
material i whole or in part for any other purposes must
obtained from the IEEE.

For information on obtaining permission, send an e-mail
message to st s-i r e .or.
By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.
Individual documents posted on this site may carry
slightly different copyright restrictions.
For specific document information, check the copyright
notice at the beginning of each document.

material i whole or in part for any other purposes must
obtained from the IEEE.

For information on obtaining permission, send an e-mail
message to st s-i r e .or.
By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.
Individual documents posted on this site may carry
slightly different copyright restrictions.
For specific document information, check the copyright
notice at the beginning of each document.

we propose an
reCOnl'l.f!U~ratlon f}tc.rnn,lnf! with

build-in control. A Reconfigurable Data
Flow model is designed as the underlying model.
Given a specification of the source configuration and
the target configuration, a reconfiguration plan can be
autornatically generated by a planning algorithm. In
the plan, new components are started before the
removal of the original components in order to
theoretically avoid any interruption to the system
services. A version control mechanism is used to
support the coexistence of original versioned
transactions and new versioned transactions without
interference. A flow tracing method is used to ensure
the transaction completeness.

1. Introduction

Dynamic recorifiguration aims at nmtllne change of
the architecture of software systems without
interruption to the services they provide. Many efforts
have been made on the underlying component model in
support of dynamic reconfiguration [2][11J[12][15].
But most of these models require administrators to
write reconfiguration plans manually. This manual
way of planning has several disadvantages. First, a
human-written plan is usually error-prone and a single
error in the plan is enough to put a system into an
inconsistent state. Second, as system size increases,
reconfiguration plan may become too complicated for
the administrator to handle. Thir<L intelligent self
adaptation is difficult to achieve without an automated
way of reconfigtrration planning [14]. Therefore, it is
necessary to find an approach to planning dynamic
reconfiguration in a fully automated manner.

0..7695-2841-4/07 $25.00 © 2007 IEEE 867

and
these method have not been

automated, therefore many factors need to be
concerned by the administrator in a reconfiguration.

In this paper, a novel approach is proposed to
planning dynamic reconfiguration automatically with
influence control incorporated. In our model to change
the architecture of a system at runtime, an
administrator only needs to specify the target
configuration in an abstract specification. The system
is able to automatically generate the reconfiguration
plan by comparing its current configuration Vlith the
target configuration. Most importantly, the generated
plan has three features on influence control. First, new
components are started before the removal of original
components to theoretically avoid any int~rruption to
the system services. Second, a version control
mechanism is introduced to support original versioned
transactions and new versioned transactions running in
parallel without interference. Third, a flow trancing
method is used to ensure the transaction completeness.

2. Key issues and related works

2.1. Influence control

A dynamic reconfiguration may have tvvo types of
influence on a system, functional influence and
performance influence [20]. The functional influence
of a reconfiguration r can be represented as F -fF',
where F and FJ are the functionalities of the system
before r and after r. If r causes the system output
neither F(e) nor F'(e) for an input e, r has functional
side effect. Most reconfigurations have functional
influence because changing functionality is one of the

we propose an
reCOnl'l.f!U~ratlon f}tc.rnn,lnf! with

build-in control. A Reconfigurable Data
Flow model is designed as the underlying model.
Given a specification of the source configuration and
the target configuration, a reconfiguration plan can be
autornatically generated by a planning algorithm. In
the plan, new components are started before the
removal of the original components in order to
theoretically avoid any interruption to the system
services. A version control mechanism is used to
support the coexistence of original versioned
transactions and new versioned transactions without
interference. A flow tracing method is used to ensure
the transaction completeness.

1. Introduction

Dynamic recorifiguration aims at nmtllne change of
the architecture of software systems without
interruption to the services they provide. Many efforts
have been made on the underlying component model in
support of dynamic reconfiguration [2][11J[12][15].
But most of these models require administrators to
write reconfiguration plans manually. This manual
way of planning has several disadvantages. First, a
human-written plan is usually error-prone and a single
error in the plan is enough to put a system into an
inconsistent state. Second, as system size increases,
reconfiguration plan may become too complicated for
the administrator to handle. Thir<L intelligent self
adaptation is difficult to achieve without an automated
way of reconfigtrration planning [14]. Therefore, it is
necessary to find an approach to planning dynamic
reconfiguration in a fully automated manner.

0..7695-2841-4/07 $25.00 © 2007 IEEE 867

and
these method have not been

automated, therefore many factors need to be
concerned by the administrator in a reconfiguration.

In this paper, a novel approach is proposed to
planning dynamic reconfiguration automatically with
influence control incorporated. In our model to change
the architecture of a system at runtime, an
administrator only needs to specify the target
configuration in an abstract specification. The system
is able to automatically generate the reconfiguration
plan by comparing its current configuration Vlith the
target configuration. Most importantly, the generated
plan has three features on influence control. First, new
components are started before the removal of original
components to theoretically avoid any int~rruption to
the system services. Second, a version control
mechanism is introduced to support original versioned
transactions and new versioned transactions running in
parallel without interference. Third, a flow trancing
method is used to ensure the transaction completeness.

2. Key issues and related works

2.1. Influence control

A dynamic reconfiguration may have tvvo types of
influence on a system, functional influence and
performance influence [20]. The functional influence
of a reconfiguration r can be represented as F -fF',
where F and FJ are the functionalities of the system
before r and after r. If r causes the system output
neither F(e) nor F'(e) for an input e, r has functional
side effect. Most reconfigurations have functional
influence because changing functionality is one of the

purposes for reconfiguration. But a reconfiguration
should not have functional side effects.

Performance influence is the change on system QoS
caused by reconfiguration. It can be reflected by the
change on the response time or the throughput of the
system. During a dynamic reconfiguration, a system
undergoes a sequence of interim states. And the system
very likely has different QoS features under these
different states..

In the approaches' that can eliminate the functional
side effect of dynamic reconfiguration, various terms
have been used, such as a reconfiguration that
preserves the integrity of applications [17], a safe
adaptation [18], a correct reconfiguration [5], or a
consistent configuration [6]. To control the
performance influence of dynamic reconfiguration,
many approaches have been proposed, including
component contracts [7], Mitchell's approach for
multimedia system updating [13], and Hillman's
OpenRec framework [9]. However, all these
approaches for influence control have not been
automated; therefore their efficiency depends on the
administrators' capability on reconfiguration plan
designing.

To control the influence of dynamic
reconfiguration, we believe the following two
principles should be applied to reconfiguration
planning.

Principle 1. A reconfiguration should. avoid
freezing any part of the system because freezing leads
to an interruption of system services. To do so, new
components must be started before the removal of
original components.

Principle 2. Transaction completeness should be
preserved during reconfiguration. Once a transaction
starts, the components it uses should keep working and
the connectors between them should not be changed
until it completes.

2.2. Underlying component model

Due to component's modularity, well-defined
interface, and interconnection independence [17],
component-based development has been a widely used
technique for building reconfigurable software systems
for over ten years [16]. For a component-based system,

is achieved through

The underlying component model should have the
following properties in support of dynamic
reconfiguration with influence control.

Property 1. A synchronization mechanism should
be provided to prevent inter-component
communications from being interrupted by
reconfiguration operations.

Property 2. To ensure transaction completeness, a
transaction tracing method should be provided to
detect whether a component is being used or possible
to be used in future by some transactions.

Property 3. A version control mechanism should be
provided to allow the coexistence of original and new
versions oftransactions without interference.

Property 4. The programming framework for
components should separate the reconfiguration codes
from the functional codes for the purpose of Separation
ofConcems (SoC) [10].

2.3. Reconfignration specification and plan
generation

For a system under current configuration C, an
administrator can design a new configuration C' to
meet the new requirements. Then <CIC'> is a
declarative specification of the reconfiguration as it
only describes what change need to be done. Here
configuration is the snapshot of system structure,
which records the components I'UDlling in the system
and the connectors between them..

A declarative specification needs to be changed into
an operational plan, which describes how to achieve
the change step by step. An operational plan can be
manually written by an administrator or automatically
generated by a planner. The automated way has
obvious advantages of error-free, no need of human
intervention, and no limitation on the problem size. But
the most challenging problem is how to integrate the
influence control into the planning.

The existing approaches to automated dynamic
reconfiguration include Chien's AI plannmg approach
[4], Arshad's temporal planning techniqYes [1], and
Hicks's dynamic patches [8]. However, the influence
control mechanisms for reconfiguration have not been
integrated in these methods.

To minimize the influence possibly caused
reconfiguration, the criteria should be
mt~~gr2ltecl into the

Criteria A

purposes for reconfiguration. But a reconfiguration
should not have functional side effects.

Performance influence is the change on system QoS
caused by reconfiguration. It can be reflected by the
change on the response time or the throughput of the
system. During a dynamic reconfiguration, a system
undergoes a sequence of interim states. And the system
very likely has different QoS features under these
different states..

In the approaches' that can eliminate the functional
side effect of dynamic reconfiguration, various terms
have been used, such as a reconfiguration that
preserves the integrity of applications [17], a safe
adaptation [18], a correct reconfiguration [5], or a
consistent configuration [6]. To control the
performance influence of dynamic reconfiguration,
many approaches have been proposed, including
component contracts [7], Mitchell's approach for
multimedia system updating [13], and Hillman's
OpenRec framework [9]. However, all these
approaches for influence control have not been
automated; therefore their efficiency depends on the
administrators' capability on reconfiguration plan
designing.

To control the influence of dynamic
reconfiguration, we believe the following two
principles should be applied to reconfiguration
planning.

Principle 1. A reconfiguration should. avoid
freezing any part of the system because freezing leads
to an interruption of system services. To do so, new
components must be started before the removal of
original components.

Principle 2. Transaction completeness should be
preserved during reconfiguration. Once a transaction
starts, the components it uses should keep working and
the connectors between them should not be changed
until it completes.

2.2. Underlying component model

Due to component's modularity, well-defined
interface, and interconnection independence [17],
component-based development has been a widely used
technique for building reconfigurable software systems
for over ten years [16]. For a component-based system,

is achieved through

The underlying component model should have the
following properties in support of dynamic
reconfiguration with influence control.

Property 1. A synchronization mechanism should
be provided to prevent inter-component
communications from being interrupted by
reconfiguration operations.

Property 2. To ensure transaction completeness, a
transaction tracing method should be provided to
detect whether a component is being used or possible
to be used in future by some transactions.

Property 3. A version control mechanism should be
provided to allow the coexistence of original and new
versions oftransactions without interference.

Property 4. The programming framework for
components should separate the reconfiguration codes
from the functional codes for the purpose of Separation
ofConcems (SoC) [10].

2.3. Reconfignration specification and plan
generation

For a system under current configuration C, an
administrator can design a new configuration C' to
meet the new requirements. Then <CIC'> is a
declarative specification of the reconfiguration as it
only describes what change need to be done. Here
configuration is the snapshot of system structure,
which records the components I'UDlling in the system
and the connectors between them..

A declarative specification needs to be changed into
an operational plan, which describes how to achieve
the change step by step. An operational plan can be
manually written by an administrator or automatically
generated by a planner. The automated way has
obvious advantages of error-free, no need of human
intervention, and no limitation on the problem size. But
the most challenging problem is how to integrate the
influence control into the planning.

The existing approaches to automated dynamic
reconfiguration include Chien's AI plannmg approach
[4], Arshad's temporal planning techniqYes [1], and
Hicks's dynamic patches [8]. However, the influence
control mechanisms for reconfiguration have not been
integrated in these methods.

To minimize the influence possibly caused
reconfiguration, the following criteria should be
mt~~gr2ltecl into the

Criteria A

modeL In the data elements in data-store
dl will be delivered to the receivers
after and There are
three pairs of processes that
relationships: 1) dataEncryption encrypts data
elements with the receiver's public key and
dataDecryption decrypts data elements with the
receiver's private key; 2) mDigestl and mDigest2
perform the same functions, message-digesting; 3)
digestEncryption encrypts the digest with the sender's
private key and digestDecryption decrypts the digest
with the sender~s public key.

The RDF model supports all the four properties for
dynamic reconfiguration described in section 2.2.

We have a Data Flow
model, which can be used as the underlying

component model for dynamic reconfiguration. It is an
extension to the conceptual Data Flow Network model
[3]. The elements of the RDF model are process, data
store, and data-path. A process is a software
component that consumes data through its entrances
and produces data through its exits. A data-store is a
random-accessible data container with infinite
capacity. A data-path is a connector between a process
and a datastore through which data can flow. The
reconfiguration operations of the RDFmodel include

dataCompression r - - - - ~ - ~t - \ d14;'/1 ~ ... "
",'" ~_----J~

~~~~ d7
~~d2 dataEncryption d3 ~[]-;

dispatcher ~~()--7~~packe ••~
d4 ... .. mDigestl d5 digestEncryption d6 ...

, "'~r - - - -"' .-'l (to other receivers)
1 1'

newMDigestl (to one receiver)
Legend

process

o
data-store

~
data-path

cx~~ [YO
unpacker ()-----7~()--7~~verifier d13

dIG dataDecryption dl L'l mDigest2 lId12, -- --- ---,
,;> ;~~~~.! -'3>I:J\.~?r:~: :}--

dataDecompression d15 newMDigest2

Fig. 1. The digital signatlITe and encryption system

3.2. The reconfignration algorithm

We design a planning algorithrTI for reconfiguration,
which can generate reconfiguration plan with build-in
influence control automatically. The input of the
algorithm is <R,R'>, where R is the route map of the
current system and R 1 is the route map of the target
system. Following the discussion in section 2.3, the
algorithm consists of two main sequential stages: 1)
establish the routes in R )-R; 2) remove the routes in R
RJ.

Between the two stages, there is a period for these
routes coexisting in the system. Suppose rER-R J is a

route to be removed and r' E R J-R is a route to be
added. If there is an intersection between them and
there is a separation before the intersection and another
separation after (Fig.2-a), the origmal versioned
transaction supported by r and the new versioned
transaction supported by r J may interfere with each
other. The involved segment of r or r' is the part
between the nearest splitting point before the
intersection and the nearest joining point after the
intersection. If there are several such intersections on a
route, the involved segment should cover all these
intersections. The version control mechanism should
be used to prevent the interference. Suppose ail the

869

addition and removal of processes, data-stores and
data-paths.

Graphically, a RDF model could be represented as a
bi-partite directed graph. Fig.l shows an example (the
part marked with solid lines), a Digital Signature and
Encryption (DSE) system constructed on the RDF
model. In the system, the data elements in data-store
dJ will be delivered to the corresponding receivers
after being digitally signed and encrypted. There are
three pairs of processes that have dependency
relationships: I) dataEncryption encrypts data
elements with the receiver's public key and
dataDecryption decrypts data elements with the
receiver's private key; 2) mDigestJ and mDigest2
perform the same functions, message-digesting; 3)
digestEncryption encrypts the digest with the sender's
private key and digestDecryption decrypts the digest
with the sender's public key.

The RDF model supports all the four properties for
dynamic reconfiguration described in section 2.2.

Criteria 3. Before removing a component, a plan
should ensure that it is not being used and will never
be used by any transactions.

3. Dynamic reconfiguration planning

3.1. The reconfigurable data flow model

We have developed a Reconfigurable Data Flow
(ROF) model, which can be used as the underlying
component model for dynamic reconfiguration. It is an
extension to the conceptual Data Flow Network model
[3]. The elements of the ROF model are process, data
store, and data-path. A process is a software
component that consumes data through its entrances
and produces data through its exits. A data-store is a
random-accessible data container with infinite
capacity. A data-path is a connector between a process
and a datastore through which data can flow. The
reconfiguration operations of the RDF model include

dataCompression r- - - - .... -»,-\d14
;'1f'- --- - , ... ~

" ~ JcI

r----?~~~ d7
~~d2 dataEncryption d3 ~D-;

dispatcher ~~~~~packe ..~
d4 , , mDigestl d5 digestEncryption d6 ...

>~r - - - -. ~'l (to other receivers)
I .!

newMDigestl (to one receiver)
Leg~nd

process

o
data-store

----7
data-path

O:~go~~~o
unpacker ()----?l>~~~~verifier d13

dlO dataDecryption dl~' mDigest2 lIdl2
',,- r - - - -. "- - ~~:::: ~:'
'71 .!"-71... "..... ~TI .!

dataDecornpression d15 newMDigest2

Fig. 1. The digital signature and encryption system

3.2. The reconfiguration algorithm

We design a planning algorithm for reconfiguration,
which can generate reconfiguration plan with build-in
influence control automatically. The input of the
algorithm is <R,R '>, where R is the route map of the
current system and R' is the route map of the target
system. Following the discussion in section 2.3, the
algorithm consists of two main sequential stages: 1)
establish the routes in R'-R; 2) remove the routes in R
R'.

Between the two stages, there is a period for these
routes coexisting in the system. Suppose f6R-R' is a

route to be removed and r' E R '-R is a route to be
added. If there is an intersection between them and
there is a separation before the intersection and another
separation after (Fig.2-a), the original versioned
transaction supported by r and the new versioned
transaction supported by r' may interfere with each
other. The involved segment of r or r' is the part
between the nearest splitting point before the
intersection and the nearest joining point after the
intersection. If there are several such intersections on a
route, the involved segment should cover all these
intersections. The version control mechanism should
be used to prevent the interference. Suppose ail the

869



data elements flowing in the original system are of
version m. We can set the data elements flowing on the

involved segments of r to version m-l and those on r'
to version m+1.

the nearest splitting point before the intersection the nearest joining point after the
1 I

=~~==~:~=~=J=~==~:~=~~~;f=I~:~
\. .) ...... ..I \... .J

V V V

separation intersection separation

(a) involved segment

r'

synchronization pointthe nearest splitting point
I I

...~~.. : ~~ ..LJ-7 ~~ r
\... ./

V"
original involved-segment ofr

~ ~

""V"'
extended involved-segment ofrand r'

(c) extending the involved segment

Fig. 2. Interference between routes

(b) synchronization point

synchronization point
I
I

, version CFIr .••.••~ I ••••••

ve~Si~·m~. ..~~
V

involved segment ofr

4. A case study

point, the route map has a synchronization problem,
which is a designing defect of the route map.

With the supports ofthe version control mechanism,
the transaction tracing mechanism, and the above
calculation, the reconfigW'ation algorithm is as follows:
Reconfiguration algorithm
Parameters:

R: route map of the current system
R': route map ofthe target system

The recontignration progress:
1. Calculate the involved segment for every route.
2. Change the data elements flowing on the involved segments ofthe
routes inR-R' to version m-l.
3. Establish the routes in R '-R and set the data elements flowing on
the involved segments to version m+1.
4. Wait for all version m-l data elements to flow out of the involved
segments ofthe routes in R-R J and then remove the routes.
5. Change the data elements flowing on the involved segments ofthe
routes in R ~..R to version nl. ._

6. Change all the processes in the system to strict(m,m) mode~

We use the DSE system as a case to examine our
reconfiguration algorithm. Two objectives are set for
the reconfiQuration. renlacinQ: the message dU2:estlng

Suppose p is the first process of a segment and q is
the last, to change the data elements flowing on the
segment from version x to version y, the following
progress can be followed. Suppose all the processes on
the route run in strict(x,x) mode at the beginning. The
first step changes q to filter(x) mode and the processes
between p and q to transparent mode to allow version
x and version y data elements coexisting on the
segment. The second step changes p to strict(x,y) mode
to change the data elements flowing into the segment
to version y. The third step uses the tracing method to
wait for all version x data elements to flow out of the
segment to ensure all version x transactions being
completed. The fourth step changes q to strict(y,x)
mode and the processes between p and q to strict(y,y)
mode.

Changing the version of the data elements flowing
on a segment may affect the routes that have
synchronization points with the segment. A
synchronization point is a process that has multiple
entrances or exits, where two routes intersect and need
to be The data elements

on the two routes should changed to the
...... 1H,0.,...'O'1....... versions of
the synchf4Jl112~atl()n

data elements flowing in the original system are of
version m. We can set the data elements flowing on the

involved segments of r to version m-l and those on r'
to version m+1.

the nearest splitting point before the intersection the nearest joining point after the
1 I
I . 1 I

·....~·..~:·:· ..··..=;6<:·····..:··:~·~::31··········· ....·i··"';~~~:~~':?~-"-"-~O<:"''':''''''':~:':~~'3i'''''''~'''' f····~~...
.....~.; :.:.:~.:.: ····..·····..················~;;~i~~ ..~~.~ ~.~.~.~~: ~

\.. V .) \.. V ..I , V .J

separation intersection separation

(a) involved segment

r'

synchronization pointthe nearest splitting point
I I

...~~.. : ~~ .LJ-7 ~~ r
\.., ./

V
original involved-segment ofr

'---------""V'" ~
extended involved-segment ofrand r'

(c) extending the involved segment

Fig. 2. Interference between routes

(b) synchronization point

synchronization point
I
I

, version CFIr .•..••~ I ••••••

ve~Si~·m~. ..~..
V

involved segment ofr

Suppose p is the first process of a segment and q is
the last, to change the data elements flowing on the
segment from version x to version y, the following
progress can be followed. Suppose all the processes on
the route run in strict(x,x) mode at the beginning. The
first step changes q to filter(x) mode and the processes
between p and q to transparent mode to allow version
x and version y data elements coexisting on the
segment. The second step changes p to strict(x,y) mode
to change the data elements flowing into the segment
to version y. The third step uses the tracing method to
wait for all version x data elements to flow out of the
segment to ensure all version x transactions being
completed. The fourth step changes q to strict(y,x)
mode and the processes between p and q to strict(y,y)
mode.

Changing the version of the data elements flowing
on a segment may affect the routes that have
synchronization points with the segment. A
synchronization point is a process that has multiple
entrances or exits, where two routes intersect and need
to be The data elements

on the two routes should changed to the
...... 1++-0'lt",0.......... versions of

point, the route map has a synchronization problem,
which is a designing defect of the route map.

With the supports ofthe version control mechanism,
the transaction tracing mechanism, and the above
calculation, the reconfigW'ation algorithm is as follows:
Reconfiguration algorithm
Parameters:

R: route map of the current system
R': route map ofthe target system

The recontignration progress:
1. Calculate the involved segment for every route.
2. Change the data elements flowing on the involved segments ofthe
routes inR-R' to version m-l.
3. Establish the routes in R '-R and set the data elements flowing on
the involved segments to version m+1.
4. Wait for all version m-l data elements to flow out of the involved
segments ofthe routes in R-R J and then remove the routes.
5. Change the data elements flowing on the involved segments ofthe
routes in R ~..R to version nl.

6. Change all the processes in the system to strict(m:~) mode~

4. A case study



5. Conclusion and future work

~:I.~!

&. I
~ 5.ooo!

.!:'lOO'

the
a data element

instance at which the data
recorded as the

We do the +AIIA,.lT1nnr

Test 1 simulates a without built-in
influence control. In the test, we execute the
reconfiguration after 'freezing' the system.

Test 2 simulates a reconfiguration with build-in
influence control but without scheduling support [19].
In the test, we execute our reconfiguration plan under
the Round-Robin scheduling. Under the scheduling, the
reconfiguration procedure can compete for CPU time
with the functional procedures.

Test 3 simulates a reconfiguration with both build
in influence control and scheduling support. In the test,
we execute our plan under Preemptive scheduling.
Under the scheduling, the reconfiguration procedure
must give up CPU once a functional procedure is ready
to run. Therefore, the reconfiguration procedure has no
influence on functional procedures because it is
scheduled to use the spare CPU time only.

~.Tegt1

~'~
iOon i T<lr~~.~_~¥.~~:T_.~ ._~"" __ '_'_"" •

::iOriginal systom ---~sst:_---~:,,-"--~'~"-'-""-~=J

---._._,~ Fig. 3. Experimental r-esults~--

From the experimental results, we come to the
following conclusions. First, every data element has
passed one of the predefined routes, r1, r2, r3, or r4. It
proves that the reconfigmation has no functional side
effect. Second, the plan generated by our algorithm has
built-in influence control. The line-chart for system
response time in the tests is given in Fig.3. Our
reconfiguration method theoretically has no influence
on system QoS. On the contrary, the method without
build-in influence control or without scheduling
support causes a significant impact on the system QoS.

Route map of the system is R r4} (new
processe~ and data--stores are balded),where

r3=[dl J <1,dispatcher»,d2,<l,dataCompression,1>,d14. </Jdat
aEncryption,1>,d3, <l,packer,1 >,d7, <1,unpacker,2>,dlO, <l,dataD
ecryption,l >JdII, <l,dataDecompression,1>,d15, <1,newMDigest2,1
>,d12, <21 verifier) 1>,d13]

r4=[dl, <1,dispatcher,I>td4,<1,newMDigestl,1»d5, <l,digestEn
cryption,l>,d6, <2,fJacker, 1>,d7, <lJ unpacker,1>,d8, <i,digestDecry
ption, 1>,d9, <I,verifier,I>,d13)

The involved segment of each route is the part
between dispatcher and verifier. And the generated
reconfiguration plan is as follows:

II Step 1. change the data elements flowing on the involved
segments of rl and r2 to version 0

set verifier toft/terri) mode;
set dataEncryptio14 packer, unpacker, digestDecryption, mDigestl,

digestEncryptiors dataDecryption~ mDigest2 to transparent
mode;

set dispatcher to strict(l,0) mode;
wait for all version 1 data elements to flow out of the involved

segments of r1 and r2;
set mDigestl, mDigest2 to strict(OtO) mode;
1/ Step 2. establish routes r3 and r4
start dataCompressio~dataDecompression;l newMDigestl,

new.MDigest2 and set them to strict(2, 2) mode;
start data-stores d14, dIS;
set up data paths (newlvIDigest2,0--7d12), (d15---jO,newMDigest2),

(dataDecompression,O->d15), (d11~O ,dataDecornpression),
(d14-joO,dataEncryption), (dataColnpression;o0-4d14},
(d2-..70,dataCompression), (newMDigestl ,O~d5),
(d4-+O,newMDigest1) ~

set dispatcher to strict(I,2) mode;
1/ Step 3. remove routes rl and r2
wait for all version 0 data elements to flow out of the involved

segments ofrl and r2;
remove data paths (d2-tO,dataEecryption), (dl1->O,mDigest2),

(mDigest2,O-)d12), (d4-70,mDigestl), (mDigestl,O~d5);
renlove processes roD igest1, mDigest2;
1/ Step 4. change the data elements flowing on the involved

segments of r3 and r4 to version 1
set dataCompression, dataDecompression, newIvfDigestl,

newMDigest2 to transparent mode;
set dispatcher to strict(l,l) mode;
wait for all version 2 data elements to flow out of the involved

segments ofr3 and r4;
set all processes to strict(lt I) mode;

To examine the influence of the plan, we build a
simulating system based on our RDF model. In the
experiment, we feed data elements to the system in a
fixed frequency. And the following method is used to
detect the influence of the reconfiguration:

871

1) The route that every data element has passed is
compared with the predefined route to find any
possible functional side effect.

2) The response time, i.e. the interval between the
instance at which a data element enters into dl and the
instance at which the data element reaches dl3 is
recorded as the QoS parameter of the system.

We do the following three tests:
Test 1 simulates a reconfiguration without built-in

influence control. In the test, we execute the
reconfiguration after 'freezing' the system.

Test 2 simulates a reconfiguration with build-in
influence control but without scheduling support [19].
In the test, we execute our reconfiguration plan under
the Round-Robin scheduling. Under the scheduling, the
reconfiguration procedure can compete for CPU time
with the functional procedures.

Test 3 simulates a reconfiguration with both build
in influence control and scheduling support. In the test,
we execute our plan under Preemptive scheduling.
Under the scheduling, the reconfiguration procedure
must give up CPU once a functional procedure is ready
to run. Therefore, the reconfiguration procedure has no
influence on functional procedures because it is
scheduled to use the spare CPU time only.

Route map of the original system is R={rl, r2}, where
ri =[di, <i,dispatcher, i>,d2, <1,dataEncryption, 1>,d3, <l,packe

r, 1>,d7, <1,unpacker,2>,dlO, <1,dataDecryption, l>,dll, <i,mDigest
2,1 >,dJ2, <2, verifier, 1>,dI3],

(Ii means a data element in dl can flow into dispatcher through
entrance 1, flow out dispatcher through exit 1, and thenflow into d2,
and so on....)

r2=[dI, <I,dispatcher, I>,d4, <1,mDigestl, 1>,d5, <I,digestEncry
pilon, 1>,d6, <2,packer, 1>,d7, < I,unpacker, 1>,d8, <l,digestDecrypti
on, I>,d9, < I,verifier,i>,di3],

Route map of the target system is R '={r3, r4} (new
processeE! and data-stores are bolded),where

r3=[dl, <I,dispatcher, i>,d2, <J,dataCompression,1>,d14, <l,dat
aEncryption, 1>,d3, <i,packer,1>,d7, <I.unpacker.2>,dI0, <I,dataD
ecryption, 1>,dii,<l,dataDecompression,1>.d15.<1,newMDigest2,1
>,d12, <2, verifier, 1>,di3]

r4=[di, <I,dispatcher, I>.d4,<1,newMDigestJ,1>,d5. <l,digestEn
cryption, i>.d6, <2,flacker,i>,d7,<I,unpacker.i>,d8, <i,digestDecry
pI/on, 1>,d9. <I,verifier,I>,di3]

The involved segment of each route is the part
between dispatcher and verifier. And the generated
reconfiguration plan is as follows:

/1 Step 1. change the data elements flowing on the involved
segments of rt and r2 to version 0

set verifier tofiller(I) mode;
set dataEncryption, packer, unpacker, digestDecryption, mDigestl,

digestEncryption, dataDecryption, mDigest2 to transparent
mode;

set dispatcher to slrict(l,O) mode;
wait for all version I data elements to flow out of the involved

segments of r1 and r2;
set mDigestl, mDigest2 to slrict(O,G) mode;
1/ Step 2. establish routes r3 and r4
start dataCompression, dataDecompression, newMDigesll,

newMDigest2 and set them to strict(2, 2) mode;
start data-stores d14, dI5;
set up data paths (newMDigest2,O~d12), (dI5~O,newMDigest2),

(dataDecompression,O~d15), (dll~O,dataDecompression),

(d14-JoO,dataEncryption), (dalaCompression,O-JodI4),
(d2~O,dalaCompression), (newMDigestl,O-Jod5),
(d4---+O,newMDigestl );

set dispatcher to strict(I,2) mode;
II Step 3. remove routes rl and r2
wait for all version 0 data elements to flow out of the involved

segments ofr! and r2;
remove data paths (d2-JoO,dataEecryption), (dll-JoO,mDigest2),

(mDigest2,O~d12), (d4-JoO,mDigestl), (mDigestl,O~d5);
remove processes mDigestl, mDigest2;
1/ Step 4. change the data elements flowing on the involved

segments of r3 and r4 10 version I
set dataCompression, dataDecompression, newMDigestl,

newMDigest2 to transparent mode;
set dispatcher to slrict(I, 1) mode;
wait for all version 2 data elements to flow out of the involved

segments ofr3 and r4;
set all processes to slrict(l, 1) mode;

~ 5,000' i
8. I
~~,ooo I

,l~!

,000 j Target systemI - .
)flOO i

","": Onglnal syot.m

rost3

To examine the influence of the plan, we build a
simulating system based on our RDF model. In the
experiment, we feed data elements to the system in a
fixed frequency. And the following method is used to
detect the influence ofthe reconfiguration:

871

5. Conclusion and future work



.An approach to automated planning of dynamic
reconfiguration is proposed in this paper. Using the
approach~ an administrator only needs to give' the
configuration of the target system. A planning
algorithm can automatically generate the
reconfiguration plan with build-in influence control. In
the generated plan, the interruption to a system's
services is theoretically eliminated by starting the new
components before the removals of the original ones.
With the route map representation of the system's
configuration and 1Tansactions, a version control
mechanism is used to prevent the new versioned
transactions and the original ones from. interfering with
each other. And a transaction tracing method is used to
ensure the transaction completeness.

The approach can be further improved from two
aspects. First, the representation of routes, the tracing
mechanism, and the algorithm could be extended to be
able to handle cycles in the route map. Second, the
centralized way of plan execution currently adopted by
the approach can be changed to a decentralized way.
The decentralized way of reconfiguration will be more
efficient than the centralized way in a fully distributed
environment.

Acknowledgements

This work was supported by Central Queensland
University, Australia under Research Advancement
Awards Scheme (RAAS) grants, 200~2007.

References

N. Arshad, et aI., "Deployment and Dynamic
Reconfiguration Planning for Distributed Software Systems",
Proc. 15th IEEE International Conference on Tools with
Artificial Intelligence (ICTAl'03), Sacramento, USA, 2003,
pp.39-46.
[2] E. Bruneton, et aI., "An open component model and its
support in Java", Proc. 7th International Symposium on
Component-Based Software Engineering, Edinburgh~ UK,
2004, pp.7-22.
[~] G. Cheng, A Datqflow-Based Software Integration Model
in Parallel and Distributed Computing and Applications,
Ph.D. thesis, Syracuse University, Italy, 1997"
[4] S.A Chien,et al., "Using Artificial Intelligence Planning
Techniques to Automatically Reconfigure Software
Modules", Proc. 11 th International Conference on Industrial
and Enlrlneerin5l ADDlications of Artificial and

and Methods in
1998,

Configurable Distributed Systems, Annapolis~ USA, 1998,
pp,189-196.
[7] J. Gorinsek, et aI .., "Managing quality of service during
evoIution using component contracts", Proc. 2nd
international workshop on unanticipated software evolution,
Warsaw, Poland, 2003, pp.57..62.
[8] Michael Hicks and Scott Nettles, "Dynamic Software
Updating", ACM Transactions on Programming Languages
and Systems, 27-6, 2005, pp.l 049-1096.
[9] J. HiIl11laI1, and L Warren, "An Open Framework for
Dynamic Reconfiguration", Proc. 2004 International
Conference on software Engineering (leSE), Edinburgh, UK,
2004, pp.23-28.
[10] G. Kiczales, et al., "Aspect..Oriented Programming",
ACM Computing Surveys(CSUR), 28(4),1996.
[11] D.C. Luckham et al., "Specification and analysis of
software architecture using Rapide", IEEE Transactions on
Software Engineering, 21(4), April 1995, pp.336-355.
[12] J. Magee, J. Kramer, "Dynamic structure in software
architectures", Proe. 4th ACM SIGSOFT Symposium on
Foundations of Software Engineering, San Francisco, USA,
Oct 1996, pp.3-14.
[13] S.R.Mitchell, Dynan1ic Configuration of Distributed
Multimedia Components, Ph.D. thesis, University ofLondon,
2000.
[14] P. Oreizy, et al., "An Architecture-Based Approach to
Self:"Adaptive Softwarefr

, IEEE Intelligent Systems, vol.14,
no.3, 1999, pp. 54-62.
[15] F. PlasH, D. Balek, and R. Janecek, ';'SOFAJDCUP:
Architecture for component trading and dynamic updating",
Proc. International Conference on Configurable Distributed
Systems, Annapolis, Maryland, USA, 1998, pp.43-52.
[16] C. Szyperski.. Component software: beyond object
oriented programming, 2nd edition, Addison-Wesley, 2002.
[17] 1. Warren, A Model for Dynan2ic Corrfigurdiion which
Preserves Application Integrity~ PhD thesis, Lancaster
University, UK. 2000.
[18] J. Zhang, et al., "Adding safeness to dynamic adaptation
techniques", Proe. leSE Workshop on Architecting
Dependable Systems, Edinburgh, Scotlan~ 2004, pp.17-21.
[19] Z.K. Zhao and W. Li, ~'Dynamic Reconfiguration with
QoS Management", Proc. International Conference on
Software Engineering and Applications. Dallas, USA. 2006,
pp.387-392!
[20] Z.K. Zhao and W. Li, "Influence Control for Dynamic
Reconfiguration", to be appeared in Proe. 18th Australian
Conference on Software Engineering, Melbourne, Australia,
2007.

.An approach to automated planning of dynamic
reconfiguration is proposed in this paper. Using the
approach~ an administrator only needs to give' the
configuration of the target system. A planning
algorithm can automatically generate the
reconfiguration plan with build-in influence control. In
the generated plan, the interruption to a system's
services is theoretically eliminated by starting the new
components before the removals of the original ones.
With the route map representation of the system's
configuration and 1Tansactions, a version control
mechanism is used to prevent the new versioned
transactions and the original ones from. interfering with
each other. And a transaction tracing method is used to
ensure the transaction completeness.

The approach can be further improved from two
aspects. First, the representation of routes, the tracing
mechanism, and the algorithm could be extended to be
able to handle cycles in the route map. Second, the
centralized way of plan execution currently adopted by
the approach can be changed to a decentralized way.
The decentralized way of reconfiguration will be more
efficient than the centralized way in a fully distributed
environment.

Acknowledgements

This work was supported by Central Queensland
University, Australia under Research Advancement
Awards Scheme (RAAS) grants, 200~2007.

References

N. Arshad, et aI., "Deployment and Dynamic
Reconfiguration Planning for Distributed Software Systems",
Proc. 15th IEEE International Conference on Tools with
Artificial Intelligence (ICTAl'03), Sacramento, USA, 2003,
pp.39-46.
[2] E. Bruneton, et aI., "An open component model and its
support in Java", Proc. 7th International Symposium on
Component-Based Software Engineering, Edinburgh~ UK,
2004, pp.7-22.
[~] G. Cheng, A Datqflow-Based Software Integration Model
in Parallel and Distributed Computing and Applications,
Ph.D. thesis, Syracuse University, Italy, 1997"
[4] S.A Chien,et al., "Using Artificial Intelligence Planning
Techniques to Automatically Reconfigure Software
Modules", Proc. 11 th International Conference on Industrial
and of Artificial and

and Methods in
1998, .., L ' •. ,- .

Configurable Distributed Systems, Annapolis~ USA, 1998,
pp,189-196.
[7] J. Gorinsek, et aI .., "Managing quality of service during
evoIution using component contracts", Proc. 2nd
international workshop on unanticipated software evolution,
Warsaw, Poland, 2003, pp.57..62.
[8] Michael Hicks and Scott Nettles, "Dynamic Software
Updating", ACM Transactions on Programming Languages
and Systems, 27-6, 2005, pp.l 049-1096.
[9] J. HiIl11laI1, and L Warren, "An Open Framework for
Dynamic Reconfiguration", Proc. 2004 International
Conference on software Engineering (leSE), Edinburgh, UK,
2004, pp.23-28.
[10] G. Kiczales, et al., "Aspect..Oriented Programming",
ACM Computing Surveys(CSUR), 28(4),1996.
[11] D.C. Luckham et al., "Specification and analysis of
software architecture using Rapide", IEEE Transactions on
Software Engineering, 21(4), April 1995, pp.336-355.
[12] J. Magee, J. Kramer, "Dynamic structure in software
architectures", Proe. 4th ACM SIGSOFT Symposium on
Foundations of Software Engineering, San Francisco, USA,
Oct 1996, pp.3-14.
[13] S.R.Mitchell, Dynan1ic Configuration of Distributed
Multimedia Components, Ph.D. thesis, University ofLondon,
2000.
[14] P. Oreizy, et al., "An Architecture-Based Approach to
Self:"Adaptive Softwarefr

, IEEE Intelligent Systems, vol.14,
no.3, 1999, pp. 54-62.
[15] F. PlasH, D. Balek, and R. Janecek, ';'SOFAJDCUP:
Architecture for component trading and dynamic updating",
Proc. International Conference on Configurable Distributed
Systems, Annapolis, Maryland, USA, 1998, pp.43-52.
[16] C. Szyperski.. Component software: beyond object
oriented programming, 2nd edition, Addison-Wesley, 2002.
[17] 1. Warren, A Model for Dynan2ic Corrfigurdiion which
Preserves Application Integrity~ PhD thesis, Lancaster
University, UK. 2000.
[18] J. Zhang, et aI., "Adding safeness to dynamic adaptation
techniques", Proe. leSE Workshop on Architecting
Dependable Systems, Edinburgh, Scotlan~ 2004, pp.17-21.
[19] Z.K. Zhao and W. Li, ~'Dynamic Reconfiguration with
QoS Management", Proc. International Conference on
Software Engineering and Applications. Dallas, USA. 2006,
pp.387-392!
[20] Z.K. Zhao and W. Li, "Influence Control for Dynamic
Reconfiguration", to be appeared in Proe. 18th Australian
Conference on Software Engineering, Melbourne, Australia,
2007.


