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challenge in kernel based learning algorithms is the choice of an appropriate kernel and its optin1al parameters.
of a polynonlial kernel is critical to ensure good generalisation of the resulting support vector

In this paper we propose Bayesian and Laplace approximation methods to estimate the polynonlial degree.
mela-leaming approach is then. proposed for automatic polynomial kernel and its optimal degree selection. The

approach is' constructed and tested on different sizes of 112 datasets with binary class as well as multi class classification
U.l.'L)'VJ.'viJLl.J. An extensive computational evaluation of these methods is conducted, and rules are generated to deternline when these
approximation methods are appropriate.

vector nlachines, polynomial kemet rule based method

..................... "-' ...... Vector Machines (SVMs) [7,8,36] are an optimal hyperplane based statistical learning illethod, which
classification as well as regression problems. They have been shown to offer improved performance in the areas

text mining [27], fraud detection [15], speaker identification [37] and database Inarketing [5],

many others. The perfolmance of the SVM method depends however on the suitable selection of a kenlel.
the most important part of the SVM algorithn1: it generates the dot products in a higher dirnensional

space. The space could theoretically be of infinite dimension, where linear discrimination is possible. The
and radial basis function (rbf) kernels are the InGst popular classical SVM kernels. Up to now a good

of kernels have been proposed by researchers, but there is no unique kernel that perfofrns best for all
'-JLJ ... "-' ......... ~l. The D10St common procedure for SVM kernel selection is the trial-and-error approach. Joachinls argues

are universal learners with a sin1ple ·plug-in' of an appropriare kernel function to learn the probleITIS [16].
a very procedure due to a vast range of kernel functions available. Onoda et al. argued that selection

kernel for SVM is an important research issue for real world applications [25]. A priori kernel selection
a difficult task for the user though [4,28]. Moreover, we found in the SYM literature [16,24], n1anually
!Ju.H"U~ ...d.uv kernel parameter is a traditional approach for SVM user. Santos and Gomes found polynomial

order of the polynolnial degree performed better for appearance-based object recognition ["30).
Ou et polynoffilal kernel has generalisation difficulties for high ranges of the polynomial

it is a research issue to aurolnatically select the polynomial kernel function and its optimunl
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Abstract.. The key challenge in kernel based learning algorithms is the choice of an appropriate kernel and its optimal parameters.
Selecting the optimal degree of a polynomial kernel is critical to ensure good generalisation of the resulting support vector
machine model. In this paper we propose Bayesian and Laplace approximation methods to estimate the polynomial degree.
A rule based meta-learning approach is then proposed for automatic polynomial kernel and its optimal degree selection. The
new approach is constructed and tested on different sizes of 112 datasets with binary class as well as multi class classification
problems. An extensive computational evaluation of these methods is conducted, and rules are generated to determine when these
approximation methods are appropriate.
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1. Introduction

Support Vector Machines (SVMs) [7,8,36] are an optimal hyperplane based statisticalleaming method, which
solve classification as well as regression problems. They have been shown to offer improved performance in the areas
of bioinformatics [14], text mining [27], fraud detection [15], speaker identification [37] and database marketing [5],
among many others. The perfonnance of the SVM method depends however on the suitable selection of a keme1.
A kemel is the most important part of the SVM algorithm: it generates the dot products in a higher dimensional
feature space. The space could theoretically be of infinite dimension, where linear discrimination is possible. The
polynomial and radial basis function (rbf) kemels are the most popular classical SVM kemels. Up to now a good
number of kemels have been proposed by researchers, but there is no unique kernel that performs best for all
problems. The most common procedure fOf SVM kemel selection is the trial-and-error approach. Joachims argues
that SVMs are universal learners with a simple 'plug-in' of an appropriate kernel function to learn the problems [16].
This is a very lengthy procedure due to a vast range of kemel functions available. Onoda et a!. argued that selection
of a suitable kernel for SVM is an important research issu:: for real world applications [25]. A priori kernel selection
for SVM is a difficult task for the user though [4,28]. Moreover, we found in the SYM literature [16,24], manually
feeding the parametric kernel parameter is a traditional approach for SVM user. Santos and Gomes found polynomial
h:rnel with higher order of the polynomial degree performed better for appearance-based object recognition [30].
But according to Ou tt aI., polynom131 kernel has generalisation difficulties for high ranges of the polynomial
degree [26]. Therefore, it is a research issue to automatically select the polynomial kernel function and its optimum
degree for SV:-1.
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I. '--'_"',~ .sJi I, ....~I I is the first step to provide the solution of these issues of polynomial kernel degree selection
is an extension of our previous research [1] which has focused on automated kernel and kernel

pa:ImrleH~r ,J'.,L.......... t.Jl ......'LII. nlethods based on data infonnation using a single classical statistical method interquartile range
experin1ent has done with a small range ofclassification problems. In present research first, we propose

.L..I~.J"'''''''''''''''''methods for estimating the optimal degree of the polynomial kernel. This is a theoretical
then consider an experimental approach to validate these methods, and to determine when they

\Ve start by classifying 112 problems (see Appendix I) from the DCI Repository [6] and
Central [20] database by SVM with polynomial kernel, using a variety of different methods

polynomial degree, including our two new methods as well as a trial and error approach.
fold cross validation for those datasets with fewer than 1000 examples. Otherwise we use the holdout

A.LA."-'I..AJL"-'~. 70% and the rest for testing. After that \ve identify the dataset characteristics matrix by using
.;;>1I.u.t•.Jl.JIl.... ""'<-4.L measures following Smith et al. [31,32]. These measures seek to characterise the 112 datasets using a

Jl..<-4l...l.oJl,.·.Lvt-j-.L, distance-based and distribution-based measures. All the statistical fonnulations are available
statistics toolbox [Statistics toolbox user's guide, 2001]. Finally we use the induction algorithm C5.0
version http://www.rulequest.com/see5-info.html) to generate the rules to describe which optimal

vvt-.unation method is suitable for which type ofprobleITI, given the dataset characteristics and the performance
method on each dataset. \Ve also examine the rules by 10 Fold Cross Validation (1 OFCV) performances.

organised as follows: In Section 2, we provide some theoretical frameworks regarding SVM and
and provide rules for polynomial kernel selection based on our previous work. These rules provide

.(;;.,IU..I..... ~vJI.JI..l..l""oJ as to when different kernels, including polynomial, are expected to perform well. Section 3 proposes the
JL,I.;. ....'\.Ji.A"JV..:J for estimating the optimal polynomial degree, Laplace and Bayesian, and measures the performance

methods on the 112 classification problems with statistical significance test results. All statistical measures
the dataset characteristics matrix are sUlnmarized in Section 4. A brief review on rule based learning

""" t-, Ji. C5.0 and the analysis of the experimental results are presented in Section 5, where we also present some
describe when the proposed optimal degree estimation methods are appropriate. Finally We cortclude o·ur

Section 6.

machine

""V~!.~!U~L a dataset D of l independently identically distributed (i.i.d) samples: (x 1, Yl) , ... , (Xl, Yl). Each
a set of feature vectors of length m, X'i == (Xl, ... ,xm)and the target valueYi E {I, ... ,k} that represents

class Now, the pattern recognition problem or machine learning task is to learn the classes for
a classifier with decision functions f (Xi, Qi), where f (Xi, (Xi) == 'Yi, Qi E l\., V (Xi, Yi) E D,

of extract parameters. We consider SVM to learn this problem. SVM learns the problem to estimating
.................... ££""" paran1eter by solving the quadratic optimization as follows [39]:
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Table 1
Commonly used SV11 kernel functions

3

[Vapnik, 1995]

IInlVnllml:11 kernel [Vapnik, 1995]

[Vapnik, 1995J

n1ultlquadranc kernel (Evgeniou, et al., 1999]

kernel [Ounn, 1998]

si.gmOldal kernel [Evgeniou, et aL, 1999]

kernel [Ali and Smith, 2004a]

Kernel Functions

K (Xi, X j) == (XTx j )

K (X'i, Xj) == (xT Xj) d or

K(Xi,Xj) == ((X{Xj) + l)d

(
:X'-XI'12)K (x,' x,·) == exp - i I ~ .). where h > 0

l, J 2h2

1

( .) 'J) ')K (Xi, Xj) == I!X'L - xjll~ + T- - where 7 > 0

K (Xi) X:i) == 1 + (xrxj) + ~ (xrxj ) min (xTxj ) 2 - t min (xrxj ) 3

1< (X,i, Xj) == tanh(1] (xT x)) + fJ) where 7] and f) parameter

(
iT. x· 1 \

K (X,. • x j) == exp _!" L ~ .7 I ) where h is the kernel smoothing parameter.

~ 0, 13f ~ O~~;n ~ 0, i == 1, ... j eand C E {l: ... , k} \Yi
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. x) can be replaced by the convolution inner product K (x i, Xj), also known as the kernel
used SVM kernels with mathematical expressions are listed in Table 1.

shows a pictorial representation of the polynomial kernel with polynomial degree 2-5 for a binary class
I-/A'JUl."-'UJ.. The rectangular and the cross sign indicates the two different classes. The middle lines show the

functions.
1 that polynonlial degree 4 and 5 produce the best fit because they classified both classes

1 shows that a higher degree can more easily fit the training data. However, a higher polynomial
not ideal, since overfitting can result in a higher probability of error for predicting classes of future

Lawrence and Giles [19] observed on an artificially generated dataset with polynomial degree 2, the
..... t--' I,.., .... .....1.' ........ ,.........., ... "....,........ is poor. The apprOXirrl:li.lon is reasonably good for degree 10. At the order 20, the approximation

dnta very ·well, but the interpolation between training points is very poor due to data overfitting.
Y>VJ.UL-I.-H16 can also be a very important problem in neural networks, and mu(:h work has been devoted to

,... J' ....., vv'ith techniques, for instance model selection, early stopping, weight decay, and pruning [9,
examine the overfitting problem for SVM with 'balance-scale' (6] dataset as shown in Fig. 2. We

t-''-'J..t'Jl UIU.U>Vv with lOFCV results. It is clear that, due to overfitting, a higher polynomial degree is not
generalisation. Hov/ever, the optilnal polynomial degree to ensure a good balance between learning and

Ul..-\..J"-'l.LV....d.ll. on the data to a 1arge extent.
kernel function is quite sin1ple compared \vith some other kernels. The most common practice is

evaluate the performance of the kernel with polynon1ial degree ranging from 2 to 5, and select the best
have observed experimentally that the polynon1ial kernel is the third choice from the listed kernels in

range of classification problems [2]. But for some specific datasets, polynomial kernel was
for SVM. NO\\1 \,ve have t\VO research issues to pursue for po1ynon1ial kerneL Firstly, how can \\'e
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Table 1
Commonly used SYM kernel functions

3

Kernel Names Kernel Functions

linear kernel [Vapnik, 1995]

polynomial kernel [Vapnik, 1995]

rbf kernel [Vapnik, 1995]

multiquadratic kernel [Evgeniou, et al., 1999]

spline kernel [Gunn, 1998]

sigmoidal kernel [Evgeniou, et al., 1999]

Laplace kernel [Ali and Smith, 2004a]

K(x x.') = IxT x )'
t 1 J \ ~ J

K (X'i, Xj) = (xT Xj) dOt

K(Xi,X)) = (\x;x)) + l)d
K (Xi, Xj) = exp (- dXi~,~)iI2) where h > 0

(
~~) 1K(Xi,Xj)= llx,-xjll-+r- 2 wherer>O

K (x"Xj) = 1 + (x; Xj) + ~ (xT Xj) min (xT Xj)2 - i min (xT Xj) 3

K (Xi, Xj) = tanh(r) (xT x)) + 0) where 1] and 0 parameter

K (x" Xj) = exp - h" ~XJ I where h is the kernel smoothing parameter.

subject to: Qr' ;);: 0,13[" ;);: O,~[" ;);: 0, i = 1,'" ,£ and c E {L .. ·, k} \y,
which is maximised with respect to a and 13 and minimised with respect to w and ~ by considering the notation:

.n_{lify i =n dA'-2.:k m.c, - O'f -I- an 7 - Q;, 2 y.; r n
m=l

After getting the differentiation, the optimal a is obtained as follows:

Finally the decision function for multiclass SVM is

j(x) = arg:ax [.2.:._ Ai (X.i . x) -.2.: Qf(x;· x) + bn]
'-y,-n '-Yi#n

(3)

(4)

(5)

The inner product (x; . x) can be replaced by the convolution inner product K (x;, Xj ), also known as the kernel
function, Some commonly used SVM kernels with mathematical expressions are listed in Table I.

Figure 1 shows a pictorial representation of the polynomial kernel with polynomial degree 2-5 for a binary class
synthetic problem. The rectangular and the cross sign indicates the two different classes. The middle lines show the
Optimal Hyperplane (OH) functions.

We observe in Fig. 1 that polynomial degree 4 and 5 produce the best fit because they classified both classes
without error. Figure I shows that a higher degree can more easily fit the training data. However, a higher polynomial
degree is not alway:; ideal, since overfitting can result in a higher probability of error for predicting classes of future
examples. Lawrence and Giles [19] ob~erved on an artificially generated dataset with polynomial degree 2, the
approximation is poor. The approxim:iilon is reasonably good for degree 10. At the order 20, the approximation
function fits the dM'1 very 'WeE, but the interpolation between training points is very poor due to data overfitting.
Data overfitting can also be a very important problem in neural networks, and mu.:h work has been devoted to

preventing overfitting with techniques, for instance model selection, early stopping, weight decay, and pruning [9,
12,18,19,38]. We examine the overfitting problem for SVM with -balance-scale' [6] dataset as shown in Fig. 2. We
repon the perfonnance with 10FCV results. It is clear that, due to overfitting, a higher polynomial degree is not
suitable for generalisation. However, the optimal polynomial degree to ensure a good balance between learning and
generalisation is dependent on the data to a large extent.

The polynomial kernel function is quite simple compared with some other kernels. The most common practice is
to manually evaluate the performance of the kernel with polynomial degree ranging from 2 to 5, and select the best
one [16]. We have observed experimentally that the polynomial kernel is the third choice from the listed kernels in
Table I among a large range of classification problems [2]. But for some specific darasets, polynomial kernel was
the best choice for SV\!', ~owwe have two research issues to pursue for polynomial kernel. Firstly, how can we
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Graphical representation of the polynomial kernel on an artificial dataset with different polynomial degrees. The cross and rectangular
indicates the two classes of data. The middle lines of the above graphs represent the OH for classification. Those data points located on the

called SVs.

when the polynomial kernel is likely to perform well for a certain dataset, and secondly, how we can
,.'1Jl..uual parameter (degree) for the polynomial kernel.

[3], we have found the best rule to describe when the polynomial kernel performs better
J.~\..'J.uels~ based on our empirical evaluation (summarised in Appendix II) as mentioned in Table 2.

1: IF (Mahalanobis distance <== 218.276) OR (Z-score <== 0.3913) THEN
should choose polynomial kernel for SVM classification.

rules see [3] and the summarised kernels performance have mentioned in Appendix II.
sections we attempt to select the polynomial kernel based on dataset propenies. The rule for
acceptable due to higher accuracy rating. We found empirically polynomial kernel showed best

v ....... ~''''A ... J.'"',,4.I.L ......'.,I. .. F'-'Ll ...,~mance for 34.48% datasets anl0ng 112 problems. Now that we have answered the question of
should select the polynomial kernel, we can turn our attention to the challenge of estimating the optimal

section \ve will exanune two different polynolnial degree estilnation methods, nalnely
.......... '-"" "'....., Criterion (BIC) and Laplace approximation based on Principal Component Analysis (peA.. ).

perforn1ance r~sults, and then attempt to gain insight into which method should be used

.lIll...i..;lJ'''J&J..Il.lL"IIoJl,&<I;';;'' 'U'1IJ .. " ... .II.Jl;U,.l polynomial degree

modified BIC and Laplace methods to estilnate the optin1al degree for polynomial kernel. Both meth­
evidence based on dataset information provided by Bayesian probability theory corresponding
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Fig. 1. Graphical representation of the polynomial kernel on an artificial dataset with different polynomial degrees. The cross and rectangular
sign indicates the two classes of data. The middle lines of the above graphs represent the OH for classification. Those data points located on the
margin are called SVs.

know a priori when the polynomial kernel is likely to perform well for a certain dataset, and secondly, how we can
find the optimal parameter (degree) for the polynomial kernel.

In our previous study [3], we have found the best rule to describe when the polynomial kernel perfonns better
than the other kernels, based on our empirical evaluation (summarised in Appendix II) as mentioned in Table 2.

Rule # 1: IF (Mahalanobis distance <= 218.276) OR (Z-score <= 0.3913) THEN
we should choose polynomial kernel for SVM classification.

For other kernels rules see [3] and the summarised kemels performance have mentioned in Appendix II.
In the following sections we attempt to select the polynomial kernel based on dataset properties. The rule for

this kernel is highly acceptable due to higher accuracy rating. We found empirically polynomial kernel showed best
classification perfonnance for 34.48% datasets among 112 problems. Now that we have answered the question of
when we should select the polynomial kernel, we can tum our attention to the challenge of estimating the optimal
degree. In the following section we will examine two different polynomial degree estimation methods, namely
Bayesian Information Criterion (BrC) and Laplace approximation based on Principal Component Analysis (PCA).
We will present comparative performance r~sults, and then attempt to gain insight into which method should be used
for certain datasets.

3. Estimating optimal polynomial degree

We propose modified Bre and Laplace methods to estimate the optimal degree for polynomial kernel. Both meth­
ods first estimate the evidence based on dataset information provided by Bayesian pr0bability theory corresponding
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Table 2
Confusion matrix based on lOFCV results for the
polynomial kernel selection rule on 112 classification
problems

5

Data condition satisfied

Vesey)
No(N)

Accuracy == 800/0.

-+"

~o,

Polynomial kernel best

Vesey) No(N)

2.6 1.4
0.8 6.2

, ~

-" .B~ Q '" - - - ~ ~ "'0..

() ~

- -r- train accuracy
--(3,- test accuracy

Data overfitting problem for SVM with polynon1ial kernel. Individual train and test set perfoffilance for 'balance-scale t dataset is shown.
Significant overfitting can be shown among degree 2-8 and beyond.

degrees. Then the optimal polynomial degree is based on highest evidence that is the best
the polynomial degree. We use this best fit degree as an optimal parameter for SVM polynomial kernel.

is the summarised form of the formulation for Laplace and BIC methods applied to peA model based
but modified for our application to polynomial kernel.

consider a d-dimensional vector x to generate a SVM model from a smaller k-dimensional vector (1) by a
transformation \\l~th a noise vector e : x == H 11) + rn + e, where m is the mean of x, while H define its variance,

1-/ ........ JlA. .....' .... IJ .......... component vector 11) and the noise variance '{) are assumed to be spherical Gaussian as follows:

v) p Cw) f"'v N (0 ~ I k ) (6)

the Gaussian distribution ihe observation x becomes:

'(n. v) f"'v ~\ ('m,H H T + vI) (7)

.... 0 ............. ' ...., the basis vectors H and the noise variance v from the datasetD - {;rl,"', XN}. The probability
r1~C',.....-.t.... ".,...,..,. of the dataset D is

m.'v) == T I --]'v / 2 1 T. - 1
HH +v1! - exp(-2tT((HH -t-vI) ~))) (8)

- rn) (9)

select the subspace dimensionality k for a SYM model. We compute all possible values for this A:
and then finally pick the maximum value of k. First, we define a prior density for all these parameters

information contained in dataset D. ~A. non infonnative prior for '(T{, is uniforrn, and v..:ith
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Table 2
Confusion matrix based on 10FCV results for the
polynomial kernel selection rule on 112 classification
problems

5

Data condition satisfied

Yes(Y)
No(N)

Accuracy = 80%.

Polynomial kernel best
Yes(Y) No(N)

2.6 1.4
0.8 6.2

train accuracy
test accuracy

Fig. 2. Data overfitting problem for SVM with polynomial kernel. Individual train and test set perfornlance for 'balance-scale' dataset is shown.
Significant overfitting can be shown among degree 2-8 and beyond.

to a range of polynomial degrees. Then the optimal polynomial degree is based on highest evidence that is the best
fitness of the polynomial degree. We use this best fit degree as an optimal parameter for SVM polynomial kernel.
This section is the summarised form of the formulation for Laplace and BIC methods applied to PCA model based
on [17,23,34,35], but modified for our application to polynomial kernel.

Let us consider a d-dimensional vector x to generate a SVM model from a smaller k-dimensional vector w by a
linear transformation w:th a noise vector e : x = H w +m +e, where m is the mean of x, while H define its variance.
The principal component vector 1U and the noise variance v are assumed to be spherical Gaussian as follows:

pre) "-0 N(O. v) p(w) "-0 N(O. h)

Now, following the Gaussian distribution the observation x becomes:

p(x[ H, m. v) "-0 ~\ (m,HH T -+- vI)

(6)

(7)

(8)

We estimate the basis vectors H and the noise variance v from the datasetD = {.T 1," " XN}. The probability
distriburion of the dataset D is

,-Vd n , T. 1- N /2 1 T -1p(D:H.m.v) = (2T:) . '-iHH ~vIt . exp(-'2tr((HH -,vI) S))

S = L (x, - m)(Xi - m)T (9)

.\low, our aim is to select the SUbspace dimensionality k for a SVM model. We compute all possible values for this k
dimensionality and then finally pick the maximum value of k. First, we define a prior density for all these parameters
(m. H. ") by assuming only information contained in dataset D. A non informative prior for 'm is uniform, and with
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.l..AA.\.''-'.';'''A.Vo\.'''' out 'm analytically, leaving

= IHHT + vII- CN
-

1
)/2 exp ( -~tr«HHT + v1)-1 S))

- 'm) (X-i - in)T, in is the maximum likelihood estimated mean.

vector H must have a.proper prior since it varies in dimension for different models, unlike m. Let, the
rlAI""r>ri(',lr'\r'\C'An fOffil of H is as follows:

uTu == Ik RTR == Ik (11)

Ula~VHal matrix with elements l i. The orthogonal matrix U is the basis, L is the scaling and R is a
subsDace. A conjugate prior for (U, L, R, v), parameterized by ex is as follows:

I

T 1-(0:+2)/2 (ex T )ex: HH + vI exp -2tr((HH + u1)-I) (12)

~4.U.u.}"..I.J."""'-'''''J. Q controls the sharpness of the prior. For a non informative prior, it should be small, making the prior

== Ck

....... 'LJAJ,.LVJ.J._4-J..l.J..~ the likelihood with the prior gives

jHHT + vI/-
n

/
2

exp ( -~tr((HHT + v1)-I(S + (1))) dUdLdv (13)

==J\1+1+0:

Co = N-d/2(2r.)-CN-l)d/2p (U) (a(d - k)) (a+2)(d-k) 1 (~)O:k/2

k f((a: + 2)(d - k)) 2 f(a/2)k 2

!-.lL...."""-l.l.-l.l,.J'-'~ does not consider R, so we just consider a multiplicative factor of JR p(R)dR == 1.
method is a simpler method to integrate Eq. (13), over L and v as follows:

;::;:; J(8) (2r. rOWSCli)/2IAj-l/2 (14)

(15)

[
d2 lao' j(8)]aro'maxf(B) A == _ o.

be· ' dBidBJ (J=={/

ective is a good approximation for the parameter () == (U, L, v). Due to the positive scale
v OJ li and 'V, we can consider l~ =: log(li) and VI == log(v). Therefore,

0: ~ IV ,,£c;==k+l Aj
---- 1) == ---...;;---

+0 n(d-k)-2

.:!\T-l+a

2
d

2
log !)(f)) I ::.:: _'n(d - k) - 2
(dv /)- (J=B 2

(16)

The din1ension of the orthogonal matrix [J is rn == dk - k (k + 1) /2, since \ve are imposing
..... '-" .. AW' ...A ..... ~t!·Iv...l on a d x k matrix. The prior density of l/ is

- i 1)/2)7T-(d-~Tl)/2 (17)

paranleterized by using Euler vector representation as follo\vs:

J
Ul\.J5V1HU nlatllX and Z is a skew-symnletric matrix of parameters.

?"tr"';;~,"fr4')t,,;:J,/i ?' ...........'r.,..-,....... for [7 is

(18)
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(10)

such a prior we can integrate out m analytically, leaving

p(DjH, v) = N-d/2(27r)-CN-l)d/2IHHT + vII- CN - 1)/2 exp (-~tr((HHT+ VI)-lS))

where S = L (Xi - r'it) (Xi - in)T, in is the maximum likelihood estimated mean.
i

The basis vector H must have a.proper prior since it varies in dimension for different models, unlike m. Let, the
decomposed form of H is as follows:

H = U(L - Vh)1/2R UTU = h RTR = h (11)

where L is a diagonal matrix with elements Ii. The orthogonal matrix U is the basis, L is the scaling and R is a
rotation within the subspace. A conjugate prior for (U, L, R, v), parameterized by 0: is as follows:

T I-Co+2)/2 (0: T 1 )p(U,L,H,v)rx IHH +vI exp -2tr((HH +u1)-) (12)

(13)

The parameter 0: controls the sharpness of the prior. For a non informative prior, it should be small, making the prior
diffuse.

Combining the likelihood with the prior gives

p(Dlk) = Ck L,L,V jHHT + vll-n
/
2

exp (-~tr((HHT+ v1)-l(S + 0:1))) dUdLdv

where n = N + 1 + 0:

'. = N- d/ 2(2r.)-CN-l)d/2p(U) (O:(d - k)) (a+2)(d-k) 1 (~)ak/2

Ck r((o: + 2)(d - k)) 2 f(0:/2)k 2

The likelihood does not consider R, so we just consider a multiplicative factor of JR p(R)dR = 1.
Laplace's method is a simpler method to integrate Eg. (13), over L and v as follows:

/ f(())dB ~ f(B)(27rrowSCA)/2IAj-l/2 (14)

, [d2 100
' f(8)]whereB= aro'maxf(B) A=- c>.

b 8 ' d8 i d8) ()=iJ"
Now, the key objective is a good approximation for the parameter B = (U, L, v). Due to the positive scale

parameters Ii and v, we can consider Z; = log(li) and Vi = log(v). Therefore,

~= NAi+O:
2\'-1+0:

(15)

d
2

log !)(B) I = _ n(d - k) - 2
(dv' )- 8=8 2

(16)

(17)

where A is the eigenvalue. The dimension of the orthogonal matrix U is m = dk - k (k +1)12, since we are imposing
k(k + 1)/2 constraints on a d x k matrix. The prior density of U is

k

p(U) = r k IT f((d - i + 1)/2)r.-(d-'Tl)/2
i=1

The matrix U could be parameterized by using Euler vector representation as follows:

U = Uel exp( Z) [~k]

where Ud is a fixed orthogonal matJlx and Z is a skew-symmetric matrix of parameters.
Now, the integrated function for U is

(18)
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exp ~tT((L-1 - v-I I)UT SU)) (19)

is maximized when U contains the top k eigenvectors of S. If we consider to be the top d eigenvectors

== _NA (20)

we get

k d

L (>-j1- >-;1) (Ai - Aj) N dz~
i=l j=i+l

(21)

..........."voJ ............ matrix is diagonal, the second derivative is as follows:

k d

1== (
"_1 A-I)Aj - ~'i (Ai - ~j) N

·i=l j=i+l

(22)

(23)

.4 is a block diagonal and JAI == IAzIIALIIA.vl. We know Az from Eq. (22), AL and .4v fronl Eq. (16).
.LVIJ.Lu.VJ.LlA these values in Eq. (14) we get the evidence:

-nj2
fj - n (d - k) j 2e- nd / 2 (27r ) (m+ k+ 1) /2 I~4z 1-1/2 1.4.L 1-1 j 2 IA.v ,-1/2

nrdunArnHII. model, the optimal degree is offer by k in the Laplacian approximation with small value of Q and

Iv:

-N/2

~ p(U) (IT A
J

) fj-JV(d-k)/2(27r)(rn+k)/2Iilzl-1/21V-kj2

J=1

(24)

" A)
V == ---"'----'---~

offers the evidence for the best suitable polynomial degree, which we lnay call degree of best
...... ,,,,, Jr,r"...,..." r" fitness.

JHu~!A!ied implementation of the Laplacian optimal polynomial degree approximation is BIC as follows:

~

k ) -iV/2

Aj fJ- 1'/(d-k)/2 .:~/-(7n+k)/2

I

(25)

and offer different methods for finding the optimal degree k (or r1 as shown in Table 1). These

functions can be readily evaluated for different values of k in an iterated procedure which is not

T'he resulting probabilities provide an estimate of the likely fitness of different

and the maximum fitness can be selected as an estimate of the optimal degree.

of this idea. for dataset ann 1 with Laplace method for optimal degree estimation and its corre­

JI-f"-fJ.J.~.l.Ll':;':' classification perfonnance is shown separately for train and test dataset as in Fig. 3.

Laolace method predicts the optimal degree is 4 based on higher evidence (highest probability of

for ann 1 dataset. We observe the perfonnance of the training set increases with higher
On the other hand, the performance of the test set decreases with the higher order

'fhis is clear evidence of data overfitting and reinforces the need for methods to select the
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is maximized when U contains the top k eigenvectors of S. If we consider to be the top d eigenvectors

(20)

we get

k d

~. (\-1 \-1) (' \ \ )Nd 2
~ /\j - Ai Ai - Aj - Zij

i=l j=i+l

(21)

Hessian matrix is diagonal, the second derivative is as follows:

k d

1== (22)

.4 is a block diagonal and JAI == IAzIIALIIA.vl. We know A z from Eg. (22), AL and .4v fronl Eq. (16).
r~nl-:::tf'lna these values in Eg. (14) we get the evidence:

(23)

rl,r\II"nArY\l'::ll model, the optimal degree is offer by k in the Laplacian approximation with small value of Q and

Iv:

-N/2

~ p(U) (IT A
J

) fj-JV(d-k)/2(27r)(rn+k)/2Iilzl-1/21V-k/2

J=1

(24)

A)
i) == ---"'----'----

offers the evidence for the best suitable polynomial degree, which we lnay call degree of best
...... ,'-" Jr,r"..,.." r" fitness .

............... t-J ..........' ....... implementation of the Laplacian optimal polynomial degree approximation is BIC as follows:

)

-iV/2
k

Aj fJ- 1'/(d-k)/2 .:~/-(7n+k)/2

I

(25)

and offer different methods for finding the optimal degree k (or r1 as shown in Table 1). These

functions can be readily evaluated for different values of k in an iterated procedure which is not

T'he resulting probabilities provide an estimate of the likely fitness of different

kernel and the maximum fitness can be selected as an estimate of the optimal degree.

r-'~-'''''''-'A. "t.-A view of this idea. for dataset ann 1 with Laplace method for optimal degree estimation and its corre­

JI-f'-.fJ.J.'-4..l.Ll':;':' classification perfonnance is shown separately for train and test dataset as in Fig. 3.

the method predicts the optimal degree is 4 based on higher evidence (highest probability of

for ann 1 dataset. We observe the perfonnance of the training set increases with higher

On the other hand, the performance of the test set decreases with the higher order

'fhis is clear evidence of data overfitting and reinforces the need for methods to select the
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(b) Comparison of estimated (Laplace) accuracy
and actual accuracy on annl test dataset.

estimated (Laplace) accuraey and
accuracy on ann 1 training dataset.

Optimum polynonlial degree selection by Laplace method and corresponding classification performance is shown separately for train and
ann 1 dataset.
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4. Average test set accuracy for different polynomial kernel parameter fitting rnethods for problems satisfying rule # 1 (39 datasets).

estimation petfOrlnance: Accuracy

test set classification perfonnance of polynomial kernel with parameter 2-5, polynomial best (best
selected from degree 2-5), optimum polynomial degree approximation by BIC and Laplace

shovv'n in Fig. 4. The results are presented only for those 39 of the 112 original datasets that are suited to
kernel (satisfy rule #1).
Laolace methods showed close performance with the optimal polynon1ial accuracy found through

range 2 to 5. Both methods showed average higher accuracy than individual polynomial
and pelforn1ance for large dataset (more than 1000 samples) was better than polynomial best

datasets polynomial best showed average BIC and Laplace methods shov/ed 73.21 %.
the optin1ul degree for polynolnial kernel for 53.85% of the datasets where polynomial kernel

best. On the other hand Laplace rnethod predicted the optimal degree for 51.28% of the datasers.
39.28% of the datasets have optimal degrees outside the range of 1, to 5. For many of the datasets

.I\....I1.~IJ,iU'~"" n1ethods predicted the san1e polynonlial degree among the 112 problems. The polynomial kernel
datasets better suited to others (non-polynonlial) kernel is sho\\led in Fig. 5.
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(a) Comparison of estimated (Laplace) accuraGY and
actual accuracy on ann 1 training dataset.

(b) Comparison of estimated (Laplace) accuracy
and actual accuracy on annl test dataset.

Fig. 3. Optimum polynomial degree selection by Laplace method and corresponding classification performance is shown separately for train and
test set with annl dataset.
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Fig. 4. Average test set accuracy for different polynomial kernel parameter fitting methods for problems satisfying rule # I (39 datasets).

3.1. Optimal degree estimation performance: Accuracy

The average test set classification perfonnance of polynomial kernel with parameter 2-5, polynomial best (best
performance manually selected from degree 2-5), optimum polynomial degree approximation by BIC and Laplace
methods is shown in Fig. 4. The results are presented only for those 39 of the 112 original datasets that are suited to
the polynomi::J kernel (satisfy rule #1).

The BlC dnd Laplace methods showed close performance with the optimal polyno:nial accuracy found through
exhaustive search of degree range 2 to 5. Both methods showed average higher accuracy than individual pDlynomial
degree 2-5 performance and pert'ormance for large dataset (more than 1000 samples) was better than polynomial best
performance. For large datasets polynomial.best showed average 72.39%, BIC and Laplace methods showed 73.21 %.
BrC method predicted the optimal degree for polynomial kernel for 53.85% of the datasets where polynomial kernel
is expected to be best. On the other hand Laplace method predicted the optimal degree for 51.28% of the datasets.
\Ve observed that 39.28% of the datasets have optimal degrees outside the range of 2 to 5. For many of the datasets
BIC and Laplace methods predicted the same polynomial degree among the 112 problems. The polynomial kernel
performance with datasets better suited to others (non-polynomial) kernel is showed in Fig. 5.
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Table 3
Average computational performance for different polynomial kernel parameter estimation
n1ethods

9

Average computational

time in Sec.

Polynomial Best

819.67

Polynomial BIC

0.0185

Polynomial Laplace

0.0488

Table 4
Results of the (-test for all methods of polynomial degree selection

Algorithms Hypothesis
H

Significance
p

Confidence Interval
CI

polynomiaLbest vs polynomial 2
polynomiaL best vs polynomial 3
polynomiaL best vs polynomial 4
polynomiaL best vs polynomial 5
polynomiaL best vs polynomial BIC
polynomiaL best vs polynomialLaplace

1
1
1
1
o
o

1.2321e-005
6.2817e-004
8.5060e-004

0.0019
0.4378
0.3616

0.1578
0.0665
0.0559
0.0256

-0.0644
-0.0602

0.3707
0.2247
0.1975
0.1046
0.1458
0.1612
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Average test set accuracy for different polynomial kernel parameter fitting methods for problems not satisfying rule # 1 (73 datasets).

estinzation perfonnance: Computational time

II YVlUj:JULUL.lV.uCU l"'......UV.ll.llUl1\A., to detennine the best polynomial degree using the three methods: polynomial best
exhaustive search of degree 2-5) and estimation by EIC and Laplace methods, is sho\vn in Table 3.

exhaustive optimal degree sea:'ch method needed extremely higher cOfnputational time than BIe and Laplace
selects ~he polynomial degree one by one from a range 2-5 to train the SVM polynon1ial model. But

and methods estimate the optimal polynon1ial degree for SVM by a simple iteration of Eqs (25)
""~Cl."'1-;'T.,..l,'T that estimates the likely performance of the SVM model without the need to build such models.

L<anlace ITlclhods sho\v the superior computational performance compared to exhaustive search

)[ f!JU/lcance test

results are summarised in Table 4. We considered the base kernel as polynomial best. The test input
U'-'l,-,~ntaQe of correct classification of test set of all the methods for manual and optimal polynomial degree

of H == 0 in the above table indicates we may not reject the null hypothesis that there is no
J ....,,;;,.,.u..U,yUlH. difference in results. 4A.lternatively~ H == 1 means we may reject the null hypothesis. The polynomial best

of polynomial degree 2-5) showed significant performance difference with the individual models.
a much better fiaal result is obtained by the trial-and-error approach compared to selecting just
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Table 3
Average computational performance for different polynomial kernel parameter estimation
methods

9

Average computational

time in Sec.

Polynomial Best

819.67

Polynomial BIC

0.0185

Polynomial Laplace

0.0488

Table 4
Results of the t-test for all methods of polynomial degree selection

Algorithms Hypothesis
H

Significance
p

Confidence Interval
CI

polynomiaLbest vs polynomiaL 2
polynomial. best vs polynomial 3
polynomiaL best vs polynomiaL4
polynomiaL best vs polynomial 5
polynomiaL best vs polynomialBIC
polynomiaL best vs polynomial Laplace

1
I
1
I
o
o

1.2321e-005
6.28I7e-004
8.5060e-004

0.0019
0.4378
0.3616

0.1578
0.0665
0.0559
0.0256

-0.0644
-0.0602

0.3707
0.2247
0.1975
0.1046
0.1458
0.1612

80

70

C 60
~(;) 50
u

"a7- 40
g, 30
~< 20

10

o

Name of methods

Fig, 5. Average test set accuracy for different polynomial kernel parameter fitting methods for problems not satisfying rule # I (73 datasets).

3.2. Optimal degree estimation performance: Computational time

The computational performance to determine the best polynomial degree using the three methods: polynomial best
(exhaustive search of degree 2-5) and estimation by BIe and Laplace methods, is shown in Table 3.

The exhaustive optimal degree sea:'ch method needed extremely higher computational time than BIC and Laplace
methods. It selects :he polynomial degree one by one from a range 2-5 to train the SVM polynomial model. But
both mc and Laplace methods estimate the optimal polynomial degree for SVM by a simple iteration of Eqs (25)
and (24) respectively that estimates the likely performance of the SVM model without the need to build such models.
Therefore, BIC and Laplace :T1dhods show the superior computational performance compared to exhaustive search
method.

3.3. Significance test

The t-test results are summarised in Table 4. We considered the base kernel as polynomial best. The test input
was the percentage of correct classification of test set of all the methods for manual and optimal polynomial degree
selection.

The outputs of H = 0 in the above table indicates we may not reject the null hypothesis that there is no
significant difference in results. Alternatively, H = I means we may reject the null hypothesis. The polynomial best
(exhaustive search of polynomial degree 2-5) showed significant performance difference with the individual models.
In other words, a much better fiaal result is obtamed by the trial-and-error approach compared to selecting just
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would expect But, the polynomial.best compared to BIC and Laplace methods showed no
,...... ,..., ..............A."" ........... p~J.l.v.uuu.uv~ difference in accuracy. The higher values of the significance level suggested accepting the

~V'~J.""".'>J...:J. The BIC and Laplace methods give results comparable to exhaustive search, but are much faster to

.tJ""LV.... Ul.~.:,"" of classification performance and significance testing has shown that classification accu-
..... ""liJ""" ................ on polynomial kernel degree selection. A detailed polynomial optimal degree estimation

BIC and Laplace methods is represented in Appendix III. We observe from both of these optimal
estimation methods, the optimal degree is frequently more than 5. Any single method is not

to estin1ate the optimal polynomial degree. So, we need a method to provide a priori information about
estimation method is suitable for which classification problem with SVM.

section we describe the methodology we use to assist in the appropriate selection of an optimal
..... ....,.~,....4 ... J, ........ .&,'-'.A.A method for a given dataset. First each dataset is described by a set of measurable meta characteris­

combine this information with the perfonnance results; and finally use a rule-based induction method to
"-"\"/J,,",~iVUA~when each optimal parameter estimatio!l method for polynomial kernel is likely to perform

U2Ltaselts characteristics measurement

dataset can be described by simple, distance and distribution based statistical measures [31,32). These three
measures characterise the datasets in different ways. First, the simple classical statistical measures identify

characteristics based on variable to variable comparisons. Then, the distance based measures identify the
characteristics based on sample to sample comparisons. Finally, the density based measures consider the single

from a matrix to identify the datasets characteristics. We average most of statistical measures over all the
.4,4ll. ....... LllL"-'..., and take these as global measures of the dataset characteristics. In statistics, basically central tendency

are use for the location of the middle or the center of a data distribution. The term center is purposely left
~rHnp'J;]n·~T vague so that the tenn central tendency can refer to a wide variety of measures. However, the mean is the

used measure of central tendency. Therefore we use mean for data characteristics measurements.
statistical measures are calculated within each column, and then averaged over all columns to obtain

measures of the dataset. Likewise, the distance measures are averaged over all pairwise comparisons, and the
based ll1easures are averaged across the entire matrix.

statistical measures

statistics can be used to summarise any large dataset into a few numbers that contain most of the
,,-,u ..u u\..teristics of that dataset. The following table lists the statistical measures used in this work as provided

Statistics Toolbox and some other different sources [22] as follows:

nleasures

~1eta Attribute Names

Geonletric rncan
Ham10nic Iuean
Trinl n1c3n
Standard deviation
Interquartile Range

Meta Attribute Names

Max. and Min. eigenvalue
Skev~)ness

KUI10sis
Correlation Coefficient
Prctile

n1easures calculate the dissinlitlrity be.t\veen samples. \\le nleasure the euclidean., city block and
All'.~·Jl.4''''l'''''''At''''JI,..'IL., o"A. ...'\,. ..,~AI. .... \". bct\veen each pair of observations for each dataset as fo11o\\'s:
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one model, as one would expect. But, the polynomial.best compared to mc and Laplace methods showed no
significant performance difference in accuracy. The higher values of the significance level suggested accepting the
null hypothesis. The BIC and Laplace methods give results comparable to exhaustive search, but are much faster to
implement.

The average percentage of classification performance and significance testing has shown that classification accu­
racy depends on partiCUlar polynomial kernel degree selection. A detailed polynomial optimal degree estimation
performance by BIC and Laplace methods is represented in Appendix III. We observe from both of these optimal
polynomial degree estimation methods, the optimal degree is frequently more than 5. Any single method is not
always best to estimate the optimal polynomial degree. So, we need a method to provide a priori information about
which optimal degree estimation method is suitable for which classification problem with SVM.

In the following section we describe the methodology we use to assist in the appropriate selection of an optimal
degree estimation method for a given dataset. First each dataset is described by a set of measurable meta characteris­
tics; we then combine this information with the performance results; and finally use a rule-based induction method to
provide rules describing when each optimal parameter estimatio!l method for polynomial kernel is likely to perform
well.

4. Datasets characteristics measurement

Each dataset can be described by simple, distance and distribution based statistical measures [31,32]. These three
sets of measures characterise the datasets in different ways. First, the simple classical statistical measures identify
the data characteristics based on variable to variable comparisons. Then, the distance based measures identify the
data characteristics based on sample to sample comparisons. Finally, the density based measures consider the single
data point from a matrix to identify the datasets characteristics. We average most of statistical measures over all the
variables and take these as global measures of the dataset characteristics. In statistics, basically central tendency
measures are use for the location of the middle or the center of a data distribution. The term center is purposely left
somewhat vague so that the term central tendency can refer to a wide variety of measures. However, the mean is the
most commonly used measure of central tendency. Therefore we use mean for data characteristics measurements.
The simple statistical measures are calculated within each column, and then averaged over all columns to obtain
global measures of the dataset. Likewise, the distance measures are averaged over all pairwise comparisons, and the
density based measures are averaged across the entire matrix.

4.1. Simple statistical measures

Descriptive statistics can be used to summarise any large dat"set into a few numbers that contain most of the
relevant characteristics of that dataset. The following table lists the statistical measures used in this work as provided
by the Matlab Statistics Toolbox and some other different sources [22] as follows:

-1.2. DisEanCt' based measures

Meta Attribute Names

Geometric mean
Ham10nic mean
Trim mean
Standa:d deviation
Interquartile Range

Meta Anribute Names

Max. and Min. eigenvalue
Skewness
Kurtosis
Correlation Coefficient
Prctile

Di~!ance ba~ed measures calculate the di~simibrity between samples. We measure the euclidean. city block and
m;lhalanobis distance between each pair of observations for each dataset as follows:
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Meta Attribute Names Meta Attribute Names

Euclidean distance
City Block distance

Mahalanobis dist2.nce

Jl('l'V'JY""l',Ell"l based measures

distribution of a random variable describes ho\v the probabilities are distributed over the various
the random variable can take· on. We measure the probability density function (pdf) and cumulative

'-"J>- ...LA ...' ..........'...., ...... function (cdf) for all datasets by considering different types of distributions as follows:

Meta Anribute Names Meta Attribute Names

Chi-square pdf
Normal pdf
Binomial pdf
Exponential pdf
Gamma pdf
Lognonnal pdf
Rayleigh pdf

Chi-square cdf
Normal cdf
Discrete uniform edf
Fpdf
Hypergeometric cdf
Poisson pdf
Student's t pdf

measures are all calculated for each of the datasets to produce a dataset characteristics matrix. Finally by
V\JUJ.uJ.J.J..ulg this matrix with the performance results in Appendix III, we can derive rules to suggest when certain

estimation methods are appropriate.

(26)
- Inax (ei)

trial-and-error approach is a very common procedure to select the optimal degree for polynomial kernel. It is
complex task to find the best degree by following this procedure. If we are interested in applying

111ethod to a particular problem we have to consider which method is more suitable for which problem.
test can be done from rules developed with the help of the data characteristics properties.

based learning algorithms, especially decision trees (also called classification trees or hierarchical classifiers),
conquer approach or a top-down induction method, that have been studied with interest in the

machIne learrung community. Quinlan [29] introduced the C4.5 and C5.0 algorithms to solve classification problems.
works in three main steps. First, the root node at the top node of the tree considers all samples and passes

to the second node called ~branch node'. The branch node generates rules for a group of samples
an measure. In this stage C5.0 constructs a very big tree by considering all attribute values and

J>- .................. J!..J ..... ...:l the decision rule by pruning. It uses a heuristic approach for pruning based on statistical significance of
After the nest rule, the branch nodes send the final class value in the last node called the "leaf node' [10,

has two parameters: the first one is called the pruning confidence factor (c) and the second one represents
" ... .ul •• " ...... JlA .............. number of branches at each split (m.). The pruning factor has an effect on error estimation and hence

of the decision tree. 'fhe smaller value of c produces more pruning of the generated tree and a
results in less pluning. The minimum branches ill indicates the degree to which the initial tree can fit

branch point in the tree should contain at least two branches (so a minin1um number of rn == 2. For
.lVllUUH-41..l.0nS see [29].

characteristics of each dataset can be quantitatively measured, we can combine this information with
.......... ,• ...., ... J, ................. evaluation of kernel parameter estimation method performance and construct the dataset characteristics

the result of the jth degree selection method on the 'ith dataset is calculated as:

eiJ - max (ei)

percentage of correct classification for the jth method on dataset i, and e'i is a vector of accuracy for
cl:lsS values in the matrix are assigned based on the perfoffi1ance best rank. The best rank is defined as

is O. For t'Aample, if BIC method ShO'NS the ranking performance 1 for the dataset A, then the class
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4.3. Distribution based measures

Meta Attribute Names

Euclidean distance
City Block distance

Meta Attribute Names

Mahalanobis distance

The probability distribution of a random variable describes how the probabilities are distributed over the various
values that the random variable can take on. We measure the probability density function (pdf) and cumulative
distribution function (cdf) for all datasets by considering different types of distributions as follows:

Meta Attribute Names

Chi-square pdf
Normal pdf
Binomial pdf
Exponential pdf
Gamma pdf
Lognormal pdf
Rayleigh pdf

Meta Attribute Names

Chi-square cdf
Nonnal cdf
Discrete uniform cdf
Fpdf
Hypergeometric cdf
Poisson pdf
Student's t pdf

These measures are all calculated for each of the datasets to produce a dataset characteristics matrix. Finally by
combining this matrix with the performance results in Appendix III, we can derive rules to suggest when certain
optimal degree estimation methods are appropriate.

5. Rule generation

The trial-and-error approach is a very common procedure to select the optimal degree for polynomial kernel. It is
a computationally complex task to find the best degree by following this procedure. If we are interested in applying
a specific method to a particular problem we have to consider which method is more suitable for which problem.
The suitability test can be done from rules developed with the help of the data characteristics properties.

Rule based learning algorithms, especially decision trees (also called classification trees or hierarchical classifiers),
are a divide-and-conquer approach or a top-down induction method, that have been studied with interest in the
machine learning community. Quinlan [29] introduced the C4.5 and C5.0 algorithms to solve classification problems.
C5.0 works in three main steps. First, the root node at the top node of the tree considers all samples and passes
them through to the second node called 'branch node'. The branch node generates rules for a group of samples
based on an entropy measure. In this stage C5.0 constructs a very big tree by considering all attribute values and
finalises the decision rule by pruning. It uses a heuristic approach for pruning based on statistical significance of
splits. After fixing the Dest rule, the branch nodes send the final class value in the last node called the 'leaf node' [10,
29]. C5.0 has two parameters: the first one is called the pruning confidence factor (c) and the second one represents
the minimum number of branches at each split (m). The pruning factor has an effect on error estimation and hence
the severity of pruning the decision tree. The smaller value of c produces more pruning of the generated tree and a
higher value results in less piuning. The minimum branches m indicates the degree to which the initial tree can fit
the data. Every branch peint in the tree should contain at least two branches (so a minimum number of Tn = 2. For
detail formulations see [29].

Now that the characteristics of each dataset can be quantitatively measured, we can combine this information with
the empirical evaluation of kernel parameter estimation method performance and construct the dataset characteristics
matrix. Thus, the result of the jth degree selection method on the ith dataset is calculated as:

R
J

= 1 _ eiJ - max (ei) (26)
min (ei) - max (eJ

where e 'J is the percentage of correct classification for the jth method on dataset i, and e l is a vector of accuracy for
dataset i. The class values in the matrix are assigned based on the perfom1ance best rank. The best rank is defined as
I a.TJd the- worst is O. For nample, if BIC method shows the ranking performance I for the dataset A, then the class
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Table 5
Confusion matrix based on lOFCV results for
the BIC method selection rule

Data condition satisfied

Yes(Y)
No(N)

Accuracy == 92.310/0.

BIC method best

Vesey) No(N)

2.0 0.1
0.2 1.6

Table 6
Confusion matrix based on 1OFCV results for the
Laplace method selection rule

Data condition satisfied

Yes(Y) .
No(N)

Accuracy =: 89.74%.

Laplace method best
Vesey) No(N)

2.0. 0
0.4 1.5

for problem A is BIC. Based on the 112 classification problems we can then train a rule-based classifier
learn the relationship between dataset characteristics and degree selection method performance. We split
90% to construct the model tree. The process is then repeated using a 10 fold cross validation approach so

trees are constructed. From these 10 trees, the best rules are found for each optimal degree selection method
the best test set results. The generalisation of these rules is then tested by applying each of the randomly

.......<'''-'-..1-" test sets and calculating the average accuracy of the rules as discussed below in Tables 5 and 6. We found
...:I J\.' .....,.IL ...... J:-IaJ.aUlvLv~ value for global pruning factor; c is 70-90% and the number of minimum branches m is 2.

have demonstrated the rules for polynomial kenlel in Section 2. Now if any dataset satisfies the polynomial
rule then we need to find optimal polynomial degree estimation method. So, in the following section we

_""' ..... ...., ..........."'" the rules describing when to choose the BIC and Laplace methods for optimal polynomial degree

BICmethod

rules for BrC method is generated with c :::: 90% and m == 2 as follows:

# 2: IF (skewness> 1.2843) OR (exponential pdf <== 19.2502), THEN we
choose Bre method for polynomial kernel degree estimation.

L....«VH.H.. C method

L.J'-iIJU.~",,,,, method is generated with c = 70% and m = 2 as follows:

F (median> 2.5 AND normal pdf <== 0.15851) OF( (median> 2.5 AND

8.963ge-006 AND student's t pdf <== 18.0492) THEN we should
method for polynomial kernel degree estimation.

show around 900/0 accuracy. Individually we observed BIC approximation method sho\ved
VA LUUU'-'''- than Laplace approximation, although Laplace was superior for problems not best suited

kenlel as sho\vn in Fig. 5. These rules might be useful to determine which polynomial degree
.... !Ji'JI!. v ... & .. ta ......... ....,..Jl.l I11ethod is I110st appropriate for \vhich problenl.
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Table 5
Confusion matrix based on lOFCV results for
the BIC method selection rule

Data condition satisfied

Yes(Y)
No(N)

Accuracy = 92.31 %.

BIC method best

Yes(Y) No(N)

2.0 0.1
0.2 1.6

Table 6
Confusion matrix based on 1OFCV results for the
Laplace method selection rule

Data condition satisfied Laplace method best

Yes(Y) No(N)

Yes(Y) .
No(N)

Accuracy = 89.74%.

2.0 0
0.4 1.5

in the matrix for problem A is BIC. Based on the 112 classification problems we can then train a rule-based classifier
(C5.0) to learn the relationship between dataset characteristics and degree selection method performance. We split
the matrix 90% to construct the model tree. The process is then repeated using a 10 fold cross validation approach so
that 10 trees are constructed. From these 10 trees, the best rules are found for each optimal degree selection method
based on the best test set results. The generalisation of these rules is then tested by applying each of the randomly
extracted test sets and calculating the average accuracy of the rules as discussed below in Tables 5 and 6. We found
the suitable parameter value for global pruning factor; c is 70-90% and the number of minimum branches m is 2.

We have demonstrated the rules for polynomial kemel in Section 2. Now if any dataset satisfies the polynomial
kemel rule then we need to find optimal polynomial degree estimation method. So, in the following section we
will generate the rules describing when to choose the BIC and Laplace methods for optimal polynomial degree
estimation.

5.1. Rulesfor BIC method

The best rules for BIC method is generated with c = 90% and m = 2 as follows:

Rule # 2: IF (skewness > 1. 2843) OR (exponential pdf <= 19.2502), THEN we
should choose BIC method for polynomial kernel degree estimation.

5.2. Rules for Laplace method

The best rules for Laplace method is generated with c = 70% and m = 2 as follows:

Rule # 3: IF (median > 2.5 AND normal pdf <= 0.15851) OR (median> 2.5 AND
gamma pdf <= 8.963ge-006 AND student's t pdf <= 18.0492) THEN we should
choose Laplace method for polynomial kernel degree estimation.

The generared rules show around 90% accuracy. Individually we observed BIC approximation method showed
slighdy better performance than Laplace approximation, although Laplace was superior for problems not best suited
to polynomial kemel as shown in Fig. 5. These rules might be useful to determine which polynomial degree
approximation method is most appropriate for which problem.
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..l.\.IJ'..,4-4.L""'.l.l we have widely investigated both theoretically and empirically how to select polynomial kernel
for SVM. We proposed a simple rule for polynomial kernel and optimal degree selection based

information. This method is much faster than trial-and-error based selection of the polynomial degree.
polynomial degree estimation methods are based on Bayesian information, this approximation

well for large datasets with more than 1000 samples. We have observed that the best polynomial
out of the range 2 to 5 (the common range tested in the literature). The estimated higher degree

kernel performance accuracy for some specific cases. The BIe and Laplace methods are very fast to
polynomial degree. Datasets whenBIC and Laplace methods perform poorly, are the same as

polynomial kernel is not recommended by rule # 1. We examined the generated rules by 10FCV. All
shown high accuracy ratings. We suggest the default polynomial parameter setting is the traditional

4.41-/1-':l.V' ....""'.,"'. meaning if any dataset satisfies the polynomial rule but does not satisfy the BIC or Laplace rules then
try polynomial degree from 2-5. The main benefit of our methodology is that we can achieve

accuracy for some classification problems and significant savings in time by understanding the characteristics
We have planned to investigate on-line parameter setting for SVM as follows [21] with polynomial
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In this research we have widely investigated both theoretically and empirically how to select polynomial kernel
and its optimal degree for SVM. We proposed a simple rule for polynomial kernel and optimal degree selection based
on dataset information. This method is much faster than trial-and-error based selection of the polynomial degree.
Since both proposed polynomial degree estimation methods are based on Bayesian information, this approximation
works especially well for large datasets with more than 1000 samples. We have observed that the best polynomial
degree is commonly out of the range 2 to 5 (the common range tested in the literature). The estimated higher degree
increased the kernel performance accuracy for some specific cases. The BIC and Laplace methods are very fast to
estimate the optimal polynomial degree. Datasets when BIC and Laplace methods perform poorly, are the same as
those for which polynomial kernel is not recommended by rule # 1. We examined the generated rules by 10FCV. All
generated rules shown high accuracy ratings. We suggest the default polynomial parameter setting is the traditional
approach, meaning if any dataset satisfies the polynomial rule but does not satisfy the BIC or Laplace rules then
we should manually try polynomial degree from 2-5. The main benefit of our methodology is that we can achieve
higher accuracy for some classification problems and significant savings in time by understanding the characteristics
of the dataset. We have planned to investigate on-line parameter setting for SVM as follows [21] with polynomial
kerneL
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# Dataset names # # # # Dataset names # # #
Datasets samples attributes classes Datasets samples attributes classes

I abalone 1253 8 3 57 mushroom 1137 11 2
2 adp 1351 11 3 58 muskl 476 166 2
3 adult+stretch 20 4 2 59 musk2 1154 15 2
4 adult-stretch 20 4 2 60 nettalk stress 1141 7 5
5 allbp 840 6 3 61 new-thyroid 215 5 3
6 ann I 1131 6 3 62 page-blocks 1149 10 5
7 ann2 1028 6 3 63 pendigits-8 1399 16 2
8 aph 909 18 2. 64 pha 1070 9 5
9 art 1051 12 2 65 phm 1351 11 3

10 australian 690 14 2 66 phn 1500 9 2
II balance-scale 625 4 3 67 pid 532 7 2
12 bcw 699 9 2 68 pid...noise 532 J5 2.
13 bcwJloise 683 18 2 69 pima 768 8 2
14 bId 345 6 2 70 poh 527 1I 2.
15 bId_noise 345 15 2 71 post-operative 90 8 3
J6 bas 910 13 3 72 primary-rumor 339 17 2.
17 bas_noise 910 25 3 73 pro 1257 12 2
18 breast-cancer 286 6 2 74 promoter J06 57 2
19 breast-cancer-wisconsin 699 9 2 75 pvro 590 18 2.
20 bupa 345 6 2 76 rph 1093 8 2
21 c J500 15 2. 77 shuttle-landing-control 15 6 2
22 cleveland-hean 303 J3 5 78 sick-euthyroid 1582 15 2
23 cmc J473 9 3 79 sma 409 7 4
24 cmcJloise J473 15 3 80 sma 1429 8 3
25 crx 490 IS 2 81 smo.noise 1299 15 3
26 dar 1378 9 5 82 sonar 208 60 2
27 dhp 1500 7 2 83 splice 1589 60 3
28 dna 2000 60 3 84 switzerland-heart J23 8 5
29 dna.-noise 2000 80 3 85 Lseries 62 2 2
30 DNA-n 1275 60 3 86 tae 151 5 3
31 dph 590 10 2 87 tae_noise 151 10 3
32 echocardiogram 131 7 2 88 thy_noise 3772 35 3
33 fiare 1389 10 2 89 tic-tac-toe 958 9 2
34 gennan 1000 24 2. 90 titanic 2201 3
35 glass 214 10 6 91 tmris 100 2
36 hayes-roth 160 5 3 92 tqr 1I07 11 2
37 hod 303 13 2 93 trains-transformed 10 16 2
38 hea 270 13 2 94 ttl 958 9 2
39 hea_noise 2/0 20 2 95 va-heart 200 8 4
40 heart 270 13 2 96 veh 846 18 4
41 hepatitis 155 19 2 97 velLnoise 761 30 4
42 horse-23 368 22 2 98 voLnoise 391 30 2
43 horse-colic 163 27 2 99 wdbc 569 30 2
44 hOllse-Votes84 435 16 2 100 wine 178 13 3
45 ionosphere 351 33 2 101 wpbc 199 33 2
46 iris 150 4 3 102 xaa 94 18 4
47 khan 1063 5 2 103 xab 94 18 4
48 labor-neg 40 16 2 104 xac 94 18 4
49 lenses 24 5 3 105 xad 94 18 4
50 letter-a 1334 15 2. 106 xae 94 18 4
51 lung-cancer 32 56 2 107 xaf 94 18 4
52 lymphography 148 18 8 108 xag 94 18 ;1

53 mha 1269 8 4 109 xah 94 18 4
54 monkl 556 6 2 110 xai 94 18 4
55 monk2 601 6 2 III yha 1601 9 2
56 monk3 554 6 2 112 zoo 101 16 7
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for The Test Data Sets (% Accuracy)

rbf Laplace

3 4 5 0.2 0.4 0.6 0.8 1.0 1.20 EM
55.89 58.46 59.58 63.49 70.28 70.17 68.71 67.05 66.01 65.15 70.54
23.50 24.34 22.70 22.52 21.06 21.63 22.61 23.31 23.83 23.99 21.04

spline multiquadratic sigmoidal

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

54.77 49.62 49.89 50.30 50.90 51.68 61.85 62.85 63.37 63.37 63.49
22.86 24.96 24.79 24.64 24.41 24.07 17.34 17.57 17.79 17.90 18.10

..... ...., Performance for Different Methods Based on Test Dataset

name BTC method Laplace method

test set test set ~j estimated test set Rtj estimated
optimal degree optimal degree

abalone 0.99 2 0.60 7 0.60 7
0.86 2 0.87 10 0.87 10
1.00 2 1.00 3 1.00 3
1.00 2 1.00 3 1.00 3
0.96 5 0.96 5 0.96 5
0.52 4 0.49 5 0.49 5
0.03 5 0.03 5 0.03 5

aph 1.00 3 0.83 17 0.83 17
1.00 4 0.91 11 0.91 11

australian 0.71 5 1.00 13 1.00 13
balance-scale 1.00 2 0.97 3 0.97 3

0.97 3 0.96 8 0.96 8
0.95 4 0.83 17 0.83 17
0.84 2 0.49 5 0.49 5
0.69 2 0.34 14 0.46 6
0.82 5 0.61 12 0.61 12
0.93 5 0.89 24 0.89 24
0.57 2 0.08 5 0.18 4

breast-cancer-wisconsin 0.97 4 0.96 8 0.96 8
0.74 2 0.48 5 0.48 5
1.00 2 1.00 2 1.00 2
0.43 5 1.00 12 0.94 10
0.93 2 0.52 8 0.52 8
0.71 5 1.00 14 1.00 14
0.65 5 1.00 14 1.00 13
1.00 5 0.88 8 0.88 8
0.91 5 0.88 6 0.88 6
1.00 5 0.93 8 0.93 8
1.00 5 1.00 5 1.00 5
1.00 5 0.88 4 0.88 4
0.16 :2 1.00 9 1.00 9
0.44 5 0.50 6 0.50 6
0.93 :2 0.02 9 0.02 9
0.88 5 0.96 ,..... 1.00 22--)

0.80 5 0.57 9 0.57 9
0.69 5 0.62 4 0.73 1

5 0.97 9 0.96 10
0.84 5 0.97 12 0.99 9
0.85 5 0.84- 19 0.86 16
O.8~ 5 0.99 12 1.00 9
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Appendix II: Kernels Performance for The Test Data Sets (% Accuracy)

kernel polynomial rbf Laplace

:2 3 4 5 0.2 0.4 0.6 0.8 1.0 1.20 EM

Mean 55.89 58.46 59.58 63.49 70.28 70.17 68.71 67.05 66.01 65.15 70.54
Standard Deviation 23.50 24.34 22.70 22.52 21.06 21.63 22.61 23.31 23.83 23.99 21.04

kernel spline multiquadratic sigmoidal

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 I

Mean 54.77 49.62 49.89 50.30 50.90 51.68 61.85 62.85 63.37 63.37 63.49
Standard Deviation 22.86 24.96 24.79 24.64 24.41 24.07 17.34 17.57 17.79 17.90 18.10

Appendix In: Optimal Degree Performance for Different Methods Based on Test Dataset

Datasets name Manual search method (2-5) BIC method Laplace method

test set R ij best degree test set R;j estimated test set R;j estimated
optimal degree optimal degree

abalone 0.99 2 0.60 7 0.60 7
adp 0.86 2 0.87 10 0.87 10
adult+stretch 1.00 2 1.00 3 1.00 3
adult-stretch 1.00 2 1.00 3 1.00 3
allbp 0.96 5 0.96 5 0.96 5
ann 1 0.52 4 0.49 5 0.49 5
ann2 0.03 5 0.03 5 0.03 5
aph 1.00 3 0.83 17 0.83 17
art 1.00 4 0.91 11 0.91 11
australian 0.71 5 1.00 13 1.00 13
balance-scale 1.00 2 0.97 3 0.97 3
bcw 0.97 3 0.96 8 0.96 8
bcw.noise 0.95 4 0.83 17 0.83 17
bid 0.84 2 0.49 5 0.49 5
bid_noise 0.69 2 0.34 14 0.46 6
bos 0.82 5 0.61 12 0.61 12
bos.J1oise 0.93 5 0.89 24 0.89 24
breast-cancer 0.57 2 0.08 5 0.18 4
breast-cancer-wisconsin 0.97 4 0.96 8 0.96 8
bupa 0.74 2 0.48 5 0.48 5
c 1.00 2 1.00 2 1.00 2
cleveland-heart 0.43 5 1.00 12 0.94 10
erne 0.93 2 0.52 8 0.52 8
erne_noise 0.71 5 1.00 14 1.00 14
crx 0.65 5 1.00 14 1.00 13
dar 1.00 5 0.88 8 0.88 8
dhp 0.91 5 0.88 6 0.88 6
dna 1.00 5 0.93 8 0.93 8
dn;Lnoise 1.00 5 1.00 5 1.00 5
DNA-n 1.00 5 0.88 4 088 4
dph 0.26 2 1.00 9 1.00 9
echocardiogram 0.44 5 050 6 0.50 6
tb.re 0.93 :2 0.02 9 0.02 (j

gcfIll;lH 0.S8 5 0.96 l' 1.00 22--'
glass 0.80 5 0.57 9 0.57 9
hayes-roth 0.69 5 0.62 4 0.73 I
h-d 0.81 5 0.97 9 0.96 10
hea 0.84 5 0.97 12 0.99 9
he;LnOlse 0.85 5 0.84 19 0.86 16
heart 0.82 5 0.99 12 1.00 9
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