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1 Introduction

Complex systems profoundly change human activities of the day and may be
of strategic interest. As a result, it becomes increasingly important to have
confidence in the theory of complex systems. Ultimately, this calls for clear
explanations why the foundations of the theory are valid in the first place. The
ideal situation would be to have an irreducible theory of complex systems not
requiring a deeper explanatory base in principle. But the question arises: where
could such a theory come from, when even the concept of spacetime is questioned
as a fundamental entity.

As a possible answer it is suggested that the concept of integers may take
responsibility in the search for an irreducible theory of complex systems [1]. It
is shown that complex systems can be described in terms of self-organization
processes of prime integer relations [1], [2]. Based on the integers and controlled
by arithmetic only the self-organization processes can describe complex systems
by information not requiring further explanations. This offers the possibility
to develop an irreducible theory of complex systems. In this paper we present
results to progress in this direction.
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2 A System of Equations: Nonlocal Correlations
and Statistical Information about Parts of a
Complex System

To understand a complex system we begin to consider the dynamics of the
elementary parts and focus on the correlations between the parts as certain
quantities of the complex system remain invariant [1], [2].

Let I be an integer alphabet and IN = {x = x1...xN , xi ∈ I, i = 1, ..., N}
be the set of sequences of length N ≥ 2. We consider N elementary parts
Pi, i = 1, ..., N with the state of an element Pi specified in its reference frame
by a generalized coordinate xi ∈ I, i = 1, ..., N (for example, the position of the
element Pi in space) and the state of the elements by a sequence x = x1...xN ∈
IN . It is proved [1] that C(x, x′) ≥ 1 of the quantities of a complex system
remain invariant, if and only if a system of C(x, x′) equations take place

(m+N)C(x,x′)−1∆x1 +(m+N−1)C(x,x′)−1∆x2 + ...+(m+1)C(x,x′)−1∆xN = 0

. . . . . . . .

(m + N)1∆x1 + (m + N − 1)1∆x2 + ... + (m + 1)1∆xN = 0

(m + N)0∆x1 + (m + N − 1)0∆x2 + ... + (m + 1)0∆xN = 0 (1)

characterizing in view of an inequality

(m + N)C(x,x′)∆x1 + (m + N − 1)C(x,x′)∆x2 + ... + (m + 1)C(x,x′)∆xN 6= 0,

the correlations between the parts of the complex system, where ∆xi = x′i −
xi, x′ = x′1...x

′
N , x = x1...xN , x′i, xi ∈ I, i = 1, ..., N are the changes of the

elements Pi, i = 1, ..., N in their reference frames and m is an integer. The coef-
ficients of the system of linear equations become the entries of the Vandermonde
matrix, when the number of the equations is N . This fact is important in order
to prove that C(x, x′) < N [1].

The equations (1) present a special type of correlations that do not have
reference to the distances between the parts, local times and physical signals.
The space and non-signaling aspects of the correlations are familiar from expla-
nations of quantum correlations through entanglement [3]. The time aspect of
the nonlocal correlations may suggest new items into the agenda.

The solutions of the equations (1) may define for the observable ∆xi of an
element Pi, i = 1, ..., N a set of different possible values. The equations with
different solutions give no rules to predict the outcome of the measurement
of ∆xi. Nevertheless, they can provide the statistical information about the
observable ∆xi, as long as it is possible to find from the solutions the probabilities
of the different outcomes.
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3 Self-Organization Processes of Prime Integer
Relations and their Geometrization

The equations (1) can be also viewed as identities. Their analysis reveals hierar-
chical structures of prime integer relations in the description of complex systems
[1], [2] (Figure 1). In the context of the hierarchical structures it may be useful
to investigate whether the Ward identities and their generalizations [4] could be
presented in a more explicit form.
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Figure 1: The left side shows one of the hierarchical structures of prime integer rela-
tions, when a complex system has N = 8 elements Pi, i = 1, ..., 8, x = 00000000, x′ =
+1−1−1+1−1+1+1−1, m = 0 and C(x, x′) = 3. The hierarchical structure is built
by a self-organization process of prime integer relations and determines a correlation
structure of the complex system. The right side presents an isomorphic hierarchical
structure of geometric patterns. On scale level 0 eight rectangles specify the dynamics
of the elements Pi, i = 1, ..., 8. The boundary curves of the geometric patterns describe
the dynamics of the corresponding parts. All geometric patterns are symmetric and
their symmetries are interconnected. The symmetry of a geometric pattern is global
and belongs to a corresponding part as a whole.

Through the hierarchical structures a new type of processes, i.e., the self-
organization processes of prime integer relations, is revealed [1]. Starting with
integers as the elementary building blocks and following a single principle, such
a self-organization process makes up the prime integer relations of a level of a
hierarchical structure from the prime integer relations of the lower level (Figure
1). A prime integer relation is made as an inseparable object: if even one of
the prime integer relations is not included, then the rest of the prime integer
relations can not form an integer relation. In other words, each and every prime
integer relation involved in the formation of a prime integer relation is crucial.
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By using the integer code series [5] the prime integer relations can be ge-
ometrized as two-dimensional patterns and the self-organization processes can
be isomorphically expressed by certain transformations of the geometric patterns
[1]. As it becomes possible to measure a prime integer relation by an isomorphic
geometric pattern, quantities of the prime integer relation and a complex system
it describes can be defined by quantities of the geometric pattern such as the
area and the length of its boundary curve (Figure 1).

Due to the isomorphism, the structure and the dynamics of a complex system
are combined. As self-organization processes of prime integer relations determine
the correlation structure of a complex system, the transformations of correspond-
ing geometric patterns may characterize its dynamics in a strong scale covariant
form [1], [2].

4 Optimality Condition of Complex Systems
and Optimal Quantum Algorithms

Despite different origin complex systems have much in common and are inves-
tigated to satisfy universal laws. Our description points out that the universal
laws may originate not from forces in spacetime, but through arithmetic.

There are many notions of complexity introduced in the search to com-
municate the universal laws into theory and practice. The concept of struc-
tural complexity is defined to measure the complexity of a system in terms of
self-organization processes of prime integer relations [1]. In particular, as self-
organization processes of prime integer relations progress from a level to the
higher level, the system becomes more complex, because its parts at the level
are combined to make up more complex parts at the higher level. Therefore,
the higher the level self-organization processes progress to, the greater is the
structural complexity of a corresponding complex system.

Existing concepts of complexity do not explain in general how the perfor-
mance of a complex system may depend on its complexity. To address the
situation we conducted computational experiments to investigate whether the
concept of structural complexity could make a difference [6].

A special optimization algorithm, as a complex system, was developed to
minimize the average distance in the travelling salesman problem. Remarkably,
for each problem the performance of the algorithm was concave. As a result, the
algorithm and a problem were characterized by a single performance optimum.
The analysis of the performance optimums for all problems tested revealed a re-
lationship between the structural complexity of the algorithm and the structural
complexity of the problem approximating it well enough by a linear function [6].
The results of the computational experiments suggest the possibility of a general
optimality condition of complex systems:

A complex system demonstrates the optimal performance for a problem, when
the structural complexity of the system is in a certain relationship with the struc-
tural complexity of the problem.
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The optimality condition presents the structural complexity of a system as
a key to its optimization. Indeed, according to the optimality condition the
optimal result can be obtained as long as the structural complexity of the system
is properly related with the structural complexity of the problem. From this
perspective the optimization of a system should be primarily concerned with
the control of the structural complexity of the system to match the structural
complexity of the problem or environment.

The computational results also indicate that the performance of a complex
system may behave as a concave function of the structural complexity. Once
the structural complexity could be controlled as a single entity, the optimization
of a complex system would be potentially reduced to a one-dimensional concave
optimization irrespective of the number of variables involved in its description.

In the search to identify a mathematical structure underlying optimal quan-
tum algorithms the majorization principle emerges as a necessary condition for
efficiency in quantum computational processes [7]. We find a connection between
the optimality condition and the majorization principle in quantum algorithms.

According to the majorization principle in an optimal quantum algorithm the
probability distribution associated to the quantum state has to be step-by-step
majorized until it is maximally ordered. This means that an optimal quantum
algorithm works in such a way that the probability distribution pk+1 at step
k + 1 majorizes pk ≺ pk+1 the probability distribution pk at step k. There are
special conditions in place for the probability distribution pk+1 to majorize the
probability distribution pk with intuitive meaning that the distribution pk is
more disordered than pk+1 [7].

In our description the algorithm revealing the optimality condition also uses
a similar principle, but based on the structural complexity. The algorithm tries
to work in such a way that the structural complexity Ck+1 of the algorithm at
step k + 1 majorizes Ck ≺ Ck+1 its structural complexity Ck at step k. The
concavity of the algorithm’s performance suggests efficient means to find optimal
solutions [6].

5 Global Symmetry of Complex Systems and
Gauge Forces

Our description presents a global symmetry of complex systems through the
geometric patterns of prime integer relations and their transformations. It be-
longs to the complex system as a whole, but does not necessarily apply to its
embedded parts. The differences between the behaviors of the parts may be in-
terpreted through the existence of gauge forces acting in their reference frames.
As arithmetic fully determines the breaking of the global symmetry, there is no
further need to explain why the resulting gauge forces exist the way they do and
not even slightly different.

Let us illustrate the results by a special self-organization process of prime
integer relations [1], [2]. The left side of Figure 1 shows a hierarchical structure of
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prime integer relations built by the process. It determines a correlation structure
of a complex system with states of N = 8 elements Pi, i = 1, ..., 8 given by
sequences x = 00000000, x′ = +1 − 1 − 1 + 1 − 1 + 1 + 1 − 1 and m = 0. The
sequence x′ is the initial segment of length 8 of the Prouhet-Thue-Morse (PTM)
sequence starting with +1. There is an ensemble of self-organization processes
and thus correlation structures forming the correlation structure of the complex
system. The self-organization process we consider is only one of them.

The right side of Figure 1 presents an isomorphic hierarchical structure of
geometric patterns. The curvature of a geometric pattern determines the dy-
namics of a corresponding part of the complex system. Quantities of a geometric
pattern, such as its area and the length of the boundary curve, define quantities
of a corresponding part of the complex system. The quantities of the parts are
interconnected through the transformations of the geometric patterns.

+8 - 7 - 6 + 5= 0
1 1 1 1

f
[2]

Figure 2: The geometric pattern of the part (P1 ↔ P2) ↔ (P3 ↔ P4). From above
the pattern is limited by the boundary curve, i.e., the graph of the second integral
f [2](t), t0 ≤ t ≤ t4 of the function f defined on scale level 0 (Figure 1), where ti =
iε, i = 1, ..., 4, ε = 1, and it is restricted by the t axis from below. The geometric
pattern is isomorphic to the prime integer relation +81−71−61+51 = 0 and determines
the dynamics. If the part deviates from this dynamics even slightly, then some of the
correlation links provided by the prime integer relation disappear and the part decays.
The boundary curve has a special property ensuring that the area of the geometric
pattern is given as the area of a triangle: S = HL

2
, where H and L are the height and

the length of the geometric pattern. In the figure H = 1 and L = 4, thus S = 2. The
property is illustrated in yin-yang motifs.

We can see from Figure 1 that starting with the elements at scale level 0, the
parts of the correlation structure are built scale level by scale level and thus a part
of the complex system becomes a complex system itself. All geometric patterns
characterizing the parts are symmetric and their symmetries are interconnected
through the integrations of the function.

We consider whether the description of the dynamics of parts of a scale level
is invariant as through the formation they become embedded in a part of the
higher scale level.

At scale level 2 the second integral f [2](t), t0 ≤ t ≤ t4, ti = iε, i =
1, ..., 4, ε = 1 characterizes the dynamics of the part (P1 ↔ P2) ↔ (P3 ↔ P4).
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This composite part is made up of elements P1, P2, P3, P4 and parts P1 ↔
P2, P3 ↔ P4 embedded in its correlation structure by the formations (Figures
1 and 2). The description of the dynamics of elements P1, P2, P3, P4 and parts
P1 ↔ P2, P3 ↔ P4 within the part (P1 ↔ P2) ↔ (P3 ↔ P4) is invariant relative
to their reference frames. In particular, the dynamics of elements P1 and P2 in
a reference frame of the element P1 is specified by

f [2](t) = f
[2]
P1

(tP1) =
t2P1

2
, t0 = t0,P1 ≤ tP1 ≤ t1,P1 = t1, (2)

f [2](t) = f
[2]
P1

(tP1) = − t2P1

2
+ 2tP1 − 1, t1 = t1,P1 ≤ tP1 ≤ t2,P1 = t2.

The transition from the coordinate system of the element P1 to a coordinate
system of the element P2 given by the transformation tP2 = −tP1 − 2, f

[2]
P2

=

−f
[2]
P1
− 1 shows that the characterization

f
[2]
P2

(tP2) =
t2P2

2
, t0,P2 ≤ tP2 ≤ t1,P2 (3)

of the dynamics of the element P2 is invariant, if we compare (2) and (3). Sim-
ilarly, the description is invariant, when we consider the dynamics of elements
P3 and P4. Furthermore, it can be shown that descriptions of the dynamics of
parts P1 ↔ P2 and P3 ↔ P4 relative to their coordinate systems are the same.

However, at scale level 3 the description of the dynamics is not invariant. In
particular, the dynamics of elements P1 and P2 within the part ((P1 ↔ P2) ↔
(P3 ↔ P4)) ↔ ((P5 ↔ P6) ↔ (P7 ↔ P8)) relative to a coordinate system of the
element P1 can be specified accordingly by (Figure 1)

f
[3]
P1

(tP1) =
t3P1

3!
, t0,P1 ≤ t ≤ t1,P1 , (4)

f
[3]
P1

(tP1) = − t3P1

3!
+ t2P1

− tP1 +
1
3
, t1,P1 ≤ tP1 ≤ t2,P1 .

The transitions from the coordinate systems of the element P1 to the coor-
dinate systems of the element P2 do not preserve the form (4). For example,
if under the transformation tP2 = tP1 + 2, f

[3]
P2

= −f
[3]
P1

+ 1 the perspective is
changed from the coordinate system of the element P1 to a coordinate system
of the element P2, then it turns out that the description of the dynamics (4) is
not invariant

f [2](t) = f
[3]
P2

(tP2) =
t3P2

3!
− tP2 , t1,P2 ≤ tP1 ≤ t2,P2

due to the additional linear term −tP2 .
Therefore, on scale level 3 arithmetic determines the different dynamics of

the elements P1 and P2. Information about the difference could be obtained
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from observers positioned at the coordinate system of the element P1 and the
coordinate system of the element P2 respectively. As one observer would report
about the dynamics of the element P1 and the other about the dynamics of the
element P2, we could find the difference and interpret it through the existence of
a gauge force F acting on the element P2 in its coordinate system to the effect
of the linear term χ(F ) = −tP2

f
[3]
P2

(tP2) =
t3P2

3!
− χ(F ), t0,P2 ≤ tP2 ≤ t1,P2 .

In general, the results can be schematically expressed as follows:
Arithmetic →

Prime integer relations in control
→ of correlation structures of complex systems ↔

↔ Global symmetry:
geometric patterns in control of the dynamics of complex systems →

→ Not locally invariant descriptions
of embedded parts of complex systems ↔
↔ Gauge forces to restore local symmetries
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