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Abstract.. The key challenge in kernel based learning algorithms is the choice of an appropriate kernel and its optimal parameters.
Selecting the optimal degree of a polynomial kemel is critical to ensure good generalisation of the resulting support vector
machine model. In this paper we propose Bayesian and Laplace approximation methods to estimate the polynomial degree.
A rule based meta-learning approach is then proposed for automatic polynomial kernel and its optimal degree selection. The
new approach is constructed and tested on different sizes of 112 datasets with binary class as well as multi class classification
problems. An extensive computational evaluation of these methods is conducted, and rules are generated to determine when these
approximation methods are appropriate.
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1. Introduction

Support Vector Machines (SVMs) [7,8,36] are an optimal hyperplane based statistical learning method, which
solve classification as well as regression problems. They have been shown to offer improved performance in the areas
of bioinformatics [14], text mining [27], fraud detection [15], speaker identification [37] and database marketing [5],
among many others. The performance of the SVM method depends however on the suitable selection of a kernel.
A kernel is the most importan part of the SVM algorithm: it generates the dot products in a higher dimensional
feature space. The space could theoretically be of infinite dimension, where linear discrimination is possible. The
polyncmial and radial basis function (rbf) kernels are the most popular classical SVM kernels. Up to now a good
number of kernels have been proposed by researchers, but there is no unique kernel that performs best for all
problems. The most commen procedure for SVM kernel selection is the trial-and-error approach. Joachims argues
that SVMs are universal learners with a simple ‘plug-in’ of an appropriate kernel function to learn the problems [16].
This is a very lengthy procedure due to a vast range of kernel functions available. Onoda et al. argued that selection
of a suitable kernel for SVM is an important research issue for real world applications {25]. A priori kernel selection
for SVM 1is a difficult task for the user though [{4,28]. Moreover, we found in the SVM literature [16,24], manually
feeding the parameiric kernel parameter is a traditional approach for SVM user. Santos and Gomes found polynomial
kernel with higher order of the polynomial degree performed better for appearance-based object recognition {30].
But according to Ou et al., polynomual kernel has generalisation difficulties for high ranges of the polynomial
degree [26]. Therefore, it is a research issue to automatically select the polynomial kernel function and its optimum
degree for SVM.
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Our present research is the first step to provide the solution of these issues of polynomial kernel degree selection
for SVM. This work is an extension of our previous research [1] which has focused on automated kernel and kernel
parameter selection methods based on data information using a single classical statistical method interquartile range
measure. The experiment has done with a small range of classification problems. In present research first, we propose
both Bayesian and Laplace methods for estimating the optimal degree of the polynomial kernel. This is a theoretical
contribution. We then consider an experimental approach to validate these methods, and to determine when they
are most appropriate. We start by classifying 112 problems (see Appendix I) from the UCI Repository [6] and
Knowledge Discovery Central [20] database by SVM with polynomial kernel, using a variety of different methods
to select the optimal polynomial degree, including our two new methods as well as a trial and error approach.
We use 10 fold cross validation for those datasets with fewer than 1000 examples. Otherwise we use the holdout
method: 70% for training and the rest for testing. After that we identify the dataset characteristics matrix by using
statistical measures following Smith et al. [31,32]. These measures seek to characterise the 112 datasets using a
variety of statistical, distance-based and distribution-based measures. All the statistical formulations are available
in Matlab statistics toolbox [Statistics toolbox user’s guide, 2001]. Finally we use the induction algorithm C5.0
(Windows version See5, http://www.rulequest.com/seeS-info.html) to generate the rules to describe which optimal
degree estimation method is suitable for which type of problem, given the dataset characteristics and the performance
of each method on each dataset. We also examine the rules by 10 Fold Cross Validation (10FCV) performances.

Our paper is organised as follows: In Section 2, we provide some theoretical frameworks regarding SVM and
kernel theory, and provide rules for polynomial kernel selection based on our previous work. These rules provide
guidelines as to when different kernels, including polynomial, are expected to perform well. Section 3 proposes the
two methods for estimating the optimal polynomial degree, Laplace and Bayesian, and measures the performance
of these methods on the 112 classification problems with statistical significance test results. All statistical measures
used to identify the dataset characteristics matrix are summarized in Section 4. A brief review on rule based learning
algorithm C35.0 and the analysis of the experimental results are presented in Section 5, where we also present some
rules to describe when the proposed optimal degree estimation methods are appropriate. Finally we coriclude our

research in Section 6.

2. Support vector machine

Let us consider a dataset D of [ independently identically distributed (i.i.d) samples: (x1,%1),- -+, (X7, y1). Each
sample is a set of feature vectors of length m, x; = (21, -, Zp,)and the target valuey,; € {1,-- -, k} that represents
the multi class membership. Now, the pattern recognition problem cr machine leaming task is to learn the classes for
each pattern by finding a classifier with decision functions f (x, o), where f (x;, o) = vi, o, € AV (x4, 4;) € D,
and A is a set of extract parameters. We consider SVM to learn this problem. SVM learns the problem to estimating
the learning parameter by solving the quadratic optimization as follows [39]:

. A
o 1 ‘
min ¢ (w,§€) = 3 Z (W - W) + CZ Z
w £ “ m=1 i=1 m7y;
subject 101 (wy, + X;) + by, 2 (Wi - X)) + b +2 — & ()
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Now we can solve this optimisation problem by finding the saddle point of the Lagrangian:
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Table 1
Commonly used SVM kemel functions
Kemel Names Kemel Functions
linear kernel [Vapnik, 1995] K (z, ;) = <IT1J>
T d
polynomial kernel [Vapnik, 1995] K (z,z5) = <3: :c]> or
K (z;,z5) = (<z IJ>+1)
¢ _ 12
rbf kernel [Vapnik, 1995] K (zi,2;) = exp ( -i—,h—?——> where h > 0
1
multiquadratic kernel [Evgeniou, et al., 1999] K (z;,z;) = ([(1 - H + 7 ) 2 where 7 > 0
soline kernel S Ty )41 T N2 1 T\
spline kernel [Gunn, 1998] K(ll,lj)—l-%(xt x]) 5 ( )mm(m acJ) 6mm( x; Ty
sigmoidal kernel [Evgeniou, et al., 1999] K (24, z;) = tanh(n (zLT:LJ) + @) where 7 and 6 parameter
Laplace kernel [Ali and Smith, 2004a] K (z;,z;) = exp ( Lz hJ'" ' ) where h is the kernel smoothing parameter.

subjectto: af* > 0,8 >0, 20,4 =1,---,Landc € {1.--- k}\u,

which is maximised with respect to o and 5 and minimised with respect to w and £ by considering the notation:

k

T 1 Zf Jl =n m
¢ {OlfyﬁénadA > o (3)

m=1
After getting the differentiation, the optimal « is obtained as follows:
1
ot =23 0r + 3 {m_cm A; + ol §a.,magt} (x: %) @
i,J,m

Finally the decision function for multiclass SVM is

f(x) = arg max Z A; (% -x) — Z ol (x; - x) + by ©)

LYi=n LY FEN

The inner product (x; - x) can be replaced by the convolution inner product K (x ;, x;), also known as the kernel
function. Some commonly used SVM kernels with mathematical expressions are listed in Table 1.

Figure 1 shows a pictorial representation of the polynomial kernel with polynomial degree 2—5 for a binary class
synthetic problem. The rectangular and the cross sign indicates the two different classes. The middle lines show the
Optimal Hyperplane (OH) functions.

We observe in Fig. 1 that polynomial degree 4 and 5 produce the best fit because they classified both classes
without error. Figure 1 shows that a higher degree can more easily fit the trairing data. However, a higher polynomial
degree is not always ideal, since overfitting can result in a higher probability of error for predicting classes of future
examples. Lawrence and Giles [19] observed on an artificially generated dataset with polynomial degree 2, the
approximation is poor. The approximation is reasonably good for degree 10. At the order 20, the approximation
function fits the dara very well, but the interpolation between training points is very poor due to data overfitting.
Data overfitting can also be a very important problem in neural networks, and much work has been devoted to
preventing overfitting with techniques, for instance model selection, early stopping, weight decay, and pruning [9,
12,18,19,38]. We examine the overfitting problem for SVM with "balance-scale’ [6] dataset as shown in Fig. 2. We
report the performance with [0FCV results. It is clear that, due to overfiting, a higher polynomial degree is not
suitable for generalisation. However, the optimal polynomial degree to ensure a good balance between learning and
generalisation is dependent on the data to a Jarge extent.

The polynomial kemel function is quite simple compared with some other kernels. The most common practice is
10 manually evaluate the performance of the kernel with polynomial degree ranging from 2 to 5, and select the best
one [16]. We have observed experimentally that the polynomial kernel is the third choice from the listed kernels in
Table 1 among a large range of classification problems [2]. But for some specific datasets, polynomial kernel was
the best choice for SVM. Now we have two research issues to pursue for polynomial kernel. Firsty, how can we
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Fig. 1. Graphical representation of the polynomial kernel on an artificial dataset with different polynomial degrees. The cross and rectangular
sign indicates the two classes of data. The middle lines of the above graphs represent the OH for classification. Those data points located on the

margin are called SVs.

know a priori when the polynomial kernel is likely to perform well for a certain dataset, and secondly, how we can
find the optimal parameter (degree) for the polynomial kernel.

In our previous study [3], we have found the best rule to describe when the polynomial kernel performs better
than the other kernels, based on our empirical evaluation (summarised in Appendix II) as mentioned in Table 2.

Rule # 1: IF (Mahalanobis distance <= 218.276) OR (Z-score <= 0.3913) THEN
we should choose polynomial kernel for SVM classification.

For other kernels rules see [3] and the summarised kernels performance have mentioned in Appendix II.

In the following sections we attempt to select the polynomial kernel based on dataset properties. The rule for
this kernel 1s highly acceptable due to higher accuracy rating. We found empirically polynomial kernel showed best
classification performance for 34.48% datasets among 112 problems. Now that we have answered the question of
when we should select the polynomial kernel, we can turn our attention to the challenge of estimating the optimal
degree. In the following section we will examine two different polynomial degree estimation methods, namely
Bayesian Information Criterion (BIC) and Laplace approximation based on Principal Component Analysis (PCA).
We will present comparative performance results, and then attempt to gain insight into which method should be used

for certain datasets.

3. Estimating optimal polynomial degree

We propose modified BIC and Laplace methods to estimate the optumal degree for polynomial kernel. Both meth-
ods first estimate the evidence based on datasert information provided by Bayesian probability theory corresponding
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Table 2
Confusion matrix based on 10FCV results for the
polynomial kernel selection rule on 112 classification
problems

Dara condition satisfied ~ Polynomial kernel best
Yes(Y) No(N)

Yes(Y) 2.6 14

No(N) 0.8 6.2

Accuracy = 80%.

-—+- train accuracy
-<- test accuracy

Fig. 2. Dara overfitting problem for SVM with polynomial kernel. Individual train and test set performance for “balance-scale’ dataset is shown.
Significant overfitting can be shown among degree 2-8 and beyond.

to a range of polynomial degrees. Then the optimal polynomial degree is based on highest evidence that is the best
fitness of the polynomial degree. We use this best fit degree as an optimal parameter for SVM polynomial kernel.
This section is the summarised form of the formulation for Laplace and BIC methods applied to PCA model based
on [17,23,34,35], but modified for our application to polynomial kernel.

Let us consider a d-dimensional vector x to generate a SVM model from a smaller k-dimensional vector w by a
linear transformation with a noise vectore : X = Hw +m+ e, where m 1s the mean of x, while H define its variance.
The principal component vector w and the noise variance v are assumed to be spherical Gaussian as follows:

ple) ~ N(0.v) p(w) ~ N(0, I,) 6)

Now, following the Gaussian distribution ihe observation x becomes:

p{x|H, m.v) wi\(m,HHT—i— vl) (7
We estimate the basis vectors H and the noise variance v from the datasetD = {z,,---,znx}. The probability
distribution of the dataset D is
e ~N/2 1 .
p(DiH.m.v) = (27)~ V2 AT 1) exp(~tr(HHT +vI)7'S)) )
S:Z(xl —m)(x; —m)T %)

¢

Now, our aim is to select the subspace dimensionality £ for a SVM model. We compute all possible values for this &
dimensionality and then finally pick the maximum value of k. First, we define a prior density for all these parameters
(m. H. )by assuming only information contained in dataset D. A nen informative prior for i is uniform, and with
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such a prior we can integrate out m analytically, leaving
. .~ . 2 1 -
p(D|H,v) = N=4/2(2m)~(N=0a/2 | g gT 4 o]~ "0 2 exp (—5tr((HHT +ol) 15)) (10)

where S = 3" (x; — M) (x; — )T, M is the maximum likelihood estimated mean.

2
The basis vector H must have a proper prior since it varies in dimension for different models, unlike m. Let, the
decomposed form of H is as follows:

H=UL-vI;)"?R UTU=1. RTR=1I (1)

where L is a diagonal matrix with elements [;. The orthogonal matrix U is the basis, L is the scaling and R is a
rotation within the subspace. A conjugate prior for (U, L, R, v), parameterized by « is as follows:

p(U, L, H,v) oc |[HHT + 01|~ exp (—?‘;tr((HHT + UI)-I)) (12)

The parameter « controls the sharpness of the prior. For a non informative prior, it should be small, making the prior

diffuse.
Combining the likelihood with the prior gives

p(Dlk) = cx / |HHT + vlr”/z exp (—%tr((HHT +oI)7Y(S + aI))) dUdLdv (13)
UL

wheren = N + 1+«
‘,\’T*d/z(?‘?r)‘(l\y—1)d/2p(U) old— k) (a+2)(d—k) 1 an ak/2
*= T T a+2)(d— k) 2 T(a/2)k (_)

The likelihood does not consider R, so we just consider a multiplicative factor of [, p(R)dR = 1.
Laplace’s method is a simpler method to integrate Eq. (13), over L and v as follows:

/f F(0)(2m)rows /2 417 "
where § = arg;n'&xf(@)’ A=~ [%Je g

Now, the key objective is a good approximation for the parameter § = (U, L,v). Due to the positive scale
parameters [; and v, we can consider /] = log(l;) and v" = log(v). Therefore,

. T\ + o N A
i = ./} Ai + 5= Z;~A+1 J (15)
N—-1+a n(d—k) —
d*log f(6) _ N-l+a d’logf(8) _ nd-k)-2 (16)
(@)? loms 2 (@) p—g 2

where A is the eigenvalue. The dimension of the orthogonal matrix U is m = dk — k(k+ 1) /2, since we are imposing
k(k + 1)/2 constraints on a d X k matrix. The prior density of U is

>~

H ((d—i+1)/2)g~(d=iwh/2 (17)
The matrix U could be parameterized by using Euler vector representation as follows:
r 14 ‘ jk
U ="Uyexp(Z) 0 (18)

where Uy is a fixed orthogonal matrix and Z is a skew-symmetric matrix of parameters.
Now, the integrated function for I is
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p(U|D, L,v)ocexp <—~%tr((L*1 - v“lf)UTSU)) (19)

The density is maximized when U contains the top k eigenvectors of S. If we consider to be the top d eigenvectors
of 5

UTSU; = NA (20)
: Lo
where A = {O I}Id—k}
Now by considering dz;; = —dz;;, we get
ko d )
Plog fO)],_,==>_ > (A;l - A;l) (A — X)) Ndz, @1
=1 j=i+1

Since the Hessian matrix is diagonal, the second derivative is as follows:
ko d R
4z =11 I1 (A;l - A;1> (\i = Aj) N (22)
i=1j=i+1

In Eq. (22) A is a block diagonal and [A| = |[Az| |AL||Av]. We know A, from Eq. (22), A, and A, from Eq. (16).
Finally replacing these values in Eq. (14) we get the evidence:

L |—n/2 /
p<le) ~ .2ka ‘L' n/ ’D-—n(d—k)/Qe——nd/Q(27T)(m+1:+1)/2 IAZ|—1/2 l‘4Ll—1/2 lAv!_l/Q (23)

For a polynomial model, the optimal degree is offer by k in the Laplacian approximation with small value of a and
reasonably large N:

: —N/2
k
p(DIk) = p(U) | [T HN=RY2 9y (mAk) /2| 4 =12 k)2 (24)
Jj=1
7 -~ Ztrl—k 1 r
where, [, = A;, 0 = =ET—

Equation (24) offers the evidence for the best suitable polynomial degree, which we may call degree of best
polynomial fitness.
A simplified implementation of the Laplacian optimal polynomial degree approximation is BIC as follows:

~N/2

k
p(Dik) ~ H /\j {)—N(d—-k)/Q'z\vr—(m+k)/2 (25)
=1

Equations (24) and (25) offer different methods for finding the optimal degree & (or d as shown in Table 1). These
two probability functions can be readily evaluated for different values of & in an iterated procedure which is not
very computationally expensive. The resulting probabilities provide an estimate of the likely fitness of different
polynomial kernel degrees and the maximum fitness can be selected as an estimate of the optimal degree.

A pictorial view of this idea for dataset annl with Laplace method for optimal degree estimation and its corre-
sponding classification performance is shown separately for train and test dataset as in Fig. 3.

In Fig. 3, the Laplace method predicts the optimal degree is 4 based on higher evidence (highest probability of
polynomial degree fitness) for annl dataset. We observe the performance of the training set increases with higher
order of polynomial degree. On the other hand, the performance of the test set decreases with the higher order
of polynomial degree. This is clear evidence of data overfitting and reinforces the need for methods to select the
optimal degree.
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f
£ - Re lrain acCuracy
? -<y- probabiiity of polynonual degree fitness

R~ 1est accuracy
-<>- probability of golynomial degree fitness

s

L

(a) Comparison of estimated (Laplace) accuracy and (b) Comparison of estimated (Laplace) accuracy
actual accuracy on annl training dataset. and actual accuracy on annl test dataset.

Fig. 3. Optimum polynomial degree selection by Laplace method and corresponding classification performance is shown separately for train and
test set with annl dataset.

Average % accuracy

Name of methods

Fig. 4. Average test set accuracy for different polynomial kernel parameter fitting methods for problems satisfying rule # 1 (39 datasets).

3.1. Optimal degree estimation performance: Accuracy

The average test set classification performance of polynomial kernel with parameter 2-5, polynomial best (best
performance manually selected from degree 2-5), optimum polynomial degree approximation by BIC and Laplace
methods is shown in Fig. 4. The results are presented only for those 39 of the 112 original datasets that are suited to
the polynomial kernel (satisty rule #1).

The BIC and Laplace methods showed close performance with the optimal polynomial accuracy found through
exhaustive search of degree range 2 to 5. Both methods showed average higher accuracy than individual polynomial
degree 2-5 performance and performance for large dataset (more than 1000 samples) was better than polynomial best
performance. For large datasets polynomial best showed average 72.39%, BIC and Laplace methods showed 73.21%.
BIC method predicted the optimal degree for polynomial kernel for 53.85% of the datasets where polynomial kernel
is expected to be best. On the other hand Laplace method predicted the optimal degree for 51.28% of the datasets.
We observed that 39.28% of the datasets have optimal degrees outside the range of 2 to 5. For many of the datasets
BIC and Laplace methods predicted the same polynomial degree among the 112 problems. The polynomial kernel
performance with datasets better suited to others (non-polynomial) kernel is showed in Fig. 5.
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Table 3
Average computational performance for different polynomial kernel parameter estimation
methods
Average computational ~ Polynomial Best  Polynomial BIC ~ Polynomial Laplace
time in Sec. 819.67 0.0185 0.0488
Table 4
Resulrs of the t-test for all methods of polynomial degree selection
Algorithms Hypothesis  Significance Confidence Interval
H P CcI

1.2321e-005 0.1578 0.3707
6.2817e-004 0.0665 0.2247
8.5060e-004 0.0559 0.1975

polynomial_best vs polynomial. 2
polynomial_ best vs polynomial 3
polynomial_ best vs polynomial 4

O O o e

polynomial. best vs polynomial. § 0.0019 0.0256 0.1046
polynomial. best vs polynomial BIC 0.4378 —0.0644 0.1458
polynomial_ best vs polynomial Laplace 0.3616 —0.0602 0.1612

Average % accuwracy

Name of methods

Fig. 5. Average test set accuracy for different polynomial kernel parameter fitting methods for problems not satisfying rule # 1 (73 datasets).
3.2. Optimal degree estimation performance: Computational time

The computational performance to determine the best polynomial degree using the three methods: polynomial best
(exhaustive search of degree 2-5) and estimation by BIC and Laplace methods, is shown in Table 3.

The exhaustive optimal degree search method needed extremely higher corputational time than BIC and Laplace
methods. It selects he polynomial degree one by one from a range 2-5 to train the SVM polynomial model. But
both BiC and Laplace methods estimate the optimal polynomial degree for SVM by a simple iteration of Eqs (25)
and (24) respectively that estimates the likely performance of the SVM model without the need to build such models.
Therefore, BIC and Laplace methods show the superior computationa! performance compared to exhaustive search
method.

3.3. Significance test

The t-test results are summarised in Table 4. We considered the base kernel as polynomial best. The test input
was the percentage of correct classification of test set of all the methods for manual and optimal polynomial degree
selection.

The outputs of H = 0 in the above table indicates we may not reject the null hypothesis that there is no
significant difference in results. Alternatively, H = | means we may reject the null hypothesis. The polynomial best
(exhaustive search of polynomial degree 2-5) showed significant performance difference with the individual models.
In other words, a much better final result is obtained by the trial-and-error approach compared to selecting just
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one model, as one would expect. But, the polynomial best compared to BIC and Laplace methods showed no
significant performance difference in accuracy. The higher values of the significance level suggested accepting the
null hypothesis. The BIC and Laplace methods give results comparable to exhaustive search, but are much faster to
implement.

The average percentage of classification performance and significance testing has shown that classification accu-
racy depends on particular polynomial kernel degree selection. A detailed polynomial optimal degree estimation
performance by BIC and Laplace methods is represented in Appendix III. We observe from both of these optimal
polynomial degree estimation methods, the optimal degree is frequently more than 5. Any single method is not
always best to estimate the optimal polynomial degree. So, we need a method to provide a priori information about
which optimal degree estimation method is suitable for which classification problem with SVM.

In the following section we describe the methodology we use to assist in the appropriate selection of an optimal
degree estimation method for a given dataset. First each dataset is described by a set of measurable meta characteris-
tics; we then combine this information with the performance results; and finally use a rule-based induction method to
provide rules describing when each optimal parameter estimation method for polynomial kernel is likely to perform

well.

4. Datasets characteristics measurement

Each dataset can be described by simple, distance and distribution based statistical measures [31,32]. These three
sets of measures characterise the datasets in different ways. First, the simple classical statistical measures identify
the data characteristics based on variable to variable comparisons. Then, the distance based measures identify the
data characteristics based on sample to sample comparisons. Finally, the density based measures consider the single
data point from a matrix to identify the datasets characteristics. We average most of statistical measures over all the
variables and take these as global measures of the dataset characteristics. In statistics, basically central tendency
measures are use for the location of the middle or the center of a data distribution. The term center is purposely left
somewhat vague so that the term central tendency can refer to a wide variety of measures. However, the mean is the
most commonly used measure of central tendency. Therefore we use mean for data characteristics measurements.
The simple statistical measures are calculated within each column, and then averaged over all columns to obtain
global measures of the dataset. Likewise, the distance measures are averaged over all pairwise comparisons, and the
density based measures are averaged across the entire matrix.

4.1. Simple statistical measures

Descriptive statistics can be used to summarise any large dataset into a few numbers that contain most of the
relevant characteristics of that dataset. The following table lists the statistical measures used in this work as provided
by the Matlab Statistics Toolbox and some other different sources [22] as follows:

Merta Attribute Names  Meta Attribute Names

Geometric mean Max. and Min. eigenvalue
Harmonic mean Skewness

Trim mean Kurtosis

Standazd deviation Correlation Coetficient
Interquartile Range Prctile

4.2, Distance based measures

Distance based measures calculate the dissimilarity between samples. We measure the euclidean, city block and
mahalanobis distance between each pair of observations for each dataset as follows:



S. Ali and K. Smith-Miles / On optimal degree selecrion for polynomial kernel with support vector machines 11

Meta Attribute Names ~ Meta Attribute Names

Euclidean distance Mahalanobis distance
City Block distance

4.3. Distribution based measures

The probability distribution of a random variable describes how the probabilities are distributed over the various
values that the random variable can take on. We measure the probability density function (pdf) and cumulative
distribution function (cdf) for all datasets by considering different types of distributions as follows:

Meta Attribute Names ~ Meta Attribute Names

Chi-square pdf Chi-square cdf
Normal pdf Normal cdf
Binomial pdf Discrete uniform cdf
Exponential pdf F pdf

Gamma pdf Hypergeometric cdf
Lognormal pdf Poisson pdf
Rayleigh pdf Student’s t pdf

These measures are all calculated for each of the datasets to produce a dataset characteristics matrix. Finally by
combining this matrix with the performance results in Appendix III, we can derive rules to suggest when certain
optimal degree estimation methods are appropriate.

5. Rule generation

The trial-and-error approach is a very common procedure to select the optimal degree for polynomial kernel. Itis
a computationally complex task to find the best degree by following this procedure. If we are interested in applying
a specific method to a particular problem we have to consider which method is more suitable for which problem.
The suitability test can be done from rules developed with the help of the data characteristics properties.

Rule based learning algorithms, especially decision trees (also called classification trees or hierarchical classifiers),
are a divide-and-conquer approach or a top-down induction method, that have been studied with interest in the
machine learning community. Quinlan [29] introduced the C4.5 and C5.0 algorithms to solve classification problems.
C5.0 works in three main steps. First, the root node at the top node of the tree considers all samples and passes
them through to the second node called “branch node’. The branch node generates rules for a group of samples
based on an entropy measure. In this stage C5.0 constructs a very big tree by considering all attribute values and
finalises the decision rule by pruning. It uses a heuristic approach for pruning based on statistical significance of
splits. After fixing the dest rule, the branch nodes send the final class value in the last node called the *leaf node’ [10,
29]. C5.0 has two parameters: the first one is called the pruning confidence factor (¢) and the second one represents
the minimum number of branches at each split (m). The pruning factor has an effect on error estimation and hence
the severity of pruning the decision tree. The smaller value of ¢ produces more pruning of the generated tree and a
higher value results in less piuning. The minimum branches m indicates the degree to which the initial tree can fit
the data. Every branch peint in the tree should contain at least two branches (so a minimum number of m = 2. For
detail formulations see [29].

Now that the characteristics of each dataset can be quantitatively measured, we can combine this information with
the empirical evaluation of kernel parameter estimation method performance and construct the dataset characteristics
martrix. Thus, the result of the jth degree selection method on the ith dataset is calculated as:

€;; — max (e;)

R,=1- (26)

min (e;) — max (e;)
where ¢, ; is the percentage of correct classification for the jth method on dataset ¢, and ¢, is a vector of accuracy for

dataset i. The class values in the matrix are assigned based on the performance best rank. The best rank is defined as
I and the worst is 0. For example, if BIC method shows the ranking performance 1 for the dataset A, then the class
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Table 5
Confusion matrix based on 10FCV results for
the BIC method selection rule
Data condition satisfied ~ BIC method best
Yes(Y) No(N)
Yes(Y) 2.0 0.1
No(N) 0.2 1.6

Accuracy = 92.31%.

Table 6
Confusion matrix based on 10FCV results for the
Laplace method selection rule

Data condition satisfied ~ Laplace method best
Yes(Y) No(N)
Yes(Y) | 2.0 0
No(N) 0.4 1.5

Accuracy = 89.74%.

in the matrix for problem A is BIC. Based on the 112 classification problems we can then train a rule-based classifier
(C5.0) to learn the relationship between dataset characteristics and degree selection method performance. We split
the matrix 90% to construct the model tree. The process is then repeated using a 10 fold cross validation approach so
that 10 trees are constructed. From these 10 trees, the best rules are found for each optimal degree selection method
based on the best test set results. The generalisation of these rules is then tested by applying each of the randomly
extracted test sets and calculating the average accuracy of the rules as discussed below in Tables 5 and 6. We found
the suitable parameter value for global pruning factor; ¢ is 70-90% and the number of minimum branches m is 2.
We have demonstrated the rules for polynomial kernel in Section 2. Now if any dataset satisfies the polynomial
kernel rule then we need to find optimal polynomial degree estimation method. So, in the following section we
will generate the rules describing when to choose the BIC and Laplace methods for optimal polynomial degree

estimation.

5.1. Rules for BIC method

The best rules for BIC method is generated with ¢ = 90% and m = 2 as follows:

Rule # 2: IF (skewness > 1.2843) OR (exponential pdf <= 19.2502), THEN we
should choose BIC method for polynomial kernel degree estimation.

5.2, Rules for Laplace method

The best rules for Laplace method is generated with ¢ = 70% and m = 2 as follows:

Rule # 3: IF (median > 2.5 AND normal pdf <= 0.15851) OR (median > 2.5 AND
gamma pdf <= 8.9639e-006 AND student’s t pdf <= 18.0492) THEN we should
choose Laplace method for polynomial kernel degree estimation.

The generated rules show around 90% accuracy. Individually we observed BIC approximation method showed
slightly better performance than Laplace approximation, although Laplace was superior for problems not best suited
to polynomual kernel as shown in Fig. 5. These rules might be useful to determine which polynomial degree
approximation method is most appropriate for which problem.
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6. Conclusions

In this research we have widely investigated both theoretically and empirically how to select polynomial kernel
and its optimal degree for SVM. We proposed a simple rule for polynomial kernel and optimal degree selection based
on dataset information. This method is much faster than trial-and-error based selection of the polynomial degree.
Since both proposed polynomial degree estimation methods are based on Bayesian information, this approximation
works especially well for large datasets with more than 1000 samples. We have observed that the best polynomial
degree is commonly out of the range 2 to 5 (the common range tested in the literature). The estimated higher degree
increased the kernel performance accuracy for some specific cases. The BIC and Laplace methods are very fast to
estimate the optimal polynomial degree. Datasets when BIC and Laplace methods perform poorly, are the same as
those for which polynomial kernel is not recommended by rule # 1. We examined the generated rules by 10FCV. All
generated rules shown high accuracy ratings. We suggest the default polynomial parameter setting is the traditional
approach, meaning if any dataset satisfies the polynomial rule but does not satisfy the BIC or Laplace rules then
we should manually try polynomial degree from 2-5. The main benefit of our methodology is that we can achieve
higher accuracy for some classification problems and significant savings in time by understanding the characteristics
of the dataset. We have planned to investigate on-line parameter setting for SVM as follows [21] with polynomial
kernel. :
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Appendix I: Datasets description

# Dataset names # # # # Dataset names # # #
Datasets samples  attributes  classes  Datasets samples  atuibutes  classes

1 abalone 1253 8 3 57 mushroom 1137 11 2

2 adp 1351 11 3 58 muskl 476 166 2
3 adult+stretch 20 4 2 59 musk?2 1154 5 2

4 adult-stretch 20 4 2 60 nettalk stress 1141 7 5

S allbp 840 6 3 61 new-thyroid 215 5 3

6 annl 1131 6 3 62 page-blocks 1149 10 5
7 ann?2 1028 6 3 53 pendigits-8 1399 16 2

3 aph 909 18 2 64 pha 1070 9 5

9 art 1051 12 2 65 phm 1351 11 3
10 australian 690 14 2 66 phn 1500 9 2
11 balance-scale 625 4 3 7 pid 532 7 2
12 bew 699 9 2 68 pid_noise 532 15 2
i3 bew_noise 683 18 2 69 pima 768 8 2
14 bld 345 6 2 70 poh 527 11 2
15 bld_noise 345 15 2 71 post-operative 90 8 3
16 bos 910 13 3 72 primary-tumor 339 17 2
17 bos_noise 910 25 3 73 pro 1257 12 2
18 breast-cancer 286 6 2 74 promoter 106 57 2
19 breast-cancer-wisconsin 699 9 2 75 pvro 590 18 2
20 bupa 345 6 2 76 rph 1093 8 2
21 c 1500 15 2 77 shuttle-landing-control 15 6 2
22 cleveland-heart 303 13 5 78 sick-euthyroid 1582 15 2
23 cme 1473 9 3 79 sma 409 7 4
24 cmc_noise 1473 15 3 80 smo 1429 8 3
25 crx 490 15 2 81 SmMo_noise 1299 15 3
26 dar 1378 9 5 82 sonar 208 60 2
27 dhp 1500 7 2 83 splice 1589 60 3
28 dna 2000 60 3 84 switzerland-heart 123 8 5
29 dna_noise 2000 80 3 85 tseries 62 2 2
30 DNA-n 1275 60 3 36 tae 151 5 3
31 dph 590 10 2 87 tae_noise 151 10 3
32 echocardiogram 131 7 2 88 thy_noise 3772 35 3
33 flare 1389 10 2 89 tic-tac-toe 958 9 2
34 german 1000 24 2 90 titanic 2201 3 2
33 glass 214 10 6 91 tmris 100 3 2
36 hayes-roth 160 5 3 92 qr 1107 11 2
37 h-d 303 13 2 93 trains-wransformed 10 16 2
38 hea 276 13 2 94 e 958 9 2
39 hea_noise 270 20 2 95 va-heart 200 8 4
40 heart 270 13 2 96 veh 846 18 4
41 hepatitis 155 19 2 97 veh.noise 761 30 4
42 horse-23 368 22 2 98 vot.noise 391 30 2
43 horse-colic 368 27 2 99 wdbc 569 30 2
44 hause-vores 84 435 16 2 100 wine 178 13 3
45 ionosphere 351 33 2 101 wpbc 199 33 2
46 iris 150 4 3 102 Xaa 94 18 4
47 khan 1063 5 2 163 xab 94 18 4
48 labor-neg 40 16 2 104 xac 94 18 4
49 lenses 24 S 3 105 xad 94 18 4
50 letter-a 1334 15 2 106 xae 94 18 4
51 lung-cancer 32 56 2 107 xaf 94 18 4
52 tymphography 148 18 8 108 xag 94 18 4
53 mha 1269 8 4 109 xah 94 18 4
54 monkl 556 6 2 110 xai 94 18 4
35 monk?2 501 6 2 111 yha 1601 9 2
56 monk3 554 6 2 112 200 101 16 7
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Appendix II: Kernels Performance for The Test Data Sets (% Accuracy)

kernel polynomial rbf Laplace
2 3 4 5 0.2 0.4 0.6 0.8 1.0 1.20 EM
Mean 5589 3846 5958 6349 70.28  70.17 68.71 67.05 66.01 65.15 70.54
Standard Deviaion  23.50 2434 2270 22.52 21.06 21.63 22.61 2331 23.83 2399 21.04
kernel spline multiquadratic sigmoidal
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Mean 5477 49.62 49.86  50.30 50.90  51.68 61.85 6285 6337 63.37 63.49
Standard Deviation ~ 22.86 2496 2479 2464 2441 2407 17.34 1757 1779  17.90 18.10

Appendix III: Optimal Degree Performance for bifferent Methods Based on Test Dataset

Datasets name Manual search method (2-5) BIC method Laplace method
test set ;5 best degree test set R;; estimated test set Ry estimated
optimal degree optimal degree

abalone 0.99 2 0.60 7 0.60 7
adp 0.86 2 0.87 10 0.87 10
adult+stretch 1.00 2 1.00 3 1.00 3
adult-stretch 1.00 2 1.00 3 1.00 3
allbp 0.96 5 0.96 5 0.96 5
annl 0.52 4 0.49 5 0.49 5
ann2 0.03 5 0.03 5 0.03 5
aph 1.00 3 0.83 17 0.83 17
art 1.00 4 0.91 11 0.91 11
australian 0.71 5 1.00 13 1.00 13
balance-scale 1.00 2 097 3 0.97 3
bew 0.97 3 0.96 8 0.96 8
bew _noise 0.95 4 0.83 17 0.83 17
bld 0.84 2 0.49 5 0.49 5
bld_noise 0.69 2 0.34 14 0.46 6
bos 0.82 5 0.61 12 0.61 12
bos-noise 0.93 5 0.89 24 0.89 24
breast-cancer 0.57 2 0.08 5 0.18 4
breast-cancer-wisconsin 0.97 4 0.96 8 0.96 8
bupa 0.74 2 0.48 5 0.48 5
c 1.00 2 1.00 2 1.00 2
cleveland-heart 0.43 5 1.00 12 0.94 10
cme 0.93 2 0.52 8 0.52 8
cmc.noise 0.71 5 1.00 14 1.00 14
crx 0.65 5 1.00 14 1.00 13
dar 1.00 5 0.88 8 0.88 8
dhp 0.91 5 0.88 6 0.88 6
dna 1.00 5 0.93 8 0.93 8
dna_noise 1.00 5 1.00 5 1.00 3
DNA-n 1.00 3 0.88 4 0.88 4
dph .26 2 1.00 9 1.00 9
echocardiogram 0.44 5 0.50 6 0.50 6
flare 0.93 2 0.02 9 0.02 9
german 0.88 5 0.96 23 1.00 22
glass 0.80 5 0.57 9 037 9
hayes-roth 0.69 5 0.62 4 0.73 1
h-d 0.81 5 0.97 9 0.96 10
hea 0.84 5 0.97 12 0.99 9
heua.noise 0.85 5 0.84 19 0.86 16
heart 0.32 3 0.99 12 1.00 9
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Datasets name Manual search method (2--5) BIC method Laplace method
test set best degree test set Ry estimated test set Ry, estimated
optimal degree optimal degree

hepatitis 0.15 4 0.65 18 0.55 10
horse-23 0.46 3 0.63 21 0.63 21
horse-colic 1.00 2 1.00 26 1.00 26
house-votes-84 0.69 5 0.00 15 0.89 13
ionosphere 0.90 2 0.34 32 0.78 25
iris 0.77 5 0.69 3 0.69 3
khan 0.93 2 0.51 4 051 4
labor-neg 1.00 4 0.67 15 0.67 14
lenses 1.00 3 1.00 4 1.00 3
letter-a 0.84 5 1.00 15 1.00 15
lung-cancer 1.00 2 1.00 30 1.00 5
lymphography 0.56 3 0.81 17 0.81 16
mha 0.20 2 0.91 7 0.91 7
monk1 1.00 3 0.89 5 0.98 4
monk?2 1.00 3 0.51 5 0.12 4
monk3 0.96 2 0.42 5 0.56 4
mushroom 0.98 5 0.93 10 0.93 10
muskl 0.98 3 0.00 165 0.00 159
musk?2 0.45 5 1.00 14 1.00 14
nettalk_stress 0.88 5 0.84 4 0.84 4
new-thyroid 0.24 5 0.21 4 0.21 4
page-blocks 0.97 5 0.96 9 0.96 9
pendigits-8 0.98 4 1.00 14 1.00 14
pha 0.45 2 0.00 8 0.00 8
phm 0.86 5 0.89 10 0.89 10
phn 0.89 2 0.94 8 0.94 8
pid 0.73 2 0.06 5 0.06 5
pid.noise 0.54 5 0.91 14 0.91 14
pima 1.00 2 0.64 6 0.64 6
poh 0.89 5 0.98 10 0.98 10
post-operative 0.20 3 0.24 7 0.24 7
primary-tumor 0.04 4 0.04 16 0.04 16
pro 0.74 3 0.92 11 0.92 11
promoter 0.93 3 0.85 56 0.80 1
pvro 0.15 3 0.00 17 0.00 17
rph 0.58 4 0.89 7 0.89 7
shuttle-landing-control 1.00 2 1.00 4 1.00 4
sick-euthyroid 0.95 5 1.00 24 1.00 24
sma 0.75 5 0.69 6 0.69 6
SMo 0.33 5 0.77 7 0.77 7
Smo-noise 0.51 4 0.96 14 0.96 12
sonar 1.00 3 0.77 26 0.75 56
splice 0.98 3 1.00 59 0.95 6
switzerland-heart 0.92 2 0.42 7 0.42 7
t_series 0.64 3 0.43 1 0.43 1
tae 0.95 4 0.95 4 0.95 4
tae.noise 0.71 5 0.83 9 0.83 8
thy.noise 1.00 5 0.9% 6 0.99 9
tic-tac-1oe 0.68 5 0.69 8 0.69 8
ttanic 0.69 3 0.00 2 0.00 2
tmris 1.00 2 1.00 2 1.00 2
wgr 0.96 5 0.99 10 0.99 9
trains-transformed 1.00 2 1.00 8 1.00 7
T 0.62 5 0.63 8 0.63 8
va-heart 0.36 3 0.00 7 0.00 6
veh 1.00 5 0.32 17 0.32 17
veh._noise 1.00 5 0.29 29 0.29 29
Vot.noise 0.99 3 0.67 29 0.67 27
wdbe 0.87 3 0.74 16 0.81 29
wine 1.00 S 1.00 9 1.00 9
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Datasets name  Manual search method (2-3) BIC method Laplace method
test set R best degree test set Ry estimated test set Ry estimated
optimal degree optimal degree
wpbc 0.39 3 0.81 19 0.94 32
Xaa 0.83 5 0.44 17 0.44 17
xab 0.85 5 0.09 17 0.09 17
xac 0.93 4 0.38 17 0.38 17
xad 0.89 3 0.24 17 0.24 17
xae 0.73 5 0.00 17 0.00 17
xaf 0.77 3 0.15 17 0.13 17
xag 1.00 2 0.33 17 0.33 17
xah 0.85 2 0.62 17 0.62 17
xai 0.90 4 0.46 17 0.46 17
vha 0.99 5 0.98 8 0.98 8
Z00 1.00 3 0.29 14 0.29 13




