolling contact theory explains the relationship between the creep forces 

and the creepage. In general wheel-rail rolling contact theory states that there exists a 

unique relationship between the creepage and the forces generated at the wheel-rail 

contact patch. These forces are called creep forces as they are generated due to the 

existence of the creepage.  

The relationship between creepage and creep forces was first defined by Carter (1926) 

who was concerned with the action of locomotive wheels when large tangential forces 

were transmitted during acceleration and braking. Carter has shown that the difference 

between the circumferential velocity of a driven wheel and the translational velocity of 

the wheel over the rail has a non-zero value as soon as a braking or traction couple is 
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applied to the wheel. The difference increases if the braking or traction couple 

increases, which means that there exists a relationship between the couple and the 

velocity leading to saturation when the Coulomb friction maximal value is reached. 

However, the formulation given by Carter was based on solving the integral equation of 

the two dimensional analysis for a cylinder rolling on a plane which only considers the 

force on the rolling direction.  It is clearly insufficient for the purpose of rail wagon/ 

bogie simulation due to the complex geometries of the wheel and the railhead. 

Vermeulen and Johnson (1964) proposed a creep-force law, which included the 

longitudinal and the lateral creepages. However, the spin creep was left out.  To 

calculate the shape and the size of wheel-rail contact, Hertz theory is used. The Hertz 

theory defines the contact area between the wheel and the rail as elliptical and the ratio 

of the semi axes of the ellipse as a function of the curvature of the wheel and the 

railhead. The treatment of the Hertz theory in detail can be seen in Johnson (1985).   

The most successful method of calculating the creep force is presented by Kalker 

(1967) who then wrote the computer program CONTACT, a universal program for all 

contact problems of bodies that can be described by half-space.  He also has written a 

program called DUVOROL, which efficiently handles all possible rolling contact 

problems of bodies with identical elastic constants that touch each other according to 

the Hertz theory. DUVOROL was used by British Rail to construct a book of tables in 

support of rail vehicle simulation.  

The computational time of both CONTACT and DUVOROL, which are based on 

Kalker’s exact theory, is high and hence they are not suitable for real time applications 

in vehicle simulation (this is the reason why British Rail constructed a book of tables).  
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Concerned with this, in 1973 Kalker introduced the simplified theory of rolling contact 

and then used the theory to build a fast algorithm and computer program FASTSIM 

(Kalker (1982)).   

Shen et al. (1983) improved the Vermeulen and Johnson law by including the effect of 

spin using Kalker’s exact linear theory. The model used by Shen et al. is also called the 

heuristic model and is well known as Shen-Hedrick-Elkins or SHE theory. Fig. 2.10 

presents the comparison of the creepage – creep force curve produced using FASTSIM, 

DUVOROL, and the heuristic model of Shen-Hedrick-Elkins for small spin. The figure 

shows that the three methods agree very closely.  

 

R

r

F
Nµ

 

normalised creepage 

Figure 2.10. Creepage - Creep Force Curves (Shen et al. (1983)) 

In summary, Kalker (1991) defined the rolling contact theories and their interrelation as 

shown in Fig 2.11. He also gave a suggestion that the contact mechanics aspect of the 

wheel and the rail can be treated with the following routines: 
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Driving/braking wheel action  Shen-Hendrick-Elkins (SHE) 

Non flanging vehicle dynamics BR table book, linear theory, SHE, FASTSIM 

Flanging vehicle dynamics  BR table book, FASTSIM 

Two-point contact   BR table book, FASTSIM 

Wear (profiles)   FASTSIM, CONTACT 

 

Hertz B.R. table book CONTACT 
Non-Hertzian 
Unrestricted creepage 

Carter 
2D 

Johnson/Vermeulen 
0spξ =  

Unrestricted ,x yξ ξ  

Shen-Hedrick-Elkins 
Small spξ  

Unrestricted ,x yξ ξ  

Linear theory 
Small Creepage 

Simplified theory 
Unrestricted , ,x y spξ ξ ξ  
FASTSIM 

validation 

validation 

validation 
 

Figure 2.11. Wheel-rail rolling contact theories and their interrelation (Kalker (1991)) 

To complete our discussion on the development of the wheel-rail rolling contact theory, 

we should review another method to determine the creep forces which has been 

recently proposed by Polach (1999). This method is claimed to perform better under 

high creepage, although it is based on Kalker’s work with simplification of the 

distribution of normal and tangential stresses in the wheel-rail contact patch. According 
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to this theory the creep forces can be computed efficiently with significant saving in 

computational effort. Application of this method to wagon dynamics simulation was 

also reported by the author (Polach (2001, 2005)). Polach also extended his creep force 

model for large creep application by introducing reduction factors for the Kalker 

coefficient to differentiate the areas of adhesion and slip.   

2.4. FREIGHT WAGON BRAKING AND TRACTION SYSTEM 

Traction and braking may be regarded as a process of conversion of energy. If a rail 

wagon is at rest the kinetic energy remains zero, whilst a moving rail wagon possesses 

significant kinetic energy. Braking reduces the speed of the wagon which means 

reducing the wagon kinetic energy, whilst traction does the opposite. However, wagons 

usually do not have their own traction system but are pulled or pushed by locomotives.   

Reducing the speed of the wagon requires significant reduction to kinetic energy.  The 

simplest way of reducing the energy is to convert it into heat by contacting material to 

the rotating wheels or to discs attached to the axles.  The material creates friction and 

converts the kinetic energy into heat energy.  With the reduction in kinetic energy, the 

wagon slows down and when the kinetic energy is fully nullified, the wagon comes to 

static equilibrium. The vast majority of freight trains are equipped with braking systems 

that use compressed air as the force to push blocks on to wheels or pads on to discs.  

These systems are known as "air brakes" or "pneumatic brakes". There are several 

types of air brake systems that are currently used in trains, which differ in aspects of 

their control systems, main control equipment, auxiliary equipments and pressure level. 

This is due to the different standard operating requirements of various railway 

networks.  
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Fig 2.12 shows a typical layout of air brake components of a freight wagon (Bureau 

(2002)) in North America. A similar system is used in the freight wagons of Australia. 

In this system the compressed air is transmitted along the train through pipes. A control 

valve, that is the AB type control valve in the figure, controls the pressure level of 

compressed air used to produce the braking force. 

 

Figure 2.12. Freight wagon air brake system (Bureau (2002)) 

 

The braking force produced by the brake cylinder, usually mounted at the wagon 

underframe, is transmitted through a set of levers and rods to the wagon bogie. The 

force is then distributed to the wheels through the bogie brake rigging, which consist of 

levers and brake beams, fitted in each bogie. A slack adjuster is fitted within the 

mechanical link arrangement. The slack adjuster both takes up and lets out slack in the 

rods and lever system in order to keep the clearance between the brake shoes and 

wheels to a specified level. 
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Fig 2.13 exhibits the typical bogie brake rigging diagram of the three piece bogies that 

are equipped with one-side push brake shoe arrangement (Handoko et al. (2004)). The 

link consists of rods and levers suspended from the underframe and bogies, and linked 

with pins and bushes. The brake rigging requires careful setting up and regular 

adjustment to ensure the forces are evenly distributed to all wheels.   

 

guiding slot 
in side frame 

fixed end pin  
in bolster B 

A 

F 

Figure 2.13. Typical bogie brake rigging 

It can be seen from the rigging diagram that any bad adjustment of the brake rigging 

could lead to uneven distribution of braking forces to each wheel. Such a situation can 

occur when either the centre-pin on rod AB is slightly off-centred or if the fixed-end 

pin in the bolster is disorientated. The uneven distribution of the braking force to 

wheels may also occur during curve negotiation if the bogie deforms in shear (warping) 

mode. 

2.4.1. Calculation of Brake Shoe Force 

The brake shoe force applied to wheels is calculated from the brake cylinder piston 

thrust, the total brake rigging ratio (effectively the multiplication factor by which the 

brake piston force is leveraged by the brake rigging geometry), and the counter-forces 
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exerted by the brake storage spring of the slack adjuster as shown mathematically in 

Eq. (2.4). 

. ( .B CT t R bF F i F i= − )          (2.4) 

where  is the brake shoe force,  is brake cylinder piston thrust,  is total brake 

rigging ratio,  is counter force exerted by slack adjuster, and  is the bogie brake 

rigging ratio. Brake cylinder piston thrust is determined by the cylinder piston area and 

the pressure in the brake cylinder as shown in Eq.2.5. 

BF CTF ti

RF bi

cCT pDF .
4

2π
=          (2.5) 

where D is effective diameter of the piston and  is the air pressure in the brake 

cylinder. The effective brake shoe force that would be actually acting on the wheel is 

normally less than the calculated brake shoe force above. This is because of power 

losses in the rigging system due to friction in the pin joints of the brake rigging levers. 

If we introduce the brake rigging efficiency 

cp

η  to represent these power losses, then the 

effective brake shoe force can be written as Eq.2.6. 

η.BBeff FF =          (2.6) 

2.4.2. Brake Application and Release Timing 

Brake application time is the time required to build the pressure in the brake cylinder 

and is opposite to the brake release time, which is the time required to empty the 

cylinder. Ideally, the brake is applied simultaneously at the same time on every wagon 

of a train. This condition is easy to achieve if the electric brake control system is used. 
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However it will be difficult for the pure pneumatic brake system where the brake 

command is conveyed through the brake pipe along the train. This is because the 

response time is limited by the wave propagation in the compressed air system.  

For modern freight traffic, it is required to shorten the application and release timing 

with greater braking force for efficiency of operation. However for the pure pneumatic 

brake system, problems will arise if the application time is too short because the front 

end of the train may reach the maximum brake pressure while the rear end would not 

have reached the full brake pressure yet. Derailments have occurred in which the rear 

portion of the train "ran into" the front portion in such circumstances. So there should 

be an optimum brake application time for a given train.  

A similar situation (in reverse) happens with the brake release time. The brake will be 

released if the brake pipe reaches a certain pressure and all the air in the brake cylinder 

will be exhausted to the atmosphere. Because of the inertia of the air in the pipe system, 

the brake pipe pressure in the wagon near to the locomotive, from where the 

compressed air is supplied, may have reached the required pressure while the rear end 

would not have yet. 

Due to the reasons explained above and also to assure the compatibility among brake 

systems in use, the UIC, BS, AAR, and other main railway standards have limited the 

brake application and release times to certain values. This limitation is prescribed for 

safety reasoning and decided based on experience. For example, the UIC standard 

prescribes the brake application and release timing for freight cars fitted with single 

pipe gradual release of brake as follows: 
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Application time  : 0 to 95 % max brake cylinder pressure is 18 sec to 30 sec  

Release time  : 0 to 95 % max brake cylinder pressure is 45sec to 60 sec 

From the application time and release time we can clearly see that, during the braking 

process, the force applied to the wheel will not be constant; rather it will build up 

slowly from zero to maximum. This also means that the wagon deceleration will 

change with time.   

2.4.3. Traction 

Traction, in general, can be viewed as the reverse process of braking. From this point of 

view, all parameters that influence the dynamics of wagons during braking can also 

affect the dynamics of wagons during traction. However, most of the freight wagons 

are not self-propelled. To accelerate they get the pulling or pushing force from a 

locomotive. The traction forces in a locomotive are usually generated by diesel engine 

or electric traction motors that produce torque transmitted to the wheelset using a gear 

box, whilst the wagons receive the traction force through pulling or pushing action of 

the mechanical couplers.  

2.5. LONGITUDINAL DYNAMICS OF BOGIES AND WAGONS  

2.5.1. Basic Principle of Braking Dynamics 

During braking, forces or torques are applied to the wheelsets in order to decelerate the 

wagon. This process also produces reaction force in couplers and pitch torque to the 

wagon body and bogie. These forces affect the running stability and curving 

performance of bogies and wagons. On the other hand the dynamic response of the 
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wagon such as the change of the load distribution to the wheel can also affect the 

braking performance. The braking performance is usually measured through the 

stopping distance and also from the occurrence of skidding or wheelslide. With the 

reduction of the wheel load, the chance of the skid occurrence increases.  Braking also 

involves friction, a complex phenomenon. During the process of braking, friction 

occurs between the brake shoe and the wheel and between the wheel and the rail as 

shown in Fig. 2.14.  

Bb Fµ

+ BF
wN

wr Nµ
 

Figure 2.14. Forces at the braked wheel 

The brake shoe force applied to the wheel  produces tangential force BF Bb Fµ . If the 

wheel has radius , a braking torque  is generated as shown in Eq.2.7. wr BT

B b BT F wrµ=          (2.7) 

The free body diagram of the braked wheel shown in Fig. 2.15 represents a wheel 

moving longitudinally in the -direction at speed V and with angular velocity x ω . 

,  and T  denote the polar moment of inertia, wheel radius and brake torque 

respectively. At the contact point between the wheel and the rail, longitudinal and 

vertical forces  and  respectively arise as the reaction to the brake torque and the 

static weight 

yJ wr B

xF ZF

mg .  
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Figure 2.15. Free body diagram of braked wheel 

By balancing the forces in the - and - directions and moments about the centre of 

mass of the wheel, three scalar equations of a braked wheel are established: 

x z

x

z

y x w B

mV F
F mg
J F r Tω

⎫= −
⎪

= ⎬
⎪= − ⎭

&

&

        (2.8)  

where  is the mass of the wheel and wagon supported by the wheel and  is the 

gravity constant, while over dots denote differentiation with respect to time.  

m g

2.5.2. Skid and Friction Coefficient 

Severe braking force can cause the wheelset to get locked and slide on the rail. This 

phenomenon is called skidding. This could lead to geometry damage to the wheels 

(wheel flat) and the railhead. Skidding also makes the stopping distance longer that 

would be dangerous to the train operation. Hence skidding should be avoided during 

braking as a matter of priority. 

Skidding occurs when the braking force exceeds the adherence offered by the wheel-

rail contact patch. Thus, to avoid skidding of the wheels during brake application the 
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brake force at the brake shoe must invariably be kept lower than the adhesion at the 

rail. Skidding does not occur when the relationship in Eq. (2.9) is fulfilled. 

WrBb NF µµ <           (2.9) 

Currently many rail wagons are equipped with equipment to prevent skidding. 

However, there are still many wagons that do not possess this equipment, especially 

freight wagons, due to costs.  

The difficulty in controlling skidding is related to the friction characteristic between 

materials that vary in nature. For example, friction between the wheel and the rail 

varies with rail surface condition  (Macfarlane (2000)) such as rail corrugations, rail 

head contamination from oily deposits, leaves, water, ice, sand, etc, and the wheel tread 

surface condition as the application of the different type of brake shoe on the car (iron  

block, composition block, disc). Friction between the wheel and the rail also varies with 

the position of the wheelset along the track. The leading wheelset usually encounters 

the dirtiest rail and worst adhesion condition, and then cleans it for the wheels that 

follow. For design purpose, the friction coefficient between the wheel and the rail is 

usually assumed to be between 0.10 - 0.30.  

In Section 2.3, the relation between creepage and the generated creep force has been 

explained. However, many experiments reported in the literature show that the relation 

has a peak followed by decay with increase in creepage. To explain this phenomenon, 

Nielsen and Theiler (1996) proposed the modelling of the friction coefficient as a 

function of slip velocity. Following the theory of Nielsen and Theiler, the relation 

between the slip percentage and the friction between wheel and rail was proposed by 

Ohishi et al. (2000), as exhibited in the adhesion force versus slip velocity curve shown 
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in Fig.2.16. Because the adhesion forces depend only on the friction coefficient and 

normal load, it is clear that the friction coefficient is also affected by the slip. The 

relation between them is not linear and depends on the wheel/rail condition (wet or 

dry).   
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Figure 2.16. Adhesion force against slip velocity (Ohishi et al. (2000)) 

Coefficient of friction between the brake shoes and the wheel also does not remain 

constant. It varies with the sliding speed between the brake shoes and the wheal tread 

that depends on the velocity of the wagons. This also means that it changes 

continuously during the braking process. Fig 2.17 exhibits a typical plot of kinetic 

friction coefficient between two surfaces as a function of sliding speed and the 

Barwel’s formula that shows the relationship between the friction coefficient kµ  and 

sliding speed sv  where the constant fc  depends on the material (Rabinowicz (1995)). 
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k f sc vµ −=  

Figure 2.17. Friction coefficient against sliding speed 

2.5.3. Dynamics Due to Traction 

Because traction can be viewed as the reverse process of braking, the three scalar 

equations in the Eq. (2.8) are still applicable with only a change of sign (+/-). As a 

consequence, in the reverse of the skid phenomenon during braking, locomotives 

exerting excessive traction torque can make the wheelset rotate without any 

longitudinal motion. This condition is referred to as ‘roll-slip’ and becomes a subject of 

interest in the locomotive drive simulation as reported by Muller and Kogel (2000). 

Roll-slip can lead to railhead damage (engine burn or wheel burn). As for braking, 

traction can also cause large longitudinal forces in the wheel-rail contact patch.   

2.5.4. State-of-the-art of Braking and Traction Dynamics Research 

Balas (2001) developed a model for the sliding wheel of a railway car during braking. 

This work is mainly to assist the study and design of the braking equipment, including 

the Anti-lock Braking System (ABS). In this model the friction coefficient between the 

wheel and the rail is considered as a function of the slip of the wheel as shown in Fig 

2.18. The slip of the wheel is defined as shown in Eq.2.10. 

carwcar vvvs /)( −=         (2.10) 
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where:  is the slip (always between 0 (no braking) and 1 (locking)),  is the 

velocity of the car and  is the velocity of the wheel. This concept has been used by 

Ohishi et al. (2000) to design a control system that would prevent slip during traction of 

an electric motor coach. The difference is only in the shape of the friction coefficient 

against slip curve where Balas considers the pseudo sliding due to elasticity of the 

wheel. If this pseudo sliding is ignored, then the curve in Fig.2.16 used by Ohishi will 

be obtained.  

s carv

wv

 

uncontrollable 
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Figure 2.18. Wheel-rail friction coefficient against slip (Balas (2001)) 

Independently Cocci et al. (2001) presented a railway wagon model with an anti-slip 

braking system. The model is set up in the ADAMS/Rail and Simulink platform. 

Similar to Balas, Cocci et al. also considered the friction coefficient between wheel and 

rail as a function of wheel slip. The bogie suspension is modelled in three dimensions 

where longitudinal, vertical, and lateral stiffness are considered in the model. However 

longitudinal dynamics due to the effect of anti-slip control for optimum deceleration 

was particularly attended. Modelling the complete bogie is required to take into account 

the effect of load distribution to the wheel due to track geometry and/or track 

irregularities. 
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Olson (2001) has studied the longitudinal dynamics of ground vehicles that include 

non-linear wheel braking and acceleration models. Although his work is focused on 

road vehicles, it is still appropriate to the study of railway wagon braking. In 

formulating the equations of motion of wheel under braking condition, Olson 

considered the slip as a dynamic state variable, replacing the absolute rotational rate of 

the wheel speed.  

Lixin and Haitao (2001) studied the dynamic response of wagons in a heavy haul train 

during braking mode. For such purpose they have set up a model using ADAMS/Rail 

software that could predict the three dimensional dynamic response of the wagon under 

braking conditions. An open-top freight wagon used in China was the case study. From 

their investigation it was concluded that the application of braking has adversely 

affected the lateral and vertical dynamic performance of the wagon. However, the 

investigation was limited to constant brake shoe force that was distributed evenly to the 

wheels. In actual conditions, the brake force is a time function and may not be 

symmetric and could be distributed unevenly to the wheels. Lixin and Haitao (2001) 

did not investigate the effect of wheel-lock or skid phenomena.  Both of these 

conditions (asymmetric brake forces and wheel skid) can lead to a more serious 

situation.  This thesis (Chapter 9) describes these phenomena in detail. 

Berghuvud (2002) investigated the effect of brake application to wagon curving 

performance using parameters that define the wagon curving performance such as the 

wheelset angle of attack, the track forces, and the wear in the contact patch between the 

wheels and the rails. He found that the wagons with different types of bogies respond in 

different ways to curving as a function of the applied braking force. However he did not 

consider the effect of variation in speed or deceleration as he examined the wagon 
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running on downhill slopes while braking was continuously applied to keep its speed 

constant. The braking force applied also remained constant and symmetric with no 

wheel skid.   

Suda and Grencik (1996) explained the mechanism of deterioration of curving 

performance under braking conditions where the braking torque reduced the steering 

torque of the wheelset. This mechanism is explained in Fig.2.19 that shows a free body 

diagram of a wheelset running along a curved track.  

FyL

FyR

FBR

FBL

FxR

FxL

 

Figure 2.19. Curving diagram of a wheelset (Suda and Grencik (1996)) 

While negotiating a curve, the rolling radius of the outer wheel becomes larger than 

that of the inner wheel leading to the generation of longitudinal creep forces  and 

, where in general 

xRF

xLF xLFxRF ≠ . These creep forces produce a steering torque that 

guides the wheelset to follow the curve appropriately.  Application of brake produces 

additional longitudinal forces  and BRF BLF  on the contact points which produce a 

steering moment as shown in Eq.(2.11). 

( ) ( )[ ]BRFxRFBLFxLFaM ++−= ,       (2.11) 
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where is the semi distance between the contact points. However, the resultant of total 

longitudinal creep force and lateral creep force at the contact points cannot exceed the 

maximum frictional force between the wheel and the rail.  The resultant creep forces 

are calculated as shown in Eq.(2.12). 

a

( ) 22
yRFBRFxRFCRF ++=    ; ( ) 22

yLFBLFxLFCLF +−=     (2.12) 

where  and  are resultant creep forces on the right and left rail respectively. If 

 and  exceed the creep condition, they becomes saturated leading to reduction 

in the longitudinal creep force. The directions of longitudinal creep force and additional 

force due to braking are the same on the inner wheel, so the reduction in longitudinal 

force on the inner rail is larger than that on the outer wheel. Because of this reduction 

of longitudinal forces, the steering moment on the wheelset also reduces.  

CRF CLF

CRF CLF

Malvezzi et al. (2003) carried out an investigation of the braking in trains. They 

performed probability analysis of train deceleration during braking. The aim of the 

work was to determine the probability that the real deceleration is lower than the 

nominal value multiplied by a safety margin. 

The analysis of braking in a train was also carried out by Durali and Shadmehri (2003). 

The authors reported the analysis of train derailment due to severe braking with various 

wagon weight configurations. From the results, the optimum configuration of wagons 

and the critical derailment velocity can be determined. The authors also claimed that 

the results were in excellent agreement with the field experience although they did not 

present any comparison with the field data in the paper. 
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Excessive traction torque applied to the locomotive wheels could cause roll-slip. 

Because this roll-slip reduces the traction power and can damage the locomotive’s 

wheels, it is very important to avoid it during the operation of the motive power. For 

this reason, studies on the subject of slip controllers have been extensively performed. 

Among them was the work recently reported by Frylmark and Johnsson (2003). In their 

thesis Frylmark and Johnsson studied several methods of slip controller such as 

adhesion observer based controller, fuzzy logic slip controller and hybrid slip control 

method. As a summary, the authors presented the advantages and disadvantages of each 

method. They also proposed a few improvements and present ideas that may be 

interesting in future research. 

2.6. WAGON SIMULATION SOFTWARE PACKAGES 

The computational simulation of the dynamic behaviour of railway wagons has been a 

standard design task in the railway industry during recent years (Schupp (2003)). 

Software packages such as VAMPIRE and NUCARS (Iwnicky (1999)) have been 

specifically developed for this purpose, while general multibody dynamics software 

tools such as and ADAMS, SIMPACK and UNIVERSAL MECHANISM have a 

module which is intended to simulate the railway wagon dynamics. Multibody 

dynamics computational method has been used as a tool to develop these software 

packages.  

Using VAMPIRE as a tool, McClanachan et al. (2004) have shown that it is possible to 

adequately model freight wagons containing three piece bogies during constant speed 

operation. In their paper, the data from field tests were compared with the simulation of 

roll, bounce and pitch. 
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Shabana and Sany (2001) reported a survey of rail vehicle track simulations which 

include flexible multibody dynamics. In their paper they have pointed out that, with the 

recent development in computational mechanics, it is possible to develop a tool to 

comprehensively analyse the complex dynamics of railway vehicles and tracks.   

Shen and Pratt (2001) developed a railway dynamics modelling and simulation package 

for current industrial trends. They suggested that the future software tool should adopt 

the object oriented and knowledge based techniques that aid the human thought 

process. According to them the new simulation packages should be adaptable to design 

changes.   

2.6.1. Reference Coordinate System and Formulation of Equation of Motion 

This section discusses how the multibody system approach is currently used in the 

formulation of railway vehicle dynamics simulation tools. The review includes the 

equation of motion and the formulation of the wheel-rail contact problem. These are the 

specific modelling features that make the railway vehicle dynamic simulation unique. 

However the review presented here also shows that the current approach is not ideal to 

simulate railway wagon/ bogie dynamics during braking or traction. 

The common method of deriving the equations of motion of the railway wagon is the 

transfer coordinate (or moving coordinate) system that moves along the track at the 

speed of the wagon. This coordinate system is referred to as track-based or track-

following moving reference system (Zboinski (1999)). With this method it is very 

convenient to describe the position of the contact point between the wheel and the rail 

and the direction of wheel-rail contact force. By assuming steady state motion of 

wagons, a simple form of the equations of motion can be obtained. However, applying 
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this method to the braking and/ or traction condition is rather cumbersome if not 

impossible. 

Fig 2.20 illustrated this problem where a body , with body coordinate system 

(

i

, , ,i i i io x y z ) attached to it, is moving with respect to a non-inertial transfer coordinate 

reference system R ( , , ,r r r ro x y z ). As presented by Schiehlen (1984) and Xia (2002), 

the Newton-Euler equations of motion for the moving body i  with respect to the 

transfer coordinate system and the inertial reference frame O ( , , ,o o o oo x y z ) are as per 

detail shown in Eq.(2.13) and Eq.(2.14). 

Rr  
Rir  

rz  

ry  

rx  
ix  

iy  
 

iz  

0x

0o
ro

io  

Riω
 Rω

0z  

0y  

 

 
Figure 2.20. The description of the motion of a body in a moving reference frame 

( )2 2i R R R R R Ri R Ri Ri i
⎡ + + + + + =⎣m r ω r ω ω r ω r r F&&& % & % % % & && ⎤

⎦        (2.13) 

( ) 2i R R i R R Ri xi yi zi Ri i R i Ri Ri i Ri i+ + + + + + + =I ω ω I ω ω ω I I I ω I ω I ω ω I ω M& % % % & %        (2.14) 

where  and  are the mass matrix and the inertia tensor of the body respectively,  

and  are the external force and moment applied to the body written in the transfer 

coordinate frame respectively,  and  are the vector position and the angular 

velocity of the transfer coordinate system respectively, and  and  are the vector 

position and angular velocity of the body reference in respect to the transfer coordinate 

im iI iF

iM

Rr Rω

Rir Riω
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system respectively. Over dots ( ⋅ ) represent differentiation with respect to time and 

tildes (~) represent skew symmetric matrix of the vector. 

If the transfer coordinate system moves with constant speed along a tangent track, then 

the Newton-Euler equations of motion reduce to a very simple form as shown in 

Eq.2.15 and Eq.2.16. 

i Ri i=m r F&&          (2.15) 

i Ri Ri i Ri i+ =I ω ω I ω M& %         (2.16)  

The equations will be slightly more complex if the system moves in curving, although 

it can be handled without much difficulty as long as the speed remains constant because 

we could pre-define the angular velocity of the transfer coordinate system for the 

known geometry of the curve. 

The problem becomes very complex when we deal with the braking condition where 

the speed does not remain constant.  Currently, the solution to this problem is obtained 

by pre-guessing the speed profile based on the initial velocity and deceleration and 

assuming the transfer coordinate system to move with this speed profile. This approach 

will not provide an exact solution because the deceleration actually comes from the 

force applied to the body in the system, or more specifically it is caused by the force 

generated at the contact points due to brake forces applied to the wheels. To obtain an 

exact solution, the contact kinematics should be calculated as a function of the variation 

of the velocity of the moving body and it must be calculated in real time (on line) 

during the simulation.  
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Another consequence of using a moving reference frame is that the wheelset rotation 

with respect to its lateral axis, which is referred to as wheelset pitch, is not explicitly 

included in the formulation. Because the speed of the wagon has been pre-defined and 

assumed to be the speed of the transfer coordinate system along the track, the nominal 

wheelset pitch velocity has also to be pre-defined as a function of the speed. Thus, the 

effect of the severe application of heavy braking and traction such as skid and slip 

cannot be accounted for in the formulation.  

Due to the reasons explained above, the best way to treat the dynamics during braking 

and traction is to describe the absolute body motion in the fixed inertia coordinate 

system. This thesis presents such a formulation which is discussed in Chapter 3. 

Another matter that should receive careful attention is the interaction between the 

wheel and the rail itself. Under braking torque, the locked region in the wheel-rail 

contact area is moved backward and generates areas of compression and tension as 

shown in Fig 2.21 (Dukkipati (2000)). In parallel, the forward motion of the wagon is 

decelerated by the longitudinal creep force developed in the contact area. The larger the 

longitudinal creep force, the further the zero line of stress is displaced from a line 

drawn perpendicular to the rail and through the centre of the wheel. If the longitudinal 

creep force is large enough, all the contact area becomes a slip area or in other words 

the wheel will purely slide (skid) on the rail. Skidding affects the safety of the wagon 

so it is important to consider it in the wheelset dynamic model. The problem will be 

more complicated if the friction coefficients between the wheel and the rail and 

between the brake shoe and the wheel are treated as dynamic variables.  
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Figure 2.21. Stress distribution in the contact area during braking (Dukkipati (2000)) 

We should also note that the magnitude of the total creep force is limited by the 

saturation adhesive force between the wheel and the rail. As the total creep force is the 

resultant of the longitudinal and lateral creep forces, we can deduce that at saturation 

the longitudinal creep force could effectively modify the lateral and roll motions 

between the wheel and the rail. From this fact we can also state that the application of 

the braking force affects the lateral as well as the longitudinal and the vertical dynamics 

of the wagon, especially at the onset of and during skidding.  

2.7. SUMMARY 

Railway wagon, bogie and wheelset dynamics cover the subjects of linear and non-

linear stability, curving performance, ride quality and comfort analysis, wagon track 

interaction, and dynamic control systems.  This extensive research is greatly supported 

by the emergence of wheel-rail rolling contact theory and the improvement of 

numerical analysis algorithms and computational strategies over the last three decades. 
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Only limited information on the dynamic behaviour of wagons and bogies under 

longitudinal forces due to braking and traction are found in the published literature. As 

wagons are mostly not self-propelled, the interest in the research of the effect of 

longitudinal forces due to braking is much larger. Much of the research on wagon 

braking is concerned only with the optimisation of braking distance and to avoid wheel 

skid. At the onset of and during skidding, the longitudinal creep force affects the lateral 

creep force at the wheel-rail contact patch as the magnitude of the resultant of the 

lateral and longitudinal creep force is limited by the saturation adhesive force between 

the wheel and the rail. The effect of the braking force to the lateral dynamics of the 

wagon bogie especially at the onset of and during skidding is addressed in this thesis.  

The complexity of modelling the dynamics of bogies during traction/braking emerges 

as we cannot use a transfer coordinate system that moves along the track at the speed of 

the wagon. The position and orientation of the contact patch, the creepages and creep 

forces, which are usually defined in the track reference frame, need to be transferred to 

the absolute reference frame to formulate the equations of motions. A comprehensive 

explanation of the dynamic behaviour of the bogie under traction/braking condition is 

undoubtedly required to maximise the efficiency and minimise the risk of railway 

rollingstock operation. This thesis provides a contribution to this important area. 

 49



3.  DYNAMICS OF RIGID BODIES - A GENERALISED 

MODELLING APPROACH  

3.1. INTRODUCTION 

Many commercially available wagon-track system dynamics software packages adopt 

the track-following reference (TFR) coordinate frame that moves at predefined wagon 

speed. Although the TFR coordinate frame simplifies the formulation, it cannot truly 

account for the effect of the longitudinal traction or braking forces; such effect is 

indirectly accounted for by inputting variable speed profiles. The inertial reference 

frame (IFR) that is fixed in space and time with the capability of describing the location 

and orientation of each moving body in the coordinate system offers an alternative 

modelling platform. The IRF system is capable of accounting for the large translations 

and rotations of the wagons due to their operational parameters and track geometry, 

including the wheelset rotation with respect to its lateral axis (wheelset pitch). The first 

derivative of this wheelset rotation or the wheelset angular velocity plays a key role in 

the definition of creepages that are crucial to the calculation of creep forces on the 

wheel-rail contact patch. In the constant speed simulation this angular velocity is 

assumed to remain constant and hence, as a simplification, most rail wagon-track 

system dynamic analysis packages ignore the wheelset pitch degree of freedom. 

However, during the application of braking or traction torques, the wheelset rotation no 

longer remains constant; therefore wheelset pitch as a degree of freedom should be 

included in the modelling. This also implies that the wheel-rail contact parameters 

should be evaluated as part of the process of simulation and not as a preliminary 
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calculation as is normally done in constant velocity simulation packages that are 

commercially available. 

As this thesis focuses on the effect of the longitudinal forces to the dynamics of wagons 

and bogies, the IRF based generalised multibody dynamics approach, especially applied 

to rigid body systems, is adopted for the modelling.  This chapter presents the IRF 

based generalised rigid body dynamics formulation and its application to the modelling 

of the wheel-rail contact.  

3.2. FORMULATION 

Rigid body dynamics is generally expressed in terms of mass matrices as well as the 

position, velocity, acceleration and force vectors. This section briefly describes the 

formulation of these vectors and matrices in the IRF Coordinate System. More detailed 

discussion on the subject of multibody system dynamics can be found in the literature 

(Shabana (1989), Schiehlen (1997) and Roberson and Schwertassek (1998)).  

3.2.1. Coordinate System and Transformation 

Fig. 3.1 shows a rigid body i  in three-dimensional space. Reference frame  is an 

inertial reference frame (IRF) with its origin fixed in space and time. The unconstrained 

motion of a rigid body in space can be described using six independent coordinates; 

namely three independent translation coordinates and three independent rotation 

coordinates. By measuring the displacement of a selected reference point that is fixed to 

or forms part of the rigid body, usually its centre of mass, the translational motion of 

the body can be easily defined. This selected reference point is chosen as the origin of 

XYZ
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the body reference frame . The position of an arbitrary point   in the body i  

with reference to the global IRF system can be written as (see Fig. 3.1) 

i i iX Y Z iP

i i i= +r R A ui          (3.1) 

X

Z  

iP
iYiu  

iZ
iO  

ir  
iX

iR

YO  

 

 

Figure 3.1. Coordinates of rigid body 

where  is the global position vector of the origin of the body reference frame,  is 

the transformation matrix (from the body coordinate system to the global coordinate 

system), and 

iR iA

iu  is the position vector of the same arbitrary point  with reference to 

the body coordinate system. , a 3 x 3 transformation matrix, and  and 

iP

iA iR iu  vectors 

are respectively given by (Shabana (1989)): 

2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2( ) 2( ) 2( ) 2( )
2( ) 1 2( ) 2( ) 2( )
2( ) 2( ) 1 2( ) 2( )

i

θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ θ θ

⎡ ⎤− − − +
⎢ ⎥= + − − −⎢ ⎥
⎢ ⎥− + − −⎣ ⎦

A   (3.2) 

T

1 2 3
i i i iR R R⎡= ⎣R ⎤⎦         (3.3) 

 52



T

1 2 3
i i i iu u u⎡= ⎣u ⎤⎦

i

        (3.4) 

where 0 1 2 3, , ,i i iθ θ θ θ  are Euler parameters describing rotational coordinates  that 

define the body orientation as shown in Eq. (3.5). 

iθ

0 1 2 3
i i i i iθ θ θ θ⎡= ⎣θ ⎤⎦        (3.5) 

The four Euler parameters 0θ , 1θ , 2θ , 3θ  should obey the following condition : 

3
2

0
( ) 1i

k
k

θ
=

=∑          (3.6) 

Note: Although the rotational coordinates are represented by four Euler parameters, the 

number of independent rotational coordinates remains three (represents three 

rotational degrees of freedom) due to the constraint of Eq. (3.6).  

3.2.2. Velocity and Acceleration Analysis 

Velocity 

By differentiating Eq. (3.1) with respect to time, we obtain the velocity vector: 

i i i= +r R A u&&& i          (3.7) 

The vectors i iA u&  can be written as 

(i i i i i= ×A u A ω u& )         (3.8) 

where iω  is the angular velocity vector defined with respect to the body coordinate 

system, shown explicitly as in Eq. (3.9). 
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1

2

3

i

i

i

i

ω
ω
ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ω                (3.9) 

By utilizing the skew symmetric matrix of the vector iω  (Shabana (1989)) and the 

identity of the cross product between two vectors (Kreyszig (1999)), the angular 

velocity and position vector can be evaluated as follows: 

i i i i i× = = −ω u ω u u ω% %         (3.10) 

where iω%  and iu%  are skew symmetric matrices given by 

3 2

3

2 1

0
0

0

i i

i i

i i
1
i

ω ω
ω ω
ω ω

⎡ ⎤−
⎢= ⎢
⎢ ⎥−⎣ ⎦

ω% ⎥− ⎥        (3.11.a) 

3 2

3

2 1

0
0

0

i i

i i

i i

u u
u
u u

⎡ ⎤−
⎢= ⎢
⎢ ⎥−⎣ ⎦

u% 1
iu ⎥− ⎥        (3.11.b) 

where 1
iω , 2

iω , 3
iω  and 1

iu , 2
iu , 3

iu  are the components of the vectors iω  and iu  

respectively.  Eq. (3.7) can, therefore, be rewritten as 

i i i i= −r R A u ω& %& i         (3.12) 

The angular velocity vector iω  can be calculated by using the time derivatives of the 

rotational coordinate  of the body reference as iθ

i i=ω G θ& i          (3.13) 

where iG , in term of Euler parameters, is a 3 × 4 matrix given by (Shabana (1989)) 
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1 0 3 2

2 3 0 1

3 2 1 0

2

i i i i

i i i i

i i i i

i

θ θ θ θ
θ θ θ θ
θ θ θ θ

⎡ ⎤− −
⎢= − −⎢
⎢ ⎥− −⎣ ⎦

G ⎥
⎥        (3.14) 

 Acceleration 

The acceleration can be obtained by differentiating Eq. (3.7) with respect to time. This 

leads to 

i i i= +r R A u&&&&&& i          (3.15) 

The vector i iA u&&  can be written (similar to Eq. (3.8)) as follows: 

( ) (i i i i i i i i i⎡ ⎤= × × + ×⎣ ⎦A u A ω ω u A α u&& )      (3.16) 

where 
T

1 2 3
i i iα α α⎡= ⎣

iα ⎤⎦  is the angular acceleration vector of body i  with respect to 

the body coordinate system.  

Eq. (3.16) can also be written as 

2( )i i i i i i i i= +A u A ω u A α u&& % %        (3.17) 

where iα%  is a skew symmetric matrix of the angular acceleration vector given by 

3 2

3

2 1

0
0

0

i i

i i

i i
1
i

α α
α α
α α

⎡ ⎤−
⎢= ⎢
⎢ ⎥−⎣ ⎦

α% ⎥− ⎥        (3.18) 

Thus, Eq. (3.15) can be rewritten as 

2( )i i i i i i i= + +ir R A ω u A α u&& %&& %        (3.19) 
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3.2.3. Mass Matrices 

The mass matrix of the rigid body is defined as 

i i
i RR R

isymmetric
θ

θθ

⎡ ⎤
= ⎢
⎣ ⎦

m m
M

m ⎥

i

       (3.20) 

where 

i

i i
RR V

dVρ= ∫m I         (3.21) 

i

i i i i
R V

dVθ ρ= −∫m A u G% i i        (3.22) 

T T

i

i i i i i i i

V
dVθθ ρ= ∫m G u u G% %        (3.23) 

where ρ  and  are the mass density and the volume of the rigid body. iV

It can be easily verified that the integration in the Eq. (3.21) yields  

0 0
0
0 0

i

i i
RR

i

m
m

m

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

m 0 ⎥
⎥         (3.24) 

where  is the total mass of the body. Thus, the matrix  is a diagonal matrix 

containing constant terms representing the mass of the body. 

im i
RRM

If the origin of the body reference is attached to the body centre of mass, the integral of 

Eq. (3.22) will vanish. In this case the matrix i
Rθm  that represents the inertia coupling 

between the translation and rotation of body reference is a null matrix and, therefore, 

the mass matrix  of the rigid body can be written as follows: iM
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i
i RR

i
θθ

⎡ ⎤
= ⎢
⎣ ⎦

m 0
M

0 m ⎥         (3.25) 

Therefore, for simplicity and in order to eliminate the inertia coupling between the 

translation and rotation of the body reference, in this thesis the origin of the body 

reference frame is always positioned at the centre of mass of the bodies. 

The matrix i
θθm  that is associated with the rotational coordinates of the body reference 

may be written as 

T T

T T

T

i

i

i i i i i i i

V

i i i i i

V

i i

dV

dV

θθ

θθ

ρ

ρ

=

=

=

∫
∫

m G u u G

G u u

G I G

% %

% % iG        (3.26) 

where i
θθI  is the inertia tensor of the rigid body defined as follows: 

T

i

i i i i

V
dVθθ ρ= ∫I u u% % i

0

        (3.27) 

For positioning the body reference frame at the body centre of mass, the inertia tensor 

is defined as in Eq. (3.28): 

11

22

33

0 0
0
0 0

i

I
I

I
θθ

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

I ⎥
⎥         (3.28) 

where 11I , 22I , 33I  are the moments of inertia of the rigid body with respect to the 

principal axes of the body reference. 
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3.2.4. Generalised Forces  

Normally rigid bodies under motion are subjected to external forces. For the railway 

wagon system these forces include the gravity, the spring and the damper forces, the 

friction forces, the actuator forces, and the traction or the brake torques. The evaluation 

of these generalised applied forces associated with the generalised coordinates of the 

spatial rigid body system is an essential step in the formulation of the system dynamic 

equation.   

X
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iX

iY
iZ

i
Pr
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iu

iO

O

iP
iF

 
Figure 3.2. Rigid body subjected to external force  

Fig. 3.2 shows a rigid body i  subjected to an external force  that acts at an arbitrary 

point . The virtual work of this external force vector is given by 

iF

iP

Ti i
eW i

Pδ δ= F r          (3.29) 

 58



where i
Pδ r  is the virtual displacement of the point  due to the application of the force 

.  Using the first time-derivative of the vector position of point  defined in Eqs. 

(3.12) and.(3.13), the virtual displacement 

iP

iF iP

i
Pδ r  can be written as Eq. (3.30). 

i i i i i
P P

iδ δ= −r R A u G θ% δ        (3.30) 

By substituting Eq. (3.30) into Eq. (3.29), we obtain 

T Ti i i i i i i
eW i

Pδ δ= −F R F A u G θ% δ

i

      (3.31) 

We can rewrite Eq. (3.31) as 

T Ti i i i
e RW θδ δ= +F R F θδ

i

       (3.32) 

where  

i
R =F F          (3.33) 

( )Ti i i i
Pθ = −F A u G% iF         (3.34) 

Eq. (3.32) determines the virtual work as the summation of two components, namely, 

the work done by the direct force acting at the origin of the body reference and the 

work done by the moment acting on the body. 

 System of forces and moments 

If a set of forces 1 2, ,
f

i i i
nF F FK  and a set moments  act on the a rigid body 

, then we will have vectors of generalised forces that can be expressed as 

1 2, ,
m

i i i
nM M MK

i

 59



1 2
1

f

f

n
i i i i
R n

j=
= + + + =∑Q F F F FL i

j       (3.35) 

( ) ( ) ( )

( )

TT TT
1 2 1 1 2 2

TT

1 1

m f f

fm

i i i i i i i i i i i i i i i i i
n n

nn
i i i i i i

j j j
j j

θ

= =

⎡ ⎤⎡ ⎤= + + + − + + +⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤= − ⎢ ⎥⎣ ⎦∑ ∑

Q G M M M AuG F Au G F Au G F

G M Au G F

% % %L L

%

n

 (3.36) 

where  and i
RQ i

θQ  are the vectors of generalised forces associated with the generalised 

translational and rotational coordinates respectively. 

 Linear spring-damper system 

As a wagon suspension system consists of springs and dampers, it becomes important 

to accommodate the generalised forces exerted by these elements in our formulation. 

Consider two bodies i  and j connected by a spring-damper element at points  and 

 respectively as shown in Fig. 3.3.  
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Figure 3.3. Linear spring and damper 
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Let be the spring cons d  be the undeformed 

length of the spring. The m gnitude of the spring-damper force along a line that 

 3.37) 

where is the c

respect to point  which is defined by 

tant, c  be the damping coefficient, ank  0l

a

connects points iP  and jP  can be written as 

0( )sF k l l c        (l= − + &

l  urrent spring length. If Pr  is the position vector of point P  with ij i

jP

ij i j
P P P

i i i j j j
P PR

    (3.38) 

The current spring length is

= −

= + − −

r r r

R A u A u
   

 the modulus of vector ij
Pr , that is, 

Tij ij ij
P P Pl r r r         (= = 3.39) 

The unit vector r  of the vector r  can, therefore, be written as ˆ ij
P P

ij

ˆ ij
ij
P

P l
=r         r  (3.40) 

Using this unit vector, we can express the 

forces that act on body  as follows 

vectors of the generalised spring-damper 

i

( )T

ˆR s P

i i i i ijˆ

i ij

s P PFθ =Q A u G r%
     (3.41)  

Similarly, the vectors

F= −Q r
   

 of the generalised spring-damper forces acting on body j  are 

represented as follows: 
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( )
ˆ

ˆ

i ij
R s P

j j j j ijT

s P P

F

Fθ

=

= −

Q r

Q A u G r%
       (3.42) 

Torsional spring-damper system 

Torsional spring-damper that is often used in the wagon suspension system can be 

represented schematically by the diagram shown in Fig. 3.4. It is obvious that the 

torsional spring damper generates/resists only torque with no capability for resisting 

linear forces acting at the body centre of mass. 

ijθ  

i  

,r rk c  

j

 

Figure 3.4. Torsional spring-damper element 

The torque exerted by the element on the two bodies is caused by the relative rotation 

ijθ between them. The magnitude of this torque is 

( )ij ij ij
r rT k cθ θ= + &         (3.43) 

where  and  are the rotational spring and damper coefficient respectively. If is 

the unit vector alo

generalised force that act on the body  are represented as follows: 

rk rc ijh

ng the joint axis, then it can be easily verified that the vectors of the 

i
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T

i
R

Tθ

=

= −

Q 0

Q G h
       (3.44) 

and on the body 

i ij i ij
 

j  are represented as follows: 

T

j
R

j ij jTθ

=

=

Q 0

Q G ijh
 

3.2.5. Contact between Two Rigid Bodies: Definition and Constraint 

The dynamics

formulation of the contact problem proposed by Shabana et al. (2001), which has been 

briefly discussed in Chapter 2, has preferable features to perform simulation of wagons 

e (IRF) is 

       (3.45) 

 of wagons running on track involves contact between wheel and rail. A 

under longitudinal braking or traction forces. The fixed inertial reference fram

used and the rotation of the wheel with respect to its lateral axis (wheel pitch) is also 

calculated accurately. The formulation is explained in this section. 

Definition of the contact point 

Consider two rigid bodies i  and j that are in contact at point kP  as shown in Fig. 3.5. 

i jR  and  are the vectors that define the global position of of the coordinate R  the origin 

system of each body while iku  and jku  are the position vectors of the contact point in 

the local coordinate system of each body.   
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Figure 3.5. Two rigid bodies in contact 

The global position vector of the contact point  on bodies i  and kP j can be written, 

respectively, as 

ik i i ik= +r R A u           (3.46) 

jk j j= +r R A u jk         (3.47)   

where  and  are the transformation matrices that define the orientation of bodies 

 and 

iA jA

i j  respectively in the global reference frame. 

A surface in space can be described by using parametric representation. As surfaces are 

two-dimensional, two parameters are required (Greenberg (1978), Kreyszig (1999)). In 

the formulation of two rigid bodies in contact, the contact surface of each body i  and j  

are assumed to be defined by the two surface parameters as follows:  
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T

1 2
ik ik iks s⎡ ⎤= ⎣ ⎦s         (3.48)  

T

1 2
jk jk jks s⎡= ⎣s ⎤⎦         (3.49)  

Therefore, for each single point of contact between two rigid bodies i  and j , there exist 

four surface parameters. These surface parameters are independent variables that are 

treated in the system dynamics in the same manner as the system generalised 

coordinates. The difference between these surface parameters and the generalised 

coordinate is that there is no inertia or generalised forces associated with these surface 

parameters. Thus, the surface parameters are also referred as the non-generalised 

coordinates. 

 

Figure 3.6. Tangent and normal vectors to the body surface at a contact point  kP

At the contact point, for each surface in contact a tangent plane is defined by two 

tangents vectors as shown in Fig. 3.6. These tangent vectors are linearly independent 
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∂
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1 2
ik ik ik= ×n t t  
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and not necessarily orthogonal. The tangent vectors to the surfaces of bodies i  and j  

are defined, respectively, in the body coordinate system as 

ik
ik

l ik
ls

∂
=
∂
ut   ,          (3.50) 1, 2l =

jk
jk

l jk
ls

∂
=
∂
ut   ,          (3.51) 1, 2l =

Using these tangent vectors we can define the normal vectors to the surfaces in contact 

as 

1 2
ik ik ik= ×n t t           (3.52) 

1 2
jk jk= ×n t t jk          (3.53)  

where ikn  and jkn  are, respectively, the normal vectors to the surface of body  and i j  

at the point of contact defined in the body coordinate system. 

Contact constraints 

The non-conformal contact between two rigid bodies, should satisfy two conditions 

listed below (Litvin (1994), Shabana and Sany (2001)): 

- The point of contact between the two bodies must occupy the same position in 

space. 

- The two surfaces must have the same tangent contact plane at the contact point. 

The first condition provides the following equation known as the contact point 

constraint equation that contains three scalar nonlinear algebraic equations. 

ik jk=r r           (3.54)  
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or,  

i i ik j j+ = +R A u R A u jk        (3.55)    

In the form of the generalised constraint equation, it is written as 

( , ) 0i i ik j j jk= + − − =C q s R A u R A u       (3.56)  

The second condition implies that at the contact point there exists one common unit 

normal for the two surfaces. This means that the dot product between the normal vector 

to the surface of one body and the tangent vector to the surface of the other body should 

vanish. For the case of bodies i  and j  in contact at point , this condition can be 

represented by the following equation: 

kP

T 0jk ik
l =n t ,         (3.57)  1, 2l =

Defining the tangent vector and the normal vectors in the body coordinate systems, Eq. 

(3.57) can also be written as Eq. (3.58). 

T T T 0jk j i ik
l =n A A t ,        (3.58)  1, 2l =

This constraint equation represents the orientation constraint.  

Thus, for each contact between two rigid bodies we have five non linear algebraic 

constraint equations. Since we have six degrees of freedom and four additional 

independent non-generalised surface parameters (i.e., a total of ten unknowns), the five 

constraint equations will not help solving all unknowns; we will have five degree of 

freedom left as unknowns with only one degree of freedom, that is the relative 

translation between the two bodies in the contact normal direction, eliminated.  

 67



Sub-Jacobian matrices of the contact constraint 

Sub-Jacobian matrices of the contact constraint equations are defined as: 

⎡∂
= ⎢ ∂⎣ ⎦

q
CC
q
⎤
⎥             (3.59) 

∂⎡= ⎢ ∂⎣ ⎦
s

CC
s
⎤
⎥          (3.60) 

where  is the vector of generalised coordinates and s  is the vector of surface 

parameters. 

q

Substituting Eq. (3.56) into Eq. (3.59) and (3.60), we obtain the sub-Jacobian matrices 

for the contact constraint as follows (Berzeri (2000)): 

i ik i j jk j⎡= − −⎣qC I A u G I A u G% % ⎤⎦       (3.61) 

i ik j jk⎡= −⎣sC A T A T ⎤⎦        (3.62) 

where iG  is the matrix as defined in the Eq. (3.14) and ikT  is the matrix defined as 

1 2
ik ik ik⎡= ⎣T t t ⎤⎦         (3.63) 

A similar formulation is used to determine matrices jG  and jkT  for body j . 

Substituting Eq. (3.58) into Eq. (3.59) and Eq. (3.60), the sub-Jacobian matrices of the 

orientation constraint can also be derived. These sub-Jacobian matrices of the 

orientation constraint can be written as follows (Berzeri (2000)):   

T
,

jk j i ik i ik i j jk j
l l l

⎡ ⎤= − −⎣ ⎦
T T

qC 0 n A A t G 0 t A A n G% %T  ,      1, 2l =   (3.64) 

T T
,

ik jk
jk j i ik i jl

l lik jk

⎡ ⎤∂ ∂
= ⎢ ∂ ∂⎣ ⎦

T T
s

t nC n A A t A A
s s ⎥ ,    1, 2l =     (3.65) 

Mathematical detail to determine these sub-Jacobian matrices can be seen in Appendix I. 
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3.2.6. Augmented System Dynamic Equations 

The contact constraint equations can be written in general as 

( , , ) 0t =C q s          (3.66)  

where  is the vector of the system generalised coordinates, s  is the vector of the non-

generalised surface parameters of all the contact surfaces in the multibody system and t  

is time.  

q

Differentiating this equation with respect to time yields 

0t+ + =q sC q C s C& &         (3.67) 

where  

t t
∂

=
∂
CC          (3.68) 

is the partial derivative of the vector of constraints with respect to time. For the contact 

constraint which is not an explicit function of time, t =C 0 . 

Differentiating Eq. (3.67) again with respect to time, we will have 

( ) ( ) ( )t t t
+ + + + + + + + =q s q s q sq s

C q C s C q C q C s C s C q C s C 0& & & & & & & & t   (3.69) 

Because the contact constraint is not an explicit function of time, any partial derivatives 

with respect to time will be zero. Thus, Eq. (3.69) can be simplified and rearranged as 

follows: 

( ) ( ) ( ) ( )+ + + + + =q s q q s sq sq s
C q C s C q q C q s C s q C s s 0&& && & & & & & & & &    (3.70) 

or it can be simplified as 

+ =q sC q C s Q&& && d         (3.71)  

where  
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( ) ( ) ( ) ( )= − − − −d q q s sqq s
Q C q q C q s C s q C s& & & & & & & &

s
s     (3.72) 

is a vector that absorbs the quadratic terms in the first order time-derivatives of the 

generalised coordinates and the surface parameters, and  and  are the sub-

Jacobians of the constraint equations.  

qC sC

From Eq. (3.65) we infer that the sub-Jacobian matrix of the orientation constraint 

contains second-order derivatives of the vector position of the contact points with 

respect to the surface parameter due to the fact that the tangent vector is the first partial 

derivative of the vector position of the contact points with respect to the surface 

parameter. Thus, from the last term in Eq. (3.72) we can clearly see that the vector  

contains third-order derivatives of the vector position of the contact points with respect 

to the non-generalised surface parameters. 

dQ

Using the Lagrange multiplier technique, the algebraic kinematic constraint equations 

can be augmented into the differential equations of motion. For the system of rigid 

bodies that involves contact constraint, the equation of motion is written as: 

T

T

e v ⎫+ = + ⎪
⎬

= ⎪⎭

q

s

Mq C λ Q Q

C λ 0

&&
        (3.73) 

where  is the mass matrix of the system,  is the vector of the Lagrange multiplier, 

 is the vector of externally applied force, and  is a quadratic velocity vector that 

arises from differentiating kinetic energy with respect to time and with respect to the 

generalised coordinates of the systems. For the body i  this quadratic velocity vector is 

given by (Shabana (1989)) 

M λ

eQ vQ

T T2 i i i
v θθ

⎡= −⎣Q 0 ω I G& ⎤
⎦        (3.74) 
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The vector of generalised applied force  includes externally applied forces such as 

braking or traction forces, suspension forces, creep forces, and gravity forces but 

excludes the constraint forces which are automatically eliminated using the virtual 

work principle. 

eQ

By combining Eq. (3.71) with Eq. (3.73), the augmented form of the system equation 

that contains generalised coordinates and non-generalised surface parameters can be 

finally written as (Shabana and Sany (2001)):   

T

T

d

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

q

s

q s

M 0 C q Q
0 0 C s 0

C C 0 λ Q

&&

&&        (3.75) 

where 

e= +Q Q Q v          (3.76) 

3.3. APPLICATION: WHEEL-RAIL CONTACT  

As has been previously discussed, the main difficulty in the modelling of rail wagon 

track system dynamics is the formulation of the contact between the wheel and the rail. 

The complication of the problem arises due to the complex geometry of wheel and rail 

profiles and the non-linear creep forces generated by relative motion in the contact area. 

There are numerous references in the literature that have provided solutions to the 

wheel-rail contact problem (Matsudaira (1952), de Pater (1987), and Wickens (2003)).  

However, to make use of these solutions, detailed description of the kinematics of the 

wheelset and the rail are required. This includes the calculation of relative velocity 

between the wheel and the rail at the point of contact and the prediction of the location 
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and orientation of the contact point that are crucial in the formulation of the system 

equations of motion. 

The contact problem formulation described in Section 3.2. is used to model the rolling 

contact dynamics between the wheel and the rail. This section discusses the 

determination of the wheel and the rail surfaces in the terms of surface parameters to be 

used in the formulation, the relation between surface parameters and the profiles of the 

wheel and the rail, contact parameters, normal contact force, contact area, and creep 

forces. 

3.3.1. Parameterisation of the Wheel-Rail Contact Surfaces 

It is very important to accurately predict the location and orientation of the point of 

contact between the wheel and the rail where the contact occurs. The first step in this 

task is to describe the location in space of all points on the surfaces of the wheel and the 

rail, where the contact may occur. This becomes difficult as the wheel and the rail 

surface profiles are usually complex in geometry and cannot be defined by simple 

analytical functions.  However in general, the surface profiles of the wheel and the rail 

can be seen as being generated from two-dimensional curves as shown in Figs. 3.7 and 

3.8 (for new wheels and rails with no localised damage) respectively. 

1
ws2

ws

  

Figure 3.7. Wheel tread and flange surface 

 72



The wheel can be des o-dimensional curve 

that defines the wheel profile through 360 degrees about the wheel axis as shown in 

w w

cribed as a surface obtained by rotating a tw

Fig. 3.7. The surface formed by such rotation can be defined by the following set of 

equations. 

0
w

2 1

0 2

0 2 1

( )sin

( ) cos

w wx x r s= + s

y y s

z z r s s

⎫
⎪

= + ⎬
⎪= − ⎭

        (3.77) 

where  and  are the surface parameters of the wheel. In this case the parameter 

represents the rotation about the wheel axis and the parameter  represents the 

translation in the lateral direction. 

The surface of the rail can also be described by translating the two-dimensional curve 

that defines the rail profile in the longitudinal direction as shown in Fig. 3.8.  

In similar manner of describi rface profile can be defined 

by the following set of equations. 

rz z f s

⎪

⎪= + ⎭

     (3.78) 
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Figure 3.8. Rail head surface 

ng the wheel profile, the rail su
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2
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1
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where  is the surface parameter that represents the translation along the longitudinal 

axis and  is the surface parameter that represents the lateral translation. 

3.3.2. Spline Representation of Wheel and Rail Profiles 

heel and rail 

surface profiles, we require 2D functions of  and  that represent the wheel 

profile and the rail profile respectively. As it is difficult to write simple analytical 

expression, measured profiles are often given in the form of tables of data to describe 

 are required as shown in Eq. (3.72). This 

will lead to a term that contains third-order derivatives with respect to the non-

ial function. These polynomial functions are 

constructed in such a way that, at the point of connection with the adjacent polynomial 

1
rs

2
rs

From the Eq. (3.77) and Eq. (3.78) we know that to fully describe the 3D w

2( )wr s 2( )rf s

the 2D profiles of wheel and rails. 

In the kinematic and dynamic analyses of wheel-rail contact, second order time- 

derivatives of the contact constraint equations

generalised surface parameters (see Section 3.2.6). Thus, in order to accurately define 

the location of the contact points, an accurate description of derivatives of the position 

vectors of the contact point with respect to the surface parameter up to the third order is 

necessary. This also means that the interpolated profiles and their derivatives have to be 

continuous and smooth (no point of singularity) up to the third order differential. In this 

thesis the spline curve fitting method with smoothing process is used for this purpose. 

A spline function is basically a piecewise polynomial function (Boor (1978)) that can 

be easily differentiated or integrated.  

To build a spline function, the data range is divided into a certain number of intervals 

and each interval is fitted with a polynom
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functions there exists continuity of the defined functions and their first, second and 

third order derivatives. Putting all of these polynomial pieces together, one can form a 

smooth curve whose flexibility is strongly influenced by the number of intervals and 

distribution pattern of the data. To assure smoothness of the data profile up to the third 

derivatives, in this thesis fifth order polynomial functions have been used. The number 

of intervals and their distribution are also optimized. More details about spline curves 

can be found in Boor (1978) and hence are not repeated here. 

3.3.3. Wheel-Rail Contact Parameters 

In order to derive the equation of motion, the location of the contact points, the contact 

angle and radius of curvature at the contact points are required. All of these parameters 

wheel tread and rail head as well as the lateral 

By using the contact constraint formulation as described in this section, all of these 

contact parameters are automatically calculated during the simulation process. Thus, 

prior kinematic calculation of contact parameters and table generation are not required. 

are mainly affected by the profiles of the 

displacement and yaw of the wheelset.  In many dynamic simulation packages, these 

parameters are calculated prior to the simulation and arranged in tables (known as 

“look-up” tables) as a function of wheelset lateral and yaw displacement. During the 

simulation, the data in these tables are interpolated based on the calculated lateral and 

yaw displacement of the wheelset at the current time step. For the tangent track 

simulations, where small yaw is expected, the effect of yaw is often ignored. 

Although this approach could increase the computational time, any inaccuracy in 

interpolation of the tabulation method is eliminated.        

 75



The contact constraint formulation also allows calculation of the contact parameters 

independent of the dynamic simulation if required. This can be done by constraining all 

degrees of freedom and setting the lateral and yaw degrees of freedom as driving 

constraints. In this case the system of the wheelset and the rail should be regarded as 

kinematically driven systems, where the total number of constraint equations  is c

equal to the number of system coordinates n . The vector of the constraint equation of 

the kinematically driven system can then be written as: 

[

n

]T1 2( , ) ( , ) ( , ) ( , )nt t t t= =C q C q C q C q 0     (3.79) 

The above equation contains n  unknown coordinat

 

es with an equal number of 

equations. Therefore, the unknown coordinates  

[ ]T1 2 ... nq q q=q .       (3.80) 

can be solved uniquely. 

3.3.4. Normal Contact Force 

The contact force that is developed normal to the common tangent plane of the 

contacting solids is known as the constraint force. Thus, like other constraints, the 

normal contact force can also be determined using the vector of the Lagrange 

multiplier  (Eq. (3.75)). It can be shown that the vector of the Lagrange multiplier is 

equal to the negative of the reaction force vector. 

The reaction force prevents only the penetration and the separation between the bodies 

in conta

referred in the normal direction and any relative motion between the bodies in the 

λ

k= −λ F          (3.81) 

ct. Therefore the reaction force due to the contact point constraint is always 
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direction of the tangent plane is not constrained. Thus, Eq. (3.75) can be used to 

determine the normal contact forces between the wheel and the rail; these forces are 

subsequently used to calculate the contact area and creep forces. 

3.3.5. Contact Area 

To calculate the creep forces, we require the shape and the size of the contact area. 

Using the Hertz’s normal contact theory it can be proved that the contact area between 

l is an ellipse (Johnson (1985)). To calculate the creep force, the 

Consider  as the major (longitudinal) semi axis of the ellipse and  as the minor 

(lateral) semi-axis, then the geometric mean of   and is defined as Eq. (3.82). 

the wheel and the rai

size of the ellipse which is represented by its semi-axes has to be determined. The semi-

axes are calculated using either a table of constants (Garg and Dukkipati (1984)) or 

direct method (de Pater et al. (1999)). In this thesis the direct method is used and 

described briefly in this section. 

e ea b

ea eb

e ec a b=         (3.82) 

Introducing r

. 

 and r
yρ  as the radius of curvature of th il in the longitudinal and thxρ e ra e 

lateral direction respectively, and w
xρ  and w

yρ  as the radius of curvature of the wheel in 

the longitudinal and the late as shown in Fig. 3.9, two constants ral direction A  and B  

are defined as follows: 

1 1 1
2 r w

x x

A
ρ ρ

⎛ ⎞

⎝ ⎠
= +⎜ ⎟  ,  1 1 1

2 r w
y y

B
ρ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

= +⎜ ⎟  .     (3.83) 
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Figure 3.9. Principal Radius of Curvature of the Wheel and the Rail  

Using these two constants, the effective radius of curvature is determined as  

2
( )A B

ρ =
+

.         (3.84)  

Let the angle ( 0
2
πα≤ ≤ ) be determined as 

arccos
A B
A B

α
⎛ − ⎞

= ⎜ ⎟+
        (3.85)  

According to Hertzian theory ((Johnson (1985), Kalker (1990)) we can derive equation 

for the quantity  which determines the ratio between the semi-axes of the contact 

a b

⎝ ⎠

 2e

ellipse (mathematical detail can be found in de Pater et al. (1999)). The parameter e  is 

related to the ratio /e e  of the ellipse semi-axes as follows: 

2

 

2/ 1e ea b e= −   for e ea b≤ ,  A B≥     (3.86.a) 

2

1/a b =   for a b≥ ,  
1

e e
e−

e e A B≤ .    (3.86.b) 

w
xρ

w
xρ

r
yρ

r
xρ
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It is clear that  is independent of the value of the normal force at the contact 

point. The geometric mean  of the ellipse semi-axes as in Eq. (3.82) can be 

determined using the following relation: 

/e ea b

c

3
3 (1 )

4
Nc

G g
Eν ρ

π
−

=         (3.87)  

where, 

21g = − e ,         (3.88) 

N is the normal force at the contact point, 

G  is the shear modulus and 

ν  is Poisson’s ratio. 

Thus,  and  can be determined by Eq. (3.82) and Eq. (3.86) depending on the value 

of the ratio A/B. 

ea eb

3.3.6. Creep Forces 

The creep forces are calculated using Polach’s method (Polach (1999)). Using this 

method the creep forces can be computed efficiently with significant saving in 

computational effort. As stated before, calculating the contact parameters as part of the 

process of dynamic simulation potentially could increase the computational time. 

However, Polach method’s efficiency can help reduce any potential increase in 

computational time to a minimum. The effect of spin creepage is included in the 

calculation. The calculated values using this method are shown to be very close to the 

prediction of the exact theory.  
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Polach’s method uses Hertz formulation for the calculation of the ellipsoidal contact 

area with semi-axes  and normal stress distribution. At an arbitrary point in the 

contact area, the maximum value of the tangential stress is defined by 

,e ea b

maxτ µσ=          (3.89) 

where µ  is the coefficient of friction, which is assumed to be constant in the whole 

contact area,  and σ  is normal stress.  

Fig. 3.10 shows the distribution of normal and tangential stress in the contact area 

according to the Polach’s theory. The contact area is divided into two zones; the shaded 

area is the area of adhesion and the unshaded area is the area of slip. 

,σ τ
Rolling direction 

 

Figure 3.10. Distribution of normal and tangential stress according to Polach’s theory 

The formulation of the creep forces according to the Polach’s theory assumes that, in 

the area of adhesion, the tangential stress is proportional to slip or creepage ξ  and the 

distance from the leading edge. This means the larger the distance from the leading 

edge the larger the tangential stress as shown by the section OP of the tangential stress 

normal 
stress σ

P Tangential 
stress τ

x
O Q y

C B A x
eb  

ea  
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curve in Fig. 3.10. The growth of the tangential stress in the area of adhesion is linear 

and the gradient of the tangential stress curve OP is formulated by Polach as 

22
3

e eC a b
Q
πϕ ξ
µ

=         (3.90) 

where  is normal load and C  is a proportionality constant, which is a value 

characterizing the contact elasticity of the body (tangential contact stiffness) that can be 

obtained from the Kalker’s constant as 

Q

3
8 jj

e

GC
a

= c          (3.91) 

where  is modulus of elasticity and G jjc  is defined as  

2 2

11 22
yx

jj
t t

c c c
ξξ

ξ ξ
⎛ ⎞ ⎛

= +⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

       (3.92)  

where  and   are Kalker’s constants and 11c 22c xξ  and yξ  are the components of the 

creepage in the  and  directions respectively and x y ξ  is total the creepage given by 

2
t x

2
yξ ξ ξ= + .        (3.93) 

After substituting Eq. (3.91) into Eq. (3.90), the gradient of the tangential stress 

becomes 

 1
4

e e jjG a b c
Q

π
ϕ ν

µ
=         (3.94) 

The tangential force (creep force) is then defined by 

1
0 2

4 tan
3 1
e ea bF ϕτ ϕ

ϕ
−⎛

= − +⎜ +⎝ ⎠

⎞
⎟       (3.95) 

where 0τ  is the maximum stress in the contact area. 

From simple theory of friction, 
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0 0
3
2 e e

Q
a b
µτ µσ

π
= =         (3.96) 

where 0σ  is maximum normal stress in the contact area. 

By substituting Eq. (3.96) into Eq. (3.95) , we obtain 

1
2

2 tan
1

QF µ ϕ ϕ
π ϕ

−⎛
= − +⎜ +⎝ ⎠

⎞
⎟        (3.97) 

where the vector of  the creep forces in the  and  the  directions is calculated as x y

i
i

t

F F ξ
ξ

=    ,         (3.98) ( ,i x y= )

Incorporation of spin 

According to Polach’s formulation, if spin is taken into account, then the creep force in 

the  direction becomes y

yc y ysF F F= +          (3.99) 

where ysF  is the increase of creep force caused by the spin, that is 
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ys e m
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⎥      (3.100) 

 where 

( )
3 2 321 1 1

3 2 6 3m sK δ δϕ
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δ      (3.101) 
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The total creepage is, therefore, defined as follows: 

2
c x y

2
cξ ξ ξ= +         (3.104) 

where 

yc yξ ξ=   for    y s yaξ ξ ξ+ ≤       (3.105a) 

yc y saξ ξ ξ= +   for    y s yaξ ξ ξ+ >       (3.105b) 

 

3.3.7. Flange Contact 

 
The constraint contact formulation is strictly restricted to single point contact between 

two surfaces; for wheel-rail interaction, it is the contact point between the wheel tread 

surface and the rail head surface. However, another point of contact between the wheel 

flange and the gauge face of the railhead occurs when the wheel lateral displacement 

exceeds the clearance between the wheel flange and the gauge face of the railhead. To 

overcome the limitation of the constraint contact formulation in dealing with the flange 

contact in addition to the primary wheel thread – railhead top contact (two point 

contact), an additional lateral force term is introduced as shown in Eq. (3.106). The 

magnitude of the lateral force due to the flange contact is calculated as provided in the 

approximate formulation of Garg and Dukkipati (1984): 

 

fwrailyfwflange

fwrailyfwflange

yyforkyyF

yyforkyyF

−<⋅+=

>⋅−=

,)(

,)(

_

_     (3.106) 
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where  is the lateral displacement of the wheelset, is the clearance, and  is 

the lateral stiffness of the rail.  It should be noted that the calculation of flange contact 

force approximately as above provide solution under two point contact.  However, if 

the primary constraint of the wheel thread – rail top surface is lost, the algorithm will 

fail leading to abrupt termination of the simulation.  In other words, the simulation 

could not proceed with the flange contact only and the constraint contact formulation 

will have to terminate indicating wheel-climb mechanism of derailment.  Simulation in 

Chapter 9 of the thesis further illustrates this principle using numerical examples. 

wy fy railyk _

3.4. SOLUTION OF SYSTEM EQUATIONS 

The dynamics of the multibody system is described by a set of differential and 

algebraic equations which are augmented in the total system equation of motion given 

by Eq. (3.75). To numerically solve this system equation, a technique proposed by 

Wehage (1980), which is called Generalised Coordinate Partitioning Method, is used 

in this thesis.  

Because of the constraints, the components of the vectors of generalised coordinates q  

and the surface parameters s   are not independent.  Thus, we can write them in 

partitioned form as follows: 

TT T
d i⎡= ⎣q q q ⎤⎦

⎤⎦

        (3.107) 

and 

TT T
d i⎡= ⎣s s s           (3.108) 

where  and  are, respectively, dependent and independent generalised coordinates, 

and  and  are, respectively, dependent and independent surface parameters. The 

dq iq

ds is
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number of dependent generalised coordinates and the number of dependent surface 

parameters altogether is the same as the number of constraint equations. 

For a virtual change in the system coordinates, the constraint equation of Eq. (3.66) 

forms 

0δ δ+ =q sC q C s           (3.109) 

Then applying the coordinate partitioning of Eq. (3.107) and Eq. (3.108), we can write 

 0
d i d id i d iδ δ δ δ+ + +q q s sC q C q C s C s =

i

δ
=

⎤⎦ c

     (3.110) 

In matrix form Eq. (3.110) can be rewritten as 

0
d d i i

d

d i

δ δ
δ
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

q s q s

q q
C C C C

s s
     (3.111) 

Because the total number of dependent generalised coordinates and the number of 

dependent surface parameters altogether is the same as the number of constraint 

equations , and the constraint equations are assumed to be linearly independent, the 

matrix  is square of size 

cn

d d
⎡⎣ q sC C cn n×  and is non-singular. Consequently 

 is a matrix of size 
i i

⎡⎣ q sC C ⎤⎦ ( )cn n n× − c

i

.  Eq. (3.111) therefore can be rewritten as 

1

d d i i

d
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δ δ
δ δ

−⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣
q s q s

⎤
⎥
⎦

q q
C C C C

s s
     (3.112) 

or  in further simplified form, 

d
di

d i

δ δ
δ
⎡ ⎤ ⎡

=⎢ ⎥ ⎢
⎣ ⎦ ⎣

i

δ
⎤
⎥
⎦

q q
C

s s
        (3.113) 

where  

1

d d i idi

−
⎡ ⎤ ⎡= ⎣ ⎦ ⎣q s q sC C C C C ⎤⎦       (3.114) 
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Eq. (3.113) implies that the virtual change in the dependent coordinates can be written 

in terms of the virtual change of the independent coordinates. 

In a similar manner, the first derivatives of the constraint equation with respect to time 

can also be written as 

0
d d i i

d i
t

d i

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
q s q s

q q
C C C C C

s s
& &

& &
     (3.115) 

Using this equation, the dependent velocities can be written in terms of the independent 

velocities as 

1

d d

d i
di t

d i

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
q s

q q
C C C

s s
& &

& &
C

⎤⎦

      (3.116) 

The independent and dependent sets of coordinates are identified by using Gaussian 

elimination (Strang (1980)). Having identified the independent and dependent sets of 

coordinates the following state vector may be defined. 

TT T T T
i i i i⎡= ⎣y q s q s& &        (3.117) 

This allows us to define the associated independent state equation as 

(TT T T T , , , ,i i i i t⎡ ⎤= =⎣ ⎦ )y q s q s g q q s s& & && && & &&      (3.118) 

By providing a set of initial conditions, the state equations can be integrated forward in 

time using a direct numerical integration method such as the Runge-Kutta method. 

More details on the numerical method in multibody dynamics can be found in Eich-

Sollner and Fuhrer (1998) and Shabana (2001). The solution of the state equation 
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defines the independent coordinates and velocities as well as the independent surface 

parameters and their first derivatives. Then the dependent coordinates and surface 

parameters are determined using the kinematic relation of the constraint equations, 

while the dependent velocities and the first derivatives of dependent surface parameters 

are determined using Eq. (3.116). The independent and dependent accelerations as well 

as the second time derivatives of the surface parameters are determined from the 

solution of Eq. (3.79). 

 

3.4.1. Solution of the Non-linear Algebraic Constraint Equation 

It has been described previously that the dependent coordinates are determined using 

the kinematic relation which is defined by constraint equations. For the contact 

constraint equations which are nonlinear, the system of algebraic equations is solved by 

using the iterative procedure of Newton-Raphson algorithm. The procedure is started 

by assuming a desired solution vector which is close enough to the exact solution. If the 

assumed solution is denoted as  and  for the dependent generalised coordinates 

and dependent surface parameters respectively, we can write the exact solution as 

 and . According to the Taylor’s theorem                           

(Riley et al. (2002)), the vector of constraint equations defined in Eq. (3.66) can then be 

written as Eq. (3.119). 

kdq
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d d d d d d
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t t
∆⎡ ⎤

⎡ ⎤+ ∆ + ∆ = + ⎢ ⎥⎣ ⎦ ∆⎢ ⎥⎣ ⎦
∆⎡ ⎤

⎡ ⎤+ ∆ ∆ ⎢ ⎥⎣ ⎦ ∆⎢ ⎥⎣ ⎦

q s
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q
C q q s s C q s C C

s

q
C q C s
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+

 (3.119) 

 87



where vectors and are called  vectors of Newton differences. 
kd∆q

kd∆s

Because we assume that the vectors 
kd kd+ ∆q q  and 

kd kd+ ∆s s  are the exact solution, 

, and Eq. (3.119) reduces to ( , , )
k k k kd d d d t+ ∆ + ∆ =C q q s s 0

( , , )
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    (3.120) 

The higher order term in Eq. (3.120) can be neglected if 
kd∆q and 

kd∆s are small. In this 

case we can write the first order approximation of Eq. (3.120) as 

( , , ) 0k

k k d dk k
k

d
d d

d

t
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≈

⎥

⎤
⎦

     (3.121) 

which yields 

( , , ) k

k k d dk k
k

d
d d

d

t
∆⎡ ⎤

⎡ ⎤= − ⎢⎣ ⎦ ∆⎢ ⎥⎣ ⎦
q s

q
C q s C C

s
      (3.122) 

Since the dependent and independent coordinates have been partitioned and the 

constraint equations are assumed to be linearly independent, the Jacobian matrix 

 will be a square non-singular matrix. Thus, we can solve Eq. (3.122) for 

the vectors of Newton differences 

d dk k

⎡
⎣ q sC C

kd∆q and 
kd∆s which can be used to iteratively 

update the vectors of system coordinates as 
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1
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d d d

d d d
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+

= + ∆ ⎫
k ⎪
⎬= + ∆ ⎪⎭

q q q

s s s
         (3.123) 

where  is the iteration number. This updated vector of system coordinates is then used 

to reconstruct Eq. (3.121) and solve the system of equations for the new vector of 

Newton-differences and 

k

1kd +
∆q

1kd +
∆s  which can be used again to update the vectors of 

system coordinates  and 
2kd +

q
2kd +

s . This process is repeated until the norm of the 

Newton-differences vector or the norm of the constraint equations vector becomes less 

than a specified tolerance, that is, 

TT T
1k kd d ε⎡ ⎤∆ ∆ <⎣ ⎦q s   or  2( , , )

k kd d t ε<C q s      (3.124) 

where 1ε  and 2ε  are specified tolerances and  is the iteration number.  k

3.5. ALGORITHM FOR RAILWAY BOGIE DYNAMIC ANALYSIS 

In the preceding sections, detailed formulation of the multi-body system dynamics 

equations has been presented with a view to building the railway bogie dynamics 

model. The equations of motion which involve the independent coordinates are solved 

using direct integration with respect to time. The dependent coordinates and the 

dependent surface parameters are calculated by solving the algebraic constraint 

equation using the Newton-Rhapson algorithm. The application of the formulation to 

the modelling of railway bogie dynamics is presented in a flowchart shown in Fig. 3.11. 

The referenced sections for each step are also given in the flow chart. 
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Figure 3.11. Flow chart of railway bogie dynamic analysis 

Define functions that describe the geometry of the 
wheel-rail contact surfaces Eq. (3.77) & Eq. (3.78)
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Identify the independent system 
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partitioning method (Gauss elimination)
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Integrate (with respect to time) the independent acceleration and independent 
surface parameters to determine the independent coordinates and velocities 

Using the Newton-Raphson method, solve the non-linear constraint equations to 
determine the dependent coordinates and surface parameters; the dependent 

velocities and time derivatives of surface parameters are determined using the 
constraints at velocity level 
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4. DYNAMICS OF A WHEELSET WITHIN A BOGIE FRAME 

4.1. INTRODUCTION 

Using the inertial reference frame (IRF) modelling platform described in Chapter 3, a 

computer program for the simulation of the dynamics of wheelsets within a bogie frame 

is developed and reported in this chapter. The program is named the Rail Bogie 

Dynamics (RBD) program for convenience. The RBD program is currently developed 

in MATLAB environment. The limited size of the problem solved as part of this thesis 

has never posed problems related to computational time; if that becomes a serious 

issue, the algorithm based on the formulation provided in Chapter 3 could be 

programmed in alternate languages such as FORTRAN or C++. 

First the RBD program has been used to examine the dynamics of railway wheelsets as 

these are the basic units that provide guidance for the wagon on the track. The wheelset 

is assembled with the suspension system to provide stability whilst they are at rest and 

in motion. The assemblages are known as bogies. The bogies of locomotives usually 

have three wheelsets each, whilst the bogies of the wagons and passenger cars have two 

wheelsets each. Some utility wagons containing single wheelset bogies are also used in 

the industry.  

Irrespective of the design of the bogie system, the stability of wagons in motion is 

largely dictated by the dynamics of the wheelset within the bogie frame (Wickens 

(2003)). Therefore a very simple form of a bogie system containing a single wheelset 

within a bogie frame is considered for the examination of its dynamics using the RBD 

program. First the dynamics of this assembly has been investigated under the steady-

 91



state (constant speed) condition using the RBD program and the results validated 

against a commercial software package VAMPIRE (Evans (1999)). Second, the RBD 

program has been used to simulate the effect of longitudinal braking and traction 

torques to the dynamics of the simple bogie. This chapter reports the process and 

results of these analyses. 

4.2. DESCRIPTION OF MODELLED SYSTEM 

In order to understand the railway wagon dynamics, it is common to investigate the 

motion of a single wheelset running on the track. However, in actual condition, the 

wheelset is attached to a bogie frame that restricts its motion. Therefore, in this 

investigation the wheelset is connected to a mass, which represents the sprung mass of 

the bogie frame or the wagon body. The connection is formed by a set of linear springs 

and dampers in the longitudinal, the lateral, and the vertical directions as shown in Fig. 

4.1. The lateral distance between the right and the left suspension was 0.7 m. The 

characteristics of the springs and dampers are presented in Table 4.1. The 

characteristics of the springs and dampers have been optimized in such a way that the 

bogie is stable up to 25 m/s (90 km/h). As a reference, the critical speed of wagons 

containing three-pieces bogies running on the rigid track calculated by Sun (2002) is in 

the range between 79 km/h – 159 km/h, depending on the wheel profile and wheel 

radius being used. The inertia properties of the wheelset and the bogie frame used in the 

simulation are given in Table 4.2. The mass and moment of inertia of the bogie frame is 

chosen so that the axle load represents the axle load of the common normal operation of 

four axle wagons.  
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a.) Top View 

 

Figure 4.1. A wheelset within a bogie frame 

Because the bogie frame is supported only by two vertical springs (on the left and the 

right), an unbalanced moment with respect to the lateral axis will act on the bogie 

frame. In anticipation of this, a constraint is added so that the pitch degree of freedom 

b.) Front View 
Bogie frame 

Contact 
point 1 

Right rail Left rail 

Wheelset 

Contact 
point 2 

Bogie frame 

Wheelset 

Right rail Left rail 

Direction of 
motion
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of the bogie frame is eliminated. Therefore the bogie frame is represented with five 

degrees of freedom only. The springs and dampers are attached to the wheelset at the 

points on the rotation axis of the axle (lateral axis of wheelset body reference frame). 

By using such an arrangement the points of connection do not rotate about the axle so 

the additional revolute joint is not needed. 

Table 4.1. Spring and damper characteristics 

 Spring Stiffness , K 

(N/m) 

Damping Coefficient, C 

 (N.s/m) 

Longitudinal 20 x 104 10 x 103

Lateral 8 x 104 6 x 103

Vertical 5 x 104 4 x 103

 

Table 4.2. Inertia properties of the wheelset and the sprung mass 

 Wheelset Sprung Mass 

Mass (kg) 1200 10000 

Mass moment of inertia xxI  ( 2kg m⋅ ) 720 20000 

Mass moment of inertia yyI  ( 2kg m⋅ ) 112 15000 

Mass moment of inertia zzI  ( 2kg m⋅ ) 720 20000 

 

For generalisation, the left and the right rails are considered as separate bodies 

constrained to the ground. Thus, the total number of bodies in the system is four (the 

right rail, the left rail, wheelset and bogie frame). With this assumption it is possible to 

 94



simulate different lateral and vertical irregularities for each rail and also track gauge 

widening at the curve where the outer and inner rails each have a different curve radius. 

In spite of these opportunities, this thesis has neither considered the rail geometry 

irregularity nor other defects due to its primary focus on the effect of longitudinal 

forces to wheelset / bogie dynamics. 

All the bodies involved are assumed as rigid with the body reference frames attached to 

their respective centres of mass. The motion of each body’s local coordinate system 

with respect to the global system is described in the multibody formulation using three 

translational coordinates and four Euler parameters. For the system containing four 

rigid bodies, the vector of generalised coordinates is written as 

Trr rl ws bf⎡= ⎣q q q q q ⎤⎦

⎤⎦

      (4.1) 

where  are vectors of generalised coordinates of the right rail, the left 

rail, the wheelset and the bogie frame respectively. As the vector of the generalised 

coordinates of each body has seven components (three translational coordinates and 

four Euler parameters) the total vector coordinates will have a total of 28 components.  

rr rl ws bfq ,q ,q ,q

The vector of the non-generalised surface parameters is written as 

T

1 2 1 2
rr rl ws ws⎡= ⎣s s s s s        (4.2) 

where each superscript represents a body as described in Eq. (4.1) and the subscript 

represents the number of each contact point (contact point 1 is located at the right 

wheel-rail patch and contact point 2 is located at the left wheel-rail patch; see Fig. 4.1). 

Because each contact surface is represent by two surface parameters, vectors of non-
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generalised surface parameters in Eq. (4.2) will have eight components. Thus, the 

vectors of the generalised and the non-generalised coordinates will have 36 components 

in total. 

Inducing four Euler parameter constraints (one for each body), ten contact constraints, 

twelve ground constraints, and one constraint of the bogie frame pitching, there will be 

a total of 27 constraint equations and hence there will be nine (36-27=9) unrestrained 

degrees of freedom. The 27 constraint equations also imply that the size of the sub-

Jacobian matrix  is  and the size of the sub-Jacobian matrix  is qC 27 28× sC 27 8× . 

Hence, the total dimension of the augmented matrix of the mass matrices and sub-

Jacobian matrices in Eq. (3.75) is 63 63× . For the constant speed simulation a velocity 

constraint in the longitudinal direction is added, which increases the dimension of the 

augmented matrix to  and reduces the unrestrained degrees of freedom to eight. 64 64×

4.3. WHEEL AND RAIL PROFILES 

The wheel and the rail profile used in the simulation are shown in Fig. 4.2. AS 60 kg/m 

plain carbon rail and LW2 wheel profile in new condition are considered. Both profiles 

are taken from Queensland Rail (QR) data. The method of formulation of the wheel rail 

contact in the RBD program demands the derivatives of the spline representation of the 

wheel and the rail profile up to the third order. Therefore, fifth- order splines have been 

selected. For this purpose spline curves that represents the wheel and the rail profile are 

generated from the measured data points by using Spline2 V6.0 software developed by 

Delft University of Technology (Thijse (2002)).  
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          (a) wheel profile    (b) rail profile 

Figure 4.2. Technical drawing of the wheel and the rail profile 

Fig. 4.3 shows the spline representation of the wheel profile which is generated using a 

fifth-order polynomial. The spline curve covered the profile of the wheel tread up to the 

flange tip. 

 
Figure 4.3. Spline curve of the wheel profile 

Fig. 4.4 shows the 1st , 2nd , and 3rd derivatives of the wheel profile. From the figures 

we can see that the smooth (i.e. no point of singularity) and continuous curves are 

obtained until the third derivatives. Such continuous and smooth curves are required for 
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improving the accuracy and also to avoid numerical instability during the solution 

phase of the simulation. 

 

 

 
Figure 4.4. Derivatives of the wheel profile curve 

Rails are normally fitted to the track containing concrete sleepers with 1 in 20 

spline was also generated using a fifth-order polynomial. 

inclination (Esveld (2001)). Fig. 4.5 shows the spline representation of the rail profile 

with 1 in 20 inclination and Fig. 4.6 shows its first three derivatives; all function are 

seen to be continuous and smooth. Similar to the wheel profile spline, the rail profile 
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Figure 4.5. Spline curve of the rail profile 

 

 

 
Figure 4.6. Derivatives of the wheel profile curve 
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Placing the wheelset on the centre of narrow gauge track (1067mm) and applying the 

law of contact between rigid bodies, the contact point between wheels and rails could 

be found as shown in Fig. 4.7.  The nominal distance between the left and the right 

contact points was 1140 mm. 

In the centre position the rolling radius of the right wheel and the left rail are equal 

( R L wr r r= = = nominal radius). Shifting the wheelset to the left and/or to the right 

causes differences between the rolling radius of the right and the left wheels. The 

rolling radius difference between  left wheels is the important 

parameter that defines the ted in Fig. 4.8. The 

figure reveals that the r until flange contact 

occurred at approximately 9.5 mm lateral shifting of the wheelset.  

 

Figure 4.7. Wheelset on narrow gauge track 

 the right and the

 wheelset dynamics. This parameter is plot

 change of rolling radius difference was linea

 

Figure 4.8. Rolling radius difference  

narrow gauge 1067 mm 

nominal distance between contact points 1140 mm 

Lr Rr
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4.4. SIMULATION AT CONSTANT SPEED  

The results of the simulation using the RBD program are compared with that of 

VAMPIRE which is used by many railway wagon manufacturers and operators to 

investigate the dynamics of railway wagons in the design and operational phases (AEA 

Technology Rail (2004)). VAMPIRE uses the TFR coordinate system that moves at a 

pre-defined speed along the track and does not explicitly account for the wheelset pitch 

(AEA Technology Rail (2003)). These are the major difference between VAMPIRE 

and the RBD program. The other difference is that VAMPIRE calculates all the contact 

parameters (angle and radius) separately prior to the simulation and interpolates them 

during simulation, whilst the RBD program calculates these parameters using the 

contact law algorithm (see Section 3.2.5) in every time step of the simulation. 

sented in 

this chapter.  

The cases that were simulated included the system of a wheelset and a bogie frame 

travelling on a tangent track with specified constant forward velocities.  At a specified 

distance of travel a lateral disturbance in the form of track lateral displacement was 

provided to the wheelset to initiate lateral oscillation. The coefficient of friction 

between the wheel and the rail was assumed to be 0.3 in all cases of simulation. To gain 

a comprehensive view on the results, simulations were carried out with various 

velocities, starting from the low speed where the wheelset motion remained stable to 

the high speed where the wheelset motion became unstable. Some important results of 

the simulation at three selected velocities of 15 m/s, 25 m/s, and 30 m/s are pre

Fig. 4.9 shows the lateral displacement against the travel distance of the wheelset and 

bogie frame at 15 m/s. The result presented in this figure is obtained using the RBD 

program. From the figure it can be seen that the wheelset and the bogie frame have had 
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damped lateral oscillations. The decrement of the wheelset oscillation shows a high 

damping ratio.  The oscillations have a 13.25 m wavelength; for the speed of 15 m/s, 

this wavelength is associated with a frequency of 1.13 Hz. The oscillation of the bogie 

frame follows the wheelset oscillation with the same wavelength but with almost 180o 

phase lag due to the existence of the spring and damper system. 

 
Figure 4.9. Lateral displacements - RBD Program at V=15 m/s 
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Figure 4.10. Lateral displacement - VAMPIRE at V=15m/s 
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Fig. 4.10 exhibits the lateral displacement of the wheelset and bogie frame simulated by 

VAMPIRE for the speed of 15 m/s. This figure shows, in general, the same trend and 

magnitudes as that provided by the RBD program presented in Fig. 4.9. The oscillation 

of the bogie frame shows a similar lag of about 180o phase difference compared to the 

wheelset oscillation. The wheelset and the bogie motions are also damped well. 

However the wavelength of the oscillation calculated by VAMPIRE is 14 m which is 

slightly larger than that calculated by the RBD program (13.25 m). For the speed of 15 

m/s this wavelength is associated with a frequency of 1.07 Hz (RBD predicted 

frequency is 1  %, whi h is 

considered negligible given both programs use entirely different formulations. With the 

.13 Hz). These results correspond to an error margin of 5.6 c

nominal radius of 0.425 m and nominal lateral distance between left and right contact 

points of 1140 mm (Fig. 4.7), by using the simple Klinger formulation in Eq. (2.1) of 

Chapter 2, the wavelength of 13.25 m resulted from the simulation using RBD program 

is associated with 0.054 effective conicity, while the wavelength of 14 m calculated by 

VAMPIRE is associated with the effective conicity of 0.049 (an error margin in 

conicity of 10.2 % that is considered acceptable). 

Fig. 4.11 exhibits the longitudinal and lateral creep forces at the right wheel-rail contact 

point calculated by the RBD program while Fig. 4.12 exhibits the same information 

calculated by VAMPIRE, both for the velocity of 15 m/s. From Figs. 4.11 and 4.12 we 

can clearly see that the values of the longitudinal creep forces obtained from both 

simulations agree very well. The RBD program and VAMPIRE calculate the 

longitudinal creep force that oscillates around zero with the maximum amplitude of 

about 0.2 kN. However, the value of the lateral creep forces calculated by the RBD 

program is approximately 8.4% larger than the value calculated by VAMPIRE. The 
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RBD program uses Polach’s formulation to calculate the creep forces while VAMPIRE 

uses look-up tables generated from Kalker exact theory. A small variation in creep 

forces is thus considered acceptable. 

 

 
Figure 4.12. Creep forces at the W/R right contact point - VAMPIRE at V=15m/s 

Fig. 4.13 and Fig. 4.14 show the lateral displacements calculated for the speed of 25 

m/s by using the RBD program and VAMPIRE respectively. Both figures agree very 

Figure 4.11. Creep forces at the right W/R contact point -RBD Program at V=15 m/s 
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well and the system is still found to be stable. Compared to the simulation for the 15 

m/s, however, the oscillations exhibit lower damping. The wavelengths do not change 

as they only depend on the wheel and the rail profile used. As a conse

associated oscillation frequencies become larger due to higher speed. For the simulation 

using the RBD program the oscillation frequency now becomes 1.89 Hz and for the 

simulation using VAMPIRE it now becomes 1.79 Hz (an error margin of only 5 %). 

quence, the 

 

Figure 4.13. Lateral displacements - RBD Program at V=25 m/s 
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Figure 4.14. Lateral displacement - VAMPIRE at V=25m/s 
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The creep forces resulted from the simulation for 25 m/s using the RBD program and 

VAMPIRE are shown by Fig. 4.15 and Fig. 4.16 respectively. There are relatively no 

significant differences in values in comparison to the creep forces calculated in the 

simulation for the velocity of 15 m/s. In general, the results calculated by both 

programs present very good agreement.   

 

Figure 4.15. Creep forces at the right W/R contact point - RBD program at V=25 m/s 

Figure 4.16. Creep forces at the right W/R contact point - VAMPIRE at V=25 m/s 
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For the velocity of 30 m/s, the simulation using both the RBD program and VAMPIRE 

show that the system becomes unstable as exhibited in Fig. 4.17 and Fig. 4.18. Further 

refined simulations using the RBD program and VAMPIRE have shown that the system 

actually just begins to exhibit unstable response at a velocity of approximately 27 m/s.  

 
Figure 4.17. Lateral displacements calculated by RBD program at V=30 m/s 
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Figure 4.18. Lateral displacements calculated by VAMPIRE at V=30 m/s 
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Figure 4.19. Creep forces at the right W/R contact point - RBD Program at V=30 m/s 

 
Figure 4.20. Creep forces at the right W/R contact point - VAMPIRE at V=30 m
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motion is stable, the creep forces calculated at the speed of 30 m/s show a different 

trend where they increase following the unstable motion of the wheelset. 

In conclusion, the results obtained from the constant velocity simulation using the RBD 

program compare very well with the results provided by VAMPIRE. The insignificant 

differences on the calculated wavelengths, frequencies and the lateral creep forces 

indicate that the RBD program, although formulated using a fundamentally different 

coordinate system, is capable of reproducing the results of the VAMPIRE simulation. 

F  

conclude that the IRF system formulation presented in Chapter 3 and the RBD program 

developed based on the formulation are appropriate for general analysis of the 

dynamics of wheelsets contained within a bogie frame. 

4.5. SPEED PROFILE - EFFECT OF LONGITUDINAL FORCES 

In the modelling using the track-following reference (TFR) platform, the speed of 

wagons is an input that is also used to define the velocity of the reference frame. To do 

the simulation under variable speed with this method of modelling, a speed profile has 

to be predefined. However, in real-life conditions, speed change is caused by the 

application of longitudinal forces either due to braking or traction. In other words, the

sp f 

longitudinal forces. Therefore, to closely simulate the real-life conditions, these 

rom the constant velocity simulation results presented in this section, we could

 

eed profile is a dependent variable that is affected by the independent action o

longitudinal forces must be input into the simulation models and the speed profile must 

be output from the simulation model. Unfortunately simulation models based on the 

TFR formulation (for example VAMPIRE) can not perform the task in this manner. 
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The RBD program is capable of performing this task that reflects the real-life situation 

adequately as described in Chapter 3. 

To illustrate the capability of the RBD program in producing the speed profile as an 

output of the simulation, the system of wheelset and bogie frame considered in Section 

4.4 was subjected to traction and braking torque sequences provided in Fig. 4.21. The 

simulation commenced with the initial speed of 10 m/s.  

2

The application of the traction and the braking torque modified the velocity of the 

system in the longitudinal direction. This is shown in the output of the simulation in 

Fig. 4.22 (a). The figure shows that the longitudinal velocity of the bogie increases 

from 10 m/s to 25 m/s in about 15 seconds, which means an acceleration of about 1 

m/s . With the total mass of the wheelset and bogie frame of 11200 kg, a simple 

calculation can determine that the 5000 N.m traction torque applied to the wheel that 

has a radius of 0.425 m will accelerate the system at the rate of 1.05 m/s2. The 

acceleration obtained from the simulation is approximately 5% smaller than this value 

due to the frictional loss at the wheel rail contact patch that occurs in the form of 

longitudinal creepage or slip. A similar mechanism also occurs during the application 

of braking torque. 

 

 

Fig. 4.22 (b) shows the wheelset angular velocity as a function of time, which follows 

the same trend of the longitudinal velocity. At the maximum longitudinal velocity, the 

wheelset angular velocity had a value of about 58 rad/s.  
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Figure 4.21. Traction/Braking Torque Profile 

 

Figure 4.22. Speed Profile 
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One of the capabilities of the RBD program is the inclusion of the large displacement in 

the longitudinal direction due to the speed of the vehicle as well as the rotation of the 

wheelset. This capability is exhibited in the output of the simulation shown in Fig. 4.23. 

The travel distance of the wheelset as a function of time is presented in Fig. 4.23 (a), 

while Fig. 4.23 (b) shows the wheelset rotation angle. Both figures show similar trends. 

 

Figure 4.23. Travel distance and wheelset rotation 

There are advantages of knowing the total wheelset rotation angle. For example, we can 

calculate how many rotations are made by the wheelset during travelling a certain 

distance where the brake or tractive forces are applied. Multiplying the number of 

rotations with the nominal circumference of the wheel and by comparing the result with 

the actual travel distance, we can calculate the average slip percentage between the 
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wheel and the rail along the travelling distance.  To illustrate this in the present 

simulation, during the braking ( 21 31t≤ < ) the wheelset has made 74.72 rotations 

(469.52 rad). Without slip this amount of rotation of the wheelset of 0.425 m radius 

corresponds to 199.55 m of travelling distance. However due to slip the actual distance 

travelled was 199.65 m that is 0.10 m more. In other words 0.1 m slip travel has 

occurred during the 199.65 m nominal simulation. 

Such outputs of the RBD program shown in this section must be validated.  

Unfortunately, no tools are found for the purpose. Therefore a laboratory test presenting 

the bogie under braking condition was performed as part of this thesis. The construction 

and the results of the testing as well as their comparison with the simulation using the 

RBD program are reported in Chapter 6 of this thesis. 

4.6. LATERAL DYNAMICS UNDER VARIABLE SPEED 

The RBD program, similar to other wagon dynamics programs, can predict lateral 

dynamics of the bogie system due to lateral disturbance. To show this capability, a 

lateral disturbance was given to the wheelset while it oscillated under the brake or 

traction force. Fig. 4.24 shows the result of such simulation under braking condition.  

As shown in the 2 m/s. From the 

simulation at constant speed discussed in Section 4.4, we know that at this speed the 

Fig. 4.24, the simulation started at the speed of 3

oscillation of the wheelset is unstable. The brake force was applied at t = 2.5 sec, as can 

be seen in Fig. 4.24 (a), where the velocity begin to decrease at that time. Fig. 4.24 (b) 

shows the associated lateral displacement of the wheelset.  
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Figure 4.24. Speed profile and wheelset lateral displacement under braking calculated 

by the RBD program 

s 

d out in VAMPIRE for 

comparison (as previously explained, in VAMPIRE the speed profile is required as an 

input). The result of the lateral displacement calculated by VAMPIRE is shown in Fig. 

From these figures it can be seen that the wheelset oscillation remains unstable until the 

velocity decreases to around 27 m/s; below this speed the oscillation of the wheelset is 

decayed. Fig. 4.24 (b) also reveals that the frequency of oscillation decreases with the 

reduction in the velocity. It can be explained that the oscillation wavelength remain

constant as it depends only on the wheel and the rail profile. In other words, lower 

speed provides lower oscillation frequency and higher speed provides higher oscillation 

frequency. 

Utilising the output speed profile of the RBD program shown in Fig. 4.24 (a) as an 

input, the simulation under variable speed was carrie
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4.25, the value of which closely relates to the lateral displacement calculated by the 

RBD program. 
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Figure 4.25. Wheelset lateral displacement during braking calculated by VAMPIRE  

A similar type of simulation was performed under traction force. The lateral 

disturbance was given to the wheelset and while it was oscillating the traction force was 

ogram shown in Fig. 4.26 (a) was used as an input to do the equivalent 

applied. The result of such simulation is presented in Fig. 4.26.  The simulation started 

at the speed of 20 m/s. At t = 2.5 sec the traction force provided positive torque to the 

wheelset that increased the speed (Fig. 4.26 (a)). The oscillation of the wheelset was 

stable until the speed of around 27 m/s (Fig. 4.24 (b)). At speeds higher than this (for 

example 28 m/s) the oscillation became unstable.  

Similar to the simulation under braking condition the output speed profile calculated by 

the RBD pr

simulation in VAMPIRE. The associated lateral displacement calculated by VAMPIRE 

is exhibited in Fig. 4.27. 
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Figure 4.26. Speed profile and wheelset lateral displacement during traction calculated 

by the RBD program 
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Figure 4.27. Wheelset lateral displacement during traction calculated by VAMPIRE 

al dynamics of the wheelset, whilst VAMPIRE requires pre-

The above two simulations under variable speed (traction and braking) show that the 

RBD program can naturally model the effect of the longitudinal force on the 

longitudinal and the later
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calculated speed profile as an input. The critical speed can also be predicted effectively 

using the RBD program.  

Wh

ot 

odel 

iction 

cient, 

be generated will be around 16.4 e nominal wheel radius of 0.425 

m, the maximum brake torque that may be applied to the wheelset without causing slip 

will be around 14 kN.m only. 

The simulation started at the speed of 25 m/s as shown in Fig. 4.28 (a) where the 

motion of the wheelset was still in the stable range. Brake torque was applied at t = 2 

sec.  From Fig. 4.28 (b) it can be seen that the wheelset rotation has quickly decreased 

to zero in about 1 sec while the speed was still more than 20 m/s. This means that the 

wheel has stopped rotating while it still moves forward at high velocity (skid). Fig. 4.28 

(c) shows the lateral displacement of the wheelset, indicating very clearly that at the 

time the skid happens, the motion of the wheelset becomes unstable with very low 

frequency of oscillation. 

4.7. WHEELSET DYNAMICS UNDER HEAVY BRAKING 

en the applied brake force is greater than the available adhesion between the wheel 

and the rail, skidding occurs. In such condition the wheelset is “locked”, i.e. does n

rotate, while the body is still in motion. The RBD program has the capability to m

such conditions as reported in this section. 

A large brake torque (25 kN.m) was applied to the wheelset. Constant fr

coefficient between the wheel and the rail is set to be 0.3. With this friction coeffi

and the total mass of the system of 11200 kg, the maximum longitudinal force that can 

8 kN at each rail. At th

 

 117



 

Figure 4.28.  Skid at wheel-rail friction coefficient 0.3rµ =  

Fig. 4.29 shows the similar type of simulation with the same brake torque but lower 

friction coefficient ( 0.1µ = ) between the wheel and the rail. The situation is more 

dangerous compared to higher friction coefficient. The reduction in the wheel angular 

velocity to zero in less than a half second occurred as shown in Fig. 4.29 (b). The 

wheelset lateral motion is badly unstable, where it has continuously increased without 

oscillation, as shown in Fig. 4.29 (c). 
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Figure 4.29.  Skid at wheel rail friction coefficient 0.1µ =  

Both examples of simulation of the skid condition shows the capability of the RBD 

program to simulate extreme conditions of braking which can not be performed using 

the software developed using a track-following reference (TFR) platform. 

on of input braking / traction torques as well as 

recisely determining wheelset angular velocity have been demonstrated through 

examples in this chapter. The results have been validated wherever possible with the 

4.8. SUMMARY AND CONCLUSION 

This chapter has described the capability of the RBD program in predicting the 

dynamics of a wheelset within a bogie frame both under constant speed and under 

variable speed due to traction and braking. Novel features of the RBD program to 

evaluate the speed profile as a functi

p
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simulations using VAMPIRE that illustrated very good agreement. From the results we 

can draw the following conclusions: 

• Under constant speed the wheelset remained laterally stable up to 27 m/s. The 

insignificant difference between the results of RBD and VAMPIRE might have 

resulted from the different methods used in the calculation of the contact 

parameters and creep forces as well as the method of numerical integration 

used.  

• The RBD program can calculate the longitudinal dynamics of the bogie due to 

the application of traction and braking where the speed profile is an output of 

the simulation in a natural manner.  

• The application of very large braking torques can lead to wheelset skid and 

tends to destabilise wheelset lateral oscillation. Simulation results showed that 

skid at the low wheel-rail friction coefficient is more dangerous than at the 

higher friction coefficient. 

• Part of the results of the RBD program, namely the speed profile and skid as a 

ake torque, could only be validated using 

 

function of the application of br

carefully designed experiments as other commercial dynamics packages do not 

explicitly account for these factors. 
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5. DYNAMICS OF SIMPLIFIED TWO-AXLE BOGIES 

5.1

This ch

Dynam

bogie, 

engineers and researchers for many years. Thus this type of bogie was considered in 

evaluating the capability of the RBD program. 

First, the bogie dynam

against VAMPIRE. Second, the RBD program has been used to simulate the effect of 

the longitudinal braking and traction forces to the speed profile and the associated 

late ,

variabl

output 

VAMP ility of the RBD program to simulate severe bogie 

dynam

best kn

capabil

5.2. DESCRIPTION OF MODELLED SYSTEM 

he system of a simplified two-axle bogie containing one bogie frame and two 

wheelsets is shown in Fig.5.1. The distance between axles was 1.675 mm (distance 

between axles of most of QR three-piece bogie) 

. INTRODUCTION 

apter reports the modelling of simplified two-axle bogies using the Rail Bogie 

ic (RBD) Program. As most of the wagons and passenger cars use this type of 

the examination of its dynamics has become a subject of interest to railway 

ics under constant speed are reported and the results are validated 

ral  vertical and pitch dynamics of the bogie. The results of the simulation under the 

e speed profile have also been validated using VAMPIRE;  for this purpose the 

speed profile calculated by the RBD program has been used as input for the 

IRE simulation. The capab

ics with the associated wheel skid is also demonstrated in this chapter. To the 

owledge of the author, no wagon dynamics commercial programs possess the 

ity of skid analysis. 

T
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Figure 5.1. Simplified two-axle bogie 

b.) Front View 
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Each wheelset is connected to the bogie frame by a set of linear springs and dampers. 

The total number of bodies involved was five; the bogie frame, the leading wheelset 

(wheelset 1), the trailing wheelset (wheelset 2), the left rail and the right rail. All the 

bodies were assumed as rigid with the body reference frames attached to their 

respective centres of mass. The coordinate system is described using the same 

convention as defined in Section 2.1. Adopting the formulation in Chapter 3, the 

motion of each body’s local coordinate system with respect to the global system is 

described in the multibody formulation using three translational coordinates 

Euler parameters. The vector of generalised coordinates of the modelled sys

contains five bodies can now be written as: 

      (5.1) 

where are vectors of generalised coordinates of the right rail, the 

left rail, the leading wheelset (ws1), the trailing wheelset (ws2) and the bogie frame 

respectively. Because each body has three translational coordinates and four Euler 

param ctor coordinates in Eq.5.1 will have 35 components. 

There are four contact points involved in the system. Thus, the vec

generalised surface parameters is written as  

    (5.2) 

where each superscript represents a body as described in Eq.(5.1) and the subscript 

represe ct points: 

• con  1 is located at the right wheel-rail patch of the lead et 

• contact point 2 is lo leading wheelset 

and four 

tem that 

T1 2rr rl ws ws bf⎡ ⎤= ⎣ ⎦q q q q q q

1 2 ,rr rl ws ws bfq ,q ,q ,q q

eters, the total ve

tor of non-

T1 1 2 2
1 2 3 4 1 2 3 4
rr rl rr rl ws ws ws ws⎡ ⎤= ⎣ ⎦s s s s s s s s s

nts the number of conta

ing wheelstact point

cated at the left wheel-rail patch of the 
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• contact point 3 is located at the right wheel-rail patch of the trailing wheelset 

Because each contact surface is represented by two surface parameters, vectors of non-

generalised surface parameters in Eq.(5.2) will have sixteen components. Thus, in total, 

the vector of generalised and non-generalised coordinates will have 51 components. 

Through the introduction of five Euler parameter constraints (one for each body), 20 

contact constraints, and twelve ground constraints, there have been a total of 37 

constraint equations associated with fourteen (51-37=14) unrestrained degrees of 

• contact point 4 is located at the left wheel-rail patch of the trailing wheelset 

freedom. As there are 37 constraint equations, 35 generalised coordinates, and 16 non-

generalised surface parameters, t  

sub-Jacobian matrix

The characteristics of the springs and dampe  

Table.5.2.  The inertia properties of the sprung 

mass were chosen so that the axle load represents the heavy haul wagon operation 

(app x n 

was  25 

he size of sub-Jacobian matrix qC  is 37×35 and the

size of sC  is 37×16. Hence, for the system of the simplified two-

axle bogie, the total dimension of the augmented matrix of the mass matrices and sub-

Jacobian matrices in Eq.(3.75) was 88×88. For the constant speed simulation a velocity 

constraint in the longitudinal direction was added, which increased the dimension of the 

augmented matrix to 89×89 and reduced the unrestrained degrees of freedom to 

thirteen. 

rs of the bogie shown in Fig.5.1 are

presented in Table 5.1. The inertia properties of the wheelsets and the lumped spring 

mass used in the simulation are given in 

ro imately 300 kN). The spring stiffness and damping coefficient of the suspensio

 optimised so that the bogie remained stable (no wheelset hunting) at least up to
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m/s 0 d 

in Section 4.3 of the previous chapter.  

 (9  km/h).  The wheel and the rail profiles used were the same as those presente

Table 5.1. Spring and damper characteristics 

 Spring Stiffness , K 

(N/m) 

Damping Coefficient, C 

 (N.s/m) 

Longitudinal 9.5 x 10 8 x 106 4

Lateral 6.0 x 106 4 x 104

Vertical 3.5 x 106 2.5 x 104

 

Table 5.2. Inertia properties of the wheelsets and the sprung mass 

 Wheelset Sprung Mass 

Mass (kg) 1200 60,000 

Mass moment of inertia xxI  ( 2kg m⋅ ) 720 80,000 

Mass moment of inertia yyI  ( 2kg m⋅ ) 112 60,000 

Mass moment of inertia zzI  ( 2kg m⋅ ) 720 20,000 

 

5.3. SIMULATION AT CONSTANT SPEED 

5.3.1. Response to Lateral Track Irregularities 

Response of the model to lateral disturbance has been studied. Instead of simply using 

the initial value of lateral displacement, a sinusoidal track irregularity as shown in Fig 

5.2 was input to initiate the lateral oscillation. 
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gure 5.2. Parameters representing sinusoidal track irregularity 

he analytical representation of the sinusoidal irregularity is expressed as shown in Eq. 

(5.3). 

Fi

T

( ) sinir iry x k xπ= ∆        (5.3) 

w the amplitude and  is a parameter fines the sine w th. For 

th  lue in  range ir

here ir∆  is irk that de aveleng

e lateral irregularity, a va the of (0.0203 ~ 0.0305)∆ =  and 

k  suggested by Garg and Dukkipati (1984) has been used in 

th e dopted re

m

(0.0426 ~ 0.0656)r =
1m−

i

e simulation. Specific val s a weu  0.025ir∆ = m  and irk = , which 

orresponded to an amplitude of 0.025 m and wavelength of 44.44 m. The irregularity 

was assumed to occur at the fifth metre of travel as plotted in Fig 5.3. Some important 

lected speeds of 15 m/s (54 km/h) and 

25 m/s (90 km/h) are presented in this section.   

0.045 1m−

c

results of the constant speed simulation at two se

1/ irk  
ir∆  

x  
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Figure 5.3. Input Lateral Track Irregularity 

Response at 15 m/s (54 km/h) 

Fig 5.4 shows the lateral displacement of the trailing and the leading wheelsets, relative 

en

 containing lateral irregu

(from 5 m to 50 m travel distance) the 

displacement of 9.5 mm (exhibited by the leading wheelset at the travelling distance of 

17 m). After passing the irregularity section the amplitude of the lateral oscillations 

decreased very quickly suggesting that at this speed the bogie was stable with very high 

travel and the distance between the axles.  

to the c tre of the track, against travel distance at 15 m/s (54 km/h) obtained by the 

RBD program. As expected, when running on the track larity 

wheelsets were subjected to a lateral 

level of damping. Fig.5.4 also reveals that the oscillation of the trailing wheelset was 

lagging in phase and had relatively lower amplitude. The marginal phase difference in 

time series between the leading and the trailing wheelsets corresponds to the speed of 
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Figure 5.4. Wheelset lateral displacement - RBD program at V = 15 m/s 
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Figure 5.5. Wheelset lateral displacement - VAMPIRE at V = 15m/s 

For comparison, the same system was also modelled using VAMPIRE software. The 

lateral displacement of the wheelsets calculated by VAMPIRE for the speed of 15 m/s 
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(54 km/h) are shown in Fig.5.5. This figure shows, in general, the same trend and 

magnitude as that provided by the RBD program presented in Fig 5.4. The maximum 

lateral displacement of the bogie due to the passage across the track section containing 

the sinusoidal irregularity was 10 mm, (0.5 mm larger than that calculated by the RBD 

program) occurring at the travel distance of 17 m (same as that predicted by the RBD 

program).  
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Figure 5.6. Frequency spectrum of the leading wheelset lateral oscillation at 15 m/s 

Fig.5.6 shows the frequency spectrum of the oscillation of the leading wheelset 

calculated by the RBD program and VAMPIRE at a speed of 15 m/s. Both spectrums 

identify two high peaks. For the first peak, the RBD program obtained a frequency of 

0.488 Hz and VAMPIRE obtained 0.483 Hz (1.04 % error); while for the second peak 

the RBD program calculated 0.774 Hz and VAMPIRE calculated 0.879 Hz (11.95 % 

error). The differences are considered insignificant. The peak at the lower frequency 

was related to the forced excitation due to the lateral irregularity, while the peak at the 
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higher frequency was related to the kinematic oscillation of the wheelsets due to their 

conicity.   

The phase difference between the leading and the trailing wheelsets induces bogie 

frame yaw. The yaw of the bogie frame calculated by the RBD program (red line) and 

VAMPIRE (blue line) are presented in Fig.5.7. It can be seen that both of these results 

agree very well. 
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Figure 5.7. Bogie frame yaw at 15 m/s 
 

Response at 25 m/s (72 km/h) 

Fig 5.8 shows the lateral displacement of the trailing and the leading wheelsets obtained 

by the RBD program at a constant speed of 25 m/s while Fig 5.9 shows the same 

information calculated by VAMPIRE. Comparing both figures, it can be seen that in 

general the trend and magnitude of the wheelset lateral displacement calculated by the 

RBD program agree very well with that of the VAMPIRE simulation.  
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Figure 5.8. Wheelset lateral displacement calculation by RBD program at 25 m/s 
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VAMPIRE and the RBD program exhibit similar trends where only one dominant peak 

 
Figure 5.9. Wheelset lateral displacement calculation by VAMPIRE at 25 m/s 

Fig.5.10 presents the frequency spectrum of the lateral oscillation of the leading 

wheelset at 25 m/s. Both the frequency spectrum of the lateral oscillati
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appears on the spectrum. This peak is related to the frequency of the kinematics 

oscillation due to the conicity of the wheelset. The RBD program predicted 89.01 

mm2/Hz peak at the frequency of 1.45 Hz while VAMPIRE predicted 106.44 mm2/Hz 

peak at the frequency of 1.46 Hz. The difference in peak values calculated by 

VAMPIRE and the RBD program is insignificant. 
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Figure 5.10. Frequency spectrum of the leading wheelset lateral oscillation at 25 m/s 

The yaw of the bogie frame obtained from both simulations at 25 m/s are shown in 

Fig.5.11. As expected the yaw oscillation of the bogie frame follows the trend of the 

wheelset lateral oscillation, because the bogie frame yaw oscillation was initiated by 

the phase difference between the leading and the trailing wheelset lateral oscillations. 

Simulations at the constant speeds of 15 m/s and 25 m/s reveal that the RBD program 

results are as good as, if not better than that of the VAMPIRE. Some inevitable 

differences have resulted due to the difference in the adopted methods of calculation of 

the contact parameters and creep forces as well as the method of numerical integration 

used. As has been explained previously, the creep forces were calculated using the 
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Polach formulation and the British Table Book derived from the Kalker Non-Linear 

formulation respectively by the RBD program and VAMPIRE.  
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Figure 5.11. Bogie frame yaw 25 m/s 

5.3.2. Response to Track Vertical I

With a view to examining the capability of the RBD program to predict dynamic 

response in the vertical direction we have considered vertical irregularity in the track 

profile as an input. A vertical disturbance in the form of a sinusoidal vertical 

irregularity was input. The analytical representation of the sinusoidal irregularity as 

expressed in Eq.(5.3) was used with the vertical irregularity parameters 

rregularity 

(0.0254 ~ 0.0381)ir∆ = m  and (0.0656 ~ 0.0820)irk = 1m−  (Garg and Dukkipati 

(1984)). For the simulation reported in this section the values of 0.03ir∆ = m  and 

1−0.07irk = m  were used. With the chosen parameter 0.07irk = , the corresponding 

wavelength of the irregularity was 28.57 m. The vertical irregularity was assumed to be 
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located at the fifth metre of travel as shown in Fig 5.12. Simulations were carried out at 

two constant speeds of 15 m/s (54 km/h) and 25 m/s (90 km/h). 

 

Figure 5.12. Input Track Vertical Irregularity 

The dynamic response of the bogie frame in the vertical direction calculated by the 

put of the track vertical irregularity is 

exhibited in Fig.5.13, while the corresponding response calculated using VAMPIRE is 

VAMPIRE agree very well both at the low speed of 15 m/s and the high speed of 25 

m/s. The amplitude and wavelength obtained from the RBD program were found to 

have almost exactly the same value as that obtained from VAMPIRE. The associated 

frequency spectrums of the bogie frame vertical oscillation ca

. 

RBD program at 15 m/s and 25 m/s due to the in

shown in Fig.5.14. It can be seen that the results calculated by the RBD program and 

lculated by the RBD 

program and VAMPIRE are shown in Fig.5.15 (a) and (b) respectively
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Figure 5.13. Bogie frame vertical displacement calculated by RBD program 
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Two peaks are found in the frequency spectrum shown in Fig.5.15 (a) and (b). The peak 

at the low frequency is related to the forced excitation due to the track irregularity. The 

frequency of this peak normally changes with the change in speed. At the speed of 15 

m/s the first peak has been found to occur at 0.48 Hz and 0.49 Hz respectively as per 

 
Figure 5.14. Bogie frame vertical displacement calculated by VAMPIRE 
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predictions of the RBD program and VAMPIRE. At the speed of 25 m/s the first peak 

frequency has been determined as 0.77 Hz and 0.78 Hz respectively by RBD program 

and VAMPIRE. The second peak at the higher frequency is related to the natural 

frequency (2.31 Hz as calculated by the RBD program and 2.34 Hz as calculated by 

VAMPIRE) of the system in the vertical direction. The frequency of this second peak, 

therefore, has not changed with the changes of the speed of the bogie.  

 

 

 

 

 

(a) RBD Program    (b) VAMPIRE 

Figure 5.15. Frequency spectrum of bogie frame vertical oscillation 

Fig.5.16 presents the axle load time series due to the same sine wave vertical 

irregularity calculated by the RBD program at the speed of 15 m/s (Fig.5.16.a) and 25 

m/s (F ted by 

VAMPIRE shown in Fig 5.17 (a) and (b). The different phase of the axle load 

oscillation between the leading and the trailing wheelset shows that the given vertical 

irregularity also generated bogie pitch because both wheelsets did not contact the track 

running speed.  
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ig.5.16.b). It also agrees very well with the similar information calcula

irregularity at the same time; the delay was due to the distance between axles and the 
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(a.) V = 15 m/s (54 km/h) 

 

 

(b.) V=25 m/s (90 km/h) 

Figure 5.16. Axle load due to vertical irregularity calculated by RBD program 
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(a.) V=15 m/s (54 km/h) 
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(b.)V=25 m/s (90 km/h) 

 

Figure 5.17. Axle load due to vertical irregularity calculated by VAMPIRE 
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5.3.3. Response to Track Cross Level Irregularity 

Response of the system to cross-level irregularity was also studied. Cross-level 

irregularity is defined as the height difference between the right and the left rail (see 

Section 2.4). It is assumed to be positive if the left rail is higher than the right rail when 

the observer is facing the running direction of the bogie. A typical form of the cross 

level irregularity, which is called a “plateau” is shown in Fig.5.18. 

 

Figure 5.18. Cross level plateau irregularity and its parameters 

The analytical representation of the plateau can be expressed as: 

1/ 22

8( )
1 ( )

ir

ir

y x
k x

⎛ ⎞∆
= ⎜ ⎟+⎝ ⎠

       (5.4) 

where  is the longitudinal travel and is the height difference between the right and 

the left rails. For the simulation repo  in this section the values of  and 

 have been used based on the range of values given by Garg and 

Dukkipati (1984), which gives the plateau irregularity as shown in Fig.5.19. 

 

 

x y

rted  0.02ir∆ = m

0.07irk = 1m−

ir∆  1/ irk  

y

x



 

Figure 5.19. Input cross level irregularity 

The input of cross-level irregularity caused the rolling motion of the bogie as revealed 

in Fig.5.20 c /s 

(90 km/h). In general, this result agrees very well with that of VAMPIRE shown in 

alculated by the RBD program at the speed of 15 m/s (54 km/h) and 25 m

Fig.5.21.  

 

Figure 5.20. Bogie frame roll calculated by RBD program 
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Figure PIRE 

ad time series from the RBD program at the right and the left 

wheel of the leading wheelset due to this cross-level irregularity is exhibited in Figure 

5.22 and the result calculated by VAMPIRE is presented in Fig 5.23. At the speed of 15 

m/s the RBD program recorded 188 kN maximum value while VAMPIRE obtained 169 

kN (approximately 11 % error margin). At the speed of 25 m/s the RBD program 

calculated 243 kN while VAMPIRE gave 224 kN (approximately 8 % error margin). 

The opposite phase of the wheel load between the left and the right rail shows that the 

bogie was subjected to rolling motion. 

 

 

 5.21. Bogie frame roll calculated by VAM

The maximum roll occurred at the track section containing the irregularity. At 15 m/s 

and 25 m/s, the RBD program calculated maximum rolling of 0.021 radian and 0.028 

radian respectively; and VAMPIRE gave 0.022 radian and 0.027 radian respectively. 

The calculated wheel lo
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(a.) V=15 m/s (54 km/h) 

 

(b.) V=25 km/h (90 km/h) 

 

Figure 5.22. Wheel load due to cross level irregularity calculated by RBD program 
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(a.) V=15 m/s (54 km/h) 
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(b.) V=25 m/s (90 km/h) 

 

Figure 5.23. Wheel load due to cross level irregularity calculated by VAMPIRE 
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5. 4. APPLICATION OF LONGITUDINAL FORCE 

5.4.1. Speed Profile 

The simulation reported in this section is intended to examine the capability of the RBD 

program to calculate the speed profile due to the application of the longitudinal force. 

For this purpose, a sequence of traction and braking torques was applied to both 

wheelsets of the bogie system. To the best of the knowledge of the author, none of the 

commercial wagon dynamics programs available in the market has the potential to 

predict what the RBD program has provided. Therefore the results of the RBD program 

(the output speed profile) in this section could not be validated using VAMPIRE. 

The sequence of traction and braking torque applied to each wheelset is presented 

graphically in Fig. 5.24; a positive sign of torque represents traction and a negative sign 

represents braking. The initial speed of the bogie was set as 0.01 m/s to avoid 

numerical instability caused by floating point arithmetic in the calculation of the 

creepage (see Section 2.6).  

 

Figure 5.24. Traction/Braking torque profile 
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The traction torque was assumed to linearly increase from zero to 15 kN.m within 5 

seconds, then remained constant until the bogie reached 20 m/s and then the traction 

to be released to zero. After maintaining a constant speed of 20 

The output acceleration and speed profile due to the traction/brake torque profile 

calculated by the RBD program is displayed in Fig. 5.25 and Fig.5.26 respectively. 

From t=0 sec to t=5 sec the longitudinal acceleration increased linearly from zero to a 

25.5 sec. A similar trend was also observed during the 

braking process, where the speed reduction was not linear for the first five seconds of 

the braking process and then under the constant maximum braking torque the speed 

decreased linearly with a constant deceleration of about 1.109 m/s2.   

Fig.5.27 shows the output angular velocity of the leading and the trailing wheelsets and 

Fig 5.28 shows the total travel distance during the process which shows the bogie had 

travelled 496 m when the simulation ended. Fig.5.28 also reveals that the linear 

increment of travel distance happened at the constant speed section; i.e. between t=20.5 

sec and t=25.5 sec and between t=37 and to t=40 sec.  

torque was assumed 

m/s for 5 seconds the brake torque was applied. Similar to traction torque, the brake 

torque was assumed to be gradually increased in 5 seconds from zero to 15 kN.m and 

was held at this value until the speed reduced to 10 m/s and then the brake was assumed 

to be released to zero.  

maximum value of 1.109 m/s2 due to the gradual increment of the applied traction 

torque. During this time period the speed increment remained non-linear. After t=5 sec 

the acceleration was held constant until the bogie attained 20 m/s (approximately at 

t=20.5 sec). As the traction was reduced to zero, the acceleration reduced to zero 

between t=20.5 sec and t=
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Figure 5.25. Output longitudinal acceleration 

 

Figure 5.26. Output speed profile 
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Figure 5.27. Output wheelset angular velocity (rad/s) 

 

Figure 5.28. Travel distance 
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The speed profile and the wheelset angular velocity (as well as travel distance and 

wheelset rotation) calculated by the RBD program as the function of brake torque must 

be validated using an independent method. For this purpose, a full scale lab test was 

carried out. Chapter 6, 7 and 8 report this experiment and results including comparison 

with the simulation data set. 

5.4.2. Bogie Pitch due to Longitudinal Force Application 

As the longitudinal force due to traction or braking acts at a line below the centre of 

mass of the bogie frame, there exists a pitch moment acting on the bogie frame. Thus, 

during the application of the longitudinal force, pitch motion of the bogie frame is 

normally expected. Fig.5.29. shows the bogi ents during the 

application of the traction/braking profile of Fig.5.24. As expected, Fig.5.29 reveals 

that during traction, the pitch displacement attained negative values. The sudden 

reduction of the traction torque from 15 kN.m to zero (at t=20.5 sec) caused the bogie 

frame to experience a pitch oscillation when it ran at constant speed (between t=20.5 

sec and t=25.5 sec). Then, during braking (t=25.5 sec and t=37 sec) the pitch 

displacement attained positive values. When the braking was suddenly released, the 

bogie frame experienced a pitch oscillation. These results show that the RBD program 

can truly model the longitudinal dynamics of the bogie due to application of traction 

and braking torques in a natural way. 

e frame pitch displacem
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Figure 5.29. Bogie frame pitch calculated by RBD program 
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Figure 5.30. Bogie frame pitch calculated by VAMPIRE 

The output speed profile in Fig.5.26 as well as the brake/traction torque profile of 

Fig.5.24 was then used as input for simulation in VAMPIRE. The bogie frame pitch 

displacement calculated by VAMPIRE is presented in Fig.5.30 which shows good 
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agreement with the prediction by the RBD program shown in Fig.5.29. Only small 

differences were found especially in the very low speed region (between 4 sec to 10 sec 

time period where the speed ranged between 3 m/s and 8 m/s). The pitch vibration 

predicted by VAMPIRE at low speed is not of practical significance and hence not 

further explored.  

5.4.3. Bogie Lateral Dynamics under Variable Speed 

The RBD program has the capability to calculate longitudinal dynamics due to traction 

and braking whilst calculating the response in the lateral and the vertical directions due 

to track irregularity.  This section reports some examples of such simulation to 

investigate the lateral dynamics during traction and braking using the RBD program. 

The output speed profile calculated by the RBD program was then used as an input into 

VAMPIRE simulation and the results compared. 

Lateral dynamics under traction 

Two cases of traction application were investigated. First the traction torque was 

applied and increased gradually from zero to 15 kN.m in five seconds (normal 

application) as shown in Fig.5.31.(a) and then was held constant until the bogie attained 

20 m/s (72 km/h). Fig.5.31.(b) shows the output speed profile (from the RBD program) 

due the input traction torque. While the bogie was under traction, the relevant section of 

the track was assum

Fig.5.32.  

ed to contain the sinusoidal lateral track irregularity as shown in 
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Figure 5.31. Input traction torque (normal application) and output speed profile         

calculated by RBD program 

 

Figure 5.32. Input lateral track irregularity  

Fig.5.33 shows the wheelset lateral displacement calculated by the RBD program 

during the traction application during movement over the track with irregularity. The 

figure reveals that the wheelsets experienced stable oscillation with maximum 

amplitude of approximately 9 mm. The frequency of oscillation increased with the 
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increase in speed as depicted by the shorter time period of the oscillation waves at the 

higher speed.   

 

Figure 5.33. Wheelset lateral displacement during normal traction calculated by the 

RBD program 
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Figure 5.34. Wheelset lateral displacement during normal traction calculated by 

VAMPIRE 
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By inputting the traction torque as well as the speed profile calculated by the RBD 

program, an equivalent simulation was conducted by VAMPIRE. The wheelset lateral 

displacement calculated by VAMPIRE is exhibited in Fig.5.34. The result given by 

VAMPIRE agrees very well with the results of the RBD program shown in Fig.5.33.  It 

should be remembered that VAMPIRE can calculate only if the speed profile was 

accurately input whereas the RBD program can determine the lateral dynamics in a 

natural way with the input of brake torque and track irregularity. 

Quick application of traction torque was considered in the second case where the 

traction torque was increased from zero to 15 kN.m within one second before it was 

held constant until the bogie reached 20 m/s (72 km/h). The traction torque and the 

ou , 

compared to the normal traction app .31, the bogie attained the speed of 

20 m/s quicker (in 18.2 seconds compared to 20.5 sec of normal traction).  

tput speed profile are shown in Fig.5.35(a) and 5.35(b) respectively. As expected

lication in Fig.5

 

Figure 5.35. Input traction torque (quick application) and output speed profile 

calculated by RBD program  
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Lateral track irregularity shown in Fig 5.32 was also used in this second case. The 

lateral response of the bogie in the lateral direction calculated by the RBD program, in 

terms of wheelset lateral displacement, is shown in Fig.5.36. This result does not seem 

to be much different to the one just presented in Fig.5.33 from the simulation under 

normal application of traction. The wheelset oscillation remained stable with the 

frequency increased due to the increase in speed. 

 

Figure 5.36. Wheelset lateral displacement during quick traction calculated - RBD 
program 
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ment during quick traction - VAMPIRE Figure 5.37. Wheelset lateral displace
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The simulation using VAMPIRE also provided similar results as shown in Fig.5.37. 

These results show that as long as the speed of the bogie remains below its hunting 

speed level, its lateral response remains the same irrespective of the type of traction 

application (quick/normal). 

 Lateral dynamics under braking 

Two cases of braking application were investigated. The simulation started at the 

constant speed 20 m/s (72 km/h). The braking was input as a negative pitch torque 

applied to the wheelset. First the normal application of braking torque was applied 

(brake torque increased gradually from zero to 15 kN.m in five seconds; from t=1 sec to 

t=6 sec) and then was held constant until the bogie stopped (“stop“ here is assumed to 

be 0.01 m/s as absolute zero speed to avoid numerical instability) shown in Fig.5.38(a). 

Fig.5.38(b) shows the output speed profile. While braked, the bogie was running on the 

track that contained the sinusoidal lateral track irregularity as shown in Fig.5.32. 

 
Figure 5.38. Input braking torque (normal application) and output speed profile  

Fig.5 tion 

during movement over the track with irregularity. This figure shows that the wheelsets 

.39 shows the wheelset lateral displacement during normal braking applica
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experienced stable oscillation with maximum amplitude of approximately 10.5 mm. 

The frequency of oscillation has decreased with the decrease in speed (shown by the 

longer time period of the oscillation waves at the higher speed).  By inputting the 

braking torque as well as the speed profile calculated by the RBD program, an 

equivalent simulation was then conducted in VAMPIRE. The wheelset lateral 

displacement calculated by VAMPIRE is exhibited in Fig.5.40 which shows good 

agreement with that of the result calculated by the RBD program presented in Fig.5.39.  

 
Figure 5.39. Wheelset lateral displacement during normal braking - RBD program 
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Figure 5.40. Wheelset lateral displacement during normal braking – VAMPIRE 
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The second case was concerned with quick braking application, where the braking 

torque was increased very quickly from zero to 15 kN.m within one second before it 

was held constant until the bogie stopped. As previously explained, “stop” here is 

assumed to be 0.01 m/s. The initial speed was 20 m/s (72 km/h). The braking torque 

and the output speed profiles are exhibited in Fig.5.41(a) and 5.41(b) respectively. 

 

Figure 5.41. Input braking torque (quick application) and output speed profile  

During the quick braking application the bogie was running on the same lateral track 

irregularity shown in Fig 5.32. The response of the bogie in the lateral direction 

calculated by the RBD program, which is represented by the wheelset lateral 

displacement, is shown in Fig.5.42. This result does not seem to be much different to 

the one presented in Fig.5.39 from the simulation under normal braking. The wheelset 

oscillation remained stable with the frequency decreased due to the decrease in speed. 

The simulation using VAMPIRE also provided similar result as shown in Fig.5.43. 
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Figure 5.42. Wheelset lateral displacement under quick braking - RBD program 
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simulations using VAMPIRE or other commercial package programs as they do not 

 

Figure 5.43. Wheelset lateral displacement under quick braking - VAMPIRE 

5.5. BOGIE DYNAMICS UNDER HEAVY BRAKING 

Two cases of heavy braking application were studied and reported in this section. 

Obviously these results containing wheel skid can not be compared with 
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explicitly include wheelset pitch in their formulation. The only option for validating 

these skid results is to carry out careful laboratory experiments capable of precisely 

measuring wheelset pitch and longitudinal position even under very low speed (due to 

restrictions in track lengths and increased levels of safety requirement). A full scale lab 

test satisfying all technical and safety needs was carried out for this purpose. Chapter 6, 

7 and 8 report this experiment and results including comparison with the simulation 

data set. 

Case #1 of heavy braking simulation deals with the application of a large brake torq e 

to th ed 

was set as V=25 m/s. Previous constant speed simulations (see Section 5.3) have shown 

that at this speed the bogie remained stable. At t=4 seconds a constant 60 kN.m brake 

torque was applied to the leading wheelset. The brake torque was specifically chosen 

large enough to initiate skidding.  

The large brake torque application to the leading wheelset that exceeded the adhesion 

capacity between the wheel and the rail surface caused skidding of the leading wheelset 

as shown in Fig.5.44. Fig. 5.44(b) shows that the angular velocity of the leading 

wheelset has decreased rapidly to zero while the forward speed and the angular velocity 

of the trailing wheelset has remained much greater than zero (Fig.5.44 (a) and (c)).  

 

u

e leading wheelset while the trailing wheelset was left unbraked. The initial spe
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Figure 5.44. Skid on leading wheelset 

Prior to the application of braking, the bogie was exposed to the sinusoid lateral 

he 

amplitude of the lateral oscillation of the trailing wheelset which was left unbraked 

mained smaller than the oscillation of the braked leading wheelset.  

 

irregularity of Fig 5.3. Fig.5.45 revealed that from just after passing this track section 

containing the lateral irregularity up until the application of brake (t=2 sec to t=4 sec) 

the bogie remained stable as shown by the reduction of lateral displacement. However 

it was found that after the application of the brake, which caused the wheelset to skid, 

the wheelset lateral oscillation became unstable exhibiting hunting motion. T

re
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Figure 5.45. Lateral displacement; skid on leading wheelset 

Case #2 of heavy braking was related to the application of 60 kN.m braking torques 

applied to both wheelset

This figure shows that the angular velocity of both wheelsets has rapidly decreased to 

zero while the speed remains non-zero. Prior to the application of braking, the bogie 

was exposed to the sinusoidal lateral irregularity to initiate the lateral oscillation. The 

lateral displacement time history is shown in Fig.5.47. Just after passing the track 

section that contains the lateral irregularity and up until the application of brake (t=2 

sec to t=4 sec) the bogie has remained stable as shown by the reduction of lateral 

displacement. However after the application of the brake, which caused skidding on 

both wheelsets, the lateral movement of the wheelset became unstable with irregular 

form of oscillation. Even at low speed (less than 12 m/s), large oscillation wavelengths 

ave been predicted.  

s. It caused skidding of both wheelsets as shown in Fig.5.46. 

h
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Figure 5.46. Skid on both wheelsets 

 

Figure 5.47. Lateral displacement, skid on both wheelsets 
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5.6. SUMMARY AND CONCLUSION 

This chapter has described the capability of the RBD program in predicting the 

dynamics of the simplified two-axle bogies both under constant speed and under 

variable speed due to traction and brake. Novel features of the RBD program are the 

ability to evaluate the speed profile as a function of input braking / traction torques as 

well as explicitly determine wheelset angular velocity. These features have been 

demonstrated through examples in this chapter. The results have been validated 

whenever possible with the simulations using VAMPIRE that illustrated very good 

agreement. From the results we can draw the following conclusions: 

• Under constant speed it was found that the bogie remained laterally stable up to 

25 m/s. The insign  of RBD and VAMPIRE 

might have resulted from the different methods used in the calculation of the 

contact parameters and creep forces as well as the method of numerical 

integration used.  

• The natural frequency of the bogie suspension in the vertical direction can be 

clearly detected by determining the frequency peaks which do not change with 

the change of the speed. 

• The RBD program calculates the longitudinal dynamics of the bogie due to the 

application of traction and brake where the speed profile is an output of the 

simulation in a natural manner. The RBD program has the capability to 

effectiv sly during the 

application of traction and braking.  

ificant difference between the results

ely calculate the lateral and vertical dynamics simultaneou
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• From the study of the lateral dynamics under variable speed it was found that, 

• The application of very large braking torques can lead to wheelset skid and 

tends to destabilize wheelset lateral oscillation. Simulation results showed that 

skidding on one wheelset or on both wheelsets of bogies affect the lateral 

oscillation differently. 

ofile and skid as a 

function of the application of brake torque, could only be validated using 

carefully designed experiments as other commercial dynamics packages do not 

explicitly account for these factors. 

 

the lateral response of the bogie remains the same irrespective of the type of 

traction or braking application (quick/normal). 

• Part of the results of the RBD program, namely the speed pr

 164



6. EXPERIMENTAL VALIDATION OF THE EFFECT 

OF BRAKING TORQUE TO BOGIE DYNAMICS: 

PART A.   DESIGN OF EXPERIMENTAL PROGRAM 

6.1. INTRODUCTION 

As has been described earlier in this thesis, the RBD program calculates the 

longitudinal dynamics of bogies including speed profile and the corresponding wheelset 

pitch due to the application of braking/traction torque. This capability could only be 

val t

designe

the Ce

experim set and validation of the simulated response 

of the bogie dynamics are reported in the subsequent chapters.  

6.2. EXPERIMENTAL DESIGN  

6.2.1. The Concept 

The primary objective of the test was to examine the dynamics of bogies subjected to 

brake torque. A bogie running on a tangent track was considered for this purpose. A 

three-piece bogie (QR30) provided by Queensland Rail (QR) was used. Due to space 

limitation in the laboratory a 24m long track could only be constructed, thus restricting 

the maximum speed of the bogie to 4 m/s (14.4 km/h).  The bogie was braked using its 

own brake system. Traction was not specifically considered as a test parameter. Only 

the rear wheelset was braked and the front one was left un-braked to allow comparison 

of the dynamic characteristics of the braked and the un-braked wheelsets. The brake 

ida ed using careful experimentation. A full-scale laboratory test was, therefore, 

d and commissioned for this purpose at the heavy testing laboratory (HTL) of 

ntral Queensland University (CQU). This chapter describes the design of the 

ental program. Analysis of the data
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force wa ure and 

brake appli red levels. 

A set of rder to 

gather data of the applied brake force, the longitudinal, the vertical and the lateral 

, velocity and acceleration), as well as the wheelset rotation 

Andrews (1986) reported a similar experiment carried out in the early 1960’s by British 

Railway Electrical Laboratory in Willesden, with a particular focus on traction effects 

to locomotive bogie dynamics. A single bogie powered with a traction motor and 

loaded appropriately to simulate the static axle load was used in their test. A sketch and 

photo of the test setup are shown in Fig. 6.1 and Fig. 6.2 respectively. Their test did not 

pay any attention to braking as adhesion and traction torque induced slip were the 

major study parameters. The test described in this thesis was primarily developed for 

bogie dynamics. To the best knowledge of the 

author, no other similar experiment was found in the literature. 

s controlled using a pneumatic circuit that maintained the brake press

cation time (time needed to reach maximum pressure) to the requi

 measurement equipment and devices was installed on the bogie in o

dynamics (travel distance

(pitch). 

examining the effect of brake torque to 

 

Figure 6.1. Sketch of traction test at British Railway Electrical Laboratory (Andrews 

(1986)) 
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Figure 6.2. Photo of traction test at British Railway Electrical Laboratory (Andrews 

the range of the traction force (pulling force) and brake force required for safe 

operation of the bogie.  

The acceleration and deceleration  were assumed to be maintained at 1 m/s2 to 

avoid excessive slip. Assuming linear change in speed in the acceleration and braking 

zones, the relation between the maximum speed and the distance travelled in each zone 

is written as shown in Eq. (6.1) and (6.2): 

 

(1986)) 

6.2.2. Track Section and Estimated Speed Profile 

The 24m long track was divided into zones of acceleration, steady-state rolling 

(coasting) and deceleration, followed by a safety zone as shown in Fig. 6.3. Choice of 

maximum length of these zones was constrained from the safety perspective. The 

estimated speed profile shown graphically in Fig. 6.3 has been used as a base to define 

aa ba
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2
21 1 /

2a
a

va m
s

= = ⋅ s ,        (6.1) 

2
21 1 /

2b
b

va m
s

= = ⋅ s ,        (6.2) 

Substituting longitudinal distance travelled mss ba 8==  into the above equations, 

s  was obtained as the maximum permissible safe speed. 

 

Figure 6.3. Track section and estimated speed profile 

Effect of potential lower deceleration rate to 

in the speed profile curve of Fig. 6.3 

4 /v m= ⋅

However, as a constant braking rate of 1 m/s2 was most likely not achievable using the 

available brake equipment (lower acceleration was also considered), the braking section 

was chosen longer than ideally necessary. 

stopping distance is shown by the dashed lines 

24m

8m 2m 12m

a [m/s^2]

v 

s [m]

s [m]

[m/s]

1

4

-1

Safety

Simplified speed profile of the bogie

Acceleration zone Brake application zone zone zone 
Coasting Safety 

2m 
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6.2.3. Specification of Equipment 

Braking force 

A reliable and accurate measurement of brake force applied to the wheelset was 

is transmitte

force due to

shoes is provided by a cross-beam that is on one side connected to the brake shoes and 

on the other side attached though pistons to the actuators (brake cylinders) as shown in 

Fig. 6.4. The movement of the brake beam is guided by slots provided in the side 

frame.  

needed. In the QR30 bogie, the brake torque d through tangential friction 

 the contact of the brake shoes onto the wheel tread. Force on the brake 

Figure 6.4. 

Fig. 6.5 shows the forces a

system is shown. It is, there

Wheelset 1 
Wheelset 2 

 

Piston 1 
moving 
direction
Sche

pplie

fore,

Bra
Piston 2 
moving 
direction
 

matic diagram of QR30 brake system 

d to the system; due to symmetry only half of the 

 very important to measure the forces exerted by the 

ke beams 
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actuators 1CTF  and 2CTF  as well as the tangential force  produced due to friction 

between the shoes and the wheels as accurately as possible. By knowing the magnitude 

al force produced, the actual torque applied to the wheels can easily be 

 

brake system of QR30 bogie  

According to the QR30 bogie spec  normal force that can be 

generated by kN for each kPa of air pressure supplied 

to the brake cylinders. The brake cylinder can receive a maximum of 350 kPa air 

pressure that could produce a total of 57.4 kN. However, due to the requirement of low 

load, during the test the e 

maintained low, say below 200 kPa, to keep the force lower than 32.8 kN. This 

the same magnitude force would act on the brake cylinder rod (see the diagram of the 

TF

of the tangenti

calculated from the geometric data of the wheelset. 

Figure 6.5. Forces acting on 

ification, total brake shoe

 the bogie brake system is 0.164 

 pressure supplied to the brake cylinder was required to b

magnitude of the force is the sum of the normal forces applied to each of the four shoes. 

Therefore, the force acting on each wheel would be less than 8.2 kN. Due to symmetry, 

Pressure Supply 
Piston

Brake Shoe

TF
TF

Brake Beam
Actuator

1CTF

TF  

TF  

2CTF
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brake force distribution in Fig. 6.6). The calculation of the applied brake tangential 

force to the wheelset requires knowledge of the friction coefficient between the brake 

shoes and the wheels. Assuming the friction coefficient in the range of 0.2 to 0.4, the 

tangential force would be in the range of 1.64 kN to 3.28 kN.  

 

Figure 6.6. Distribution of brake normal force  

Longitudinal dynamics of the bogie  

In general the bogie dynamics in the longitudinal direction can be defined in terms of 

the following quantities:  

- Longitudinal velocity 

- Longitudinal travel distance 

- Wheelset rotation and angular velocity relative to its lateral axis  

- Longitudinal acceleration 

< 8.2 kN 

< 8.2 kN 

< 8.2 kN 

< 8.2 kN 

a. Brake Rod  
b. Brake cylinder 
c. Brake beam

a 

a 

b 

b 

c c 
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As the purpose of the experiment was to investigate the longitudinal dynamics of the 

bogie under braking condition, the above quantities have to be measured accurately 

during the test. The brake torque application to the wheel creates longitudinal slip or 

creepage in the wheel rail contact patch, the definition of which has been described in 

Section 2.3. The creepage generates the longitudinal contact force that decelerates the 

bogie. Therefore the measurement equipment should detec itudinal slip to 

validate the creepage-creep force relationship used in the model.  

Based on the creepage formulation presented in Section 2.3.1 of Chapter 2, longitudinal 

slip could be written as in Eq. (6.3): 

t this long

c
x

v v
v

ξ −
=         (6.3) 

where  and  are the circumferen t of contact and 

the longitudinal velocity of the wheel respectively.  Predicting the values of 

longitudinal slip 

 

cv v tial velocity at the wheel-rail poin

0.02xξ =  during the braking, while the circumferential and 

s , the relative velocity to be measured can be longitudinal velocities 4cv v m≈ = ⋅ /

calculated as in Eq. (6.4). 

0.02 4 / 0.08 /cv v m s m s− ≈ ⋅ ⋅ = ⋅ .      (6.4) 

However, when the speed reduces to zero, relative velocities that are much lower than 

herefore, to increase the accuracy of the measurements, the 

peed was set as 0.1 m/s and the relative velocity to be 

measured becomes 

0.08m/s could occur. T

relevant specification of the s
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0.02 0.1 / 0.002 /c xv v m s m s− ≈ ⋅ ⋅ = ⋅      (6.5) 

The value of relative velocity in Eq. (6.5) was then used as a reference value to choose 

the resolution of the devices for the measurement of the wheel rotation and the 

longitudinal movement. Including the resolution specifications/tolerances of the sensors 

in operation, the measured slip or creepage could be written as Eq. (6.6): 

( ) ( )
( )exp

c Sensor w Sensor

Sensor

v d r v dv± Ω ⋅ − ±
v dv

ξ =
±

     (6.6) 

where sensordΩ  is the resolution tolerance of the sensor measuring the wheelset rotation, 

sensor  is the rdv esolution tolerance of the sensor measuring longitudinal movement and 

 is the nomwr inal radius of the wheel.  

The error of slip detection in relation to the analytical values of slip is defined as shown 

in Eq. (6.7). 

exp 100%analytical

analytical

eξ ξ
= ⋅ 6.7) 
ξ ξ−

.       (

Typical measurement equipment for longitudinal or rotational speed detection is based 

on resistive, inductive (analogue  

demand exact inductive conditions in the case of analogue equipment like tachometers 

easurement of wheelset rotation. As can be seen from Table 

) or incremental (digital) principles. High accuracies

and precise adjustable resistors in the case of potentiometers. For the incremental 

devices, precise and small switching events are required. Table 6.1 exhibits a 

comparative study of the measurement devices for measuring longitudinal motion of 

the bogie and the angular m
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6.1, inductive devices are used for t  

optical devices are used for the measurement of position signal. As time (clock) is 

Table 6.1. Comparison of measurement devices for longitudinal and angular motion 

he measurement of velocities and resistance and

independently recorded during data acquisition, the calculation of velocities from 

position data is also possible. Thus, resistance and optical based devices could also be 

used for measuring the angular and the longitudinal velocities.  

Longitudinal Angular 
Device Signal 

Position Velocity Position Velocity 

Inductive Voltage   Tachometer 
Tachometer 

(Gear) 

Resistance Voltage Potentiometer  Potentiometer  

Optical/Magnetic 

TTL 

Transistor 

Logic) 

or incremental) 
 

or incremental) 
 

(Transistor- Encoder (absolute Encoder (absolute 

 

General  motion of wheelsets 

Besides the longitudinal dynamics of the bogie there is also an interest to examine the 

braking torque’s influence to the lateral dynamics and furthermore to yaw and roll 

motions of the wheelset. To decide on the quantities to be measured for the purpose, it 

is important to understand how the wheelsets move relative to the track and relative to 

the bogie frame to which they are connected. Fig. 6.7 shows the end view of a wheelset 

linked to the side frame. Vertical and lateral motions are restricted by bump-stops and 

influenced by dry friction between the surfaces in contact. If the axle boxes are 
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assumed to be in permanent vertical contact with the pedestals on the side frames, the 

wheelsets will have two of their six degrees of  freedom (vertical and roll) follow the 

corresponding degrees of freedom of the side frames. Permanent vertical contact 

between axle boxes and side frames can be assumed due to expected low vertical 

accelerations.  

Axle Box-Pedestal Connection  

 

Figure 6.7.Wheelset connection to side frame 

As the primary interest of the experiment is the movement of the wheelsets on the rail 

relation to the bogie’s side frame, the accelerations with and not the displacements in 

respect to the three directions of space are required on each axle box. Placing 

accelerometers here and assuming permanent vertical connection between the side 

frame and the axle box allowed the detection of vertical running behaviour and pitch of 

the side frames of the bogie and the bogie itself. By obtaining acceleration data of the 

axle boxes in all three directions, yaw and lateral motions as well as roll of the 

wheelsets can be calculated as long as the set-up is held symmetric to the bogie frame. 
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Figure 6.8. Axial acceleration to be measured on the bogie 

The accelerometer directions are presented in Fig. 6.81. The four Cartesian coordinate 

systems shown in Fig. 6.8 represent the directions of the accelerometers fitted at each 

axle end. If the angular displacements of the wheelset are assumed to be small, the roll 

and yaw accelerations can be calculated as follow (approximation): 

⎟
⎠
⎞

⎜
⎝
⎛ −=

⋅⋅⋅⋅⋅⋅

rl

a

zz
b

,1,1
1φ , roll,       (6.5) 

⎟
⎠

⎜
⎝

−=
⋅⋅⋅⋅⋅⋅

lr

a

xx
b

,1,1
⎞⎛1ψ , yaw.       (6.6) 

a

on the axle boxes. Lateral motion of the wheelset would ideally cause identical signals 

on both of the lateral accelerometers on one axle; thus only one accelerometer is 

necessary in the lateral direction. Therefore, only five accelerometers per wheelset (a 

total of 10 accelerometers) were used in the experiment. 
                                                

The variable denotes half of the lateral distance between the accelerometer positions b

 
1 Picture taken from Standard Car Truck manual, modified 

Leading 
wheelset

Trailing 
wheelset
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6.3. EQUIPMENT, INSTALLATION, AND DATA ACQUISITION  

Based on the specification described in Section 6.2, a set of measurement equipment 

was chosen. Other factors such as the cost and t y time were also considered 

when selecting the equipment supplier. This section presents briefly the chosen 

measurement devices and their installation on the bogie. 

6.3.1. Brake Force Measurement – Strain Gauge  

As introduced in Section 6.2 the brake force was applied to one wheelset only; the 

trailing wheelset was braked while the non-braked leading wheelset was used as a 

reference. Originally the brake beam was supported and guided by slots in a slider 

tangential force. Therefore, the brake beam of the braked wheelset was cut as shown in 

guide the movement of the brake beam.  The tangential brake force was measured from 

the strain in the hanger.  

he deliver

housing provided in each side frame, which adversely affected the measurement of the 

Fig. 6.9 and hangers were then used to replace the function of the slots to support and 

 

Figure 6.9. Modification (cutting) of the brake beam slider 

brake beam

Slider housing 
Cut-off portion of 

 slider 

Brake beam 
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Fig. 6.10 (a) shows part of the hanger fitted with a strain gauge and Fig.6.10 (b) shows 

 

 

its installation on the bogie. The design of hanger installation assembly allowed 

accurate positioning of the brake beam relative to wheelset both vertically and laterally.  

 

(a) part of the hanger with strain gauge   (b) installation on the bogie 

Figure 6.10. Tangential b

hanger 

brake beam 

brake shoe 

rake force measurement 

In the non-braked leading wheelset, the movement of the brake beam was restricted by 

a plate welded onto the slot nt of the longitudinal 

clearance using a bolt (Fig. 6.11). The  the brake actuator was 

measured by fitting a stra d as shown in Fig. 6

providing a thread to allow adjustme

force exerted by

.12. in gauge on the brake ro
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f the non-braked wFigure 6.11. Brake beam stopper o heelset 

 

Figure 6.12. Brake cylinder and brake rod with strain gauge 

6.3.2. Longitudinal Movement Measurement – Magnetic Linear Encoder  

A magnetic linear encoder was used as a sensor to measure the longitudinal motion of 

the bogie. The specification of the sensor is provided in Table 6.2. The sensor is 

stopper with 
adjuster bolt  

brake rod with 
strain gauge 

brake cylinder 
brake beam 
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capable of accurately detecting incremental motion reading on a longitudinally installed 

magnetic tape. The picture of the sensor and the magnetic tape are shown in Fig. 6.13. 

Table 6.2. Specification of linear encoder 

Manufacturer Kuebler 

Type LIMES, K8.L2.122.2211.0005 .B2.10.010.0250  and K8

Physical Principle Detection of inductive current  polarity changes on the tape s due to

Characteristic Output TTL-Signal, 50000 lines per m, 0.02 (single) – 0.005(quadruple) acquisition 

Range 0-14m/s 

 

 

Figure 6.13. LIMES magnetic linear encoder 

Based on the specification of the linear encoder, which requires high precision, a 

special suppo  longitudinal 

support for the magnetic tape which also guided a carriage with the sensor located on it 

distance 

rt and guidance system was designed. The system provided

ensuring safe signal reception. The sketch of the longitudinal travel 

measurement using LIMES linear encoder is presented in Fig. 6.14. A longitudinally 

rigid and laterally and vertically free to move link system was installed between the 
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bogie frame and the carriage. The LIMES linear encoder was fitted to the carriage. The 

mounting system of the sensor allowed for adjustment of the gap between the sensor 

and the magnetic tape (1 mm gap was required in addition to the adjustment of the 

lateral position of the and the guide beam 

containing magnetic tape bited in Fig. 6.15. 

 sensor above the tape). The carriage 

 are exhi

a

b

c

d

 
Figure 6.14.Sketch of longitudinal travel distance measurement 

Figure 6.15.The carriage and guide beam for linear encoder 
 

carriage 

guide beam 

LIMES sensor 
link 
to bogie 

a. side frame 
b. magnetic tape 
c. carriage with LIMES sensor 
d. link 

magnetic tape 
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6.3.3. Wheel Rotation Measurement – Shaft Encoder 

42mm Hollow Shaft Encoders of 10.000 pulses per revolution were chosen to measure 

the rotation of both wheelsets. The specification of the shaft encoder is presented in the 

Table 6.3 and its photo is shown in Fig. 6.16. 

Table 6.3. Specification of shaft encoder 

Manufacturer Hengstler,  

Type RI176TD/10000AH.4A42TF 

Physical Principle Opto-electronic 

Characteristic Output TTL-Signal, 10000 lines per revolution, 0.036° 

Range 0-1800 rpm 

 

 

Figure 6.16. Hollow shaft encoder 

Fig. 6.17 shows the installation of the shaft encoder to the axle end of one of the 

wheelsets. To achieve this installation the axle boxes were r t open to 

provide access to the fitting of the encoder adaptor.  In addition, a rigid link was also 

attached for the f the accelerometer box (also shown in Fig. 6.17).   installation o

equired to be cu
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Figure 6.17. Shaft encoder and accelerom odification of axle 

6.3.4. Accelerometer Me

The specification of the accelerometers used for measuring the wheelset motion is 

resented in Table 6.4. The accelerometers are compactly installed in a small rigid box 

as shown in Fig. 6.18 (a). A cut-off frequency was chosen and an appropriate filtering 

device was implemented to facilitate its use for any other application beyond the 

current test. The accelerometer signal was filtered by a second order Butterworth filter 

(Fig. 6.18 (b)), cutting off the signal at the frequency of 20 Hz.  The accelerometer 

installation on the bogie is exhibited in Fig.6.17. 

Table 6.4. Accelerometer specification 

eter installation through m
box 

asurements 

p

Manufacturer Analog Devices 

Type ADXL210 

Physical Principle Piezoelectric device 

Characteristic Output Voltage, 100 mV/g 

Range +/- 10g 

accelerometer 
box 

shaft encoder 

axle box 
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(a.) Accelerometer     (b.) Butterworth filter 

Figure 6.18. Accelerometer and CRC Butterworth filter 

6.3.5. Wheel-Rail Profile Measurement – Min Prof 

Real data of the wheel and th rofile were measured using MiniProf (a special tool 

designed to measure wheel ent was provided by 

Queensland Rail (QR). The data of the wheel and the rail profile coordinates provided 

by the MiniProf was required as the input for the computer simulations (to be discussed 

in Chapter 8).  Figs. 6.19 and 6.20 show the MiniProf tool used to measure the wheel 

profile and the rail profile respectively. 

i

e rail p

and rail profile). The equipm

 

Figure 6.19. MiniProf tool for measuring the wheel profile 
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Figure 6.20. Measurem nt of the rail profile using MiniProf 

6.3.6. Track Co

The test track was carefully constructed to achieve the satisfactory straightness of the 

track along the length of 24 m. It was done by the professionals from the Queensland 

are shown in Fig. 6.21 and Fig. 6.22. 

e

nstruction 

Rail. Two photos of track welding and grinding activities during the track construction 

 

Figure 6.21. Track welding 
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Figure 6.22. Track grinding 

6.3.7. Rail Friction Coefficient Measurement - Tribometer  

The friction coefficient of the rail surfaces was determined using a portable hand-

pushed tribometer (product of Salient System) shown in Fig. 6.23. The tribometer 

measures the coefficient of friction at points along the rail head from the top of the 

running surface to the lower edge of the gauge face. As the experiment was only for a 

bogie running on the tangent track where the gauge face contact was an unlikely event, 

only the friction coefficient of ent was 

conducted by pushing the device at walking speeds to collect readings, while a 

ed the data for accuracy. The tribometer was provided by 

 the top of rail head was measured. The measurem

proprietary algorithm review

QR.  
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(a) arrangement on the rails 

 

(b) close up of the sensor wheel and the reader 

Figure 6.23. Portable Tribometer 

6.3.8. Data Acquisition and 

A total 18 channels of data signals were obtained and processed during the experiment. 

nd one linear encoder), 

Data Analysis 

Three of them were digital signals (from two shaft encoders a

and the other 15 channels were analogue signals. These different types of the streams 

were synchronised with time (computer clock) during the experiment. For this purpose 

a data acquisition program was developed in Lab View software platform. The program 
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was then installed into the data acquisition (DAQ) computer mounted on the bogie (Fig. 

6.24). The output of the DAQ program was provided in two binary files (one for the 

analogue data stream and the other for the digital data stream), which were then 

converted and merged into one data text file. To analyse the result, a program in Matlab 

platform was coded. The program read the data text file and plotted the data as 

required.  

 

Figure 6.24. DAQ computer mounted on the bogie 

6.3.9. Brake Controller  

Fig. 6.25 shows the pneumatic system installed on the bogie for the control of the 

application of the brake force. Experimental conditions did not allow a person to sit on 

the bogie to control the brakes. Also no external control radio link or other network 

interaction was available. The pressure supplied to the brake actuators was set up using 

the pressure regulator while the application time was adjusted using a flow restriction 

valve.  
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Figure 6.25. Diagram of pneumatic system used for brake controller 

To control the event of braking, a solenoid valve was used. The solenoid valve opened 

the air pressure line to the brake actuators when the electric circuit was de-energised; 

this provided a fail-safe operation. De-energising of the electric circuit at a certain 

position along the track was controlled automatically by the DAQ computer system 

mounted on the bogie. The operator of the experiment was required to just input the 

distance at which the brake was required to be applied; the DAQ computer system 

recorded this value and then compared it to the data received from the measurement of 

the longitudinal movement of the bogie provided by the LIMES system. This process 

was performed in real time during the test execution.   

 

Figure 6.26. Brake emergency switch using string 

emergency switch 
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To deal with any un-anticipated failure in the DAQ computer, a switch was designed 

and installed so that it could be simply disengaged (cut-off the electric circuit) by 

pulling a plug connected to a string (Fig 6.26). The length of the string was carefully 

worked out and the emergency brake was positioned accordingly on the track.  

6.3.10. Complete Test Setup  

Fig. 6.27 shows the fully instrumented bogie with its data acquisition system ready for 

commissioning.   

 

Figure 6.27. Instrumented Bogie with DAQ ready for commissioning 

Prior to each test trial, the DAQ was supplied with the information on the required 

brake pressure and the start time and rate of application of brake pressure.  A road truck 

was used to provide the traction. 
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6.4. SUMMARY 

An experimental program was designed to validate the RBD program, in particular the 

calculated speed profile due to the application of braking torque and the corresponding 

wheelset pitch. The experimental program design may be summarised as follows: 

• Due to the space constr ack length was limited to 24 m. 

• Due to the li  

performed at low speed (i.e. below 4 m/s). 

torques to the bogie longitudinal dynamics. In relation to this, to avoid complexity 

and reduce cost, no traction motor was installed on the bogie. Instead, a small road 

truck was used to accelerate the bogie.  This economical option, although adversely 

affecting the repeatability issues, was sufficient (discussed in Chapter 7) to achieve 

very close repeatable experiments. 

• A fully controlled and measured brake force was applied to the trailing (rear) 

wheelset of the bogie. 

• Measurement devices were carefully chosen to meet the requirement of high 

precision data. The mounting details for each of the devices were carefully designed 

so that the data could be gathered accurately.   

aint within the lab, the tr

mitation of the test track length, the experiment could only be

• The test track was carefully divided into four zones namely acceleration zone (8m), 

coasting zone (2m), braking zone (12m) and safety buffer zone (2m). 

• The primary objective of the experiment was to investigate the influence of braking 



• Different types of data streams (analogue and digital) from 18 channels were 

processed and synchronized by a data acquisition program built in Lab View 

software platform. The DAQ system computer was mounted on the bogie. 

• A fail safe braking system was designed and installed to prevent any unexpected 

failure in brake circuit and /or DAQ program. 
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7. EXPERIMENTAL VALIDATION OF THE EFFECT 

OF BRAKING TORQUE TO BOGIE DYNAMICS: 

PART B.   EXPERIMENTAL RESULTS  

7.1. INTRODUCTION 

Thr

7.1

Brake Pressure (kPa) 

This chapter reports some important results of the experiment presented in Chapter 6. 

ee cases of the bogie brake dynamics experiments were selected as listed in Table 

. For each case brake application time was set as 0.8 sec. 

Table 7.1. Cases of the experiment 

Case 

Case #1 130 kPa 

Case #2 150 kPa 

Case #3 180 kPa 

 

Of the three cases examined, Case #2 (150 kPa pressure) was considered to be just on 

the verge of the onset of skid; any increase in pressure above this level was expected to 

Cas

and

exp

 

most certainly induce skid (based on simple analytical calculation). Brake pressures of 

e #1 and Case #3, could therefore be regarded as cases of mild (no possible skid) 

 heavy (high possibly skid) braking respectively. 

This chapter describes the primary and derived data obtained from each case of the 

erimental program.  
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The primary data included: 

1. Brake normal forces (kN); measured by the strain gauge on the brake rod 

2. Tangential brake forces (kN); measured by the strain gauge on the brake beam 

hanger 

3. Accelerations (m/s2) in the longitudinal, the lateral and the vertical directions; 

measured by the accelerometers 

4. Linear distance travelled (m); measured by the LIMES linear encoder  

5. Angular revolution (rad); measured by the HENGSTLER shaft encoders 

The derived data included: 

1. Brake torque; calculated from the tangential brake force 

2. Longitudinal speed profile (m/s); first derivative of the LIMES data 

3. Angular velocity (rad/s); first derivative of the HENGSTLER data 

4. Longitudinal acceleration (m/s2); second derivative of the LIMES data  

5. Slip 

Where possible the derived data were compared to the measured primary data.  

7.2. EXPERIMENT CASE #1 (P=130 KPA) 

Four trials were executed where the brake cylinder pressure was set up to achieve 130 

kPa within 0.8 second.  
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7.2.1. Pr

Brake cylinder for

imary Data 

ces – normal and tangential 

The brake cylinder forces in the normal and in the tangential direction to the wheel 

cation were measured using the strain gauged brake rods and 

radually from zero to 130 

kPa in 0.8 second. The forces in the brake rods also increased gradually from zero to 

maximum during the corr lag. Both rods measured 

approximately the same tude of brak sing the specification 

of the new bogie (0.16  normal force per kPa, see Section 6.2), the force in the 

rods was calculated as 5.33 kN, which was tely 18% higher than the 

measurement. As the bogie was a refurbished old one, it was expected that lower 

fficiency of the cylinder would exist; the 18% reduction was, therefore, acceptable. 

tread at the point of appli

brake beam hangers respectively. Fig. 7.1 presents the brake cylinder pressure and 

forces measured in the brake rods of each cylinder for trial 1 to trial 4. As can be seen 

in the figure, the pressure in the brake cylinder increased g

esponding period without any time 

 magni e shoe normal forces. U

4 kN total

approxima

e

Fig. 7.2 shows the tangential brake force measured from the brake beam hanger for 

trials 1 to 4. Tangential brake force can be calculated as a function of the brake shoe 

normal force: T B bF F µ= , where bµ  is the friction coefficient between brake shoe and 

wheel tread and TF  and BF  are tangential and normal brake shoe force respectively 

(see Section 2.5). As both the normal and the tangential brake shoe forces were 

measured, the friction coefficient between the brake shoe and the wheel tread ( sµ ) was 

able to be calculated; the calculated values varied between 0.27 and 0.33. 
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Figure 7.1. Brake cylinder pressure and normal forces in the brake rods, Case #1 

 
Figure 7.2. Tangential brake force in the brake beam hangers, Case #1 
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Acceleration – longitudinal, lateral and vertical 

During the experiment, the longitudinal, the lateral and the vertical accelerations were 

 axle boxes (see Section 6.2 and Section measured using the accelerometers fitted to the

6.3). Fig. 7.3 shows the average of the measured longitudinal acceleration obtained 

from four accelerometers which show very good consistency amongst the four trials 

although each trial was conducted without any assurance of repeatability. The 

maximum longitudinal acceleration recorded varied from 2.4 m/s2 to 2.8 m/s2, which is 

considered not very significant (16% variation). In the coasting zone each trial has 

provided very consistent acceleration (a deceleration of approximately 0.1 m/s2). In the 

braking zone (the zone of interest of this test program) where the controlled brake was 

applied, the deceleration obtained from each trial remained relatively the same 

(approximately 0.75 m/s2). Therefore the cost-effective means of accelerating the bogie 

was considered technically sound and satisfactory for the purpose of the investigation. 

 

Figure 7.3. Longitudinal accelerations measured by accelerometers, Case #1 
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Fig.7.4 and Fig.7.5 show, respectively, the lateral (average of two measurements) and 

the vertical (average of four measurements) accelerations measured using the 

accelerometers. The magnitude of these accelerations was very small both in absolute 

term and relative to the longitudinal acceleration (Fig.7.3). The low magnitude could be 

regarded as an indication of the good control exercised in each trial especially the 

precision of the applied pull without any lateral shift; it also reflected on the 

smoothness of the track, in particular the top surface of the rail. The lateral and the 

vertical accelerations remained negligibly small for all three cases of the experiment 

reported in this chapter; thus these are not presented for other cases. All cases of the 

experiment can, therefore, be regarded as pure longitudinal dynamics investigation.    

 

Figure 7.4. Lateral accelerations measured by accelerometers, Case #1 

 

Figure 7.5. Vertical accelerations m asured by accelerometers, Case #1 e

 198



Linear distance travelled and angular revolution of wheelsets 

The linear distance travelled of the bogie along the test track is shown in Fig.7.6.c, 

while the angular revolution of the leading and the trailing wheelsets are respectively 

presented in Fig.7.6.a and b. This figure depicts that the longest travel distance was 

approximately 16 m. During this travel, the wheelsets rotated approximately 40 rad, or 

just more than six full rotations. 

 

(a) 

(b) 

Figure 7.6. Travel distance and rotation of wheelsets, Case #1 

7.2.2. Derived Data 

Brake torque 

Brake torque applied to the trailing wheelset was calculated using Eq.(7.1): 

wr        (7.1) 

(c) 

( )1 2B T TT F F= +
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where BT  denotes the brake torque, 1TF  and 2TF  are the tangential force measured in 

hangers 1 and 2 respectively and wr  is the nominal radius of the wheels (0.398 m, 

measured before the test). The calculated brake torque time series is shown in the Fig. 

7.7.  

 

Figure 7.7. Brake torques applied to the trailing wheelset, Case #1 

Speed profile and angular velocity of the wheelset 

Fig. 7.8 shows the bogie speed profile and the he 

bogie speed profile is the first derivative of the dataset obtained by the LIMES linear 

encoder with respect to time whilst the angular velocities of the wheelsets were 

obtained from the first derivatives of the HENGSTLER shaft encoder datasets. From 

Fig. 7.8, we can see that no skid happened at the braked trailing wheelset for all four 

trials as its angular velocity was reduced to zero at the same rate as the bogie speed and 

the angular velocity of the non braked leading wheelset. The maximum speed obtained 

was 3.14 m/s (trial 1), which was lower than the 4 m/s maximum sp ed for which the 

experim 8 mm 

angular velocities of the wheelsets. T

e

ent was designed (Chapter 6). With the nominal wheel radius of 0.39
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(measured), the maximum angular velocity of 7.89 rad/s was calculated. The measured 

maximum angular velocity was 7.90 rad/s, showing the precision of the measurement 

system.   

 

Figure 7.8. Speed profile and wheelsets angular velocity, Case 1 

 

Longitudinal accelerations 

Fig. 7.9 exhibits the bogie longitudinal acceleration calculated through the second order 

tion of the linear distance data obtained from the LIMES linear 

encoder. It provides a very good agreement with the direct measurement of longitudinal 

ometers (Fig. 7.3)   

(a) 

(b) 

(c) 

numerical differentia

acceleration using acceler
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Figure 7.9. Accelerations calculated using Linear Encoder dataset, Case #1 

Slip  

Due to the application of the brake, slip (or creepage) occurred in the contact patch of 

the trailing wheelset (where brake was applied). The slip was measured as the 

difference between the longitudinal velocity (Fig. 7.8 (c)) and the circumferential 

velocity of the braked wheelset (Fig. 7.8. (b)). The occurrence of slip generated 

longitudinal retarding force that stopped the bogie. Fig 7.10 shows the difference 

wheelset in the braking zone (from t=5s to t=10s). This figure represents the slip that 

occurred during the brake application.  

between the longitudinal velocity and the circumferential velocity of the braked 

With a view to obtaining slip through another data set (namely the velocity difference 

of the braked and unbraked wheelsets), the reference longitudinal velocity was set 

equal to the circumferential velocity of the unbraked leading wheelset. The slip 

calculated using this method is shown in Fig. 7.11. Both Fig. 7.10 and 7.11 show very 

good agreement. This finding has practical significance as it appears possible to 
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measure slip in the field without using the LIMES linear encoder system and purely 

through measurement of angular revolutions of the braked and unbraked wheelsets.  

 

Figure 7.10 Difference between the longitudinal velocity (calculate from LIMES) and 

the circumferential velocity of the braked wheelset, Case #1 

 

Figure 7.11. Difference between the longitudinal velocity (calculated from angular 

revolution of unbraked wheelset) and the circumferential velocity of the braked 

wheelset, Case #1 
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7.3. EXPERIMENT CASE #2 (P=150 KPA) 

For the experiment Case #2, the brake pressure was increased to 150 kPa whilst 

maintaining the brake application time at 0.8 second. The brake force produced by 150 

kPa cylinder pressure brought the braked trailing wheelset just into the skid limit. It 

was, therefore, difficult to predict whether skid would happen or not, as small changes 

to the system parameters, such as the friction coefficients and the dynamic wheel loads 

would have significant influence. Both the friction coefficient and the dynamic wheel 

load c ional 

parameters. 

Brake cylinder forces – normal and tangential

ould easily change due to minor changes in the environmental and operat

7.3.1. Primary Data 

 

Fig 7.12 presents the brake cylinder pressure and forces measured in the brake rods of 

each cylinder for trials 1 to 4 during the execution of test Case #2. The figure shows 

that, when the brake was applied, the pressure in the brake cylinder increased from zero 

to 150 kPa in 0.8 second. The corresponding increase in the brake rod forces occurred 

without any time lag. Both rods measured approximately the same magnitude of brake 

shoe normal forces. The measured forces were approximately 19% lower than the force 

Fig. 7.13 shows the tangential brake force measured in the brake beam hanger for trials 

1 to 4 of Case #2. As both the normal and the tangential brake shoe forces were 

measured, the friction coefficient between the brake shoe and the wheel tread (

specified for new bogies (0.164 kN per kPa or 6.15 kN for 150 kPa) due to efficiency 

loss of the refurbished brake cylinder. 

sµ ) was 
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able to be calculated, and the calculated values for Case #2 were found to vary between 

0.23 and 0.30 (which compared favourably with Case #1 values of 0.27 - 0.33).  

 
Figure 7.12. Brake cylinder pressure and forces in the brake rods, Case #2 

 
Figure 7.13. Tangential brake force in the brake beam hangers, Case #2 
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Accelerations 

Fig. 7.14 shows the average of the measured longitudinal accelerations obtained from 

four accelerometers. The maximum longitudinal acceleration recorded varied from 1.8 

m/s2 to 2.4 m/s2. Similar to the experiment Case #1, in the coasting zone each trial has 

provided a deceleration of approximately 0.1 m/s2 due to rolling resistance. In the 

braking zone (the zone of interest of this test program) where the controlled brake was 

applied, the maximum deceleration obtained was 0.8 m/s2 (trial 4).  

 

Figure 7.14. Accelerations measured by accelerometers, Case #2 

Linear distance travelled and angular revolution of wheelsets 

The travel distance of the bogie and rotation of the wheelsets during the experiment 

longest travel distance happened during the execution of the trial 4 when the highest 

Case #2 is shown in Fig. 7.15. Fig. 7.15 (c) shows that the longest distance travelled 

has been 14.43 m. This distance related to the wheelset angular revolution of 36.25 rad, 

which was less than six full rotations of the wheelsets (see Fig. 7.15. (a) and (b)). The 
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speed during the experiment Case #2 was achieved. When the skid occurred (trials 1 

and 3), the angular revolution of the braked trailing wheelset was smaller than that of 

the unbraked leading wheelset. 

 

Figure 7.15. Travel distance and rotation of wheelsets, Case #2 

7.3.2. Derived Data 

7.3.2.1 Brake torque 

Fig. 7.16 exhibits the brake torque applied to the trailing wheelset, calculated using Eq. 

7.1. When severe skid happened (later discussion on Fig.7.17) the brake torque dropped 

drastically to 0.95 kN.m as shown in trial 3, whilst in the condition without skid the 

brake torque was as high as 1.25 kN.m. This result revealed that skid could adversely 

affect th

(a) 

(b) 

(c) 

e braking performance of the bogie. 
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Figure 7.16. Brake torque applied to the trailing wheelset, Case #2 

Speed profile and wheelsets angular velocity 

The speed profile and the wheelset angular velocities of the bogie during the execution 

of the experiment Case #2 is presented in Fig. 7.17. The maximum speed obtained was 

2.87 m/s (10.15 km/h), which occurred during trial 4. Fig. 7.17 (a) and (b) show that 

this speed is related to the wheelset angular velocity of 7.24 rad/s. Among the four 

trials of the experiment Case #2, wheelset skid occurred during trials 1 and 3 whilst in 

the other two trials wheelset skid did not occur. These results show that with the brake 

cylinder pressure of 150 kPa the braked wheelse

skid where the possibility to have skid is the same as the possibility of having no skid.  

t was just on the verge of the onset of 
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(a) 

Figure 7.17. Speed profile and wheelsets angular velocity, Case #2 

Longitudinal acceleration 

Fig. 7.18 exhibits the bogie longitudinal acceleration time series obtained from the 

experiment Case #2 (calculated through the second order numerical differentiation of 

the linear distance data obtained from the LIMES linear encoder). Similar to the 

t provides a very good agreement with the direct measurement of 

(b) 

(c) 

experiment Case #1, i

longitudinal acceleration using accelerometers (Fig. 7.14).  This shows that the onboard 

measurements are accurate enough and the wayside LIMES system provides an 

additional assurance on the accuracy of the onboard system measurements.   
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Figure 7.18. Accelerations calculated using Linear Encoder dataset, Case #2 

Slip 

Fig. 7.19 shows the difference between the longitudinal velocity and the 

circumferential velocity of the braked wheelset occurred during the application of the 

braking in Case #2. This figure represents the slip which occurred during the brake 

application. The longitudinal velocity used to obtain the curves in Fig. 7.19 was taken 

from the first derivative of the LIMES linear encoder dataset. For comparison, the slip 

was also calculated using the HENGSTLER shaft encoder of the unbraked wheelset as 

reference (Fig. 7.20). Both Fig. 7.19 and Fig. 7.20 show very good agreement. It can be 

clearly seen in Fig. 7.19 and Fig. 7.20 that, in trial 1, one hundred percent slip (skid) 

started to happen at t = 8.2 second as the circumferential velocity of the braked trailing 

wheelset becomes zero at this point of time. For trial 3, one hundred percent slip 

occurred earlier at t = 7.9 seconds.   
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Figure 7.19. Difference between the longitudinal velocity (calculated from LIMES) and 

the circumferential velocity of the braked wheelset, Case #2 

 

Figure 7.20. Difference between the longitudinal velocity (calculated from angular 

revolution of unbraked wheelset) and the circumferential velocity of the braked 

wheelset, Case #2 
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7.4. EXPERIMENT CASE #3 (P=180 KPA) 

The purpose of the experiment Case #3 was to study the severe skid during the heavy 

braking. In the experiment Case #3 the brake pressure was increased to 180 kPa, much 

above the skid limit pressure.  The brake application was maintained at 0.8 second. All 

trials exhibited skid of the braked wheelset. Results are presented below. 

7.4.1. Primary data 

Brake cylinder force – normal and tangential 

Fig. 7.21 shows the brake cylinder pressure an  of 

each cylinder for trials 1 to 4 during the execution of test Case #3.  As can be seen in 

igure, when the brake was applied the pressure in the brake cylinder increased 

d forces measured in the brake rods

the f

from zero to 180 kPa in 0.8 second with the corresponding increase in the forces of the 

brake rods without any time lag. Both rods measured approximately the same 

magnitude of brake shoe normal forces. Similar to Case #1 and Case #2, the measured 

forces are slightly (approximately 15%) lower than that of the force specified for the 

new bogie (7.38 kN for 180 kPa) due to efficiency loss of the refurbished brake 

cylinder.  

Fig. 7.22 shows the tangential brake force measured in the brake beam hanger for trials 

1 to 4. As both the normal and the tangential brake shoe force were measured, the 

friction coefficient between brake shoe and wheel tread ( sµ ) was able to be calculated. 

The calculated values for Case #3 varied between 0.21 and 0.28 (which compared 

favourably with Case #1 values of 0.27-0.33 and Case #2 values of 0.23-0.30)).  It 

appears that with the increase in brake normal force, the friction coefficient reduces. 
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Figure 7.21. Brake cylinder pressure and forces in the brake rods, Case #3 

 

ake force in the brakFigure 7.22. Tangential br e beam hangers, Case #3 

 

(a) 

(b) 
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Accelerations 

Fig. 7.23 shows the measured longitudinal acceleration of Case #3 (average value of 

four accelerometers). The maximum longitudinal acceleration recorded varied from 2.2 

m/s2 to 2.5 m/s2. Similar to the experiments in Case #1 and Case #2, in the coasting 

zone each trial has provided a deceleration of approximately 0.1 m/s2 due to rolling 

resistance. In the braking zone (the zone of interest of this test program) where the 

pplied, the maximum deceleration recorded was 1.1 m/s2 (trials 2 

and 4). However, at the time of the severe skid (later discussion on Fig.7.26), the 

controlled brake was a

deceleration fell to 0.5 m/s2 (trials 1 and 2). 

 

Figure 7.23. Acceleration measured by accelerometers, Case #3 

Linear distance travelled and angular revolutions of wheelsets 

Fig. 7.24 shows the angular revolution and the travel distance of the bogie obtained 

during Case #3. The maximum travel distance recorded was 16 m (Fig. 7.24 (c) – trial 

1). Figs. 7.24 (a) and (b) reveal that for all trials the angular revolution of the braked 
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trailing wheelset was smaller than that of the unbraked leading wheelset due to skid 

(see Fig.7.26). 

 

Figure 7.24. Trav istance and wheelsets rotation, Case #3 

7.4.2. Derived Data 

Brake torque

el d

 

Fig. 7.25 shows the brake torque applied to the trailing wheelset during the experiment 

Case #3, calculated using Eq. 7.1. As expected, due to the skid of the trailing wheelset, 

the brake torque was found to drop drastically. As the most severe skid happened 

during t  of the 

brake torque also occurred during these two trials. This result, again, shows that skid 

has significant negative effect on the braking performance. 

(a) 

(b) 

(c) 

rials 1 and 2 (see later discussion of Fig. 7.26), the most sudden decrease
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Figure 7.25. Brake torques applied to trailing wheelset, Case #3 

Speed profile 

Fig. 7.26 shows the speed profile and wheelset angular velocity during the experiment 

Case #3. As exhibited by Fig. 7.26, the rate of speed decrease was lower if the severe 

skid happened.  

 

(c) 

Figure 7.26. Speed profile and wheelsets angular velocity, Case #3 

(a) 

(b) 
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Longitudinal acceleration 

Fig. 7.27 exhibits the bogie longitudinal acceleration time series obtained during the 

experiment Case #3, calculated through second order numerical differentiation of the 

linear distance data obtained from the LIMES linear encoder. Similar to the 

experiments in Case #1 and Case #2, it provides a very good agreement with the direct 

measurement of longitudinal acceleration using accelerometers (Fig. 7.23)   

 
Figure 7.27. Longitudinal acceleration calculated from LIMES, Case 4 

Slip 

The slip that occurred during the brake application of Case #3 is shown in Fig. 7.28 and 

Fig. 7.29. The longitudinal velocity was used to obtain the curves in Fig. 7.28 whilst the 

angular revolution of the unbraked wheelset was used to obtain the curves in Fig. 7.29. 

Both Fig. 7.28 and Fig. 7.29 show very good agreement. Both figures show one 

hundred percent slip during all four trials of Case #3. For trials 1 and 2 the skid was 

detected at around 2.2 m/s, and for trials 3 and 4 it was detected at lower speeds of 1.65 

m/s and 1.35 m/s respectively. 
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Figure 7.28. Difference between the longitudinal velocity (calculated from LIMES) and 

the circumferential velocity of the braked wheelset, Case #3 

 

Figure 7.29.Difference between the longitudinal velocity (calculated from angular 

revolution of unbraked wheelset) and the circumferential velocity of the braked 

wheelset, Case #3 
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Friction coefficient between the wheel and the rail 

B r w w r w w

When skid occurs the following equation is fulfilled:  

( ) ( )T N r N r1 1 1 2 2 2µ µ= +        (7.2) 

B 1rwhere  is the brake torque applied to the wheelset (see Eq. (7.1)), T µ  and 2rµ  are 

spectively, 

 and  are the normal loads on the right and the left wheel-rail contact patches 

respective  and  and  are the rolling radius of the right and the left wheels 

respectively. Assuming r

the friction coefficients at the right and the left wheel-rail contact patches re

1wN 2wN

ly 1wr 2wr

1 2r rµ µ µ≈ =  and rolling radius of the wheels w

Eq. (7.2) can be written as  

1 2w wr r r≈ = , 

1 2( )B r w w wT r N Nµ= +         (7.3) 

During the experiments  was obtained by measuring the tangential brake force whilst 

the nominal wheel radi =0.398m, measured prior to the test execution and  and 

um of the components due to static load 

and bogie pitching dynamics) of the braked wheelset respectively 

2 8.85wN N kN≈ ≈ ). Therefore, when skid happened, the friction coefficient between 

BT

us wr 1wN

2wN  were the right and the left wheel load (s

( 1w

wheel and rail, rµ , was calculated using Eq. (7.3).  

The calculated friction coefficient between the wheel and the rail during the occurrence 

of skid in this experiment program was found to vary between 0.15 and 0.20.  The low 

coefficient is believed to be typical of “rough” running surfaces; as the running surfaces 

were not polished to any precision and patches of corrosion products were visible to the 

naked eye, especially on the railhead, the low friction was considered acceptable.  
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The friction coefficient calculated from the skid measurements was much lower than 

the value obtained from the tribometer measurement (0.50 - 0.55 for dry rail and 0.43 - 

0.46 if soapy water was applied to the rail surface; see Appendix II). As tribometer 

measurements could not be regarded as an accurate reflection of the actual case (due to 

speed /wheel profile /wheel material, for example), the measured tribometer values 

were disregarded. Field practice also agrees with this decision as tribometer values are 

only used to determine relative changes to the friction coefficients rather than for the 

absolute measure. The friction coefficient calculated from Eq. (7.3) was therefore 

incorporated in the simulation of the experimental cases reported in Chapter 8. 

7.5. SUMMA

The results of the experimental program described in Chapter 6 have been presented in 

this chapter. All measurement devices (both onboard and wayside) worked well giving 

accurate results resulting in good inter-dependent comparisons. All the data gathered 

from the measurements were found to be consistent. Three cases of experiments were 

selected for the purpose of reporting. The only variable between the three cases was the 

brake pressure (130kPa, 150kPa and 180kPa) with the brake application time being 

kept constant (0.8 sec) for all cases.   

From the results of the experiments some important conclusions can be drawn as listed 

below:  

d) 

were found to be approxim  lower than the value calculated 

from the bogie specification at its new condition indicating reduction of the 

efficiency of the refurbished bogie brake system compared to the new one. 

RY AND CONCLUSION 

• The piston forces exerted by the brake cylinder (force measured in brake ro

ately 15% to 20%
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• At the brake pressure of 130 kPa there was no skid detected, showing that at this 

pressure the bogie was braked below its skid limit. 

• At the brake pressure

th

all 

dynamic wheel loads, would have significant influence.  

 signatures t using th

 very well with the acceleration signatures calculated from 

the second order numerical difference of the LIMES linear encoder data set. 

• At the brake pressure of 180 kPa, wheelset skid was detected for all the four 

trials, showing that at this pressure the bogie was braked above its skid limit. 

• Both slip calculation using LIMES linear encoder and using non-braked 

wheelset shaft encoder as reference to calculate longitudinal velocity showed 

very good agreement. This finding leads to potential field measurement of slip 

without the LIMES linear encoder.  

• From the measurement of the normal and tangential brake shoe forces, friction 

 of 150 kPa the braked trailing wheelset was brought into 

e skid limit region. Within this region the possibility of encountering skid was 

the same as the possibility of not encountering skid. This uncertainty is due to 

sm changes in the system parameters, such as the friction coefficients and the 

• The acceleration obtained from direct measuremen e 

accelerometers agree

coefficients between the brake shoe and the wheel tread were calculated for all 

cases. It appeared that with the increase in brake shoe forces (or brake cylinder 

pressure), the coefficient of friction between the brake shoe and the wheel tread 

reduces. For the 130kPa, 150kPa and 180kPa cylinder pressures, the average 

friction coefficients determined were 0.30, 0.27 and 0.25 respectively. 
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• From the six skid trials reported in this chapter, the friction coefficient between 

the wheel tread and railhead was determined and was found to vary between 

0.15 – 0.20.  This range is much smaller than the coefficients determined from 

the tribometer readings (0.50 – 0.55).  As the tribometer is considered more 

relevant for understanding relative changes in friction coefficient, the absolute 

values of friction coefficient obtained from the tribometer measurements were 

disregarded.  More reliable determination of friction coefficient between the 

wheel tread and railhead is therefore considered to be the one obtained through 

the skid trials (0.15 – 0.20).      

• The results of the experiment were found to be consistent and reliable; thus 

validation is reported in Chapter 8. 

 

 

they can be used to validate the RBD program built by the author. The 
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8. EXPERIMENTAL VALIDATION OF THE EFFECT 

OF BRAKING TORQUE TO BOGIE DYNAMICS: 

PART C.   COMPARISON WITH THE SIMULATION  

8.1. INTRODUCTION 

This chapter reports the comparison between the experimental results and the results of 

the simulations using the RBD program developed as part of this thesis. The parameters 

considered were the longitudinal acceleration / deceleration, speed profile, angular 

vel t

wheel-

average

experiments described in Chapter 7. This value of the friction coefficient was found to 

be the most representative capable of providing the best result of the simulation as 

indicated by a series of sensitivity studies..  

8.2. MO

8.2.1. B

The bogie used in the experiment was modelled as a system containing two wheelsets 

and

arrangem

mass properties and the dim

8.2 res

measured from

calcula

oci y and slip. The input was the applied brake torque to the trailing wheelset. The 

rail friction coefficient used in the simulation was set as 0.18, which was the 

 value (of 0.15-0.20) obtained from the skid level forces measured from the 

DELLING OF THE BOGIE USED IN THE EXPERIMENT 

ogie Properties 

 one mass (the bolster and the side frames were regarded as one sprung mass), the 

ent of which was the same as that of the model presented in Chapter 5. The 

ensions of the bogie are presented in Table 8.1 and Table 

pectively. The dimension and the mass of the bogie were the actual values 

 the bogie used in the experiment; the mass moments of inertia were 

ted assuming even distribution of the body mass.  

 223



Table 8.1. Inertia properties of the bogie components used in the experiment 

 Wheelset Sprung Mass 

Mass (kg) 1050 1480 

Mass moment of inertia xxI  ( 2kg m⋅ ) 450 2,000 

Mass  ( 2kg m⋅ ) 90 1,500  moment of inertia yyI

Mass moment of inertia 2kg m⋅ zzI  ( ) 450 2,500 

 

Table 8.2. Dimensions of bogie used in the experiment 

 Measured value (m) 

Wheel base 1.675 

Lateral distance between primary suspension  0.8 

Nominal wheel radius 0.398 

 

.2.2. Wheel and Rail Profile 

Prior to the execution of the experiment, the wheel and the rail profile were measured 

sing the MiniProf tool (see Section 6.3). The rail profile was measured at every 1 m 

terval and the profile of each wheel was measured at four points (90 degree interval). 

Samples of measured profiles can be seen in Appendix III. For the purpose of the 

simulation the measured profile data were averaged. Fig. 8.1 shows the measured wheel 

profile (average) used in the experiment compared to the LW2 profile and Fig. 8.2 

shows the measured rail profile (average) used in the experiment compared to the AS 

8

u

in
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60kg/m lations 

reported in

rail profile (LW2 profile and AS 60 kg/m rail profile were used for simu

 Chapters 4 and 5).    

 
Figure 8.1. Wheel profile used in experiment (LW3) compared to LW2 profile   

  
Figure 8.2. Rail profile used in experiment compare to UIC-60 profile 

The simulation used the measured forces/torques from the experiments as the input. 

simulation was performed for the braking phase only. The initia

8.3. COMPARISON OF THE RESULTS 

Because the experiments only measured the applied forces/torques of braking, thus the 

l speed input for the 
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simul hase 

before the brake was applied. To represent the actual condition of  

to .m) that represented the rolling resist as required to b d to the 

in

8.3.1. Simulation of Case #1 (Brake Pressure = 130 kPa) 

put brake torque

ation was the nominal speed obtained during the coasting (steady state) p

the test, a constant

rque (65 kN ance w e adde

put brake torque. 

In  

The input brake torque for the simulation of Case #1 is shown in Fig. 8.3. It is the 

average value o he experiments 

presented previously in Section 7.2.  

f the brake torques gathered from the four trials of t

 

Figure 8.3. Input brake torque for simulation of Case #1 

Output deceleration 

Fig. 8.4 presents the calculated acceleration profile from the RBD simulation compared 

to the experimental results of Case #1. This figure reveals that the output acceleration 

profile of the simulation agrees very well with the measured experimental values, 

vindicating the accuracy of the formulation and the programming of the RBD program.   
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Figure 8.4. Simulation output of Case #1: deceleration 

Output speed profile and angular velocity 

The is 

exhibited in Fig. 8.5.  

output speed profile and the angular velocity of both wheelsets for Case #1 

 

Figure 8.5. Simulation output of Case #1: speed profile and angular velocity 
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The input nominal initial speed for the simulation was set as 3 m/s. From Fig. 8.5, it 

can be seen that the RBD program calculates the speed profile and the angular velocity 

very well in comparison to the experimental results. 

Output slip  

 the RBD program and the 

experimental result for the Case #1. The maximum slip calculated by the RBD program 

 experiment results. However the RBD program predicted the time 

Fig. 8.6 shows the comparison between the slip calculated by

was smaller than the

of occurrence of the maximum slip comparable with the experimental results (around 

t=2.5s).  

 

Figure 8.6. Simulation output of Case #1: slip 

The areas under the slip curves that represents the energy dissipated due to braking are 

It seems that the creepage-creep relationship used in the RBD program (the standard 

comparable to each other. Fig. 8.6 shows that the RBD program calculated 

instantaneous peak of the slip differed to the experimental prediction.  In spite of this 

disagreement at micro-level, the RBD program in general calculates the global 

behaviour such as the acceleration (Fig. 8.4) and the speed profile (Fig. 8.5) correctly.  
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Polach method) was able to generally model the overall dynamics but not the wheel-rail 

contact detail accurately especially for low values of slip. Future research opportunities 

exist to improve the creepage-creep force relationship during braking. Another issue 

that requires consideration is the maximum magnitude of slip for this case, which is 

very small (≈ 0.025 m/s in Fig. 8.6) and can be regarded as micro-slip. Creepage-creep 

force relationship due to the slip of such small magnitudes will be more likely affected 

significantly by the surface condition (tribological properties), which are considered 

beyond the scop

sure = 150 kPa) 

e of this thesis. 

8.3.2. Simulation of Case #2 (Brake Pres

Input brake torque 

The input brake torque for the simulation of Case #2 is shown in Fig. 8.7. It is the 

average value of the brake torques gathered from the four trials of the experiments 

presented previously in Section 7.3.  

 

Figure 8.7. Input brake torque for simulation of Case #2 
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Output deceleration 

Fig. 8.8 presents the calculated deceleration from the RBD simulation. The 

experimental results of Case #2 are also shown in the figure. The output of the 

simulation agrees very well with the experimental results, once again re-assuring the 

he formulation and programming of the RBD program.  accuracy of t

 

Figure 8.8. Simulation output of Case #2: deceleration 

Output speed profile and angular velocity 

The output speed profile and the wheelset angular velocity of the simulation are 

presented together with the experimental results of Case #2 in Fig. 8.9.  

The nominal initial speed was set as 2.5 m/s. From Fig. 8.9, it can be seen that the RBD 

program predicted no skid condition has agreed well with the experimental results of 

trials 2 and 4.  Without having detailed creepage formulation allowing for tribological 

surface parameters, it was not possible to predict skid that happened in trials 1 and 3 of 

the experiment.  In other words, from the parameters considered in the simulation, for 

the wheel and rail profile and the friction coefficient used, and the initial speed 

specified, prediction is that the bogie will experience no wheelset skid.  The trials that 
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exhibited skid in the experiment could be regarded as some special cases where some 

parameter has slightly varied unfavourably.  

 

Figure 8.9. Simulation output of Case #2: speed profile and angular velocity 

Output slip  

Fig. 8.10 shows the slip calculated by the RBD program and the experimental result for 

Case #2. The maximum slip calculated by the RBD program, which predicted no skid, 

was smaller than the experiment results of trials 1 and 3 where the skid occurred. 

However compared to the experimental trials 2 and 4 where no skid occurred, the slip 

calculated by t noted that the 

vertical axis of the graph shown in Fig. 8.10 represents 50 times larger slip compared to 

e vertical axis of the graph in Fig. 8.6 (Case#1). 

he RBD program was marginally larger. It should be 

th
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Figure 8.10. Simulation output of Case #2: slip 

8.3.3. Simulation of Case #3 (Brake pressure = 180 kPa) 

Input brake torque 

The input brake torque for the simulation of Case #3 is shown in Fig. 8.11. It is the 

average value o he experiments 

presented previously in Section 7.4.  

f the brake torques gathered from the four trials of t

 

Figure 8.11. Input brake torque for simulation of Case #3 
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Output deceleration 

Fig. 8.12 presents the calculated deceleration from the RBD simulation and the 

experimental results of Case #3. The output deceleration of the RBD simulation was 

found to compare very well with the experimental values. Once again, the ability of the 

RBD program to deal appropriately with such severe dynamics cases is illustrated 

through this case. 

 

Figure 8.12. Simulation output of Case #3: deceleration 

Output speed profile and angular velocity 

The output speed profile and the wheelset angular velocity of the simulation and the 

experimental results of Case #3 are exhibited in Fig. 8.13. The nominal initial speed 

was set as 2.9 m/s in the simulation. From Fig. 8.13, it can be seen that the RBD 

program calculated speed profile and angular velocity agree very well with the 

experimental results. The RBD program has also predicted the occurrence of skid due 

to large brake torque applied, which is appropriate and consistent with the experimental 

observations.   
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Figure 8.13. Simulation output of Case #3: speed profile and angular velocity 

Output slip  

Fig. 8.14 shows the slip calculated by the RBD program and the experimental result for 

Case #3.  

 

Figure 8.14. Simulation output of Case #3: slip 
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The RBD program predicted one hundred percent slip (skid) occurring at the speed of 

propriate. 

8.4. SUMMARY AND CONCLUSION 

Computer simulation of the experiment using the RBD program has been performed 

and the simulation results have been compared to the data gathered from the 

experiment. Important conclusions drawn are as follows: 

• RBD program simulates the longitudinal dynamics of the bogie used in the 

experiment under the application of brake very well. The results of the 

simulation are generally very close to the data obtained from the experiment. 

• Althoug eak of the slip 

during the application of the brake without skid, especially for very low values 

y calculate the acceleration and the speed 

1.8 m/s, at t=2.7s, very close to the values obtained during trial 3 of the experiment 

Case #3.  The order of magnitude of the slip which occurred in this case is 

approximately 70 times larger than the trials in Case#1.  For such larger cases of slip, 

the creepage – creep force relationship used in the RBD program (standard Pollach 

method) appears ap

h the RBD program did not calculate the instantaneous p

of slip, the program can generall

profile correctly.  It seems that the creepage-creep relationship used in the RBD 

program (the standard Polach method) was able to generally model the overall 

dynamics but not the detail of wheel-rail contact (creepage-creep forces 

relationship) for such conditions. This observation opens the possibility for 

future research opportunities to improve the creepage-creep force relationship 

during braking, where large instantaneous longitudinal creepage occurs. 
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• The RBD program could now be regarded as being validated for most practical 

conditions including severe dynamics/skid. 
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9. APPLICATION OF THE RBD PROGRAM: 

EFFECT OF ASYMMETRIC BRAKE FORCES TO 

BOGIE DYNAMICS 

9.1. INTRODUCTION 

The RBD program and its formulation developed as part of this thesis could now be 

regarded as being validated for most practical conditions based on the discussions in 

e bogie dynamics due to the application of 

or derailment. Handoko et al. 

(2004) has reported some limited examination of the effect of asymmetric braking to 

the curving performance of a wagon negotiating a downhill slope with the brake forces 

applied to keep the speed constant. However, to the best knowledge of the author, no 

studies of asymmetric braking during variable speed have been reported in the 

lite

in this 

9.2. DE

Fig. 9.1

push br

mounte

link arr

suspen s. This 

type of brake rigging requires careful installation and regular adjustment to ensure that 

chapter 8. This chapter reports on sever

asymmetric brake normal forces within a single wheelset in bogies equipped with one-

side push brake shoe arrangement. Such a situation could lead to the deterioration of 

the running performance of the bogie including potential f

ratures. The RBD program has the capability to simulate such severe conditions and 

chapter its potential is reported through examples.  

FINITION OF ASYMMETRIC BRAKING 

 shows the brake rigging arrangement of a simple bogie equipped with one-side 

ake shoe arrangement. The braking force produced by the brake cylinder that is 

d on the wagon underframe is distributed to the wheels through a mechanical 

angement. The mechanical link, called brake rigging, consists of rods and levers 

ded from the underframe of the bogies and linked with pins and bushe
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the c

(Fig.9.1 ng could lead to uneven distribution 

of braking forces. Such a situation can occur when either the centre-pin on rod AB is 

 the bolster is disorientated and also when 

e guiding slot is stuck due to some obstacles or dirt.  

 

 

 

 

 

Figure 9.1. Typical Brake rigging arrangement 

 Fig. 9.2 shows the asymmetric brake shoe normal forces applied to a single wheelset. 

is defined as the error in the normal force distribution. It is clear that the 

etric forces generate yaw torque to the wheelset that could adversely affect the 

running stability of the bogie. If the distance between the brake shoe is defined as 

the generated yaw torque can be written as 

F         (9.1) 

For simplification, the reaction torque to the bogie frame was ignored (calculation the 

reaction torque to the bogie frame requires detail geometry data of the brake rigging, 

which was not available when this investigation was done).  

guiding slot 
in side frame 

fixed end pin  
in bolster 

 for es are evenly distributed to all wheels.  It can be seen from the rigging diagram 

) that any bad adjustment of the brake riggi

slightly off-centred or if the fixed-end pin in

th

F 

A 

B 

F∆

asymm

2b , 

2yawT b= ⋅∆
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F F+ ∆  

 

9.3. CASES STUDIED 

Several cases of asymmetric brake force (the error F

Figure 9.2. Asymmetric brake shoes normal forces 

∆ ) in the leading wheelset and 

trailing wheelsets were studied. Table 9.1 shows some selected important cases 

reported in this chapter. The bogie arrangement, including the mass and the spring 

constant, was assumed to be the same as that for the bogie model reported in Chapter 5 

(see Section 5.2). The wheel-rail friction coefficient was assumed to be 0.3 for all 

cases. The brake torque applied was assumed to be 20 kNm that produced a constant 

1.1 m/s  deceleration.  These values are considered as common operational parameters 

in practice.  All cases reported correspond to the initial speed of 25 m/s (90 km/h) 

although other initial speeds were examined. As the initial speed was found to have no 

significant effect, the cases corresponding to other initial speeds were disregarded in 

this chapter.   

2

 

2b  

F F− ∆  
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Table 9.1. Cases of Asymmetric Braking 

Item Error Magnitude Application Time 
25% 1s, 5s,10s 
50% 1s, 5s, 10s #1. Asymmetric braking at 

75% 1s, 5s,10s leading wheelset only 

25% 1s, 5s,10s 
50% 1s, 5s, 10s #2. Asymmetric braking at 

trailing wheelset only 75% 1s, 5s,10s 
 

e (normal: 5s / 

st: 1s / slow: 10s) were considered as the inpu arameters (Table 9.1). Cases 

of asymmetric braking to the leading and tr g wheelset were also examined, thus a 

total of eighteen cases were studied. The resulting speed profile and lateral 

displacement of the wheelsets (leading and trailing) were examined to understand the 

response of bogies under severe dynamics.  

9.4. RESULTS 

For simplicity, only detailed results of two (out of the 18) cases for each major items 

9.2 and 9.3. Detail plots ar

n of the case of 25% error on the leading 

wheelset at 10 om Fig. 

9.3 (a), it can be seen that the brake torque linearly increased from zero to 20 kNm 

Three levels of error magnitude (25%, 50%, 75%) and application tim

fa t control p

ailin

(Items #1 and #2 in Table 9.1) are reported. Results of all cases are compiled in Tables 

e included in Appendix IV. 

9.4.1. Asymmetric Braking of Leading Wheelset 

Fig. 9.3 shows the result of the simulatio

s of brake application time (the least severe case of Item #1). Fr

within 10 seconds. The application of the brake caused the bogie to come to rest (from 

its initial speed of 25 m/s) within 22.9 seconds as shown in Fig. 9.3 (c).  
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Figure 9.3. 25% error on leading wheelset, 10s brake application time (the least severe 

case) 

 
Figure 9.4. 75% error on leading wheelset, 1s brake application time (the most severe 

case) 
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Due to 25% error in th rces, yaw torque was 

generated on the g wheelset as  (b).  torque 

was 4 hen the b ttained m value. As 

revealed in Fig. 9.3 (d), the yaw torque ted unstable la tion of the 

leading the latera  of the eelset. The 

agnitude of the lateral oscillation of the trailing wheelset remained smaller (maximum 

Fig. 9.4 shows the result of the simulation of the case of 75% error on the leading 

wheelset at one second of brake application time (the most severe case of Item #1). 

From Fig. 9.4 (a), it can be seen that the brake torque linearly increased from zero to 20 

kNm within one second. The 75% error in the distribution of the brake shoe normal 

forces generated yaw torque (maximum 131.8 kNm) on the leading wheelset as shown 

wheelset and the trailing wheelset. When the bogie attained the speed of 6.1 m/s, the 

lateral displacement of the wheelset attained a large enough value to cause abrupt 

termination of the RBD program. This was due to the diverging contact constraint 

 the orientation of the wheel-rail 

rance between 

e distribution of the brake shoe normal fo

leadin  shown in Fig. 9.3  The maximum yaw

3.92 kNm which occurred w rake torque a its maximu

initia teral oscilla

 wheelset followed by l oscillation trailing wh

m

1.5 mm) compared to the lateral oscillation of the leading wheelset (maximum 2.4 mm) 

throughout the time history. 

in Fig. 9.4 (b). The yaw torque initiated severe unstable lateral oscillation of the leading 

equations that failed to determine the position and

contact point. This condition is regarded as the onset of “derailment” in this thesis. 

Fig. 9.5 presents several situations of wheel-rail contact predicted by the RBD program 

during lateral shift of the wheelset. Fig. 9.5 (a) shows the condition when the wheelset 

is in the centre position (equilibrium state). Fig. 9.5 (b) shows the condition when the 

wheelset is displaced 5 mm to the right. This figure shows that the clea

 242



the flange of the right wheel and the right rail head is narrowing while the clearance 

between the flange of the left wheel and the left rail head is enlarging.  

 
a. centre position 

 
b. 5 mm lateral displa t (towards right rail) cemen

 
c. 9.5 mm lateral displacement (towards right rail) 

 
d. loss of right tread contact (on the right rail) 

Left Right 

Left Right 

Left Right 

Left Right 

Figure 9.5. Wheelset lateral displacement and W/R contact point 
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When the lateral displacement attains 9.5 mm, the flange contact between the right 

wheel and the right rail is encountered while the tread contact is still maintained (Fig. 

9.5 (c)). This situation leads to lateral impact. When the wheelset continues moving to 

the right, the flange of the right wheel starts to climb up the right railhead. As the right 

wheel continuously climbs up the right railhead, at certain lateral displacement, the 

tread contact between the right wheel and the right railhead is lost (Fig. 9.5 (d)). It is 

the point where the contact constraint equation in the RBD program failed to converge. 

With the profiles used in this thesis, the wheel-climb mechanism of derailment 

occurred at the lateral displacement of around 11.5 mm.  

The results of all cases of the simulation of the asymmetric braking on the leading 

wheelset are compiled in Table 9.2. 

Table 9.2. Results of asymmetric braking on leading wheelset at initial speed 25 m/s  

Input Output 
Maximum Lateral Displacement 

(mm) 
Error (%) Maximum Yaw Torque 

Leading Wheelset Trailing Wheelset
in Leading Wheelset  

(kNm) 

Application 
Time (s) Time to Stop (s) 

10s 22.9s 2.4 mm 1.5 mm 
5s 20.4s 2.5 mm 1.7 mm 

25% 
43.92 

1s 18.3s 2.5 mm 1.9 mm 
10s 22.9s 8.3 mm 6.1 mm 
5s 20.4s 9.2 mm 6.5 mm 

50% 
87.84 

1s 18.3s 9.3 mm 7.3 mm 

10s derailment at v=5.9m/s 
and t=19.1s - - 

5s derailment at v=6.1m/s 
and t=16.3s - - 

75% 
131.76 

1s and t=14.4s - - derailment  at v=6.1m/s 

 

The input (maximum yaw torque and its time of attainment) and output (time to stop 

and maximum lateral displacement of both the leading and trailing wheelsets) are 

presented. At 25% error, the lateral oscillation attained only a small value irrespective 
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of the brake application time. The lateral displacement progressively increased with the 

increase in yaw torque. At 75% error the program failed to converge at the speed of 

around 6 m/s, indicating onset of derailment, for all cases of application time.  

9.4.2. Asymmetric Brake on the Trailing Wheelset 

Fig. 9.6 shows the result of the simulation of the case of 25% error on the trailing 

wheelset at 10s of brake applicatio evere case of Item #2). From Fig. 

9.6 (a), it can be seen that the brake torque linearly increased from zero to 20 kNm 

within 10 seconds. The application of the brake caused the bogie to come to rest from 

25 m/s within 22.9 seconds as shown in Fig. 9.6 (c). Due to 25% error in the 

distribution of the brake shoe normal forces, yaw torque was generated on the trailing 

wheelset as shown d was 43.92 kNm 

which occurred when the brake torque attained its maximum value. As revealed in Fig. 

9.6. (d), the yaw torque on the trailing wheelset caused unstable lateral oscillation of 

the wheelset followed by the lateral oscillation of the leading wheelset. The magnitude 

of the lateral oscillation of the trailing wheelset was larger (maximum 2.2 mm) 

compared to the la .7 mm). 

Fig. 9.7 exhibits the result of the simulation of the case of 75% error on the trailing 

wheelset at 1s of brake application time (the most severe case of Item #2). Fig. 9.7 (a) 

shows that the brake torque linearly increased from zero to 20 kNm within 1 second. 

The 75% error in the distribution of the brake shoe normal forces generated yaw torque 

(maximum 131.8 kN . 9.7 (b). The yaw 

torque initi llowed by 

the leading wheelset.  

n time (the least s

in Fig. 9.6 (b). The maximum yaw torque generate

teral oscillation of the leading wheelset (maximum 1

m) on the trailing wheelset as shown in Fig

ated severely unstable lateral oscillation of the trailing wheelset fo
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Figure 9.6. 25% error on trailing wheelset, 10s brake application time (the least severe 

case) 

 
Figure 9.7. 75% error on trailing wheelset, 1s brake application time (the most severe 

case) 
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However, as seen in Fig. 9.7, unlike the severe case Item #1, the contact constraint 

equations in the RBD program during the severe case of Item #2 always converged as 

illustrated by the stoppage of the bogie (the bogie stopped from 25 m/s within 18.3 

seconds as shown in Fig. 9.7 (c)). The magnitude of the lateral oscillation of the trailing 

cillation of the leading wheelset. 

The results of all cases of the simulation of the asymmetric braking applied to the 

trailing wheelset are compiled in Table 9.3.  

Table 9.3. Results of asymmetric braking on trailing wheelset at initial speed 15 m/s  

wheelset was initially larger compared to the lateral os

After 8s, the magnitude of the lateral oscillation of the leading wheelset became larger 

than that of the trailing wheelset. At the end of the simulation the lateral oscillation of 

both wheelsets had more or less the same magnitudes (approximately 11 mm), but they 

never reached the point where the tread contact was lost (11.5 mm). 

Input Output 

Maximum Lateral Displacement (mm)
Error (%) on Trailing Wheelset Application 

Time (s) Time to Stop (s) 
Maximum Yaw Torque 

(kN.m) Leading Wheelset Trailing Wheelset

10s 22.9s 1.6 mm 2.2 mm 
5s 20.4s 1.7 mm 2.4 mm 25% 43.92 
1s 18.3s 1.7 mm 2.7 mm 

10s 22.9s 7.4 mm 5.6 mm 
5s 20.4s 7.5 mm 5.9 mm 50% 87.84 
1s 18.3s 7.8 mm 6.2 mm 

10s 22.9s  10.9 mm 10.8 mm 
5s 20.4s  11.1 mm 11.2 mm 75% 131.8 
1s 18.3s 11.2 mm 11.1 mm 

 

Similar to the asymmetric braking on the leading wheelset, the 25% error caused only 

small lateral oscillation and the brake application time was revealed not to have much 

effect to the magnitude of the lateral oscillation of the wheelset. The magnitude of the 
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lateral displacement of the wheelset was mainly affected by the error that generated 

yaw torque of the wheelset. Unlike the asymmetric braking on the leading wheelset, the 

program was found to converge for all cases of asymmetric brake application on the 

trailing wheelset. Thus, it can be considered that no “derailment” occurred for all cases 

of asymmetric braking on the trailing wheelset considered in this investigation. 

However, at the error of 75% the lateral displacement was around 11 mm, resulting in 

flange contact. Any further increase in yaw torque (or more than 75% error) could 

potentially lead to derailment.  

At 25% error, the magnitude of the lateral oscillation of the trailing wheelset where the 

asymmetric braking was applied remained consistently larger than the magnitude of 

lateral oscillation of the leading wheelse ever, at larger errors (50% and 75 %), 

the lateral oscillation of the leading wheelset, at certain periods of the simulation, 

became larger than the lateral oscillation of the braked trailing wheelset. 

9.5. SUMMARY AND CONCLUSION 

The effect of asymmetric braking to the dynamics of bogies has been examined using 

the validated RBD program. The results can be summarised as follows: 

• In general, the asymmetric braking due to error in the distribution of brake shoe 

normal forces adversely affects the lateral dynamics of the wheelset as 

evidenced by unstable lateral oscillations. 

• The case corresponding to 25% error in the distribution of brake shoe normal 

force on the leading wheelset and all lateral 

oscillation of the wheelsets. 

t. How

/ or trailing wheelset caused only sm

 248



• For the cases of asymmetric braking applied to the leading wheelset, the 

magnitude of lateral oscillation of the leading wheelset remained always larger 

than the trailing wheelset. 

• For the cases of asymmetric braking applied to the trailing wheelset, at small 

level of error the lateral oscillation of the trailing wheelset was larger than the 

lateral oscillation of the leading wheelset. However at larger errors (50% and 75 

%), the magnitude of lateral oscillation of the leading wheelset, at certain 

simulation times, could became larger than the magnitude of lateral oscillation 

of the trailing wheelset. 

• The 75% error applied to the leading wheelset has caused the contact constraint 

equation in the RBD program to fail to converge, a situation that is described as 

 

shoe forces applied to the trailing wheelset. It is concluded that the error in the 

brake shoe forces on the leading wheelset is more dangerous than a similar error 

 t t.

 
 
 
 
 

“derailment”. However derailment did not happen for a similar case of brake

in he trailing wheelse  

 249



10. SUMMARY AND CONCLUSIONS 

Suburban passenger trains are regularly subjected to braking / traction for most of their 

travel. Similar situations also exist in heavy haul and long haul train operations during 

their entry and exit of speed restriction zones and/or tight curves.  Application of 

braking/traction torque modifies the speed of travel of trains nonlinearly due to the 

complex wheel-rail interface characteristics, track geometry and bogie design 

parameters.  In spite of these situations, the current simulation practices largely deal 

 and time. The 

formulation has enabled the simulation to be performed in a natural way using the 

e resulting speed profile as the output thus 

 Using the formulation, a MATLAB computer program titled Rail Bogie Dynamics 

(RB )

dynam

 Without braking / traction torque but including various types of track 

with constant speed conditions with the speed profile input as a priori.   

With a view to providing a simulation platform that truly accounts for the 

traction/braking torque induced dynamics of wagons, this thesis has formulated a model 

that explicitly accounts for the wheelset pitch degree of freedom. The formulation has 

been provided with reference to a coordinate system that is fixed in space

brake/traction torque as the input and th

avoiding approximate calculation of the speed profile as a priori. 

D  program has been developed and applied to a series of simulations of the 

ics of bogies subjected to the following conditions: 

irregularities: 

• vertical irregularity 

• lateral irregularity  
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• cross level irregularity 

 With braking /traction torque 

• gentle application 

The results of the simulations have been verified using a commercial software package 

VAMPIRE where possible. The cases that could not be simulated in VAMPIRE, for 

example wheelset skid, have been validated using a full scale laboratory test. 

From the research carried out as stated above, the following conclusions are made: 

1. Gen

1.1.

1.2. The idea of representing the total system differential equations of motion with 

a set of algebraic constraint equations in an augmented form and solving them 

using the generalised coordinate partitioning method is proved to be 

acceptable. 

1.3. Rigid body contact represented by surface parameters is sufficiently accurate 

for the determination of the wheel-rail contact position and orientation. 

1.4. Polach method of calculating the creep forces works well in areas of high 

creepage characterised by wheelset skid. 

• rapid application 

• very heavy braking torque sufficient to cause skid and derailment 

potential 

eral Conclusions 

 The formulation developed with reference to a coordinate system that is fixed 

in space and time appropriately predicts the dynamics of rail bogies. 
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1.5. The RBD eliable prediction 

of the dynamics of bogies with or without the application of braking/traction 

1.11. The lateral dynamics of the bogie subjected to braking/traction torque is not 

1.12. Asymmetric brake shoe forces in general should be avoided. Where such 

cases cannot be avoided, it should be remembered that the application of 

 program developed in this thesis could provide r

torques to an adequate level of accuracy. The RBD program could also handle 

various track irregularities appropriately. 

1.6. The RBD program has the potential to simulate dangerous situations such as 

the wheelset skid and the onset of wheel climb derailment. 

1.7. The RBD program is capable of dealing with bogie dynamics induced by 

asymmetric brake shoe forces. 

1.8. It is possible to design a full-scale laboratory test capable of determining the 

speed profile as a function of applied brake torque with instrumented bogie 

and wayside measurement. The experiment could also deal with severe bogie 

dynamics including wheelset skid. 

1.9. Experimental measurement of the normal and the tangential brake shoe forces 

eliminates the need for assuming the friction coefficient between the brake 

shoe surface and the wheel tread. 

1.10. From the wheelset skid test, it is possible to determine the friction coefficient 

between the wheel and the railhead. 

affected by the time of application of the torque. 
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asym es on the leading wheelset is more dangerous 

(higher derailment potential) than if applied on the trailing wheelset.  

1.13. The application of very large braking torque leads to wheelset skid and tends 

to set lateral oscillation. 

2. Specific Conclusions 

nonlinear 

he railhead could be represented by two surface parameters 

each. 

2.4. he mean 

lateral creep force has been found to be independent of the operating speed. 

2.5. 

2.6. l-scale tests carried out, the following conclusions are obtained: 

osition of the bogie. 

metric brake shoe forc

 destabilise the wheel

2.1. Runge-Kutta method is good for the numerical integration of the differential 

equations contained in the augmented system matrix. 

2.2. The Newton-Raphson method provides reliable solution to the 

algebraic constraint equations. 

2.3. The wheel and t

For the wheel and the railhead profile adopted in the simulation, t

Serious wheelset skid occurs as the coefficient of friction between the wheel 

and the rail reduces. 

From the ful

2.6.1. The QR30 bogie brake beam slider can be modified to facilitate the 

measurement of the tangential brake shoe forces. 

2.6.2. LIMES wayside measurement system provides very accurate 

measurement of the longitudinal p
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2.6.3. The accelerometers developed at CQU are economical and accurate in 

predicting even low frequency and very small levels of acceleration. 

2.6.4. The experiments have proved that the shaft encoders on both 

wheelsets could provide sufficient information for the calculation of 

een the brake shoe and the wheel tread were 

calculated for all cases. It appeared that, with the increase in brake 

shoe forces (or brake cylinder pressure), the coefficient of friction 

between the brake shoe and the wheel tread reduces. For the 130kPa, 

150kPa and 180kPa cylinder pressure, the average friction coefficients 

determined were 0.30, 0.27 and 0.25 respectively. 

2.6.6. From the six skid trials reported in this chapter, friction coefficient 

between the wheel tread and railhead was determined and was found 

to vary between 0.15 – 0.20.  This range is much smaller than the 

more relevant for understanding relative 

eter measurement were 

disregarded. More reliable determination of friction coefficient 

all related dynamics events, thus making the LIMES system 

redundant. 

2.6.5. From the measurement of the normal and tangential brake shoe forces, 

friction coefficients betw

coefficients determined from the tribometer readings (0.50 – 0.55).  As 

the tribometer is considered 

changes in friction coefficient, the absolute values of friction 

coefficient obtained from the tribom

between the wheel tread and railhead is therefore considered to be the 

one obtained through the skid trials (0.15 – 0.20). 
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2.7. 

gram to 

fail to converge, a situation that is described as “derailment”. However 

derailment did not happen for a similar case of brake shoe forces applied to 

the trailing wheelset. It is concluded that the error in the brake shoe forces on 

ore dangerous than the same error on the trailing 

wheelset. 

3. Recom

Som

limited to

2. Extending the model to account for curving simulation. 

3. Improving the model to allow for inclusion of other suitable methods of creep 

forces calculation. 

4. Writing the RBD program in an efficient programming language to improve the 

computational time and design it such a way that the program becomes more 

5. P

examine r speeds. 

 

The 75% error in the distribution of brake shoe forces applied to the leading 

wheelset has caused the contact constraint equation in the RBD pro

the leading wheelset is m

mendations 

e potential improvements that could be made in future work include but are not 

: 

1. Extending the model for the simulation of the complete wagon. 

user friendly.  

erforming the field test by improving the design of the instrumented bogie to 

the effect of application of braking torque at highe
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APPENDIX I 
DETERMINATION OF CONSTRAINT JACOBIAN MATRICES  

OF CONTACT BETWEEN TWO RIGID BODIES 

 

I.1. Contact Constraint Jacobian Matrices  

From Eq.(3.56): i i ik j j jk= + − −C R A u R A u  

i
ik ik

i

i ik i j jk j

⎡ ⎤∂
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I.2. Orientation Constraint Jacobian Matrices  

From Eq.(3.58):  T T T , 1,jk j i ik
l l l= =C n A A t 2  

The orientation constraint in respect to the generalised coordinates q  is: 

, , 1, 2

, 1,

l
l

i j
jkT jt ik ikT it jk

l li j

l

l
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Note that: Τ T T Tik j i ik ik i j jk
l l=n A A t t A A n  
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Applying some mathematical manipulation we get:  
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Using the same principle we also get: 

j
jk j jk j

j

∂
= −

∂
A n A n G
θ

%  

Thus, the orientation constraint in respect to the generalised coordinates  can be 

written as: 

q

, , 1,jkT jt i ik i ikT it j jk j
l l l l⎡ ⎤= − − =⎣ ⎦qC 0 n A A t G 0 t A A n G% % 2  

The orientation constraint in respect to the surface parameter  can be written as: s

,

T T
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, 1,
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APPENDIX II 

 
TRIBOMETER MEASUREMENT OF RAIL FRICTION COEFFICIENT 

Tool: QR Tribometer (Type: Salient's Hand-Pushed Tribometer) 

Date: 15 November 2005 

Start: 4:05 pm 

Finish: 5:00 pm 

Precondition: Surface of rails have been cleaned using piece of clothes prior to 
measurement 

 
Number of measurement: 5 times each rail for every condition (Dry, Wet, Soap 

Solution) 
 

DRY CONDITION  
Friction Coefficient Meas. No 

Right Rail (East Rail) Left Rail (West Rail) 
1 0.52 0.51 
2 0.52 0.50 
3 0.55 0.50 
4 0.53 0.51 
5 0.54 0.53 

   
   
WET CONDITION  

Friction Coefficient Meas. No 
Right Rail (East Rail) Left Rail (West Rail) 

1 0.53 0.51 
2 0.52 0.50 
3 0.54 0.49 
4 0.53 0.50 
5 0.53 0.51 

   
   
SOAP SOLUTION APPLIED ON RAIL SURFACE 

Friction Coefficient Meas. No 
Right Rail (East Rail) Left Rail (West Rail) 

1 0.45 0.44 
2 0.44 0.43 
3 0.46 0.45 
4 0.43 0.46 
5 0.45 0.44 
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APPENDIX III 
 

SAMPLES OF MINIPROF RESULTS  

OF WHEEL AND RAIL PROFILE MEASUREMENT 

 
III.1. Left Rail Profile Measurement 
 
Header fields   
ID Value 
ProgramName MiniProf Pocket 
ProgramVer 2.1.4.0 
MPTypeNo 299 
MPSerNo 795 
Date 09-11-2005 
Time 11:38:14 
Chars Win 
Stock Greenwood 
MPCalTime 06:31:04 
MPCalDate 07-09-2005 
Reference AS60.mpt 
Line Test Track 
Location  
Direction  
Rail Left 
Curve Dirn  
Comment 1 
SFAR0000.Par.Type.Value 2 
XYPoints 481 
W1 9.3357 
W1_AlarmStatus 3 
W2 11.8481 
W2_AlarmStatus 3 
W3 11.2239 
W3_AlarmStatus 3 
Gauge 1074.2199 
Gauge_AlarmStatus 3 
RailAngle -0.7219 
RailAngle_AlarmStatus 3 
ColumnDef X,Y,A,N,C 
Xoffset 0.0000 
Yoffset 0.0000 
RefPoint1 0.0000, 0.0000 
RefPoint2 10.0000, 0.0000 
RefPoint3 0.0000, 5.0000 
RefPoint4 0.0000, 0.0000 
RefPoint5 10.0000, 0.0000 
RefPoint6 0.0000, 5.0000 
RefPoint7 0.0000, 0.0000 
RefPoint8 10.0000, 0.0000 
RefPoint9 0.0000, 5.0000 
ProfileFilename 20051109-0001.ban 
ProfileFilepath d:\miniprof\profiles\ucq test track\ 
ProfileIndex -1 

Plot: Left Rail Profile Pos1
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III.2. Right Rail Profile Measurement 
 
 
Header fields   
ID Value 
ProgramName MiniProf Pocket 
ProgramVer 2.1.4.0 
MPTypeNo 299 
MPSerNo 795 
Date 09-11-2005 
Time 12:10:31 
Chars Win 
Stock Greenwood 
Reference AS60.mpt 
Line Test Track  
Location  
Direction  
Rail Right 
Curve Dirn  
Comment 2R 
SFAR0000.Par.Type.Value 2 
XYPoints 489 
W1 8.2222 
W1_AlarmStatus 3 
W2 9.1859 
W2_AlarmStatus 3 
W3 9.6213 
W3_AlarmStatus 3 
Gauge 1075.1020 
Gauge_AlarmStatus 3 
RailAngle -1.4799 
RailAngle_AlarmStatus 3 
ColumnDef X,Y,A,N,C 
Xoffset 0.0000 
Yoffset 0.0000 
RefPoint1 0.0000, 0.0000 
RefPoint2 10.0000, 0.0000 
RefPoint3 0.0000, 5.0000 
RefPoint4 0.0000, 0.0000 
RefPoint5 10.0000, 0.0000 
RefPoint6 0.0000, 5.0000 
RefPoint7 0.0000, 0.0000 
RefPoint8 10.0000, 0.0000 
RefPoint9 0.0000, 5.0000 
ProfileFilename 20051109-0052.ban 
ProfileFilepath d:\miniprof\profiles\ucq test track\ 
ProfileIndex -1 

Plot: Right Rail Profile Pos1
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III.3. Left Wheel Profile Measurement 
 
 
 
Header fields   
ProgramName MiniProf Pocket 
ProgramVer 2.1.4.0 
MPTypeNo 130 
MPSerNo 435 
Date 10-11-2005 
Time 10:51:35 
Chars Win 
Stock Greenwood 
MPCalTime 03:35:38 
MPCalDate 30-09-2005 
Reference  
CarNo uni,test 
AxleNo n402004 
WheelID WH1,t1 
XYPoints 534 
Sd 29.3427 
Sd_AlarmStatus 3 
Sh 28.8603 
Sh_AlarmStatus 3 
qR 9.2549 
qR_AlarmStatus 3 
DiameterFlange 854.7532 
DiameterFlange_AlarmStatus 3 
FlangeAngleMax 70.2922 
FlangeAngleMax_AlarmStatus 3 
FlangeAngleMaxPos 28.0230 
FlangeAngleMaxPos_AlarmStatus 3 
Hollowing 0.0000 
Hollowing_AlarmStatus 3 
HollowingPos 59.8894 
HollowingPos_AlarmStatus 3 
DiameterTaperline 797.0326 
DiameterTaperline_AlarmStatus 3 
ColumnDef X,Y,A,N,C 
ProfileFilename 20051110-0001.whl 
ProfileFilepath d:\university profiles\ 
ProfileIndex -1 
Xoffset 0.0000 
Yoffset 0.0000 
RefPoint1 0.0000, 0.0000 
RefPoint2 10.0000, 0.0000 
RefPoint3 0.0000, 5.0000 
RefPoint4 0.0000, 0.0000 
RefPoint5 10.0000, 0.0000 
RefPoint6 0.0000, 5.0000 
RefPoint7 0.0000, 0.0000 
RefPoint8 10.0000, 0.0000 
RefPoint9 0.0000, 5.0000 

Plot: Rear Wheel Profile Left Pos1
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III.4. Right Wheel Profile Measurement 
 
 
 
 
Header fields   
ProgramName MiniProf Pocket 
ProgramVer 2.1.4.0 
MPTypeNo 130 
MPSerNo 435 
Date 10-11-2005 
Time 11:11:03 
Chars Win 
Stock Greenwood 
Reference  
CarNo uni,test 
AxleNo N402004 
WheelID WH,2.T1 
XYPoints 541 
Sd 29.2953 
Sd_AlarmStatus 3 
Sh 29.0995 
Sh_AlarmStatus 3 
qR 9.2844 
qR_AlarmStatus 3 
DiameterFlange 853.0339 
DiameterFlange_AlarmStatus 3 
FlangeAngleMax 70.4741 
FlangeAngleMax_AlarmStatus 3 
FlangeAngleMaxPos 27.7960 
FlangeAngleMaxPos_AlarmStatus 3 
Hollowing 0.0000 
Hollowing_AlarmStatus 3 
HollowingPos 59.7680 
HollowingPos_AlarmStatus 3 
DiameterTaperline 794.8348 
DiameterTaperline_AlarmStatus 3 
ColumnDef X,Y,A,N,C 
ProfileFilename 20051110-0005.whl 
ProfileFilepath d:\university profiles\ 
ProfileIndex -1 
Xoffset 0.0000 
Yoffset 0.0000 
RefPoint1 0.0000, 0.0000 
RefPoint2 10.0000, 0.0000 
RefPoint3 0.0000, 5.0000 
RefPoint4 0.0000, 0.0000 
RefPoint5 10.0000, 0.0000 
RefPoint6 0.0000, 5.0000 
RefPoint7 0.0000, 0.0000 
RefPoint8 10.0000, 0.0000 
RefPoint9 0.0000, 5.0000 

Plot: Rear Wheel Profile Right Pos1
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APPENDIX IV 
 

RESULTS OF ASYMMETRIC BRAKING SIMULATION  
 

IV.1 Error on Leading Wheelset 

 
Figure IV.1. 25 % error on leading wheelset, 1s brake application time 

 
Figure IV.2. 25 % error on leading wheelset, 5s brake application time 
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Figure IV.3. 25 % error on leading wheelset, 10s brake application time 

 

 

Figure IV.4. 50 % error on leading wheelset, 1s brake application time 
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Figure IV.5. 50 % error on leading wheelset, 5s brake application time 

 

 

Figure IV.6. 50 % error on leading wheelset, 10s brake application time 

 X



 

Figure IV.7. 75 % error on leading wheelset, 1s brake application time 

 

 

Figure IV.8. 75 % error on leading wheelset, 5s brake application time 
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Figure IV.9. 75 % error on leading wheelset, 10s brake application time 

 

IV.2 Error on Trailing Wheelset 

 

Figure IV.10. 25 % error on trailing wheelset, 1s brake application time 

 XII



 

 

Figure IV.11. 25 % error on trailing wheelset, 5s brake application time 

 

Figure IV.12. 25 % error on trailing wheelset, 10s brake application time 
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Figure IV.13. 50 % error on trailing wheelset, 1s brake application time 

 

Figure IV.14. 50 % error on trailing wheelset, 5s brake application time 
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Figure IV.15. 50 % error on trailing wheelset, 10s brake application time 

 

Figure IV.16. 75 % error on trailing wheelset, 1s brake application time 
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Figure IV.17. 75 % error on trailing wheelset, 5s brake application time 

 

Figure IV.18. 75 % error on trailing wheelset, 10s brake application time 

 

 

 XVI
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