
Remote Sensing in Decision Support Systems: 
Using Fuzzy Post Adjustment  

in Localisation of Weed Prediction 
#Andrew Chiou 1 and Xinghuo Yu 2 

1School of Computing Sciences, Central Queensland University 
Rockhampton, 4702 Qld, Australia, a.chiou@cqu.edu.au 

2 School of Electrical and Computer Engineering, RMIT University 
Melbourne, 3001 Victoria, Australia, x.yu@rmit.edu.au 

 
Abstract 

 
This paper explores the post adjustment of input data from a 
remote source to fit localised weed prediction for the control 
and management of weed infestation. The deployment of 
decision support systems in agricultural sectors often require 
refinement of its results to adapt to data that has been 
acquired externally via remote sensing. This paper will detail 
the fuzzy meta-consequent functions to facilitate the post 
adjustment. A case study is presented to demonstrate the 
workability of such fuzzy post-adjustment in the prediction of 
weed infestation. 
 

1. INTRODUCTION 
 
Parthenium weed (Parthenium hysterophorus L.) infestation 
has demonstrated the ability to cause significant 
environmental, health and financial problems if not managed 
properly in areas occupied by agricultural industries. Its rapid 
spread has covered 170,000km2 (10%) of Queensland, 
Australia [1]. Economically, the uncontrolled spread of 
parthenium weed1 has the potential to cause losses of A$109-
129 million annually [2]. One of the primary steps taken to 
curb this infestation is by providing expert advice on the best 
control and management strategies to stakeholders concerned. 
One of the strategies requires the prevention of new 
infestation and the eradication of known infestation. To 
accomplish this, an accurate prediction of the weed spread is 
needed to allow stakeholders to take the necessary preventive 
measures to curb further dispersal. An agriculture decision 
support system, P-Expert, has been developed to provide 
advice on control and management strategies [3]. This paper 
will investigate the implementation of a function employing 
fuzzy meta-consequent function to allow data from in-coming 
external source to be adapted to localised conditions. This is 
followed by a case study demonstrating the feasibility of 
providing a reliable weed prediction based on local data.  
 
                                                           

1 ‘Parthenium weed’ is always referred to by its complete name in both 
literature and actual practice. 

 

2. BACKGROUND 
 
Figure 1 shows the general framework of P-Expert, the 
decision support system. Details of it implementation and 
deployment has been previously described in [3-5]. The 
following subsections will elaborate on P-Expert’s process 
flow in detail based on the knowledge acquisition and 
consultation process levels. 

A. Knowledge Acquisition Level  
The knowledge acquisition level involves the procedure and 
relevant databases as indicated by the shaded area on the 
right. The clientele at this phase typically involve both 
knowledge engineers and end users, which will participate in 
the preparation of the knowledge-rule, external and discourse 
databases in P-Expert. In preparation of the knowledge-rule 
database, the knowledge engineers will firstly elicit the 
necessary knowledge and information in regards to best 
management practices on parthenium weed. This knowledge 
is subsequently transformed into fuzzy membership models 
that are appended, using the rule editors at the editor layer, 
into the appropriate knowledge and If-Then rule databases. In 
addition, knowledge engineers will also be involved in the 
preparation and maintenance of the discourse base by 
formulating and drawing relationships between rules and the 
required explanation. The preparation of the external base is 
unique. In contrast with the knowledge-rule base which is 
typically consistent throughout the lifespan of the main 
system, the incoming data to the external base is dynamic and 
varies with time and type of local trends. This database is 
only instantiated (i.e. going ‘live’) at the instant the 
consultation process takes place (as shown in shaded area on 
the left-hand side in Figure 1). The validity of the data in the 
external base has a predefined lifetime that can expire 
depending on the requirements of the end user. Note that the 
process flow of the intermediate preparation of the external 
base takes place at the consultation process. There are 
external data that does not have a limited lifespan, but 
nonetheless may still require periodical updates. These are 
indicated in Figure 1 by the external readings of incoming 
data sourced from satellite imagery, weather reports and 
remote sensors [6].  

1-4244-1502-0/07/$25.00 © 2007 IEEE ISSNIP 2007533



 
 

Fig.1: P-Expert’s process flow showing the interaction and relationship 
between groups of clientele/entities on two different operational levels.   
 

B. Consultation Process Level 
The process flow in the consultation process involving the 
relevant procedures is indicated in the shaded area on the left-
hand side in Figure 1. This activity involves direct interaction 
between the end user and P-Expert. Fundamentally, the end 
user provides answers in response to P-Expert’s queries. As 
will be shown later in the test case in this paper, these queries 
relates to local trends required for the meta post-adjustment 
inference process. These dynamic responses (i.e. input data) 
are processed immediately and recorded for future references. 
However as explained in the previous subsection, these data 
have a limited lifespan and is subjected to expiration.  
 
Once end users have supplied all required responses to P-
Expert, the data gathered are then inferred by the core engine 
and a final outcome is provided. At the end of the 
consultation process, the final output should be composed of 
the four required primary recommendations and the two 
supporting outputs. The consultation process between P-
Expert and end users terminates at this point. Based on the 
output (i.e. recommendations on strategies for control and 
management of parthenium weed), the end user will 
determine what further actions to apply or what advice to put 
into practice. At this junction, note that there are three 
different outputs. The primary output has been discussed in 
detail in [4], the explanatory output in [7], and the prediction 
of weed dispersal will be the focus of this paper.  
 
 

3. FUZZY POST ADJUSTMENT FUNCTIONS 
 
The use of fuzzy meta-consequent was initially proposed by 
the author as a post adjustment mechanism to incorporate 
external data with data from the main system’s 
knowledgebase to be embedded as an integral part of the 
system’s framework. The post adjustment mechanism allows 
the system to take into account the data derived from remote 
sensing, archival records, qualitative descriptions (i.e. 
anecdotal references, verbal statements) and ‘rule of thumb’. 
The three types of post adjustment described in the following 
sections are simple, multi and complex consequents.  
 
A.    Simple Consequent 
In almost all cases, complex statements from an external 
source could inevitably cause an exception in conventional 
fuzzy logic mechanics (e.g. “When temperature is high, weed 
outbreak is unlikely, unless if it is in wet season, this has the 
reverse effect locally.”). However, using a simple consequent 
post adjustment, this exception can be modelled a straight 
forward manner in a one-to-one mapping schema. Appending 
a BUT operator, the basic fuzzy If-Then rule is now expressed 
as, 
 
     (IF x is a THEN y is b)  BUT  (z is c THEN y is d)                          (1) 
 
For example,  
     (IF temp is high THEN outbreak is unlikely) BUT  
          (location is wet  THEN outbreak is very likely) 
 
Unlike an ELSE operator in regular If-Then rule based expert 
systems, the BUT operator is always true. That is, the BUT 
operator is evaluated and executed under all conditions, 
superseding the consequent of original rule on the LHS of the 
BUT operator.  The simple consequent post adjustment is 
achieved through domain displacement.  The BUT operator 
affects the shifting of entire domains within the universe of 
discourse as in Figure 2, in the role of an exception handler. 
However, this operator comes into effect only if there are 
applicable local trends disclosed in the data source.  

 

 
 

Fig. 2:  The BUT operator in a simple consequent If-Then statement handle 
exceptions in data source by applying domain displacement. 
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B.    Multi Consequent 
There are however, cases when an exception does not solely 
occur over membership of domains, but over an entire 
universe of discourse.  This is achieved through a universe 
displacement (Figure 3). In this instance of one-to-many 
schema, the multi consequent post adjustment, in the role of 
redirecting flow control, allows branching to different 
membership function within the same fuzzy variable.  This 
will allow the same variable to have ownership over different 
sub-domains. We introduce the operator, CASE-OF, to 
facilitate the operation of multi consequent post adjustment. 
The If-Then syntax for the selection is thus, 
 
     (IF x is a THEN CASE-OF m) 
         {CASE-OF m1:y1 is b1; 
          . 
          . 
           CASE-OF mn:yn is bn }                           (2) 
 
Where, m is a data source from an external data source (e.g. 
local trend or exception).  An example of (2) can be,  
 
(IF weather is wet THEN CASE-OF location) 
     {CASE-OF Mackay:  infestation is likely; 
       CASE-OF Rockhampton:  infestation is unlikely; 
       CASE-OF Gladstone:  infestation is unlikely  AND  flowering is likely} 
 
Therefore, by applying a CASE-OF condition on the RHS of 
the If-Then rule will instantiate and activate different universe 
of discourse applicable to local trends, as shown in Figure 3. 
 
C.    Complex Consequent 
The complex consequent is a composite of a one-to-one and 
one-to-many schema. The operators, BUT and CASE-OF are 
combined to give a mechanism to override the consequent of 
a rule, and yet facilitating branching under different cases.  
 
The If-Then rule combining (5.2) and (5.3) would give,   
   
     (IF x is a THEN y is b)  BUT  (z is c THEN CASE-OF m) 
          {CASE-OF m1:w1 is d1; 
            . 
            . 
           CASE-OF m n:wn is dn }                                 (3) 
 
Where, m is an external data and the point of redirection. 
Expanding the previous examples using (3) we have,  
  
     (IF temp is high THEN infestation is unlikely) BUT  
          (location is wet  THEN CASE-OF location) 
               {CASE-OF Mackay: infestation is likely; 
                      CASE-OF Rockhampton: infestation is unlikely; 
       CASE-OF Gladstone:  infestation is unlikely  
                           AND  flowering is likely} 

 
Fig. 3:  The CASE-OF operator in a multi consequent post adjustment will 
result in universe displacement, initiating branching to different memberships 
within the same fuzzy variable. 
 
With reference to the above example and to Figure 4, the 
sequence of events taking place is as follows. In the first 
phase (indicated by the label 1 in the figure), the basic If-
Then rule is initiated. However an exception occurs (at 2), 
due to a local trend from an external data source that causes 
the BUT operation to be activated, effectively pre-empting the 
LHS of the THEN consequent. In a simple consequent post 
adjustment, a discourse displacement occurs and an 
alternative consequent is introduced at this stage.  In the case 
of a complex consequent post adjustment (at 3) however, the 
pre-emption of the LHS of the If-Then rule consequent in (3) 
is substituted by the CASE-OF operation, providing a 
redirection of consequent to a different universe, via the 
universe displacement meta consequent post adjustment 
mechanics.  

Fig. 4: The complex consequent is a composite of BUT and CASE-OF 
operators, that causes the pre-emption of the original LHS consequent in the 
sequence of events labelled 1, 2 and 3. 
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4. IMPLEMENTATION 
 
The [basic] consequent function, fconseq, utilising the standard 
fuzzy inference mechanism can be defined as, 
 
     fconseq(DataSourcekbase: q1, q2 … qn) = (Outputprimary: a1, a2, a3, a4)           (4) 
 
where q1, q2 … qn are the incoming end user queries 
submitted to be inferred against the existing data source, 
DataSourcekbase, available in the main system. This function 
will return the values a1, a2, a3 and a4, corresponding with the 
four primary outputs, as required by the specifications 
described in [7]. 
 
To apply the meta post adjustment mechanism, the function 
(4) is now extended as,  
 
     fmeta_conseq(DataSourcekbase: q1, q2 … qn, DataSourceext_source: T)  
  = (Outputprimary: a1’,  a2’, a3’, a4’)                                 (5) 
 
where the two parameters submitted are the original queries 
as in (4) to be inferred against the existing default data source, 
DataSourcekbase, and against the external data source, 
DataSourceext_source. The return values for fmeta_conseq is now 
a1’, a2’, a3’ and a4’, a localised variant of the original output. 
And where, T can have following four discrete values: 
simple_adjustment, multi_adjustment, complex_adjustment 
and null_adjustment, the first three options respectively refers  
 

 
 
Fig. 5: The program structure detailing the subsystem that provides fuzzy 
meta-consequent post adjustment functions 

to the simple consequent, multi consequent and complex 
consequent post adjustment mechanism to apply.  Note the 
last type, null_adjustment, that can be called or perform as a 
‘catch-all’ in cases where a post adjustment is explicitly 
required, but without the availability of local trend (i.e. 
external data). In this case the expected output, a1’, a2’, a3’ 
and a4’, simply reverts back to the initial intended output, a1, 
a2, a3 and a4. This provision is to ensure the operational 
robustness of the main system, that is, it is expected to deliver 
a reasonable output based on the default data and current 
knowledgebase in the event that local trends are called for, 
but are unavailable.  
 
The program implementation of the meta post adjustment 
functions is shown in Figure 5. This subsection is a 
concurrent thread spawned by the main program. The dotted 
lines indicate data and process flow that is outside the control 
of this subsystem. Note that there are two major functional 
blocks, apply basic fuzzy inference and apply fuzzy meta-
consequent post adjustments, respectively assigned to process 
functions defined in (4) and (5).  The service tags referred to 
in the figure are to facilitate the discourse semantics (i.e. 
explanatory capability) REST3 subsystem disclosed in [8]. 
 

5. WEED PREDICTION 
 
This section demonstrates the methodology on how weed 
population can be predicted using If-Then rule based fuzzy 
inference as applied to GIS spatial image. The forecasting 
mechanism is carried out on spatial images of known infested 
sites and growth influence factors (e.g. rivers, roads, soil 
type).  These spatial images are separated and categorised into 
individual layers, where each layer is further sub-classified 
into themes.  By applying a fuzzy membership function onto 
each of these themes, it is possible to aggregate the individual 
values into a final weed infestation factor. This allows weed 
prediction at a large-scale level, as well as at a localised level.  
By allowing qualitative data (e.g. anecdotal references, local 
information) to be included in the forecasting process, the 
fuzzy logic mechanism will be able to utilise it to refine large-
scale forecasts to obtain localised forecasts. The overall 
methodology presented in this section covers four phases: 
pre-processing, thematic forecast, global forecast and local 
forecast. 
 
A.     Phase 1: Pre-processing  
This step involves preparing the proper data structures to 
facilitate analysis of the spatial image datasets.  Adhering to 
standard GIS practices [9] each layer comprise of themes, 1, 

2… n.   Themes are made up of features, Fs1, Fs2…Fsn, 
indicating natural or man-made phenomenon found in maps 
(e.g. rivers, roads, buildings). In practice, this method of 
structuring spatial image helps accommodate fuzzy variables 
and membership functions.  The fuzzy representation is: 1) 
All layers represent a universe of discourse, and 2) Each 
theme represents a fuzzy variable.  

536



There are two special themes, T1 and null.  T1, is a theme 
reserved for spatial images representing known locations of 
infested sites. While, null is a reserved theme for regions 
labelled as null-zones.  Null-zones areas are non-negotiable 
regions, where no known plant species will propagate at all. 
The required themes are as follow: 
 

T1 : known infestation sites 
1 : river feature 
2 : road feature  
3 : soiltype feature   
null: washdown areas                   (6) 

   
B.     Phase 2: Thematic Forecast 
This phase requires that a thematic forecast be carried out 
individually on each 1, 2 and 3.  In doing so, each factor 
that influences the propagation of parthenium weed can be 
segregated from other factors.  Forecasting is performed layer 
by layer on each corresponding cell to determine its 
infestation factor, that is, a fuzzy consequent membership 
value.  In each theme, a thematic forecast function is assigned 
to all cells, such that the function is a fuzzy If-Then rule to 
determine the infestation factor. The function for each current 
cell, Cm, in n , its predicted consequent infestation factor, In 
is,  
 
     flayer( n: Cm)  =  
          If (Cm is proximity_Fsn) Then (infestation_factor is In)                      (7) 
  
The thematic forecast phase has the function, 
 
     ftheme(T1: 1, 2, 3) = (T1: 1f, 2f, 3f)                                        (8) 
 
Where,  1f, 2f  and 3f  are the resulting themes after flayer  
function has been performed on all cells at each layer of the  
respective themes.  
 
C.     Phase 3: Global (Large-Scale) Forecast 
 
In this phase, all the layers in the previous thematic forecast,  

1f, 2f, 3f, is mapped onto the known infestation theme, T1, to 
form a composite, T2,  to result in the forecast of  infestation 
sites on a global scale.  It must be noted that the term global 
does not refer to a worldwide scale, but rather to the whole 
given area represented on a spatial image (e.g. state, city, 
county).  Based on parthenium weed dispersal and life-cycle 
parameters, inserting the themes T1f, 1f, 2f and 3f from (6) 
into the following global forecast function we have,  
 
     fglobal(T1: 1f, 2f, 3f, null) = T2                                                         (9) 
 
Thus, for every cell in 1f, 2f ,and 3f, we have an implication 
that maps onto a corresponding cell in  T1. 
  
     1f(Cm, 1f)   2f(Cm, 2f)   3f(Cm, 3f)  T1(Cm)                               (10) 

where    is an aggregation operator. 
 
 

 
 
Fig. 6. :  The site of known infestation at time, T1. The x-axis and y-axis 
cross section indicates samples that are taken to compare actual and predicted 
infestation. 
 
 

 
 

Fig. 7: Actual infestation, after approximately six months. 
 
 

 
 

Fig. 8: Prediction dispersal, after approximately six months. 
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FIGURE 9: CROSS SECTION SAMPLING OF X-AXIS OF T0, THE ORIGINAL 
INFESTATION, TC, ACTUAL INFESTATION AND T6, PREDICTED RESULTS. 
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FIGURE 10: CROSS SECTION SAMPLING OF Y-AXIS OF T0, THE ORIGINAL 
INFESTATION, TC, ACTUAL INFESTATION AND T6, PREDICTED RESULTS. 
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D.     Phase 4: Local Forecast 
In a global forecast, all factors influencing parthenium weed 
growth can mostly be categorised as static themes.   Static 
themes normally do not and are not expected to change in the 
time frame of the forecasting process.  However, the results 
from such a prediction are more useful on a global scale than 
for localised condition with existing local trends. As most 
spatial images only indicate infested sites on larger scales, it 
does not cover areas that are considered insignificant in the 
original data collection process.  Coincidentally, most of these 
inputs coincide with factors termed as dynamic themes.  
These factors can be conveniently layered into individual 
themes as in Phase 1.   
 
     4 : local weather  
     5 : local flood areas                                        (11) 
 
In this case, to obtain a local forecast of parthenium 
infestation, these dynamic factors are mapped against the 
original global forecast obtained from (9).  Hence, the 
function is,  
 
     flocal(fglobal(T1: 1f, 2f, 3f, null), 4, 5  ) = T3                                               (12) 
 
 

6. TEST RESULTS 
 
The functionality of the fuzzy post adjustment function to 
adapt external data acquired from remote sensors to predict 
dispersal of parthenium weed can be demonstrated. This is 
accomplished by applying its inferential process to a 50 x 50 
meter site that has been identified as having an existing 

infestation (Figure 6). The actual infestation after 
approximately six months is shown in Figure 7. The predicted 
results for approximately the same duration are shown in 
Figure 8. Cross section results for the actual infestation and 
predicted results are displayed as in Figure 9 and Figure 10 
respectively.  
 

7. SUMMARY 
 
This paper explored the post adjustment of input data from a 
remote source to fit localised weed prediction for the control 
and management of weed infestation. This is achieved by 
employing fuzzy meta-consequent functions that include a 
simple, multi and complex set of operators to provide the 
necessary capability to handle different exception types. A 
case study has been presented to demonstrate the workability 
of such fuzzy post-adjustment in the prediction of weed 
infestation. 
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