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On Stability of Recurrent Neural Networks—An Approach
From Volterra Integro-Differential Equations

Pingzhou Liu and Qing-Long Han

Abstract—The uniformasymptotic stability of recurrent neural networks
(RNNs) with distributed delay is analyzed by comparing RNNs to linear
Volterra integro-differential systems under Lipschitz continuity of activa-
tion functions. The stability criteria obtained have unified and extended
many existing results on RNNs.

Index Terms—Delay, recurrent neural networks (RNNs), stability,
Volterra integro-differential systems.

I. INTRODUCTION

In this letter, we consider the following recurrent neural network
(RNN) model

dx(t)
dt

= �Dx(t) +B
t

a
K(t� s)F (x(s))ds

x(s) = �(s); x 2 (a; t0); t0 � 0
(1)

which is the generalization of the most extensively studied model

dy

dt
= �Dy +BF (y) +Du: y(t0) = y0 (2)

by introducing distributed delay and translating equilibrium
to the origin, where x; y 2 Rn are the state vectors, D =
diag(d1; d2; . . . ; dn) 2 Rn�n is a constant diagonal matrix
with di > 0; B = [bij ] 2 Rn�n is a constant connection
weight matrix, u 2 Rn is a constant input vector, the delay kernel
K( � ) = [kij( � )] 2 L1(R+). F ( � ) = col(f1( � ); f2( � ); . . . ; fn( � ))
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is a vector-value activation function from Rn to Rn and is assumed
to be of class GL or L and F (0) = 0. If F 2 GL, then there exist `i,
such that 8x; y 2 R and x 6= y

0 �
fi(x)� fi(y)

x� y
� `i; i = 1; 2; . . . ; n: (3)

If F 2 L, then there exist constants `i, such that 8x; y 2 R

jfi(x)� fi(y)j � `ijx� yj; i = 1; 2; . . . ; n: (4)

In the following we only consider the case of a = 0 or a = �1. If
a = 0, the system has finite memory and one needs to deal with “uni-
form” stability. If a = �1, the system has infinite memory. In practice
situations, the distant past usually has less influence compared to the
recent behavior of the state. The case of a = �1, which has drawn
the most concern in the neural networks research, is just a mathemat-
ical simplification.

In this letter, we will use the well-known results about linear Volterra
integro-differential equations and the nonlinearity nature of Lipschitz
continuity (3) or (4), to study the global uniform asymptotic stability
of (1). As we put different kinds of delays under one umbrella—dis-
tributed delay, it also provides a way to approximately consider the
delay dependency of the neural networks by choosing an appropriate
and easy-to-handle delay kernel.

II. VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Let C(a;1)(a = 0 or a = �1) denote the set of all continuous
functions ': (a;1) ! Rn such that, for any t 2 R1, the semi-norm

k'kt = supfj'(s)j : a < s � tg

is finite. Let B( � ) 2 L1(R+) be a real matrix function.
Consider the following linear Volterra integro-differential equation

[9], [10]

dx(t)

dt
= Ax(t) +

t

a

B(t� s)x(s)ds (5)

for t � t0 with x(t) = '(t), where x(t) =
col(x1(t); x2(t); . . . ; xn(t)) 2 Rn with Euclidean norm
jxj = ( n

i=1 x
2
i )
1=2 and A is a real constant matrix, t � t0 and

x(t) = �(t) on a � t � t0. The solution of (5) with initial values
(t0; �) will be denoted by x(t; t0; �).

Notice that for a = �1, (5) is autonomous. It follows that one
needs only to consider the case of a = �1 with initial time t0 = 0.
Moreover, stability and uniform stability are equivalent.

Let

�ij =
1

0

bij(t)dt; �
+
ij =

1

0

jbij(t)jdt and

Ri =

n

j=1

(jaij j+ �ij
+):

Theorem 1: [9]: Let B( � ) 2 L1 and

jaii + �iijjakk + �kkj >
j 6=i

jaij + �ij j
j 6=k

jakj + �kj j

(6)
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for all i 6= k, and i; k = 1; 2; . . . ; n. Then the trivial solution of (5) is
uniformly asymptotically stable if for each i = 1; . . . ; n, either of the
following conditions holds:

i) aii < 0 and jaiij � j 6=i jaij j +
n

j=1 �ij
+;

ii) aii + �ii < 0; Ti =
1

0
tjbii(t)jdt < 1 and

Ti � jaii + �iij �
j 6=i

(jaij j+ �ij
+) =Ri:

To generalize the condition (i) of Theorem 1, we use M -matrix
theory to derive another sufficient condition which is weaker than (i)
but also guarantees the uniform asymptotic stability of the trivial solu-
tion of (5).

Using the properties ofM -matrix and letting cii = aii+�ii
+; cij =

jaij j + �ij
+; i 6= j, we can prove the following result.

Proposition 1: IfB( � ) 2 L1(R+) and�C = (�cij) is anM -ma-
trix, then the trivial solution of (5) is uniformly asymptotically stable.

Proof: Noting that cij > 0 (i 6= j); the matrix �C has non-
positive off-diagonal elements; it is a possible candidate of anM -ma-
trix. From the properties of M -matrix, there exists a diagonal matrix
P = diag(p1; p2; . . . pn); (pi > 0), such that �CP is diagonally
dominant, that is

�cii > 0 and � ciipi >
j 6=i

cijpj :

As �ii+ > 0, the following hold

aii < 0 and jaiijpi >
j 6=i

jaij jpj +
j

�ij
+pj : (7)

Letx(t) be a solution of (5) and y(t) = P�1x(t). Then y(t) satisfies

dy(t)

dt
= P�1APy(t) +

t

a

P�1B(t� s)Py(s)ds: (8)

Clearly, the stability properties of (5) and (8) are equivalent. Following
the above inequalities from M -matrix that (8) satisfies the condition
(i) of Theorem 1. It is easy to prove the condition (6) in Theorem 1 for
(8) is true from �+ij � j�ij j and a simple estimation by using the strict
inequality of (7). Then the conclusion follows.

We aim to use the results about Volterra integral-differential
equations to neural networks where nonlinearity is common. In the
remaining part of this section we will consider a class of nonlinear
Volterra-type integro-differential equations

du(t)
dt

= Au(t) + F (
t

a
B(t� s)u(s)ds) t � t0 � 0

u(t) = �(t) for t � t0
(9)

where F : C(R) ! Rn satisfies F (0) = 0 and condition (4), under
which it can be proved that (9) has a global solution [8].

Now, consider the linear Volterra system

dx(t)

dt
= Ax(t) +

t

a

LB(t� s)x(s)ds (10)

with the same initial values as (9), where L is the Lipschitz constant
of F .
Proposition 2: If the trivial solution of (10) is uniformly asymptot-

ically stable, then the trivial solution of (9) is uniformly stable. If, in
addition, F ( � ) 2 L and the conditions (i) of Theorem 1 or Proposition
1 to (10) hold, or F ( � ) 2 GL and the condition (ii) of Theorem 1 to
(10) holds, then the trivial solution of (9) is globally uniformly asymp-
totically stable.

Proof: Due to the equivalent of uniform stability and stability
between cases of a = 0 and a = �1, we only prove here the case
of a = 0. Suppose that (10) is uniformly asymptotically stable. Pick
numbers K and Tm such that if k�kt � 1, then jx(t; t0; �)j � K
for all t � t0 and jx(t+ Tm + t0; t0; �)j < 1=m for all t � 0.
Let g(t) be a continuous, nonincreasing, positive function such that
g(t) = K on 0 � t � T1, and g(Tm) = 1=(m � 1) for m =
2; 3; 4; . . .. Then jx(t+ t0; t0; �)j � g(t) ! 0 as t ! 1, whenever
t0 � 0 and k�kt � 1. For this g(t) there exists a function G(y) 2

C1(R+);G(y) > 0; G (y) > 0 for all y > 0; G(0) = G (0) =

0; G (y) is increasing in y and for constant C > 0, integrals

1

0

G(Cg(s))ds and
1

0

G (Cg(s))ds (11)

are finite. Define a Liapunov functional [10]

V (t; �) =
1

0

G(jx(s+ t; t0; �)j)ds (12)

where x(t; t0; �) is the unique solution of (10) with initial value pair
(t0; �). V (t; �) has following properties:

1) V (t; �) is locally Lipschitz continuous in �;
2) V (t; 0) � 0, for all t � 0;
3) V (t; �) � w0(j�(t)j);
4) _V (t; �) � �w1(j�(t)j);

where w0(y) and w1(y) are positive define continuous functions and
_V (t; �) = lim suph!0 fV (t0 + h; x(�; t0; �))� V (t0; �)g=h is the
upper-right Dini derivative of V (t; �) with respect to (10).

We now use the same Liapunov functional to control the non-
linear (9).

Let  (t) = u(t; t0; �) be any solution of (9). Then

_V (t+ t0;  )j(9) � _V (t+ t0;  )j(10) + CjP (t+ t0;  )j (13)

where C be the Lipcshitz constant for V (t; �) and

P (t; u) = F
t

0

B(t� s)u(s)ds �
t

0

LB(t� s)u(s)ds:

(14)

Since F ( � ) 2 L and B( � ) 2 L1(0;1), we have that P (t; �) 2 L.
Then the uniform stability of (9) follows from (13) and the proof is
similar to that in [10].

In order to prove the global uniform asymptotic stability of (9), we
need to show  (t) uniformly tends to zero as t ! 1.

Suppose that F ( � ) in (9) satisfies global Lipschitz continuality con-
dition (4). Then for ui(t) 6= 0 we have

djui(t)j

dt
� aiijui(t)j+

j 6=i

jaij jjuj(t)j

+

n

j=1

`j
t

a

jbij(t� s)jjuj(s)jds (15)

for i = 1; 2; 3; . . . ; n; where L = diag(`1; . . . ; `n) and the upper
right Dini derivative is used.

Using (12), we define a Liapunov functional

V (t;  ) =
1

0

G(y(s+ t))ds (16)

with

y(t) =

n

i=1

j i(t)j+

n

j=1

`j
1

0

jbij(u)j
t

t�u

j j(r)jdr du:

(17)
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By calculating the upper-right Dini derivative of V (t;  ) with re-
spect to (9), we have

_V (t;  )j(9) =
1

0

G (y)
dy(t)

dt

� �
1

0

G (y)

n

i=1

�ij i(t)jds (18)

where �i = jaiij� j 6=i jaij j+`i
n

j=1 �
+
ij . It follows from (18) and

Theorem 1 that V (t;  ) is bounded. As G( n

i=1 j i(t)j) � G(y(t)),
so, G( n

i=1 j i(t)j) 2 L1(0;1). From the definition of G( � ), we
have j i(t)j uniformly tends to zero as t ! 1.

Suppose that F ( � ) 2 GL in (9) and the condition (ii) in Theorem 1
is satisfied, then for ui(t) 6= 0 we have

djui(t)j

dt
� aiijui(t)j+

j 6=i

jaij jjuj(t)j

+ `i

t

a

bii(t� s)jui(s)jds

+
j 6=i

`j

t

a

jbij(t� s)jjuj(s)jds: (19)

A simple modification of Liapunov functional (16) will work in the
same way, and we omit the details here. As for the conditions in Propo-
sition 1, wemay achieve the conclusion just bymultiplying pi to y(t) in
(17) and to follow the same arguments. The proof of the case a = �1
can be repeated step by step as above.

Form Proposition 2, the sufficient conditions for the stability of a
linear Volterra system in Theorem 1 and Proposition 1 can be used
to determine the global stability of linear system (10), and through it
to (9).

III. RECURRENT NEURAL NETWORKS

In this section, we will apply the results from previous section to
study the global uniform asymptotic stability of RNNs.

As indicated in the previous section, there is no difference for a = 0
and a = �1 on the stability of linear Volterra systems, except that
the stability of case a = �1 is equivalent to the uniform stability of
case a = 0. In order to compare the existing results for the RNNs, in
the following, we only consider (1) with a = �1 and the results will
also be valid for other case. If the results apply to (2), we have assumed
u = 0, and no confusion should arise.

If F 2 L in (1), by applying Theorem 1, Propositions 1 and 2, we
have the following results.
Corollary 1: The trivial solution of (1) and (2) is globally asymp-

totically stable if

di �

n

j=1

jbij j`j ; i = 1; 2; . . . ; n: (20)

Proof: Taking Kii(s) = �(s) and verifying the condition (i) of
Theorem 1.
Corollary 2: The trivial solution of (1) and (2) is globally

asymptotically stable if D � (jbij j)L is an M -matrix, here
L = diag(`1; . . . ; `n).
Corollary 3: [7]: The trivial solution of systems (1) and (2) are

globally asymptotically stable if di > 0 and there exist pi > 0; (i =
1; 2; . . . ; n) such that

dipi >

n

j

jbij j`jpj

or

pjdj >

n

i

pijbij j`i:

Remark 1: The condition which is similar to Corollary 1 has been
seen in the Theorem 2 in [4] andmany people have generated it by using
M -matrix. The results of Corollaries 2 and 3 are the same condition
as Theorem 4 in [7] for delay-free system and Theorem 1 in [2] and
basically are the same as Theorem 5 in [13], the condition (H2) in [3]
and conditions in [15]. We notice that some of these conditions also
guarantee the global exponential stability (GES) ([7], [11], [15]) and
believe that the uniform asymptotic stability of (5) is of GES if there
exists � > 0, such that e�tjB(t)j 2 L1(R+).

If F 2 GL in (1), letE(T ) =
1

0
tjkii(t)jdt denote the expectation

value of twith absolute of synapse filter kii(t), then applying Theorem
1, Propositions 1, we have the following results.
Corollary 4: The trivial solution of (1) is globally asymptotically

stable if for i = 1; 2; . . . ; n

D
�
i = �di + `ibii

1

0

jkii(t)j < 0; (21)

and

E(T ) �
�D�i � j 6=i jbij j`j

n

j=1 jbij j`j
: (22)

Proof: Just verifying the condition (ii) of Theorem 1.
Corollary 5: The trivial solution of (2) is globally asymptotically

stable if

di � `ibii �
j 6=i

jbij j`j ; i = 1; 2; . . . ; n: (23)

Proof: Verifying (22) of Corollary 4 or directly verifying the con-
dition (i) of Proposition 1.
Corollary 6: The trivial solution of

dx(t)

dt
= �Dx(t) +BF (x(t� � )) (24)

is globally asymptotically stable if for i = 1; 2; . . . ; n

�i �
di � bii`i � j 6=i jbij j`j

n

j=1 jbij j`j
: (25)

Proof: Taking Kii(s) = �(s � �i) and verifying (22) of
Corollary 2.

Applying Proposition 1, we have.
Corollary 7: The trivial solution of (2) is globally asymptotically

stable ifD � diag(`1b11 � � � `nbnn)� (jbij j)i6=jL is anM -matrix.
Corollary 8: The trivial solution of (2) is globally asymptotically

stable if di > 0 and there exist pi > 0; (i = 1; 2; . . . ; n) such that

(di � `ibii)pi >
j 6=i

jbij j`jpj

or

pj(dj � `jbjj) >
i6=j

pijbij j`i:

Remark 2: The conditions in Corollaries 5, 7, and 8 have been seen
in many papers for differently defined activation functions ([1], [5]),
except that the inequalities (23) here are not strict. Corollary 4, Corol-
lary 6, and the following Corollary 9 are valid for F 2 GL and their
conditions are delay-dependent, and have not been seen in the literature
by such an explicit and intuitive way.

Consider another popular RNN model

dx

dt
= �Dx+ F (Wx + u); x(t0) = x0 (26)

which is equivalent to (2) if WD = DW andW is nonsingular ([6],
[7]). Similarly, the generalization of (2) can be written as

dx(t)
dt

= �Dx(t) + F B
t

a
K(t� s)x(s)ds

x(s) = �(s); x 2 (a; t0); t0 � 0:
(27)
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Applying Theorem 1, Propositions 1 and 2, we can derive another set
of conditions that are very similar with Corollaries 1–8 except in the
inequalities `s are out of the sum sign.

The previous results are based on the fact ofD > 0, the self-regula-
tion of negative feedback of each neuron. Letting F (x) = �F1(x) +
�F2(x) and choosing appropriate � function as delay kernel from (1),
we can obtain the delayed cellular neural networks (DCNNs) ([1], [14])

dx(t)

dt
= �Dx(t) +E1F1(x(t)) + E2F2(x(t� � )) (28)

where the nondelayed items may contribute to neurons self regulation
or interactions. We can still apply our results in Section II to compare
the neural networks under consideration to some suitable linear systems
according to the class of Lipchitz activation functions.

The following examplewas considered by Cao andWang [1] without
delays. Suppose that K( � ) 2 L1(R+). Then we modify this example
in the following form

dx (t)
dt

= �7x1(t) + 2f1
t

�1
k1(t� s)x1(s)ds

+8f2
t

�1
k2(t� s)x2(s)ds

dx (t)
dt

= �11x2(t) + 2f1
t

�1
k1(t� s)x1(s)ds

�5f2
t

�1
k2(t� s)x2(s)ds ;

x1(s) = �1(s); x2(s) = �2(s); s 2 (�1; � ); � � 0

(29)

where D = [
7 0

0 11
]; B = [

2 8

2 �5
] and fi = �jxij(i = 1; 2).

Clearly, fi 2 L is unbounded and Lipschitz continuous with the
Lipschitz constant ki = 1. We can check that D � L(jbij j)2�2 =

[
5 �8

�2 6
] is an M -matrix. Hence, by Corollary 2 the trivial solution

of (29) is globally asymptotically stable.
Now, we further modify the above example to a DCNN model (28)

by letting

E1 =
8 0

6 2

F1(x(t)) =
tanh(x1(t))

tanh(x2(t))

E2 =
�2 1

2

2 �5

F2(x(t� � )) =
tanh(x1(t� �1))

tanh(x2(t� �2))
:

Obviously,F1; F2 2 GL. It is easy to checkD�(jE1j)K�(jE2j)L =

[
�3 �(1=2)

�8 4
] is not anM -matrix, so the Theorem 3 in [1] cannot be

applied for (28), where k = L = diag(1;1). By using Dini derivative
and the properties of function class GL, we have

djx (t)j
dt

� x1(t)� 2x1(t� �1) +
1
2
jx2(t� �2)j

djx (t)j
dt

� 6jx1(t)j � 9x2(t)� 2jx1(t� �1)j � 5x2(t� �2):

(30)

Following from Proposition 2 and checking the condition (ii) of the
Theorem 2, we can claim that when

�1 �
1
7

�2 �
3
11

(31)

the DCNN system is globally asymptotically stable.
For some cases, one can use a special distribution function to de-

scribe the special delay effects approximately. Other useful delay ker-
nels are given by Gamma density function

kij
(m)(s) =


ij
m

�(m)
sm�1e�
 s; m > 0; s > 0 (32)

or its linear combinations, where

�(m) =
1

0

e�ttm�1dt; m > 0

is the �-function and 
ij are real constants. From Corollary 2, we have.
Corollary 9: Let delay kernel be in the form of (32). Then the trivial

solution of (1) is globally asymptotically stable if for all i = 1; 2; . . . ;

m


ii
�

di � bii`i � j 6=i jbij j`j
n

j=1 jbij j`j
: (33)

IV. CONCLUDING REMARKS

Sufficient conditions have been derived for the GAS of the equilib-
rium of recurrent neural networks with distributed delay by applying
the theory on Volterra integro-differential equations. The conditions,
which lead to GAS, also guarantee the uniqueness of the equilibrium.
Thus, we can avoid the difficulties on proving the uniqueness of the
equilibrium, which forms the underlying basis for ad hoc constructing
of special Liapunov functions or functionals.
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