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Abstract— This paper is concerned with the problem of
robust absolute stability for a class of uncertain Lur’e systems of
neutral type. Some delay-dependent stability criteria are obtained
and formulated in the form of linear matrix inequalities (LMIs).
Neither model transformation nor bounding technique for cross
terms is involved through derivation of the stability criteria. A
numerical example shows the effectiveness of the criteria.
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I. INTRODUCTION

In 1944, when studying the stability of an autopilot,
Lur’e and Postnikov [1] introduced the concept of absolute
stability and the Lur’e problem. Since then, the problem
of absolute stability for Lur’e-type systems has received
considerable attention and many fruitful results, such as
Popov’s criterion, circle criterion, and Kalman-Yakubovih-
Popov (KYP) lemma have been proposed [2], [3], [4], [5].
From the view of modern robustness theory, absolute stability
theory can be considered as the first approach to robust
stability of nonlinear uncertain systems.

Time-delays are frequently encountered in many fields of
science and engineering, including communication network,
manufacturing systems, biology, economy and other areas
[6], [7]. During the last two decades, the problem of stability
of time-delay systems has been the subject of considerable
research efforts. Many significant results have been reported
in the literature. For the recent progress, the reader is referred
to [7] and the references therein.

Due to time-delay occurred in practical systems, the
problem of absolute stability for Lur’e systems of retarded
type has also been studied. Most of the existing results
are delay-independent [8], [9], [10], [11], [12], [13] and
few are delay-dependent [14], [15], [16]. When the time-
delay is small, delay-independent results are often overly
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conservative; especially, they are not applicable to closed-
loop systems which are open-loop unstable and are stabilized
using delayed inputs, due to either delayed measurements or
delayed actuator action in the input channels.

For Lur’e systems of neutral type, it is also of signifi-
cance to study the absolute stability since neutral systems
can be used to model delay circuits such as the partial
element equivalent circuits (PEEC’s) [17] and the distrib-
uted networks containing lossless transmission lines [18].
However,there exist only a few results available in the
literature [19]. These results are delay-independent, which
are conservative. Deriving some less conservative results
motivates the present study.

The purpose of this paper is to investigate the robust
absolute stability of uncertain Lur’e systems of neutral
type. Some delay-dependent absolute stability criteria, which
will be formulated in the form of LMIs, will be presented
without employing any model transformation and bounding
technique for cross terms. As is well known to the area of
time-delay systems [7], model transformation sometimes will
induce additional dynamics. Although a tighter bounding for
cross terms can reduce the conservatism. However, there is
no obvious way to obtain a much tighter bounding for cross
terms.

II. PROBLEM STATEMENT

Consider the following uncertain Lur’e system of neutral
type


ẋ(t) = [A + ∆A(t)]x(t) + [B + ∆B(t)]x(t − h)
+[C + ∆C(t)]ẋ(t − τ) + Dw(t),

z(t) = Mx(t) + Nx(t − h),
w(t) = −ϕ(t, z(t)),

(1)

with
x(θ) = φ(θ), ∀θ ∈ [−max{h, τ}, 0], (2)

where x(t) ∈ Rn, w(t) ∈ Rm and z(t) ∈ Rm are the
state vector, input vector and output vector of the system,
respectively; h > 0 is the constant discrete delay and τ > 0
is the constant neutral delay; φ(.) is a continuous vector
valued initial function, A ∈ Rn×n, B ∈ Rn×n, C ∈ Rn×n,
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M ∈ Rm×n and N ∈ Rm×n are constant matrices;
∆A(t), ∆B(t) and ∆C(t) are unknown real matrices of
appropriate dimensions representing time-varying parameter
uncertainties of system (1) and satisfy

(
∆A(t) ∆B(t) ∆C(t)

)
= LF (t)

(
Ea Eb Ec

)
, (3)

where L, Ea, Eb and Ec are known real constant matrices of
appropriate dimensions, and F (t) is an unknown continuous
time-varying matrix function satisfying

FT (t)F (t) ≤ I. (4)

ϕ(t, z(t)) : [0,∞)×Rm → Rm is a memory, possibly time-
varying, nonlinear function which is piecewise continuous
in t and globally Lipschitz in z(t) and satisfies the sector
condition, i.e. ∀t ≥ 0, ∀z(t) ∈ Rm,

[ϕ(t, z(t)) − K1z(t)]T [ϕ(t, z(t)) − K2z(t)] ≤ 0, (5)

where K1 and K2 are constant real matrices of appropriate
dimensions and K = K1 − K2 is a symmetric positive
definite matrix. It is customary that such a nonlinear function
ϕ(t, z(t)) is said to belong to a sector [K1,K2] [5].

In order to guarantee the existence and uniqueness of the
solution of system (1) [6], we assume that ‖C + ∆C(t)‖ <
1−δ < 1 for a sufficiently small δ > 0. A sufficient condition
is stated as follows.

Lemma 2.1: [20] The condition ‖C + LF (t)Ec‖ < 1 −
δ < 1 is satisfied for a sufficiently small δ > 0 if there exists
an ε > 0 such that


 −I + εET

c Ec CT 0
C −I L
0 LT −εI


 < 0. (6)

We first introduce the following definition
Definition 2.2: The uncertain Lur’e system of neutral type

described by (1)-(4) is said to be robustly absolutely stable
in the sector [K1,K2] if the system is globally uniformly
asymptotically stable for any nonlinear function ϕ(t, z(t))
satisfying (5) and any uncertainty satisfying (3)-(4).

In this paper, we will attempt to formulate some practically
computable criteria to check the robust absolute stability of
the system described by (1)-(2). The following lemma is
useful in deriving the criteria.

Lemma 2.3: [20] For any constant matrix W ∈ Rn×n,
W = WT > 0, scalar γ > 0, and vector function ẋ :
[−γ, 0] → Rn such that the following integration is well
defined, then

−γ

∫ 0

−γ

ẋT (t + ξ)Wẋ(t + ξ)dξ

≤ (
xT (t) xT (t − γ)

) ( −W W
W −W

) (
x(t)

x(t − γ)

)
.

III. MAIN RESULTS

The system described by (1), (3)-(4) can be rewritten as


ẋ(t) = Ax(t) + Bx(t − h) + Cẋ(t − τ)
+Dw(t) + Lu(t),

z(t) = Mx(t) + Nx(t − h),
w(t) = −ϕ(t, z(t)),
y(t) = Eax(t) + Ebx(t − h) + Ecẋ(t − τ),

(7)

subject to uncertain feedback

u(t) = F (t)y(t), (8)

or equivalently, in view of (4) and (7),

uT (t)u(t) ≤ [Eax(t) + Ebx(t − h) + Ecẋ(t − τ)]T

×[Eax(t) + Ebx(t − h) + Ecẋ(t − τ)]. (9)

In the following we will employ (7) and (9) to study the
robust absolute stability of (1)-(2).

We first consider the case when the nonlinear function
ϕ(t, z(t)) belongs to a sector [0,K] , i.e., ϕ(t, z(t)) satisfies

ϕT (t, z(t))[ϕ(t, z(t)) − Kz(t)] ≤ 0. (10)

We have the following result.
Proposition 3.1: For given scalars h > 0 and τ > 0,

the system described by (1)-(2) with nonlinear connection
function satisfying (10) and any uncertainty satisfying (3)-
(4) is robustly absolutely stable if there exist scalars ε >
0, µ > 0, real matrices P > 0, Q > 0, R > 0, and S > 0
such that (6) and



(1, 1) PB + R PC PD − εMT KT

∗ −Q − R 0 −εNT KT

∗ ∗ −S 0
∗ ∗ ∗ −2εI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
PL hAT R AT S µET

a

0 hBT R BT S µET
b

0 hCT R CT S µET
c

0 hDT R DT S 0
−µI hLT R LT S 0
∗ −R 0 0
∗ ∗ −S 0
∗ ∗ ∗ −µI




< 0, (11)

where
(1, 1) ∆= AT P + PA + Q − R.

Proof. Choose a Lyapunov-Krasovskii functional candi-
date as

V (t, xt) = xT (t)Px(t) +
∫ t

t−h

xT (ξ)Qx(ξ)dξ

+
∫ t

t−h

(h − t + ξ)ẋT (ξ)(hR)ẋ(ξ)dξ

+
∫ t

t−τ

ẋT (ξ)Sẋ(ξ)dξ, (12)



where P > 0, Q > 0, R > 0, and S > 0. Taking the
derivative of V (t, xt) with respect to t along the trajectory
of (7) yields

V̇ (t, xt) = xT (t)(AT P + PA + Q)x(t)

+2xT (t)PBx(t − h) + 2xT (t)PCẋ(t − τ)
+2xT (t)PDw(t) + 2xT (t)PLu(t)
−xT (t − h)Qx(t − h) − ẋT (t − τ)Sẋ(t − τ)

−
∫ t

t−h

ẋT (ξ)(hR)ẋ(ξ)dξ + ẋT (t)(h2R + S)ẋ(t).

Use Lemma 2.3 to obtain

−
∫ t

t−h

ẋT (ξ)(hR)ẋ(ξ)dξ ≤ (
xT (t) xT (t − h)

)

×
( −R R

R −R

) (
x(t)

x(t − h)

)
.

Noting that (7), the following holds

ẋT (t)(h2R + S)ẋ(t) = qT (t)




AT

BT

CT

DT

LT




×(h2R + S)
(

A B C D L
)
q(t),

where qT (t) = ( xT (t) xT (t − h) ẋT (t − τ) wT (t)
uT (t)

)
. Then we have

V̇ (t, xt) ≤ qT (t)Ξq(t),

where

Ξ =




Ξ11 Ξ12 Ξ13 Ξ14 Ξ15

∗ Ξ22 Ξ23 Ξ24 Ξ25

∗ ∗ Ξ33 Ξ34 Ξ35

∗ ∗ ∗ Ξ44 Ξ45

∗ ∗ ∗ ∗ Ξ55


 ,

with

Ξ11 = AT P + PA + Q − R + AT (h2R + S)A,

Ξ12 = PB + R + AT (h2R + S)B,

Ξ13 = PC + AT (h2R + S)C,

Ξ14 = PD + AT (h2R + S)D,

Ξ15 = PL + AT (h2R + S)L,

Ξ22 = −Q − R + BT (h2R + S)B,

Ξ23 = BT (h2R + S)C,

Ξ24 = BT (h2R + S)D,

Ξ25 = BT (h2R + S)L,

Ξ33 = −S + CT (h2R + S)C,

Ξ34 = CT (h2R + S)D,

Ξ35 = CT (h2R + S)L,

Ξ44 = DT (h2R + S)D,

Ξ45 = DT (h2R + S)L,

Ξ55 = LT (h2R + S)L.

A sufficient condition for robust absolute stability of the
system described by (1)-(2) is that under (6), there exist real
matrices P > 0, Q > 0, R > 0, and S > 0 such that

V̇ (t, xt) ≤ qT (t)Ξq(t) < 0, (13)

for all q(t) 	= 0 satisfying (9)-(10). Using the S-procedure
in [21], one can see that this condition is implied by the
existence of scalars ε > 0 and µ > 0 such that

qT (t)Ξq(t)−2εwT (t)w(t)−2εwT (t)K[Mx(t)+Nx(t−h)]

−µuT (t)u(t) + µ[Eax(t) + Ebx(t − h) + Ecẋ(t − τ)]T

×[Eax(t) + Ebx(t − h) + Ecẋ(t − τ)] < 0, (14)

for all q(t) 	= 0. Thus, if there exist real matrices P > 0,
Q > 0, R > 0, and S > 0, and scalars ε > 0 and µ > 0
such that (11), then (14) holds. Therefore, system (1)-(2) is
robustly absolutely stable according to Theorem 1.6 (p. 129,
Chapter 4 in [6]).

Remark 3.2: From the proof process of Proposition 3.1,
one can clearly see that neither model transformation nor
bounding technique for cross terms is involved. Therefore,
the stability criterion is expected to be less conservative.

When ∆C(t) ≡ 0, system (1) reduces to the following
system



ẋ(t) − Cẋ(t − τ) = [A + ∆A(t)]x(t) + [B + ∆B(t)]
×x(t − h) + Dw(t),

z(t) = Mx(t) + Nx(t − h),
w(t) = −ϕ(t, z(t)),

(15)
with uncertainties described by

(
∆A(t) ∆B(t)

)
= LF (t)

(
Ea Eb

)
. (16)

We assume that
Assumption 3.3: |λi(C)| < 1 (i = 1, 2, · · · , n).
Considering a Lyapunov-Krasovskii functional candidate

as

Ṽ (t, xt) = (x(t) − Cx(t − τ))T P (x(t) − Cx(t − τ))

+
∫ t

t−h

xT (ξ)Qx(ξ)dξ +
∫ t

t−τ

xT (ξ)Wx(ξ)ds

+
∫ t

t−h

(h − t + ξ)ẋT (ξ)(hR)ẋ(ξ)dξ

+
∫ t

t−τ

ẋT (ξ)Sẋ(ξ)dξ,

similar to the proof of Proposition 3.1, we have
Proposition 3.4: Under Assumption 3.3, for given

scalars h > 0 and τ > 0, the system described by (15), (2)
with nonlinear connection function satisfying (10) and any
uncertainty satisfying (16), (4) is robustly absolutely stable
if there exist a scalar µ > 0, real matrices P > 0, Q > 0,



W > 0, R > 0, and S > 0 such that




(1, 1) PB + R −AT PC 0 PD − εMT KT

∗ −Q − R −BT PC 0 −εNT KT

∗ ∗ −W 0 −CT PD
∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ −2εI
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

PL hAT R AT S µET
a

0 hBT R BT S µET
b

−CT PL 0 0 0
0 hCT R CT S 0
0 hDT R DT R 0

−µI hLT R LT S 0
∗ −R 0 0
∗ ∗ −S 0
∗ ∗ ∗ −µI




< 0, (17)

where

(1, 1) ∆= AT P + PA + Q + W − R.

For the nonlinearity ϕ(t, z(t)) satisfying the more general
sector condition (5), by applying an idea known as loop
transformation [5], we can conclude that the robust absolute
stability of system (1)-(2) in the sector [K1,K2] is equivalent
to the robust absolute stability of the following system




ẋ(t) = [A + ∆A(t) − DK1M ]x(t) + [B + ∆B(t)
−DK1N ]x(t − h) + [C + ∆C(t)]ẋ(t − τ)
+Dw̃(t),

z(t) = Mx(t) + Nx(t − h),
w̃(t) = −ϕ̃(t, z(t)),

(18)
in the sector [0,K2 −K1], i.e., ϕ̃(t, z(t)) satisfies for ∀t ≥
0, ∀z(t) ∈ Rm,

ϕ̃T (t, z(t)) [ϕ̃(t, z(t)) − (K2 − K1)z(t)] ≤ 0,

by Proposition 3.1 we have the following result.
Corollary 3.5: For given scalars τ > 0 and h > 0,

the system described by (1)-(2) with nonlinear connection
function satisfying (5) and any uncertainty satisfying (3)-(4)
is robustly absolutely stable if there exist scalars ε > 0, µ >
0, real matrices P > 0, Q > 0, R > 0, and S > 0 such that
(6) and 



(1, 1) (1, 2) PC (1, 4)
∗ −Q − R 0 (2, 4)
∗ ∗ −S 0
∗ ∗ ∗ −2εI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

PL (1, 6) (1, 7) µET
a

0 (2, 6) (2, 7) µET
b

0 hCT R CT S µET
c

0 hDT R DT S 0
−µI hLT R LT S 0
∗ −R 0 0
∗ ∗ −S 0
∗ ∗ ∗ −µI




< 0, (19)

where

(1, 1) ∆= (A − DK1M)T P + P (A − DK1M) + Q − R,

(1, 2) ∆= P (B − DK1N) + R,

(1, 4) ∆= PD − εMT (K2 − K1)T ,

(1, 6) ∆= h(A − DK1M)T R,

(1, 7) ∆= (A − DK1M)T S,

(2, 4) ∆= −εNT (K2 − K1)T ,

(2, 6) ∆= h(B − DK1N)T R

(2, 7) ∆= (B − DK1N)T S.
Similarly, the following corollary is due to Proposition 3.4.
Corollary 3.6: Under Assumption 3.3, for given scalars

h > 0 and τ > 0, the system described by (15), (2)
with nonlinear connection function satisfying (5) and any
uncertainty satisfying (16), (4) is robustly absolutely stable
if there exist a scalar µ > 0, real matrices P > 0, Q > 0,
W > 0, R > 0 and S > 0 such that



(1, 1) (1, 2) (1, 3) 0 (1, 5)
∗ −Q − R (2, 3) 0 (2, 5)
∗ ∗ −W 0 −CT PD
∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ −2εI
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
PL (1, 7) (1, 8) µET

a

0 (2, 7) (2, 8) µET
b

−CT PL 0 0 0
0 hCT R CT S 0
0 hDT R DT R 0

−µI hLT R LT S 0
∗ −R 0 0
∗ ∗ −S 0
∗ ∗ ∗ −µI




< 0 (20)

where

(1, 1) ∆= (A − DK1M)T P + P (A − DK1M)
+Q + W − R,

(1, 2) ∆= P (B − DK1N) + R,

(1, 3) ∆= −(A − DK1M)T PC,

(1, 5) ∆= PD − εMT (K2 − K1)T ,

(1, 7) ∆= h(A − DK1M)T R,



(1, 8) ∆= (A − DK1M)T S,

(2, 3) ∆= −(B − DK1N)T PC,

(2, 5) ∆= −εNT (K2 − K1)T ,

(2, 7) ∆= h(B − DK1N)T R

(2, 8) ∆= (B − DK1N)T S.
When C = 0 and ∆C(t) = 0, system (1) becomes



ẋ(t) = [A + ∆A(t)]x(t) + [B + ∆B(t)]
×x(t − h) + Dw(t),

z(t) = Mx(t) + Nx(t − h),
w(t) = −ϕ(t, z(t)),

(21)

with
x(θ) = φ(θ), ∀θ ∈ [−h, 0], (22)

By Corollary 3.6, the following result is recovered.
Corollary 3.7: [16] For given scalar h > 0, the system

described by (21), (22) with nonlinear connection function
satisfying (5) and F (t) satisfying (4) is robustly absolutely
stable if there exist scalars ε > 0, µ > 0, real matrices
P > 0, Q > 0, and R > 0 such that


(1, 1) (1, 2) (1, 3) PL (1, 5) µET
a

∗ −Q − R (2, 3) 0 (2, 5) µET
b

∗ ∗ −2εI 0 hDT R 0
∗ ∗ ∗ −µI hLT R 0
∗ ∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ ∗ −µI




< 0,

(23)
where
(1, 1) ∆= (A − DK1M)T P + P (A − DK1M) + Q − R,

(1, 2) ∆= P (B − DK1N) + R,

(1, 3) ∆= PD − εMT (K2 − K1)T ,

(1, 5) ∆= h(A − DK1M)T R,

(2, 3) ∆= −εNT (K2 − K1)T ,

(2, 5) ∆= h(B − DK1N)T R.

IV. A NUMERICAL EXAMPLE

Example 4.1: Consider the system described by (1)-(4)
with

A =
( −2 0

0 −0.9

)
, B =

( −1 0
−1 −1

)
,

C =
(

0 0
0 0

)
, D =

( −0.2
−0.3

)
,

M =
(

0.6 0.8
)
, N =

(
0 0

)
,

K1 = 0, K2 = 0.5, L =
(

0.20 0
0 0.20

)
,

Ea = Eb =
(

1 0
0 1

)
, Ec =

(
1 0
0 1

)
.

Using the criterion in [15] and Proposition 3.1 in this paper,
the maximum allowed time-delay hmax for robust absolute
stability is computed as 1.4702 and 1.6528, respectively. It
is clear to see that for this example the criterion in this paper
can provide a less conservative result than that in [15].

V. CONCLUSION

The problem of robust absolute stability of uncertain
Lur’e systems of neutral type has been addressed. Delay-
dependent robust stability criteria have been proposed. In
order to obtain less conservative criteria, we have avoided
using model transformation and bounding technique for cross
terms, which are widely used in deriving delay-dependent
stability criteria for systems of retarded type and neutral
type. A numerical example has shown the effectiveness of
the criteria.
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