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ABSTRACT 

For wagons with three-piece bogies, the suspension 
dynamic characteristics are largely dependent on the friction 
condition of the wedge dampers. The influence of changes in 
wedge friction conditions on the dynamic wheel load is 
investigated. Comprehensive wagon-track modelling has been 
developed for the analysis. Simulations show that a small 
friction coefficient on the wedge contact surfaces can lead to 
the severe resonance of suspension system, causing large 
dynamic wheel loads and high levels of wheel unloading while 
with a large friction coefficient, suspension resonance is 
restricted, leading to smaller dynamic wheel loads. 

 
1. INTRODUCTION 

It has been well known that wagon and track dynamics 
originates from the dynamic interactions between wagon and 
track at the wheel-rail interface.    

 
The dynamic wheel load is an important parameter in the 

assessment of wagon and track operation conditions. For 
example, Jenkins et al. [1] presented P1 and P2 forces from 
dynamic wheel load due to rail dipped joints, and limits were 
suggested for these forces. Many theoretical and experimental 
investigations [1] ~ [18] have been done to determine the 
dynamic wheel load. The results show that the dynamic wheel 
load is dependent on track geometry irregularities (cross level, 
alignment, top surface and gauge variations), wheel and rail 
defects (wheel flats, wheel burns, rail dipped joints, and rail 
corrugations), vehicle speed, static wheel load and unsprung 
mass, and track modulus and track mass.  

 
In our ongoing research on the vertical suspension dynamic 

characteristics of the three-piece bogie due to track geometry 
irregularity – top surface variation with short wavelength, it has 
been found that the suspension dynamics is largely dependent 

on friction condition of the wedge dampers. For this aspect of 
research, a detailed simulation analysis has been carried out 
using a model of wagon-track dynamics interaction. In this 
model, the wagon is modelled using 66 degrees of freedom, 
accounting for the three dimensional movements of all wagon 
components. The track is modelled with the rails described 
using Timoshenko beams and discretely supported by the 
spring and damper elements representing the elasticity of pads, 
fasteners and ballast. Assumed track geometry irregularity – top 
surface profile with 15 parallel perturbations with a wavelength 
of 1.676 m in length, and a vertical amplitude to the track 
surface of 12 mm peak to peak, is used. Wagon speed is in the 
range of 12.7 – 60 kph so that the track input frequency is in the 
range of 2 – 10 Hz. Suspension dynamic characteristics and the 
dynamic wheel loads corresponding to the wedge friction 
conditions at the different track input frequencies are discussed. 

2. WAGON-TRACK MODELLING 
In this section, the modelling of vehicle-track system 

dynamics for the investigation on suspension dynamic 
characteristics of three-piece bogie is given. The dynamic 
vehicle-track system is divided into three subsystems – vehicle, 
track and wheel-rail contact, which are described in the 
following subsections respectively. 
 
2.1 Wagon Subsystem  

Wagon subsystem includes one wagon car body, two 
bolsters, four sideframes and four wheelsets. The wagon car 
body rests on two bolsters through two centre bowls and four 
constant-contact side bearings. Each centre bowl is modeled as 
four point contacts through the spring and friction elements 
along the longitudinal, lateral and vertical directions. The 
constant-contact side bearing is simplified as a spring element 
in the vertical direction. In the longitudinal direction, the car 
body is connected with two couplers, which are represented as 
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springs. The bolster is supported by the suspensions. The 
sideframe is an intermediate structure that provides seating for 
the suspensions and connects to the wheelsets through steel-
steel contact that is represented as stiff springs. Nonlinear 
connection characteristics such as lift-off among wagon 
components are fully considered. In this paper, the “constant-
damping” wedge located in the sideframe is considered, and its 
modelling takes account of the wedge inertia and is described 
as follows: 

 
Fig. 1 shows the friction wedge modelling. 
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Fig. 1 Friction Wedge Modelling 
 
In Fig. 1, ))1(4(1 kiN +−  and ))1(4(1 kiF +− , and ))1(4(2 kiN +−  

and ))1(4(2 kiF +−  are the normal and friction forces on the 

contact surface 1 and contact surface 2, the subscripts i  and k  
represent the numbers of bolsters and wedges respectively, 

kiu +− )1(4  and kiw +− )1(4  are the longitudinal and vertical relative 
displacements of wedge to sideframe, and α  is the wedge 
angle. 
 

The assumptions concerning wedge friction are made as 
follows:  
 
• Surface 1 and 2 are always in contact, and 
• Surface 1 and 2 are in sliding situation (e.g. friction is 

‘saturated’ on both surfaces).  
 

The second assumption is consistent with that used in 
many publications [19]-[23]. According to above assumptions, 

kiu +− )1(4  and kiw +− )1(4  satisfy the following sliding constraints:  
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In which 5616 , ++ ii xx  and 66 +ix  are the longitudinal 

displacement, the pitch and yaw rotations of bolster; 1612 ++ jix  

and 5612 ++ jix  are the longitudinal displacement and the pitch 

rotation of sideframes; The subscripts j  represents the 

numbers of sideframes; ssB  is the lateral semi distance 

between two wedges; bwH  is the vertical distance between 

mass centres of wedge and bolster at the static situation;  ikw∆  
is the vertical relative displacement between wedge and bolster; 
and sfwH  are the vertical distance between mass centres of 
wedge and sideframe. So, the dynamic equations of friction 
wedge along longitudinal and vertical directions are: 
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In which wgm  is the mass of friction wedge, and wwL  are 
the semi longitudinal distance between two wedges.   

 
In Eq. (2), the wedge friction force on contact surface 1 is 

calculated using the following Eq. (3).  
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(3) 
 

In which rV  is relative velocity between bolster and 
sideframe, µ  is the friction coefficient of wedge, and ε  is the 
relative velocity magnitude (5 ~ 7 mm/s) above which the 
coefficient of friction becomes definitively constant.  
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Except for the suspension elements including wedge 
dampers, all the other components of wagon are considered as 
rigid bodies with masses and mass inertia moments along the 
three Cartesian coordinate directions. All movements of the 
wagon subsystem are taken into account. The total degrees of 
freedom (Dofs) required to describe the longitudinal, lateral and 
the vertical displacements and rotations of the full wagon are 
listed in Table 1 in which u , v , w  are the linear 
displacements and xφ , yφ , zφ  are the rotations about X , Y  

and Z  axes respectively. As shown, there are 66 Dofs required 
to fully define the wagon dynamics. 
 

Table 1 Degrees of Freedom of Wagon 
Components u  v  w  xφ  yφ  zφ  
Wagon Car 
Body × × × × × × 

Bolster × × × × × × 
Sideframe × × × × × × 
Wheelset × × × × × × 
Total Dofs 1×6+2×6+4×6+4×6 = 66 

 
The equations of dynamic equilibrium can be written using 

multi-body mechanics method as shown below: 
 

WTWWW Fddd =++ WWW KCM &&&          (4) 
 

Where WW CM ,  and WK  are the mass, damping and 
stiffness matrices of the wagon subsystem. These matrices are 
66×66 respectively. Wd is the displacement vector of the 

wagon subsystem, and WTF  is the wheel-rail interface force 
vector consisting of the wheel-rail normal contact forces, 
tangent creep forces and creep moments about normal direction 
in the wheel-rail contact plane. 
 
2.2 Track Subsystem 

The track subsystem is considered as the discretely 
supported distributed-parameter track modelling with one layer. 
In the model, all the track components beneath rails used in the 
conventional ballasted heavy haul track structure are simplified 
as the spring and damper elements, which discretely support the 
rails at an interval of sleeper spacing.   

 
The lateral and the vertical bending and shear deformations 

of the rail beam are described using Timoshenko beam theory 
extended by considering the torque of the rail beam. Thus, there 
are five Dofs at any point along the longitudinal neutral axis of 
the rail beam, namely, lateral and vertical displacements and 
rotations about the lateral (Y ) and vertical ( Z ) axes and the 
torsional rotation about the longitudinal ( X ) axis used in the 
formulation of the rail beam. For simplicity, the dynamic 
equilibrium equations of the rail beam has been expanded using 
Fourier series in the longitudinal ( X ) direction by assigning 
equal number of terms ( mn , also known as the number of 

modes of the rail beam) for both the linear displacements and 
the angular rotations. The governing equations of dynamic 
equilibrium for the track are expressed in the following matrix 
form: 

 

WTTTT Fddd ~=++ TTT KCM &&&        (5) 
 

In which TT CM ,  and TK  (each of size mm nn 1010 × ) 
are the mass, damping and stiffness matrices of the track 
subsystem. The vector Td  contains displacement of the track 
subsystem that includes the modal and physical displacements, 
and WTF~  is the combined wheel-rail interface force vector. 

 
2.3 Wheel-Rail Interface Subsystem 

Under rolling contact the wheel and the rail produce 
contact forces in the normal direction on the wheel-rail contact 
plane. In addition, creep forces are generated in the longitudinal 
and the lateral directions tangential to the contacting plane, and 
creep moment about the normal direction. In this paper, the 
normal contact force nwrF due to the wheel-rail rolling contact 
is determined using Hertz contact theory and can be expressed 
in Eq. (6): 
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In which HC  is Hertz contact coefficient, Rw  is the 

vertical displacement of rail at the contact point, ww  is the 

vertical displacement of wheel at the contact point, and )(xµ  
is the function representing the track geometry irregularity. 
 
3. SIMULATION SYSTEM PARAMETERS 
 
3.1 Wagon-Track Parameters 

A wagon and track system was selected for examining the 
dynamic behaviours of suspension systems with two types of 
friction wedges. In the model, the length of track is chosen to 
be 146 sleeper spacings because it would be considered that the 
deflections and their differential values are closed to zero at 
two boundary sections when the wagon travels a distance of 55 
meters. The list of some important parameters of the system is 
provided in Table 2. The model containing the system of one 
wagon and a section of track results in 1266 equations of 
motion as described:  

 
Number of Dof used for one wagon = 66;  
Number of modes for the rail beams = 120;  
Total Dof = 66+ 120×10 = 1266. 
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Table 2 Some Parameters for a Wagon and Track System 
Parameter Value 

Wagon   

Wagon car body mass  48050 kg 
Mass of bolster   365 kg 
Mass of sideframe 447.5 kg 
Wheelset mass 1120 kg 
Stiffness coefficient of suspension along Z axis 2.555×106 N/m 
Semi distance of two bogie mass centres 5.18 m 
Semi lateral distance between the left and the right 
suspensions  0.8001 m 

Semi wheelset base 0.8375 m 
Mass of friction wedge 8 kg 
Stiffness coefficient of wedge spring  146×103 N/m 
Wedge angle 0.654 rad 
Reference preload of wedge spring 30 kN 

Track   

Rail mass per meter 60 kg/m 
Sleeper spacing 0.685 m 
Track modulus 40 MPa 

Wheel-Rail Interface   
Hertz spring constant 0.87×1011 N/ m3/2 

 
3.2 Track Geometry Irregularity 

In order to obtain the wagon bounce mode only, the top 
surface irregularity shown in Fig. 2 is used. Using sinusoidal 
track irregularity profiles different wagon speeds can be 
selected to excite the dynamic responses of bogie suspensions 
at different frequencies for the wagon bounce mode only, i.e., v 
= fλ (v = velocity (m/s), f = frequency (Hz), λ = wavelength 
(m)). The depth of the irregularity is given by the dimension a. 
In this paper, a wavelength of 1.676 m equal to the wheelset 
base, a depth a of 12 mm, and 15 parallel perturbations are 
selected. Bogie pitch motions are excluded as vertical axle 
motions are synchronised. Wagon speed is in the range of 12.7 
– 60 kph so that the track input frequency is in the range of 2 – 
10 Hz.  

 

Bogie Bounce

λ = Wheelset Base L
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X
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Fig. 2 Top Surface Irregularity 

 
The sinusoidal track irregularity profile ( )xµ  in Eq. (6) 

can be expressed as: 
 

        ( ) ( )[ ]{ }λπµ 02cos1
2

xxax −−=           (7) 

 

4. CHARACTERISTICS OF DYNAMIC RESPONSES 
The simulations have been completed for the bogie bounce 

modes over a range of track input frequencies from 2 to 10 Hz. 
In the simulations, the friction condition on wedge surfaces was 
varied. The friction coefficients with 0.1, 0.2 and 0.3 were 
chosen respectively.     

 
Figs. 3 (a) and (b), 4 (a) and (b), and 5 (a), (b) and (c) show 

the dynamic responses – vertical suspension forces, dynamic 
wheel load factor (dynamic wheel load divided by the static 
wheel load) and vertical wedge friction forces around the 
location of friction wedge #1 with the wedge friction 
coefficients of 0.1, 0.2 and 0.3 at the track input frequencies of 
2.3 Hz, 3 Hz and 6 Hz respectively. 
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  (a) Suspension Force 
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                                 (b) Wheel Dynamic Load                   

Fig. 3 Dynamic Responses at 2.3 Hz 
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(a) Suspension Force 
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                               (b) Wheel Dynamic Load                   

Fig. 4 Dynamic Responses at 3 Hz 
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(a) Suspension Force 
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  (b) Wheel Dynamic Load                   
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(c) Wedge Friction Force 

Fig. 5 Dynamic Responses at 6 Hz 

 
From Fig. 3, it can be seen that when the wagon is given an 

input profile at a frequency of 2.3 Hz equal to vertical natural 
frequency of suspension without damping 

( 3.2
5.0

2
2
1

=
+ bc

se

mm
K

π
 Hz in which cm - wagon car body 

mass, bm  - bolster mass, and seK  - stiffness coefficient of 
secondary suspension set) and the friction coefficient on the 
wedge surfaces is 0.1, the suspension is in severe resonance so 
that the suspension force is quickly expanding as shown in Fig. 
3 (a), leading to the wheel lifting off the rail as shown in Fig. 3 
(b) and the simulation terminated. It means that the friction 
wedge with friction coefficient of 0.1 does not sufficiently 
control and limit the resonance of wagon car body. It can be 
also seen that when the wedge friction coefficients are 0.2 and 
0.3 respectively, the friction on wedge surfaces can restrict the 
wagon car body resonance because it seems large enough to 
hold the bolster and sideframes together, making very small 
relative displacement between them so that the suspension 
force is very small as shown in Fig. 3 (a). Correspondingly, the 
dynamic wheel load factor is small as shown in Fig. 3 (b). 

 
If the track input frequency is increased slightly from the 

vertical natural frequency 2.3 Hz of suspension, for example, to 
3Hz, the dynamic responses are quite different. At first, for all 
wedge friction conditions, the wagon keeps running without the 
wheel lifting out of rail at the track input frequency of 3 Hz. 
Due to 3 Hz being close to the vertical natural frequency of 
suspension, the small wedge friction (e.g. 0.1) allows the larger 
suspension force and dynamic wheel load than those with the 
high wedge friction (e.g. 0.3) as shown in Fig. 4 (a) and (b). 
However, if the track input frequency is increased significantly, 
for example, to 6 Hz, the dynamic responses are just the 
converse to those at 3 Hz. The high wedge friction (e.g. 0.3) 
causes the larger suspension force and dynamic wheel load as 
shown in Fig. 5 (a) and (b) than those by the low wedge friction 
(e.g. 0.1). From Fig. 5 (b), it can be seen that a higher 
frequency component superimposed upon the basic frequency 
component of 6 Hz for the time history of dynamic wheel load. 
The wedge friction force also shows this high frequency 
component as shown in Fig. 5 (c). This frequency at 
approximately 22 Hz is very close to the natural frequency of 

wedge mass-spring system without damping ( 21
2
1

=
w

w

m
K

π
 

Hz in which wm - wedge mass and wK  - stiffness coefficient 
of wedge spring). This means that at a high track input 
frequency, the dynamic characteristic of wedge system has an 
effect on the dynamic wheel load.               
 

5. FREQUENCY RESPONSES OF DYNAMIC WHEEL 
LOAD 
As discussed in above section, the dynamic characteristics 

of suspension system are quite different at the different track 
input frequencies. In this section, further simulations have been 
carried out to illustrate the relationships between the dynamic 
wheel load and the track input frequency. For better 
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presentation of result outputs, a dynamic force factor 

swmxw FF=ϕ is defined where mxwF  is the maximum 

dynamic wheel load and swF  is the static wheel load, and a 

wheel-unloading factor swmiw FF=ψ  where miwF  is the 
minimum dynamic wheel load.  The relationships between 
these two factors and the input frequencies at the wedge friction 
coefficients of 0.1, 0.2 and 0.3 are shown in Fig. 6 (a) and (b) 
respectively.  
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(a) Dynamic Force Factor 
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(b) Wheel-Unloading Factor 

Fig. 6 Relationships between Dynamic Wheel Load and Track 
Input Frequency 

 
From Fig. 6 (a) and (b), it can be seen that for the friction 

coefficient of 0.1 on the wedge surfaces, a maximum value for 
the dynamic force factor is reached and the minimum value 
down to the zero (wheel lifting off rail) for the wheel-unloading 
factor occurs at a frequency of 2.3 Hz. This frequency is equal 
to the vertical natural frequency of the suspension. For the input 
frequencies greater than 2.3 Hz, the dynamic force factor 
reduces, and the wheel-unloading factor increases significantly. 
However, after 6 Hz, they increase and decrease linearly 
respectively as the track input frequency increases. The value 
of 1.16 for the dynamic force factor at 6 Hz, for example, 
increases to 1.40 at 10 Hz with an increase of about 20%. 

 
For the wedge friction coefficients of 0.2 and 0.3, as 

discussed in above section, the friction on wedge surfaces can 
restrict the resonance of suspension, making the dynamic force 
factor and the wheel-unloading factor smaller in the range of 

input frequency with 2 – 2.7 Hz as shown in Fig. 6 (a) and (b). 
At the input frequency of 2.7 Hz for the friction coefficient of 
0.2 and 4 Hz for the friction coefficient of 0.3, the dynamic 
force factors increase to values of 1.31 and 1.34 from 1.10 and 
1.11 at 2 Hz respectively. Correspondingly, the wheel-
unloading factors decrease from 0.89 and 0.88 at 2 Hz to 0.69 
and 0.65 at 2.7 Hz and 4 Hz respectively. After these two 
frequencies, the dynamic force factors and the wheel-unloading 
factors have a small decrease and then increase respectively 
until 6 Hz. After 6 Hz, they increase and decrease linearly 
respectively as the track input frequency increases.  

 
It can be also seen that after 4 Hz, the larger friction 

coefficients on wedge surfaces cause the larger dynamic wheel 
loads at higher frequency inputs. For example, the dynamic 
force factors for the wedge friction coefficients of 0.1 and 0.3 
are 1.17 and 1.29 at 6 Hz with the increase of 10.3%, and 1.40 
and 1.60 at 10 Hz with the increase of 14.3% respectively. 
 

6. CONCLUSIONS 
Comprehensive wagon-track modelling for simulating the 

dynamic behaviors of three-piece bogie suspension system with 
friction wedges has been presented. The effect of wedge 
friction conditions and wedge mass on the dynamic wheel load 
has been investigated for a geometry irregularity with short 
wavelength.  

 
The simulation results show that in the situation of a small 

friction coefficient (e.g. 0.1) on the wedge contact surfaces and 
when wagon is running at a speed so that the track irregularity 
input frequency is close to the vertical natural frequency (2.3 
Hz) of bogie suspension, large dynamic wheel loads are 
generated, with the dynamic force factor being near 2.0 with 
wheel lift off. However, with larger friction coefficients (e.g. 
0.2 and 0.3) on the wedge surface, suspension resonance is 
restricted, leading to smaller dynamic wheel loads. At track 
input frequencies higher than resonance, the dynamic wheel 
load increases proportionally with the track input frequency. 
Larger friction coefficients on wedge surfaces also result in 
larger dynamic wheel loads at higher frequency inputs.  
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