

Volume 8 Article 2 Issue 5

The Anatomy of a Design Theory

Shirley Gregor
The Australian National University
Shirley.Gregor@anu.edu.au

David Jones
Central Queensland University
d.jones@cqu.edu.au

Design work and design knowledge in Information Systems (IS) is important for both research and practice.
Yet there has been comparatively little critical attention paid to the problem of specifying design theory
so that it can be communicated, justified, and developed cumulatively. In this essay we focus on the
structural components or anatomy of design theories in IS as a special class of theory. In doing so, we aim
to extend the work of Walls, Widemeyer and El Sawy (1992) on the specification of information systems
design theories (ISDT), drawing on other streams of thought on design research and theory to provide a
basis for a more systematic and useable formulation of these theories. We identify eight separate
components of design theories: (1) purpose and scope, (2) constructs, (3) principles of form and function,
(4) artifact mutability, (5) testable propositions, (6) justificatory knowledge (kernel theories), (7) principles of
implementation, and (8) an expository instantiation. This specification includes components missing in the
Walls et al. adaptation of Dubin (1978) and Simon (1969) and also addresses explicitly problems
associated with the role of instantiations and the specification of design theories for methodologies and
interventions as well as for products and applications. The essay is significant as the unambiguous
establishment of design knowledge as theory gives a sounder base for arguments for the rigor and
legitimacy of IS as an applied discipline and for its continuing progress. A craft can proceed with the
copying of one example of a design artifact by one artisan after another. A discipline cannot.

Keywords: design theory, design science, constructive research, philosophy of science, information

systems, information technology, artifacts, theory structure

Volume 8, Issue 5, Article 2, pp. 312-335, May 2007

The Anatomy of a Design Theory

313
Issue 5 Volume 8 Article 2

1. Introduction
It is difficult to over-emphasize the significance of design work and design knowledge in Information
Systems (IS) for both research and practice. Theories for design and action continue to be highly influential
in IS, despite the fact that they are not always recognized as theories. Some seminal examples include
structured systems analysis (Gane and Sarson, 1979) and the Systems Development Life Cycle (SDLC)
model. Design theories also give prescriptions for the architecture of specific applications, such as decision
support systems (Turban and Aronson, 2001), a type of knowledge that forms a large part of curricula in IS,
software engineering, and computer science education. Moreover, this knowledge has vital relevance to
practitioners working with information systems. As van Aken (2004, p. 220) argues eloquently, one needs
prescription-driven research that provides solutions for management problems in addition to description-
driven research that enables us to understand the nature of problems but leaves undone the task of
developing sound change programs. Increasing attention is being paid to this type of research in IS,
notably by March and Smith (1995) and Hevner et al. (2004). The ISWorld website now has a section on
design research with a current overview provided by Vaishnavi and Kuechler (2004/5). Some major issues,
however, remain relatively unexplored.

One important issue is how design knowledge is captured, written down, and communicated. Herbert
Simon in his seminal work, The Sciences of the Artificial (1996, p. 113), argued that we need a science of
design that is “tough, analytic, partly formalizable, partly empirical, teachable doctrine.” Making design
science formalizable, at least in part, means that we need to pay attention to how design knowledge is
expressed as theory. Gregor (2006) shows how design theory can be seen as the fifth in five classes of
theory that are relevant to IS: (1) theory for analyzing, (2) theory for explaining, (3) theory for predicting, (4)
theory for explaining and predicting, and (5) theory for design and action. The distinguishing attribute of
theories for design and action is that they focus on “how to do something.” They give explicit prescriptions
on how to design and develop an artifact, whether it is a technological product or a managerial
intervention. Of course, for this type of theory, as Hevner et al. (2004) show, we also need to consider
epistemological questions of how knowledge is acquired and tested. This current essay, however, does not
concern research methods or research approaches, important as they are, but the ontological
components of the theory itself. We are taking a meta-theoretical view of the nature of design theories in
IS in general. The aim of the paper is to show the structural components (the anatomy) that are needed to
communicate a design theory.

The focus of the paper is on the anatomy of design theories in the discipline of IS, although much of the
underlying literature in our discussion comes from a range of disciplines, and it is possible that our
arguments have wider applicability. However, a characteristic that distinguishes IS from other fields is that
it concerns the use of artifacts in human-machine systems. Lee (2001, p iii) uses these words:

Research in the information systems field examines more than just the technological system, or just the
social system, or even the two side by side; in addition, it investigates the phenomena that emerge when
the two interact.

Thus, we have a discipline that is at the intersection of knowledge of the properties of physical objects
(machines) and knowledge of human behavior, and it is possible that IS design theories may take on a
form different from those in other disciplines. The IS discipline is increasingly seen as one concerned with
the design, construction, and use of artifacts based on information technology (IT), although the exact
range and nature of the artifacts of interest is a matter of some debate (see Dahlbom, 1996; Orlikowski
and Iacono, 2001; Benbasat and Zmud, 2003). The term artifact is used to describe something that is
artificial, or constructed by humans, as opposed to something that occurs naturally (Simon 1996).

314

Issue 5 Volume 8 Article 2

A central issue that must be acknowledged is that some researchers would argue with the use of the word
“theory” for design-type knowledge, preferring to restrict the word to the possibly more familiar natural
science (and, later, social-science) types of theory. Gregor (2006) highlights the differences in views on
what constitutes theory, and shows that there are both proponents and opponents for the five types of
theory she identifies. With respect to theory for design and action, Simon (1996) is the well-recognized
proponent of this form of theory, and others have followed his lead (Iivari, 1983; Markus et al., 2002; Walls
et al., 1992). Van Aken (2005) uses the term “Management Theory” for prescriptive, solution-oriented
knowledge that encompasses “technological rules,” while distinguishing more description-oriented
knowledge as “Organization Theory.” Otherwise, there is some feeling against recognizing design
principles as theory. March and Smith (1995) and Hevner et al. (2004) promote design science as a
research activity, but tend to reserve the word “theory” for natural science-type research (Type 3 and 4
theory in Gregor, 2006). The seemingly different views may, in part, be semantic and depend on individual
views of what is meant by theory, as outlined above. We adopt a broad view of theory, congruent with
Gregor (2006) and the OED (2004), which means that the term theory encompasses what might be
termed elsewhere conjectures, models, frameworks, or bodies of knowledge─terms that are used in
connection with design science by many authors. For example, Hevner et al. (2004), see “constructs,
models and methods” as three of the four outputs of design science, with the “artifact” being the fourth. A
broader view of theory means that the first three outputs are regarded as components of theory.

We believe that it is of vital importance to investigate how design knowledge can be expressed as theory
(see also Purao, 2002; Rossi and Sein, 2003; Vaishnavi and Kuechler, 2004/5), although some might argue
that the benefits of design research can be enjoyed without the need for theories of design. The weakness
of this latter view is demonstrated by Cross (2001, p. 4), who deals comprehensively with the idea of design
as a discipline. Cross shows how at one level design work can proceed without reflection on theory:

We must not forget that design knowledge resides in products themselves: in the forms and
materials and finishes which embody design attributes. Much everyday design work entails
the use of precedents or previous exemplars – not because of laziness by the designer but
because the exemplars actually contain knowledge of what the product should be. This is
certainly true in craft-base design: traditional crafts are based on the knowledge implicit
within the object itself of how best to shape, make and use it. This is why craft-made
products are usually copied very literally from one example to the next, from one
generation to the next.

However, we would prefer that IS rise above the level of a craft and agree with Cross, who says that in
addition to this informal product knowledge, we need for design research: “the development of more
formal knowledge of shape and configuration – theoretical studies of design morphology” (p. 5, emphasis
added).

Seeking to express IS design knowledge as theory provides a sounder basis for arguing for the rigor and
legitimacy of IS as an applied discipline, in comparison with the older, more traditional disciplines in the
natural sciences, which use a complementary, but different paradigm.1 Our own experience has shown
how both students and more experienced researchers struggle with the problem of expressing design
knowledge in an acceptable form in theses and journal articles. Better understanding of the nature of
design theory provides an avenue for the more systematic specification of design knowledge.

Furthermore, understanding the nature of IS design theories supports the cumulative building of
knowledge, rather than the re-invention of design artifacts and methods under new labels in the waves of
“fads and fancies” that tend to characterize IS/IT. As an example, the basic problem of understanding
how to capture the tacit knowledge of experts remains much the same whether it is studied for expert
systems or knowledge management systems, and whatever the application domain. Our design theories
should be classified and compared under the most general statement of the problem being addressed
that can be found (the purpose and scope of the theory), for example, “capturing tacit knowledge from
experts in organizations.” A claim for a better theory must show that the new theory provides an advance

1 This issue is one also for many other applied disciplines such as accounting, education, management marketing, engineering, and
other fields of information technology.

Issue 5 Volume 8 Article 2
315

on all previous methods for solving this problem, no matter in which disciplinary sub-field they have been
proposed. Again, personal experience has shown that this requirement is not well understood by many
authors and this shortcoming results in a common cause for journal papers being rejected: not making a
sufficient theoretical contribution.

As an initial introduction to the idea of design theory structure, Table 1 shows how our proposed anatomy
of a design theory can be detected in Codd's articles introducing the relational database model. This
anatomical skeleton, consisting of eight fundamental components, is what we derive more thoroughly in
the remainder of this essay.

Table 1: Example of the skeleton of a design theory (from Codd, 1970, 1982)
Article details The design theory anatomy

The introduction says better database technology is
needed to increase human productivity.
(Motivation is also provided: This need is significant because
current approaches are failing.)

The purpose and scope of the theory
are stated.

The relational database model has principles such as “the
order of rows in the tables is arbitrary and irrelevant.”

Principles of form and function
incorporating underlying constructs
(such as “table”) are given.

The argument is made that the relational model allows for
relatively simple adaptation and change to base tables,
while user views appear unchanged.

Artifact mutability is addressed.

Statements are made such as “A relational database can
perform as well as a non-relational database.”

These statements are testable
propositions.

It is shown how the relational model works, by reference to
underlying set theory and also human cognitive processes.

Justificatory knowledge (kernel theory)
is provided.

Guidelines are given on how to produce a relational
database through normalization procedures. Principles of implementation are given.

An illustration of working relational databases is provided. An expository instantiation is given.

The anatomy of design theories has received relatively little critical attention. Walls et al. (1992, p. 36)
made a valuable initial attempt at this problem and we build on this work. Walls et al. defined an
information systems design theory (ISDT) as “a prescriptive theory which integrates normative and
descriptive theories into design paths intended to produce more effective information systems.” In 2004
Walls et al. provided a retrospective on the fate of their ISDT formulation, and they expressed some
disappointment about what they saw as its limited use. They wondered if their specification was too
unwieldy or cumbersome for general use, or too difficult to grasp, and concluded that their ISDT required
“much more work in being complete and in making the exposition more palatable” (p. 55). We agree that
it is timely to consider whether improvement in their specification model is possible.

The primary sources drawn upon by Walls et al. in their 1992 paper were Dubin’s (1978) depiction of theory
of the natural science type and Simon’s (1981) depiction of the sciences of the artificial. Perhaps not
surprisingly, given the novelty of their endeavour and the dual aims of their article, these authors did not
capture fully the range of ideas offered by Dubin and Simon, or ideas that have been presented in other
important related work. Two of Dubin’s mandatory theory components are missing from the Walls et al.
specification. These components are the “units,” the constructs that are the basic building blocks of
theory, and “system states,” the range of system states that the theory covers. The problem of specifying
a theory for methodologies as opposed to a theory for a product was not explicitly addressed, and their
formulation had some unnecessary complexity in that it required kernel theories for design product and
design process to be separated. Furthermore, Walls et al. (2004) themselves wondered if their depiction of
design theory components was too unwieldy for use. They looked at the comparatively few articles that
had explicitly referred to their formulation of ISDT, but did not consider the continuing over-arching
tradition of presenting design-type work in our IS journals (see Gregor, 2006; Morrison and George, 1995;
Orlikoski and Iacono, 2001), where there are alternative forms. The structures implicit in other design-type
work in this substantial history give clues as to what might be more familiar and more useable ways of
presenting design theories.

316

Issue 5 Volume 8 Article 2

The contribution of the current paper is that it proposes solutions for the problematic areas of the Walls et
al. depiction of ISDTs and extends their work by reference to other sources, providing for a more complete,
yet arguably simpler, definition of design theories.

The paper begins by examining different perspectives on design theories. We highlight the problems with
existing work and propose a way forward, which recognizes an overarching set of eight components of an
ISDT: (1) purpose and scope, (2) constructs, (3) principles of form and function, (4) design mutability, (5)
testable propositions, (6) principles of implementation, (7) justificatory knowledge, (8) an expository
instantiation. We define and discuss each component and illustrate the applicability of this ontological
specification language through the analysis of design research examples. The paper concludes with a
discussion of the implications of this delineation of an ISDT.

2. Approaches to Design Theorizing
We define a number of perspectives on design research and theory that preceded Walls et al. (1992)
under the headings of the philosophy of science and technology, constructive research and design
science, and the sciences of the artificial. It will be seen that this prior work does not display a clear,
logical progression – rather the work has proceeded differently and under different labels in different
geographic areas (especially Europe as opposed to North America) and in different research traditions
and disciplines. Researchers in some streams of thought appear to be unaware of work that has occurred
previously, and there has been little prior attempt to integrate the different perspectives. The review of a
number of different streams of thought gives a basis for the subsequent critical examination of the Walls et
al. work and our proposal for its extension, by integrating ideas drawn from a number of perspectives.

Philosophy of science and technology
When talking about the nature of theory, a logical place to start is the philosophy of science, which has
dealt with issues concerning theory building, specification, and testing exhaustively for a very long time. In
general, philosophers of science writing in the tradition of the physical or natural sciences are likely to see
theory as providing explanations and predictions and as being testable. For example, Popper (1980) held
that theorizing, in part, involves the specification of universal statements in a form that enables them to be
tested against observations of what occurs in the real world. Popper described theory as follows (1980, p.
59):

Scientific theories are universal statements. Like all linguistic representations they are
systems of signs or symbols. Theories are nets cast to catch what we call ‘the world’; to
rationalize, to explain and to master it. We endeavour to make the mesh even finer and
finer.

Dubin’s (1978) monograph is a seminal and comprehensive source for treatment of the structural nature of
theory of the type that is common in the natural and social sciences. Dubin specified the seven
components of this type of theory as: (1) the units whose interactions are the subject of interest, (2) laws of
interaction among the units, (3) boundaries within which the theory is expected to hold, (4) system states
within which the units interact differently, (5) propositions or truth statements about the theory, (6)
empirical indicators related to the terms in the propositions, and (7) testable hypotheses incorporating
empirical indicators. Dubin regarded the first five of these components as essential for theory specification,
while the final two components were optional and could be included for theory testing purposes.

There is one point on which we take issue with Dubin’s otherwise excellent work. Dubin followed the rather
narrow position of logical positivism as expressed by Duhem (1962), who believed that physical theories
should exclude explanations. Logical positivism is now largely regarded as defunct for a number of good
reasons (see Magee, 1998; Passmore, 1967; Popper, 1986), and the goal of explanation is now seen as
central in current conceptualizations of theory (Nagel, 1979; Popper, 1980), with a web of supportive
statements and underlying explanations for the propositions that are proposed as the core of the theory.
As we reject the ideas of logical positivism, we are in agreement with the more prevalent view that theory
should include explanations.

Recognition that theory might relate to technology is not common, and there may be some prejudice
against it among philosophers of science (see O’Hear, 1989). As an example, a recent anthology edited

Issue 5 Volume 8 Article 2
317

by Schaff and Dusak (2003) gives an overview of work in philosophy relating to technology, but it provides
little to help with the task of uncovering the nature of theory in technological disciplines. The volume
includes an essay by Bunge (1979), who deals with the philosophical inputs and outputs of technology and
recognizes a number of high-level, cross-disciplinary theories arising from technology, including information
theory, control theory, and optimization theory. Bunge notes that the problems of the philosophy of
technology include the nature of technological knowledge and its relationship to scientific knowledge,
but does not explore this problem in detail.

Some relevant ideas can be traced back to Aristotle’s writing on the four explanations of any “thing” in
The Four Causes (from a translation by Hooker, 1993). The sense in which Aristotle spoke of a thing being
“explained” or “caused” corresponds to its “definition” and thus is relevant to the idea of a theory for
specifying artifacts. Aristotle’s four causes can be applied to any artifact, such as a table. These four
causes explain the artifact in terms of:

• The causa finalis, its final cause or end, what the table is for (eating from, placing things on);
• The causa formalis, its formal cause or essence, what it means to be a table (possessing a raised

surface that is relatively flat supported by leg(s);
• The causa materialis, its material cause, what it is made from (wood);
• The causa efficiens, its efficient cause, who or what made the table (the carpenter).

Aristotle did not relate scientific knowledge or a theory of design to his explanation of an artifact and yet
his ideas have commonalities with later work, including Simon’s descriptions of the artificial. Heidegger
(1993, p. 313) built on Aristotle’s work in seeking to identify the essence of modern technology. Heidegger
showed that Aristotle’s four causes differed from one another yet belonged together in considering the
nature of an artifact. Further, Heidegger considers that the coming together of the four causes in an
object is an example of poiēsis, the arising of something from out of itself, as for example, in the bursting of
a blossom into bloom.

The Sciences of the Artificial
The classic work that gives the knowledge underlying the construction of artifacts the status of theory is
Herbert Simon’s The Sciences of the Artificial (1996), first published in 1969. Simon believed design theory
was concerned with how things ought to be in order to attain goals, although the final goals of design
activity might not be explicitly realized, and the designer could well proceed with a search guided by
“interestingness.” To Simon, an objective of design activity was the description of an artifact in terms of its
organization and functioning, although he believed a theory of design might only be partly formalizable.
He stressed the design of a complex artifact as a hierarchy, which could be decomposed into semi-
independent components, corresponding to its many functional parts. Simon saw the design process as
generally concerned with finding a satisfactory design, rather than an optimum design. He believed,:
“both the shape of the design and the shape and organization of the design process are essential
components of a theory of design” (pp. 130-131). The design process could be informed by knowledge of
the laws of natural science, both for an artifact’s internal operations and its interactions with the external
environment. Many artifacts are designed, Simon believed, without a full understanding of the workings of
its component parts, and a theory of a system design “does not depend on having an adequate
microtheory of the natural laws that govern the system components. Such a microtheory might indeed be
simply irrelevant” (p. 19).

 Simon had a number of things to say about the design of evolving artifacts, where forecasting the likely
path of events is extremely difficult. In such circumstances, he recommended the mechanisms found in
adaptive systems for dealing with change: homeostatic mechanisms that make the system relatively
insensitive to the environment and retrospective adjustment to the environment’s variation based on
feedback. Thus, design for the future need not rely on the envisioning of remote events, but can rely on
adaptive mechanisms built into the design.

Constructive research and design science
A separate strand of work parallels work on design theory but has a different focus. In this work, the
emphasis is on design research as a knowledge-building activity, rather than the structural nature of the
knowledge or theory that results.

318

Issue 5 Volume 8 Article 2

European researchers have exhibited one substrand of thought. Iivari (1983) distinguished theorizing at a
prescriptive level early on, using the term ‘systemeering’, a word coined for ‘systems work’ to match the
Swedish word ‘programmering’ for programming. Iivari (1991) described this activity as “constructive”
research in subsequent work. Further development of these ideas can be found in Iivari, Hirschheim and
Klein (1998), Jarvinen (2001), and Kasanen et al. (1993).

North American researchers described similar perspectives under the label of a “systems development”
approach to research. Nunamaker, Chen and Purdin (1990-91) provided a multi-methodological
approach that included the steps of theory building (conceptual frameworks, mathematical models, and
methods), systems development (prototyping, product development, and technology transfer),
experimentation (computer simulation, field experiments, and laboratory experiments), and observation
(case studies, surveys, and field studies). Lau (1997) and Burstein and Gregor (1999) provide further
discussion.

The software engineering community has also addressed concerns with methodological design issues. For
example, Gregg et al. (2001) introduced a research methodology focused on technological innovations
with stages for: (i) conceptual grounding, (ii) formal description and verification, and (iii) development to
demonstrate validity. Preston and Mehandjiev (2004) give a framework for classifying intelligent design
theories so as to support software-engineering design and pay some attention to “knowledge
representation,” which corresponds to our term “design theory” and lists its elements as “requirements,
component, process and goals.”

Comparable work has been promoted in IS as “design science” through the work of March and Smith
(1995), who developed a framework to demonstrate the relationship, activities, and outputs of design and
natural science research in information technology. The design science ideas of March and Smith have
enjoyed recent currency with a number of authors using or building on their works (Au, 2001; Ball, 2001;
Hevner and March, 2003; Hevner et al., 2004).

A common element in the different sub-strands of these constructive research approaches is the emphasis
on the central role of the artifact, which is seen as a vital part of the process and possibly the sole, or chief,
output of the research. The construction of an artifact that is sufficiently novel is seen as a significant
contribution in its own right. This view is in contrast to the Walls et al. (1992) IS design theory approach,
where the artifact is constructed as a “test” of the design theory. The question this stream of research
leaves us with is whether the artifact itself, the concrete instantiation, has a place in a design theory.

Work in other disciplines
A number of disciplines apart from IS have also approached the problems of design research. Several
older disciplines explicitly concerned with design, including architecture and industrial design, have a
history of design-science concerns. Cross (2001) traces the desire to ‘scientize’ design back to the 20th
Century modern movement of design, noting that the term “design science” was probably introduced in
the 1960s by the inventor and radical technologist, Buckminster Fuller, who called for a design science
revolution based on science, technology, and rationalism.

The design patterns approach arose in architecture (Alexander et al., 1977) and sought to describe a
particular problem within a context, the forces arising from that context, and a solution that resolves those
forces. Design patterns have found application in a range of disciplines as diverse as object-oriented
design (Gamma, et al. 1995), systems analysis (Fernandez, 1998), and the architecture of enterprise
systems (Fowler, 2003).

Further relevant work appears in management (van Aken, 2004, 2005), management accounting
(Kasanen et al., 1993), accounting information systems, (David et al., 2000), art (Owen, 1997), and
education (Savelson et al., 2003; Kelly, 2003). Schön (1983) linked the development of professional
knowledge to “reflection–in–action.”

Van Aken (2004, 2005) has addressed the problem of what prescriptive management theory might look
like and advances the idea of “technological rules,” which take the form: “If you want to achieve Y in

Issue 5 Volume 8 Article 2
319

situation Z, then something like action X will help” (2004, p. 227). Although of interest for our present
endeavor, the field of management is less concerned with the design of products (as in database
architecture) than with methods or processes (interventions), so has some limitations in being transferred to
IS, where both are of interest.

Love (2001) treats design theory from a philosophical perspective across a number of design disciplines
and provides a meta-theoretical method with the aim of moving toward a simplifying paradigm of design
research. This work has parallels with what we are attempting in the current paper, though it takes a wider
and more abstract view of the processes and levels of design theorizing.

A theme with many of these design-based researchers is the importance of addressing problems and
framing advice that is relevant to practitioners, and of a research process of iterative and reflective
enquiry. This work, however, while recognizing that design theory can be generated, has with a few
exceptions (for example, van Aken, 2004) little to say specifically on how it can be formulated.

Information systems design theory (ISDT)
The task of formally specifying design theory in IS was taken up by Walls et al. (1992), who adapted Simon’s
ideas for the IS context. Walls and his colleagues merged Simon’s ideas with those of Dubin (1978).

Walls et al. specify the components of an ISDT as: (1) meta-requirements, the class of goals to which the
theory applies; (2) meta-design, the class of artifacts hypothesized to meet the meta-requirements; (3)
design method, a description of the procedures for constructing the artifact; (4) kernel design product
theories, theories from natural or social sciences that govern design requirements; (5) testable design
product hypotheses, statements required to test whether the meta-design satisfies the meta-requirements;
(6) kernel design process theories, theories from natural or social sciences that inform the design process;
and (7) testable design process hypotheses, statements required to test whether the design method leads
to an artifact that is consistent with the meta-design.

There are some questions about this specification. Two of Dubin’s mandatory requirements for theory
specification are missing from the Walls et al. conceptualization. There is no element that corresponds to
Dubin’s “units,” the constructs that are present in statements of relationships in the theory. Also missing is an
element that recognizes that the phenomena being studied, in both natural science type theory and ISDT,
are systems or parts of systems. Dubin introduced the component of “system states” for this purpose, so
that a theory specification depicts the various states of the system that the theory covers. Dubin gives as
an example Herzberg’s two-factor theory of job satisfaction (Herzberg, 1966), in which one state covered
by the theory is where an individual has equal levels of satisfaction and dissatisfaction.

A further difficulty with the Walls et al. specification is what appears to be the unnecessary separation of
theory components for a “design process” on top of a “design product” and the lack of clear definition of
what comprises a “product” and what comprises a “process.” The unnecessary duplication is highlighted
in the Walls et al. example of Codd’s (1970) relational database theory. The kernel theory of relational
algebra is shown as justification for the design method, but no kernel theory is given for the design
product. In fact, it is likely that here, as with many other design theories, one single kernel theory would
underlie both design product and design process.

Furthermore, it is not clear exactly the nature of the things that are addressed by the “class of goals to
which the theory applies.” Surely, a design theory as a whole could apply to either a process or a product,
and only sometimes to both. The Walls et al. (p. 43) article in fact says that one example of a widely
accepted ISDT is the system development life cycle (SDLC). The SDLC is a methodology that was
intended for use in developing a broad range of systems. So here the object of the design theory is itself a
methodology or process. In contrast, a design theory for a product such as a word-processor could be
proposed that showed the architecture and functions of the system, but not specify the means of
development, as the designed product could be built satisfactorily using a number of different methods.
Thus it appears that the ISDT need not mandate a design process as an essential component but rather,
can itself concern a generalized process, methodology, or intervention as its main object (a view
congruent with Van Aken, 2004 and Carlsson, 2005).

320

Issue 5 Volume 8 Article 2

Conclusions from prior work
What can we conclude from this review of prior work? First, there is not a great deal of relevant previous
work to draw upon. Dubin’s (1978) work on the structural nature of theory for the natural and social
sciences is an obvious starting point, although following a logical positivist perspective, he omitted
explanations as a component of theory. Simon’s (1996) work on the sciences of the artificial stresses the
importance of extending our thinking to the science of artifacts, but it does not include a detailed
examination of the nature of theory that concerns artifacts. Researchers in design science have tended
not to speak of theory in relation to design knowledge at all, but have focused more on design research
as an activity that results in artifact construction.

Walls et al. have drawn on both Dubin and Simon to give what is arguably the most comprehensive
treatment of IS design theory structure to date, and we build on their work. However, we identified a
number of issues in a critical examination of the Walls et al. specification of ISDT:

• A lack of clarity as to what ISDTs should be concerned with, whether product or process or
necessarily both;

• The omission of the mandatory “units” (constructs) and “system states” in the adaptation of Dubin’s
specification of theory components;

• A lack of consideration of the importance of a design instantiation, as stressed in the design
science literature, except as a test of a theory.

• A possibly unnecessary distinction between kernel theories for design processes and kernel theories
for design products.

Against this background, we proceed with ideas for improving the specification of ISDT.

3. Proposed specification for ISDT
We have used an analytic approach in proposing a revised specification framework for ISDT, following the
arguments advanced in the preceding section. An analytic approach appears appropriate for our
investigation, as prior work has enjoyed some recognition, albeit with some deficiencies that we have
been able to identify through analysis and comparison across approaches.

Before advancing this revised framework, however, we clarify the terminology to be used. First, it is
proposed that a design theory can have as a primary design goal either (a) a methodology, such as the
SDLC, or (b) a product, such as a decision support system. These design goals correspond in van Aken’s
terminology to “object-design” and “realization-design” (Van Aken, 2004, p. 226).

The range of artifacts that is the object of design in the discipline of IS is illustrated in publications
appearing in leading IS journals. The essay on the nature of theory in IS by Gregor (2006) analysed all
research articles in MISQ and ISR from March 2003 to June 2004. Nine of the 50 articles examined were
classified as presenting theory for design and action. The artifacts that were the object of design theorizing
included customer-centric websites, auction markets for supply chain organizations, schema for
interorganizational workflows, organizational processes, and an information intermediary. This range
covers both process and product artifacts, including those that are applied in organizational settings as
well as more technical artifacts.

A design theory is something in an abstract world of man-made things, which also includes other abstract
ideas such as algorithms and models. A design theory instantiated would have a physical existence in the
real world. Figure 1 shows these different artifacts in relation to their human creators. We provide this
diagram as there is sometimes confusion about the products and objects of interest in design research.
March and Smith (1995) and Hevner et al. (2004, p. 78) see four design artifacts produced by design-
science research: “constructs, models, methods and instantiations.” However, these authors tend to see
“theory” as the preserve of the natural sciences; although, on occasion, they use the word “theory” for the
knowledge produced by design science. We would argue, using authorities such as Dubin (1978) and
Nagel (1979) as a reference, that “constructs, models and methods” are all one type of thing and can be
equated to theory or components of theory, while instantiations are a different type of thing altogether.

Issue 5 Volume 8 Article 2
321

Our position depends on a realist ontology being adopted, where realism implies that the world contains
certain types of entities that exist independently of human beings and human knowledge of them (as
opposed to idealism). At a high level our ontological position corresponds to ideas expressed by both
Habermas and Popper. Habermas (1984) recognizes three different worlds─the objective world of actual
and possible states of affairs, the subjective world of personal experiences and beliefs, and the social
world of normatively regulated social relations. These three worlds are related to Popper’s Worlds 1, 2, and
3 (Popper, 1986). World 1 is the objective world of material things; World 2 is the subjective world of mental
states; and World 3 is an objectively existing but abstract world of man-made entities─language,
mathematics, knowledge, science, art, ethics and institutions. Thus, theory as an abstract entity belongs to
World 3. A similar view is expressed by Love (2000) in relation to design theory. This stance is also
congruent with forms of realism enjoying currency in IS and allied fields. Mingers (2000) shows how the
philosophy of critical realism (following Bhaskar, 1989) can be applied to management science, where
critical realism aims to establish a realist view of being in the ontological domain, while accepting the
relativism of knowledge as socially and historically conditioned in the epistemological domain. Popper’s
Worlds 1 and 3 parallel the intransitive and transitive domains of Bhaskar. The relationships and interactions
among these domains remain the subject of debate, yet the broad distinctions drawn here are important
ones. The intransitive domain of objects and actions serves as a reference point and testing ground for
theories that are the work of human beings in the transitive domain.

Figure 1: Relationships among IS/IT artifacts

To be more precise, the phenomena of interest for design research include:

1. Instantiations or material artifacts. These artifacts have a physical existence in the real world, as a
piece of hardware or software, or an IS, or the series of physical actions (the processes or
interventions) that lead to the existence of a piece of hardware, software, or an IS. This depiction
of “processes” as material artifacts might be somewhat controversial, but we believe it is necessary
for understanding the full range of design theories.

2. Theories or abstract artifacts. These artifacts do not have a physical existence, except in that they
must be communicated in words, pictures, diagrams, or some other means of representation.
Constructs, methods, and models are all this type of artifact, with the word model sometimes being
used synonymously with theory and constructs being one component of theories (Dubin, 1978).

3. Human understanding of artifacts. Human beings conceptualize and describe artifacts in abstract,
general terms. The arrows in Figure 1 show that human beings create theories and constructs and
use them to guide the building of instantiations in the real world and also to understand the
material artifacts when in use. In addition, design principles and theory can be extracted from
observation and inference from already instantiated artifacts.

322

Issue 5 Volume 8 Article 2

To further define terms as they are used in this paper, an IS design theory shows the principles inherent in
the design of an IS artifact that accomplishes some end, based on knowledge of both IT and human
behaviour. The ISDT allows the prescription of guidelines for further artifacts of the same type. Design
theories can be about artifacts that are either products (for example, a database) or methods (for
example, a prototyping methodology or an IS management strategy). As the word “design” is both a
noun and a verb, a theory can be about both the principles underlying the form of the design and also
about the act of implementing the design in the real world (an intervention).

As design theoretic knowledge is general, being applicable to all classes of cases, professionals need to
know how to apply the knowledge in their own unique and specific cases, what Van Aken (2004) calls
process-design. As a design theory can apply to either a generalized product architecture or to a
generalized method, we have the interesting situation in the latter case where we need to consider a
“process for implementing the principles of a generalized process/method/intervention.” We can have a
theory about a methodology in terms of its general principles and also guidelines as to how it is
implemented in specific circumstances.

It is important to clarify the ontological status of these artifacts of interest and also to understand the
intricacies of the ways terms can be used, as this clarification has been lacking in the literature to date.
We propose that the full specification of an ISDT could include eight components, as shown in Table 2. This
framework extends that of Walls et al. by including the components of constructs, artifact mutability, and
an expository instantiation to overcome the shortcomings identified earlier. In addition, we propose a
single component for justificatory knowledge instead of kernel theories for both product and process. Our
argument is that any design theory should include as a minimum: (1) the purpose and scope, (2) the
constructs, (3) the principles of form and function, (4) the artifact mutability, (5) testable propositions, and
(6) justificatory knowledge. Five of these components have direct parallels in the five components
specified by Dubin (1978) as mandatory for a natural science-type theory. The sixth component of
justificatory knowledge needs to be added, to provide an explanation of why the design works. The goal
of explanation is common to many current conceptualizations of theory, as argued previously (Nagel,
1979; Popper, 1980).

Table 2 Eight components of an Information Systems Design Theory
Component Description
Core components
1) Purpose and scope (the

causa finalis)

“What the system is for,” the set of meta-requirements or goals that
specifies the type of artifact to which the theory applies and in
conjunction also defines the scope, or boundaries, of the theory.

2) Constructs
(the causa materialis)

Representations of the entities of interest in the theory.

3) Principle of form and
function
(the causa formalis)

The abstract “blueprint” or architecture that describes an IS
artifact, either product or method/intervention.

4) Artifact mutability

The changes in state of the artifact anticipated in the theory, that
is, what degree of artifact change is encompassed by the theory.

5) Testable propositions Truth statements about the design theory.
6) Justificatory knowledge The underlying knowledge or theory from the natural or social or

design sciences that gives a basis and explanation for the design
(kernel theories).

Additional components
7) Principles of

implementation
(the causa efficiens)

A description of processes for implementing the theory (either
product or method) in specific contexts.

8) Expository instantiation A physical implementation of the artifact that can assist in
representing the theory both as an expository device and for
purposes of testing.

Issue 5 Volume 8 Article 2
323

Specifying the first six components is sufficient to give the idea of an artifact that could be constructed.
The construction of an instantiation as proof-of-concept and the development of specific methods for
building further instantiations could come later. The credibility of the work is likely to be enhanced,
however, by provision of an instantiation as a working example. Some particular innovative ideas may
have merit, despite the lack of an instantiation. The history of computing shows that some conceptual
work on design, without instantiations or implementation principles, has been influential. For example,
Vannevar Bush first wrote of a device he called a Memex early in the 1930s. His subsequent essay, "As We
May Think," in 1945 has had a pivotal influence in hypertext research, foreshadowing the concept of
hypertext links, although Bush provided no real-life working model for his ideas or a method for building a
Memex.

Table 3 shows how this specification compares with the standard for natural science-type theory as
supplied by Dubin and the prior specification of design-type theory by Walls et al. We do not include a
comparison with the work of Hevner et al., as these authors did not focus specifically on the nature of
design theory.

Table 3: Comparison of design theory approaches
Proposed anatomical

skeleton

Dubin (1978)

Walls et al. (1992)
1. Purpose and scope Boundaries Meta-requirements
2. Constructs Units
3. Principles of form and
function Laws of interaction Meta-description

4. Artifact mutability System states

5. Testable propositions Propositions Product hypotheses
Process hypotheses

6. Justificatory knowledge Product kernel theories
Process kernel theories

7. Principles of
implementation Design method

8. Expository instantiation Hypotheses and empirical
indicators

The following section explains each of the eight components of an ISDT in more detail.

4. The Eight Components of an Information Systems Design Theory
We describe each of the eight components of a design theory in this section and illustrated them by
references to examples, including Codd’s relational database design model (Table 1), a design theory for
a fault threshold policy for software development projects (Table 4), a design theory for risk management
(Table 5), and some additional examples. Codd’s theory was chosen as an example because it is a well-
known product-type design theory and was also used as an example by Walls et al. (1992). Using it here
shows that the additional components proposed for an ISDT are present in this theory. We chose the
example from Chiang and Mookerjee (2004), because, while it has a narrow scope, it gives an example of
a method-type theory that can be captured in a relatively brief description. We chose the risk
management example from Iversen, Mathiassen and Nielsen (2004) because it describes an
organizational intervention process developed through action research and shows a wider
conceptualization of an IS artifact than the previous two examples. 2

2 This example was suggested by a reviewer of the paper, who believed it presented a challenge for the theory specification
framework.

324

Issue 5 Volume 8 Article 2

Table 4: Components of a design theory for a software threshold fault policy
 Type Component examples
(1) Purpose and scope The aim is to develop a fault threshold policy to determine when system

integration occurs during a process of incremental systems development.
The policy is developed for homogeneous systems, where modules are
similar in size and complexity and all faults take roughly the same effort to
fix. The policy is appropriate for systems that can be tested frequently and
at relatively low cost. The policy is designed to consider a number of
project parameters (such as complexity).

(2) Constructs Examples are: incremental development, system integration, fault
threshold, testing, faults detected.

(3) Principles of form and
function

The policy uses a derived expression to give dynamic guidelines for when
system integration should occur, with (1) a region of no integration, (2) a
region where integration occurs depending on a fault count, and (3) a
region in which systems integration should always take place.

(4) Artifact mutability The designers consider the effects of team learning that occur over
multiple construction cycles and show how the policy will vary over a
number of cycles.

(5) Testable propositions Predictions about outcomes are provided that are tested in simulation
experiments.

(6) Justificatory
knowledge

Theory is offered relating to group coordination processes, team
cognition, software development productivity, and fault growth models.

(7) Principles of
implementation

Not a great deal of detail is given on how to build a concrete version of
this abstract policy in specific projects. An example is given where the
formulae in the policy are applied to an imaginary scenario. It is stated
that it might be necessary to build some randomness into the model in a
real-life project and this is left for further work.

(8) Expository instantiation Examples of the policy in action are provided through simulations.

 Note: Adapted from Chiang and Mookerjee (2004)

Table 5: Components of a design theory for managing risk in software development
 Type Component examples
(1) Purpose and scope The aim is to develop an approach for understanding and

managing risk in software process improvement (SPI).
(2) Constructs Examples are: risk item, risky incident, resolution actions.
(3) Principles of form and function A risk framework is given to aid in the identification and

categorization of risks and a process with four steps is given to
show heuristics that can be used to relate identified risk areas to
resolution strategies.

(4) Artifact mutability Suggestions for improving the approach are given for further
work: one example is that parts of the approach could be
packaged as a self-guiding computer-based system.

5) Testable propositions It is claimed that the approach is adaptable to other
organizational settings, although it is seen as a general
approach, rather than a procedure to be followed blindly (pp.
422-423).

(6) Justificatory knowledge The approach proposed is derived from other risk management
approaches (other design theories).

(7) Principles of implementation It is stated that the approach requires facilitation by a facilitator
experienced in risk management, SPI and running collaborative
workshops.

(8) Expository instantiation Four examples of variants of the approach are given in
descriptions of four iterations of an action research cycle.

Note: Adapted from Iversen et al. (2004). This article contains two design theories, with the second being a more general approach
for tailoring risk management to specific contexts. This second theory is omitted in the interests of simplicity.

Issue 5 Volume 8 Article 2
325

1) The purpose and scope
This design component says “what the system is for.” or the set of meta-requirements or goals that specifies
the type of system to which the theory applies and in conjunction also defines the scope, or boundaries,
of the theory.

The artifact requirements should be understood in terms of the environment in which it is to operate.
Heidegger (1993) used an example of a silver chalice, where in order to understand its purpose, we need
to understand the religious ritual for which the chalice is to be used. Both the relational database theory
and the software fault policy are described in terms of the context in which they are intended to operate.
Statements in the article about the software faults policy show that it is meant to apply to certain
environments, for example, where systems can be tested at relatively low cost. Codd (1982) described the
need for the relational database model in the context of large databases being accessed by many
people and where productivity is important.

These theory requirements are meta-requirements; they are not the requirements for one instance of a
system, as would be the case if there was a need to build a single system in industry. The aim is to develop
a design theory that is suited to a whole class of artifacts that are typified by these requirements. This
component of the design theory is similar to the “scope” of other theory types, the area over which the
theory is generalized, or what Dubin (1978) sees as defined by the “boundaries” of a theory. In defining the
goals of an artifact, other goals are excluded, and the boundaries of the theory are shown. For example,
Codd’s relationship database theory is about the design of databases, not single file structures, which are
outside the scope of his theory.

This aspect of the theory formulation allows different theories to be categorized, compared, and
extended. For example, a contribution to an ISDT for decision support systems would be expected to show
that it filled some gap in existing ISDT, offered an ISDT that was superior in some way to existing ISDT, or
extended an existing ISDT for this type of system. This aspect thus provides guidance when it comes to
evaluating a design theory. Codd (1982) compares the capabilities of the relational model with other non-
relational models for database design. Chiang and Mookerjee (2004) claim that their dynamic threshold
policy is an advance on other non-dynamic policies that have similar aims but where the integration
points are determined a priori. Iversen et al. (2004, p. 422) claim theoretical significance for their work in
managing risks when they state that it is the first “comprehensive” process that helps software
improvement teams manage risk.

2) Constructs
The representations of the entities of interest in the theory (Dubin’s “units”) are at the most basic level in
any theory. These entities could be physical phenomena or abstract theoretical terms. Often, the entities
will be represented by words, such as “software fault,” but mathematical symbols or parts of a diagram
can also be used. Codd uses the set theoretical expression of an “n-ary relation” to represent a relational
database table. Iversen et al. (2004, pp. 401-402), describe the concepts of “risk items,” “risk incidents,”
“resolution actions” and “heuristics” on which their theory builds.

As in any theory, the terms used to refer to the entities of interest should be defined as clearly as possible.
A feature of design theories for information technologies is that a single construct in a theory can
represent a sub-system that has its own separate design theory. One of the constructs in the fault threshold
policy is “system integration.” This process itself is composed of many different activities. This technique of
decomposing design problems into semi-independent parts is one way of dealing with complexity (Simon,
1996). The design of each component can then be carried out with some degree of independence of the
design of others, since each will affect the others largely through its functioning and independently of the
details of the mechanisms that accomplish the function. At the higher level it is not necessary for the
designer to understand the detailed complexities of all the design sub-parts. The result is that the
description of a construct in a design theory may be indicative, rather than detailed and complete.

3) Principles of form and function
This component refers to the principles that define the structure, organization, and functioning of the
design product or design method. The shape of a design product is seen in the properties, functions,
features, or attributes that the product possesses when constructed. For example, a design theory for a

326

Issue 5 Volume 8 Article 2

word processor would show how an operational system should include file manipulation features, text
manipulation features, and so on, and how these features were interrelated. In a sense, this component
gives an abstract “blueprint” or architecture for the construction of an IS artifact. Similarly, the principles of
a design method show in a generalized form the shape and features of the method, for example the steps
in the waterfall model of the systems development life cycle. Iversen et al. (2004) describe in detail the
heuristics that help software process improvement practitioners relate identified risk areas to possible
resolution strategies through a four-step process.

Much of the knowledge in IS textbooks that concerns application systems represents examples of this
important component of design theories. An example is the McNurlin and Sprague (2002) depiction of the
architecture of decision support systems (DSS) which includes: (1) a database management system, (2) a
model base management system, and (3) a dialogue generation system. It is interesting to note that this
architectural description of DSS uses words for both their form (their components and how they are
related) and their functions (providing data, providing modeling tools, and interacting with users). The
abstract form of a DSS is depicted in a diagram (p. 369) with boxes to represent the components and arcs
showing the interaction among the parts (and the user).

In other design theories this intermingling of structural and functional properties in the architectural
description also occurs. Codd describes both the form of relational tables and how they are used, in terms
of access and manipulation. Chiang and Mookerjee show how their software fault policy functions in
predicting integration points. These observations highlight the importance of recognizing both form and
function in the architectural component.

4) Artifact mutability
One component of ISDTs arises from consideration of the special nature of the IS artifact. There is
increasing recognition of the mutable nature of these artifacts. That is, they are artifacts that are in an
almost constant state of change. Simon (1996) speaks of evolving artifacts, where flexibility and
adaptability may be enabled by feedback loops to refine design. O’Hear (1989, p. 220) writes of an
“evolutionary trajectory” rather than “a design” for technologies and notes the attempt to predict the
direction or outcome of a particular technological innovation in advance is bound to be uncertain.
Jarvinen (2001) gives some consideration to “what happens after” in suggesting that evaluation should
cover three stages: build, use, and demolish (transition to new or death). Added to these ideas of the
changing nature of the artifact is Heidegger’s discussion of poiēsis with respect to artifacts, the idea of the
arising of something from out of itself, or emergent properties and behaviour. Orlikowski and Iacono also
express supporting views for this component (2001, p. 121):

We believe that the lack of theories about IT artifacts, the ways in which they emerge and evolve over
time, and how they become interdependent with socio-economic contexts and practices, are key
unresolved issues for our field and ones that will become even more problematic in these dynamic and
innovative times.

Specifying the degree of mutability of designed artifacts has some parallels with the specification of the
states of a physical system covered by a natural science-type theory as recommended by Dubin (1978).
However, it goes further in that it may deal not only with changes in system state, but also with changes
that affect the basic form or shape of the artifact, for example, in allowing for a certain amount of
adaptation or evolution.

Evidence of reflections on the mutability of designed artifacts can be found in the three examples
presented. A primary objective of the relational database design is to allow users of databases and
application programmers to remain unaffected by changes in the internal representation of data. The
authors of the fault threshold policy consider the effects of learning by the project team and how the rate
at which new faults arise will be reduced. Iversen et al. (2004) believe that their risk management
approach can be used with benefit by different organizations, but that it may need to be adapted by
adding specific risk items or resolution actions to suit the organizational context.

Issue 5 Volume 8 Article 2
327

5) Testable propositions
An ISDT can give rise to testable propositions or hypotheses about the system or tool to be constructed.
These propositions can take the general form: “If a system or method that follows certain principles is
instantiated then it will work, or it will be better in some way than other systems or methods.”

Walls et al. (1992) give the following reasons for having testable propositions:

• For testable design product hypotheses, there is a need to test whether the meta-design (the
architectural principles) satisfies the meta-requirements;

• For testable design process hypotheses, there is a need to verify whether or not the design method
(implementation principles) results in an artifact that is consistent with the meta-design
(architectural principles).

Nunamaker et al. (1990-91) include as one of their five criteria for the evaluation of systems development
work the need for the system to be testable against all the stated objectives and requirements. Van Aken
(2004) distinguishes two forms of these design propositions. Algorithmic propositions are more general,
typically have a quantitative format, and can be tested on the basis of observations and statistical
analyses. Heuristic propositions typically take the form: “If you want to achieve Y in situation Z, then
something like action X will help” (p. 227, emphasis added). This proposition is less general and represents
a design exemplar that needs translation to a specific problem at hand to be used and tested.

The degree to which design knowledge can be expressed in general propositions remains an issue. Some
degree of generality is recognized as a prerequisite for theory, even broadly defined (Gregor, 2006). The
generality issue is a particular problem when design knowledge arises from artifact construction, action
research, and case studies, as it does in IS and many applied disciplines. Problems with generating theory
from practice and ideographic case studies have long been recognized (see, for example, Tsoukas, 1989).
We concur with van Aken’s view that design theory propositions can vary in their degree of
generality─from claims that a design works all the time and in many contexts (as with an algorithm) to
claims that a design proposition is only an approximation to what will work in different contexts. We
recognize that this issue is worthy of further debate. However, it is sufficient for our purposes to argue
(following Simon) that even if design knowledge is only in part, or with difficulty, expressed in formal
general terms, that this goal is still an important one for applied disciplines such as IS (see also Purao, 2002;
Rossi and Sein, 2003; Vaishnavi and Kuechler, 2004/5).

Testing theoretical design propositions is demonstrated through an instantiation, by constructing a system
or implementing a method, or possibly in rare cases through deductive logic (Gregg et al., 2001; Hevner
and March, 2003).

6) Justificatory knowledge
This component provides the justificatory, explanatory knowledge that links goals, shape, processes, and
materials. Some knowledge is needed of how material objects behave, so as to judge their capabilities for
a design. For example, the bandwidth of communication channels limits designs of e-commerce systems
by placing limits on data carried within a time period. Knowledge of human cognitive capacities heavily
influences principles of human-computer interaction design. Simon (1996) refers to these theories as “micro
theories” and Walls et al. (1992) as “kernel theories.” Walls et al. (1992) see kernel theories as informing
design products and design processes separately. Here we argue that these theories are a linking
mechanism for a number, or all, of the other aspects of the design theory.

The nature, depth, and degree of reliance on micro theories in ISDT is arguable. Theories might come from
natural science, social science (Simon, 1996), other design theories, practitioner-in-use theories (Sarker and
Lee, 2002), or evidence-based justification such as seen in medical research and action research (Van
Aken, 2004). The design theory for managing risk in software development (Table 5) relies on prior practice,
other design theory, and action research, but not theory of the natural science type. Simon argued that it
is possible to have a design theory with an incomplete understanding of the micro-theories on which it is
based. We do not have to know, or guess at, all the internal structure of the system components, but only
that part of it that is crucial to the abstraction in the design theory. The first time-sharing computer systems
are a good example, where only fragments of theory were available to guide initial designs. In any new
discipline, people often do things for which theory has no explanation and provides no foundation, and

328

Issue 5 Volume 8 Article 2

theory evolves only after practice has demonstrated that something works (Glass, 1996). Natural-science
explanations of how and why an artifact works may lag years behind the application of the artifact
(March and Smith, 1995).

Should we settle for knowing that something works without knowing why it works? Venable (2006) argues
that justificatory knowledge is not required as a necessary component of an ISDT. In contrast, we argue
that it remains essential to include justificatory knowledge in ISDTs, although this knowledge could be
incomplete. The justificatory knowledge provides an explanation of why an artifact is constructed as it is
and why it works, and explanations are usually regarded as a desirable part of a theory specification,
assisting with their communicative purpose and the facilitation of human understanding (see Gregor,
2006; Nagel, 1979; Popper, 1980). Van Aken (2004, p. 228) offers a similar view, arguing that real
breakthroughs in human understanding have occurred when tested technological rules can be grounded
on scientific knowledge:

One can design an aeroplane wing on the basis of tested, technological (black-box) rules,
but such wings can be designed much more efficiently on the basis of tested and
grounded technological rules, grounded on the laws and insights of aerodynamic and
mechanics.

With information technology, we have the interesting situation where some design knowledge is originally
presented with an underlying justification from the behavioral sciences, but this underlying justification is
later either forgotten or neglected. Who now recalls that Codd’s relational database theory had a
behavioral science justification? One of the reasons for advancing relational database theory was that
human programmers had difficulty with the complex reasoning needed to handle repeating groups of
data items. It is important to remember this justification and that the normal forms of relational databases
are not an end in themselves. In situations where efficiency is of prime importance, a better design could
use another database structure that allows repeating groups to give faster access to data. Other similar
examples can be found, for example, in the paradigms of structured-programming and object-oriented
programming. Human-computer interaction and web design offer further examples. Shneiderman (1998)
shows how principles of interface design rest on models of human memory and cognition, which means
that the designer has more, and deeper, knowledge to rely on when interpreting design guidelines in
particular circumstances. In contrast, other books on web design merely offer long lists of rather random
and seemingly unconnected design guidelines, as in “Heathrow- literature” in management (Burrell, 1989).

It is difficult to envision situations where there is a complete absence of justificatory knowledge. Further,
the limitations themselves can be important. For researchers, such limited knowledge provides indicators
of potential fruitful areas for future research, with the phenomena that arise out of the creation of design
science artifacts the targets of natural science or social science research (March and Smith, 1995).
Takeda et al. (1990) express a similar view and see new knowledge generated through design activity
when post-design reflection shows that the theories that motivated the design are incomplete.
Justificatory knowledge also provides both researchers and practitioners with information useful in
comparing competing ISDTs. All other considerations being equal, an ISDT with stronger, more complete
justificatory knowledge would usually be the more appropriate choice.3 Examples show the range of
theories relied upon in designs. Codd’s relational database design relies on knowledge from
mathematical set theory, relational algebra, and some understanding of the limitations of human
cognition and human tendency to error. Chiang and Mookerjee (2004) build their policy of fault thresholds
from knowledge of group coordination processes, team cognition, software development productivity,
and fault growth models.

7) Principles of implementation
This component concerns the means by which the design is brought into being─a process involving
agents and actions. Simon (1996, p. 130) believes that process and product are inextricably linked.

3 Just as we would more likely choose a medical treatment or drug when we understood something of why it worked, compared with
the case when there was no underlying justification for its efficacy.

Issue 5 Volume 8 Article 2
329

What we ordinarily call “style” may stem just as much from these decisions about the design
process as from alternative emphases on the goals to be realized through the final design
… both the shape of the design and organization of the design process are essential
components of a theory of design.

Several examples illustrate the nature of this component. Normalization principles are available in
relational database theory to guide the database builder who is constructing a specific database.
McNurlin and Sprague (2002) describe several methods for building instances of DSS, including DSS
generators. They also describe how different processes can be followed to build variants of the DSS
design: institutional DSS and “quick hit” DSS.

Principles can also be provided for the implementation in practice of an abstract, generic design method
or development approach. To give an example, Sommerville (2001) shows the generic steps in the
prototyping process as: (1) establish prototype objectives, (2) define prototype functionality, (3) develop
prototype, and (4) evaluate prototype. Sommerville also gives advice on how to implement these general
principles in practice: for example, to reduce prototyping costs and accelerate the delivery schedule,
some functionality can be omitted from the prototype.

The example of the fault threshold policy illustrates further this concept of “the process of implementing a
process.” Chiang and Mookerjee (2004) show how the policy varies with project parameters, including
project complexity, the skills of the project team, the development environment, and the schedule
flexibility. The provision of implementation principles in their design theory would mean specifying explicitly
the steps a project manager would take to incorporate these parameters into the policy formulae in
implementing the policy in a project. Iversen et al. (2004) give advice on how their generic approach to
risk management can be used in specific contexts, suggesting particularly that an experienced facilitator
is required.

8) Expository instantiation
Hevner et al. (2004) believed that “design research must produce a viable artifact in the form of a
construct, model, method, or instantiation.” A realistic implementation contributes to the identification of
potential problems in a theorized design and in demonstrating that the design is worth considering. The
question that remains is whether an instantiation can be a component of a theory. Instantiated artifacts
are things in the physical world, while a theory is an abstract expression of ideas about the phenomena in
the physical world.

We make an argument for including an instantiation as a possible component in an ISDT for the purposes
of theory representation or exposition. Theory in the natural sciences has traditionally been represented in
natural language statements or in mathematical notation. A further consideration is that the artifact itself
has some representational power: an artifact can assist with the communication of the design principles in
a theory. To take an example, the placement of items on a computer screen can be described using
screen coordinates. This process is tedious, and the results are not very understandable. A copy of a
screen display is more immediately comprehended and would serve better if one were illustrating some
guidelines for a screen design. Similarly, a prototype system can often be used to illustrate how a system
functions, with better communicative power than a natural language description. However, if the
instantiation or artifact is all that there is, rather than a theory of design, then following Cross’s argument
(2001) expressed previously, the level of knowledge is that of a craft-based discipline.

Both Codd (1970) and Chiang and Mookerjee (2004) use mock-ups of real systems to help explain their
designs. Codd gives a simple example of the rows and columns and data elements in a relational
database table. Chiang and Mookerjee demonstrate the fault threshold policy in a scenario with
invented project attributes. Iversen et al. (2004) present examples of their risk management approach in a
Danish bank as it evolved through an action research cycle.

5. Concluding Remarks
The aim of this research essay was to delineate the possible components of a design theory for IS,
providing an ontological language for the discussion of these theories. We distinguished eight separate
components: (1) the purpose and scope, (2) constructs, (3) principles of form and function, (4) artifact

330

Issue 5 Volume 8 Article 2

mutability, (5) testable propositions, (6) justificatory knowledge, (7) principles of implementation, and (8)
an expository instantiation.

The essay reviewed prior work with relevance, including Simon’s monograph on the sciences of the
artificial, views from other disciplines, and views from general philosophy. The work of Walls et al. (1992)
provided a prior attempt at the specification of the components of a design theory for IS. We have
extended this work, however, by merging ideas from the other sources that were reviewed and by more
carefully examining Dubin (1978) and Simon (1996). We have also taken some ideas from the design
science field, particularly in regard to the potential importance of an instantiation of a design theory.

Two aspects of the ontology we propose are novel in terms of the structural nature of theory generally. The
first is in recognizing the role of an instantiation of a design theory as an expository or representational tool.
That is, an instantiation such as a prototype can be seen as serving a communicative purpose in illustrating
the design principles that are embodied within it. The second is in recognizing the degree to which IS
design theories deal with mutable, or changeable, artifacts. Design theories can deal with mutability in a
number of ways, but it should be recognized that this is a special component of an IS design theory.

The detailed anatomy of a design theory that we presented is itself a theory, a theory that analyses and
describes. Gregor (2006) suggests that this type of theory (Type 1) can be assessed by considering whether
any framework developed is useful in aiding analysis; whether elements of the framework are meaningful,
natural and well-defined; and whether any categorization is complete and exhaustive. The degree to
which the framework in this paper is useful to other researchers in analyzing and formulating theory is
something that needs to be investigated through further application in practice. We have attempted to
describe all constructs as clearly as possible, and our synthesis of prior work leads us to believe that our list
of the structural components of design theory is fuller than any given previously. Analysis of examples of
design theories using our framework identified no additional structural elements of theory that should be
included. Other aspects of research publications found (for example, research approach, motivation,
evaluation, and claims of significance) are not part of a theory. Nor was any over-specification in our
framework found. There were no structural elements that could not be matched in design theory articles
taken from leading IS journals. However, we analyzed only a small number of articles, and further research
could usefully test the framework against a larger sample.

This paper has focused on the structural components of design theory, but some consideration can also
be given to how the ideas developed are used in practice. The listing of the theory components gives
some guidelines to what might be included in an article or thesis that reports constructive research. It
could be expected in a full, well-developed theory that all components would be present in some form.
Theory that is in earlier stages of development might contain a sub-set of the components. For example,
Hall, Paradice and Courtney (2003) propose a theory for a learning-oriented knowledge management
system that does not include an instantiation. The exemplar articles we studied included all eight theory
components, although some had to be searched for.

Epistemological concerns regarding the building and testing of design theory and criteria for judging its
worth have been dealt with elsewhere (see March and Smith, 1995; Hevner et al., 2004) and were not the
focus of this essay. However, a number of relevant points can be deduced from our proposals in this essay.

The first is the importance of specifying the goals and scope of the theory clearly. It is this component that
allows new theories to be compared with existing design theories with similar goals and scope, providing a
basis for judging whether the new theory offers a further contribution to knowledge. Researchers should
review prior knowledge regarding the design of artifacts with similar goals, although the artifacts may be
classified under different labels, reflecting our discipline's predilection for new names for new waves of
technology. Thus, for example, work on a system described as a knowledge management system should
review relevant prior work on expert systems or decision support systems.

Second, the nature of theory building for designs can be recognized. If we return to Simon’s work, we find
several descriptions of how the construction of an artifact can precede the knowledge of why it works.
The extreme complexity of modern computer systems means that the design and building of systems is an
iterative process, as recognized in software engineering methodologies (Sommerville, 2001), and the

Issue 5 Volume 8 Article 2
331

documentation of how and why a system works is likely to occur after the fact. Theory recorded after the
fact is by no means less of a theory, so long as it still satisfies the requirements of being abstract and
general. That is, when reflecting on the construction of a particular system, one would need to represent
the important principles underlying its construction in such a way that they are applicable to other systems
yet to be constructed. A number of instantiations in multiple case studies may need to be studied before
the general principles enabling them to function can be extracted (see van Aken, 2004).

Third, we can offer some observations about the degree to which design theorizing resembles what occurs
in the natural sciences. Design activities include elements of creativity and imagination. Given many
components for a system, all of which could be combined in myriad ways, all theoretically sound, an
experienced designer will likely employ some “art” in transforming the components into a novel and
workable system. Simon’s work is influenced by the notion that design is a creative activity and, therefore,
may not be able to rely on existing theory. The question remains open as to whether “science” is an
appropriate word to apply to IS design theory, given the degree of creativity involved.4

This paper makes contributions at several levels. Novice researchers should benefit from the depiction of
the basic components of design theory, helping to answer the question: “What is design theory?” At a
conceptual level, we have provided an advance on previous work in systematically searching for and
combining differing perspectives on the components of design theory, addressing the challenge posed by
Walls et al. (2004) recently to “re-examine the structure of ISDT and enhance its usability through a better
structure.” The outcome is a specification framework that is more complete and contains important
components that were absent in earlier work. Novel aspects of the paper are the recognition that the
“mutability” of IS artifacts should be reflected in theorizing about these artifacts and that instantiations can
assist in communicating a design theory.

In a practical sense, this more rigorous approach to specifying design theory should assist with the
development of cumulative design theory that is relevant to industry and with raising our discipline above
the craft-level. Walls et al. (1992) provide a valuable start in this direction. Our new specification is more
complete and some concerns with the Walls et al. specification have been addressed, which we believe
will make the specification more usable. More use and understanding of the nature of theory resulting
from design research should assist with more cumulative knowledge building. Design theories are more
likely to be cumulative if new attempts at theorizing clearly identify the prior theory that relates to the
problem area, which is identified by the “purpose and scope” component, and then build on as much
relevant prior work as possible. For example, if the problem area is “how to elicit knowledge from experts,”
then a researcher should identify existing work that has tackled this problem, without concern for the
labels under which the work has been done─whether in artificial intelligence, expert systems or knowledge
management, or in industry case studies. It is design knowledge that is of vital concern to industry, and
improving design theorizing should increase the relevance of our work.

The depiction of design theory in this essay may have relevance to other applied disciplines, but it also
helps define what is unique about the IS discipline, namely, the construction of mutable artifacts where
complexity arises from the interaction of humans with information technology. Whether the anatomical
framework applies to other disciplines could be a question for further research.

References
Alexander, C., S. Ishikawa, and M. Silverstein (1977) A Pattern Language: Towns, Buildings, Construction,

Oxford, UK: Oxford University Press.
Au, Y. (2001) “Design Science I: The Role of Design Science in E-Commerce Research,” Communications of

the AIS, (7).
Avison, D. and T. Wood-Harper (1990) Multiview: An Exploration in Information Systems Development,

Maidenhead, UK: McGraw-Hill.
Ball, N. (2001) “Design Science II: The Impact of Design Science on E-Commerce Research and Practice,”

Communications of the AIS, (7).

4 Although it is recognized that science in practice is also likely to involve some aspects of creativity.

332

Issue 5 Volume 8 Article 2

Baskerville, R. L. and M. D. Myers (2002) “Information Systems as a Reference Discipline, MIS Quarterly,
(26)1, pp. 1-14.

Benbasat, I. and R. Zmud (2003) “The Identity Crisis Within the IS Discipline: Defining and Communicating
the Discipline’s Core Properties,” MIS Quarterly, (27)2, pp. 183-194.

Bhaskar, R. (1989) Reclaiming Reality, London: Verso.
Bunge, M. (1979) “Philosophical Inputs and Outputs of Technology” in G. Bugliarello and D. Doner (eds.)

The History of Philosophy and Technology, Urbana: University of Illinois Press, pp. 262-281. (Abridged
in Scharff and Dusak, 2003).

Burrell, G. (1989) “The Absence of Philosophy in Anglo-American Management Theory,” Human Systems
Management, (8), pp. 307-312.

Burstein, F. and S. Gregor (1999) “The Systems Development or Engineering Approach to Research in
Information Systems: An Action Research Perspective,” in Proceedings of the 10th Australasian
Conference on Information Systems, B. Hope and P. Yoong, (eds.), Victoria University of Wellington,
pp. 122-134.

Bush, V. (1945) “As We May Think,” The Atlantic Monthly, July.
Carlsson, S. (2005) “Developing Information Systems Design Knowledge: A Critical Realist Perspective,” The

Electronic Journal of Business Research Methodology, (3)2, pp. 93-102.
Chiang, I. R. and V. S. Mookerjee (2004) “A Fault Threshold Policy to Manage Software Development

Projects,” Information Systems Research, (15)1, pp. 3-21.
Codd, E. F. (1970) “A Relational Model of Data for Large Shared Data Banks,” Communications of the

ACM, (13)6, pp. 377-387.
Codd, E. F. (1982) “Relational Database: A Practical Foundation For Productivity (The 1981 Turing Award

Lecture),” Communications of the ACM, (2)25, pp. 109-117.
Cross, N. (2001) “Design/Science/Research: Developing a Discipline,” in the 5th Asian Design Conference:

International Symposium on Design Science, Seoul, Korea: Su Jeong Dang Printing Company.
Cushing, B. E. (1990) “Frameworks, Paradigms and Scientific Research in Management Information

Systems,” Journal of Information Systems, (2)4, pp. 38-59.
Dahlbom, B. (1996) “The New Informatics,” Scandinavian Journal of Information Systems, (8)2, pp. 29-47.
David, J., G. Gerard, and W. McCarthy (2000) Design Science: Building the Future of Accounting

Information Systems, SMAP.
Davis, G. (2000) “Information Systems Conceptual Foundations: Looking Backward and Forward” in R.

Baskerville, J. Stage, and J. DeGross (eds.) Organizational and Social Perspectives on Information
Technology, Boston: Kluwer.

Dubin, R. (1978) Theory Building, revised edition, London: Free Press.
Duhem, P. (1962) The Aim and Structure of Physical Theory, New York: Atheneum.
Fernandez, E. B. (1998) “Building Systems Using Analysis Patterns,” Third International Workshop on Software

Architecture, Orlando, FL: ACM.
Fowler, M. (2003) Patterns of Enterprise Architecture, Boston, MA: Addison-Wesley.
Gamma, E., et al. (1995) Design Patterns: Elements of Reusable Object-Oriented Software, Reading, MA:

Addison-Wesley.
Gane, C. and T. Sarson (1979) Structured Systems Analysis: Tools and Techniques,, Englewood Cliffs, NJ:

Prentice-Hall.
Glass, R. (1996) “The Relationship Between Theory and Practice in Software Engineering,” Communications

of the ACM, (39)11, pp. 11-13.
Godfrey-Smith, P. (2003) Theory and Reality, Chicago: University of Chicago Press.
Gregg, D., U. Kulkarni, and A. Vinze (2001) “Understanding the Philosophical Underpinnings of Software

Engineering Research in Information Systems,” Information Systems Frontiers, (2)3, pp. 169-183.
Gregor, S. (2002a) “A Theory of Theories in Information Systems in S. Gregor and D. Hart (eds.) Information

Systems Foundations: Building the Theoretical Base, Canberra: Australian National University, pp. 1-
20.

Gregor, S. (2002b) “Design Theory in Information Systems,” Australian Journal of Information Systems,
Special Issue, pp. 14-22.

Gregor, S. (2006) “The Nature of Theory in Information Systems,” MIS Quarterly, (3)30, pp. 611-642.
Gregor, S. and D. Jones (2004) “The Formulation of Design Theories” in Linger, H. et al.(eds.) Constructing

the Infrastructure for the Knowledge Economy: Methods and Tools, Theory and Practice, New York:
Kluwer Academic, pp. 83-93.

Issue 5 Volume 8 Article 2
333

Habermas, J. (1984) Theory of Communicative Action. Reason and the Rationalization of Society, (Vol. 1),
London, U.K.: Heinemann.

Hall, D., D. Paradice, and J. Courtney (2003) “Building a Theoretical Foundation for a Learning-oriented
Management System,” Journal of Information Technology Theory and Application, (2)5, pp. 63-85.

Heidegger, M. (1993) “The question concerning technology” in Basic Writings, San Francisco: Harper, pp.
311 - 341 (Translated from Martine Heidegger (1954) Vortrage and Aufsatze, Gunther Neske Verlag,
Pfullingen, pp. 13-44.

Herzberg, F. (1966) Work and the Nature of Man, Cleveland: Western Publishing.
Hevner, A. and S. March (2003) “The Information Systems Research Cycle,” IEEE Computer, (36)11, pp. 111-

113.
Hevner, A. et al. (2004) “Design Science in Information Systems Research,” MIS Quarterly, (28)1, pp. 75-105.
Hirschheim, R. and H. K. Klein (2004) “Crisis in the Field: A Critical Reflection on the State of the Discipline,”

Journal of the Association for Information Systems, (5)4, pp. 237-293.
Hooker, R. (1996) Aristotle: The Four Causes- Physics II.3,

http://www.wsu.edu:8080/~dee/GREECE/4CAUSES.HTM
(current Mar. 15, 2007).
Iivari, J. (1983) Contributions to the Theoretical Foundations of Systemeering Research and the Picoco

Model, Oulu, Finland: Institute of Data processing Science- University of Oulu, Acta Univ.
Iivari, J. (2003) “Towards Information Systems as a Science of Meta-artifacts,” Communications of the AIS,

(12)37, Nov., pp. 568-581.
Iivari, J., R. Hirschheim, and H. K. Klein (1998) “A Paradigmatic Analysis Contrasting Information Systems

Development Approaches and Methodologies,” Information Systems Research, (9)2, pp. 164 – 193.
Iversen, J., L. Mathiassen, and P. Nielsen (2004) “Managing Process Risk in Software Process Improvement:

An Action Research Approach,” MIS Quarterly, (28)3, pp. 395-434.
Jarvinen, P. (2001) On Research Methods, Tampere, Finland: Opinpajan Kirja.
Kasanen, E., K. Lukka, and A. Siitonen (1993) “The Constructive Approach in Management Accounting

Research,” Journal of Management Accounting Research, (5), pp. 241-264.
Kelly, A. E. (2003) “Research as Design,” Educational Researcher, (32), pp. 3-4.
Klein, H. K. and M. D. Myers (1999) “A Set of Principles for Conducting and Evaluating Interpretive Field

Studies in Information Systems,” MIS Quarterly, (23)1, March , pp. 67 – 93.
Lau, F. (1997) “A Review on the Use of Action Research in Information Systems Studies” in L. A. Liebenau

and J. DeGross (eds.) Information Systems and Qualitative Research, London: Chapman & Hall, pp.
31-68.

Lee, A. S. (2001) “Editorial,” MIS Quarterly, (25:1), pp. iii-vii.
Lewin, K. (1945) “The Research Centre for Group Dynamics at Massachusetts Institute of Technology,”

Sociometry, (8), pp. 126-135.
Love, T. (2000) “Philosophy of Design: A Meta-theoretical Structure for Design Theory,” Design Studies, (21),

pp. 293-313.
Lukka, K. (2000) “The Key Issues of Applying the Constructive Approach to Field Research” in T. Reponen

(ed.) Management Expertise for the New Millennium: In Commemoration of the 50th Anniversary of
the Turku School of Economics and Business Administration, Turku, Finland: Turku School of
Economics and Business Administration, pp. 113-128.

Lyytinen, K. (2002) “Designing of What? On the Ontologies of Information System Design,” Workshop on
Managing as Designing: Creating a Vocabulary for Management Education and Research,
Weatherhead School of Management, June 14-15,
http://design.case.edu/2002workshop/index.html (current June 2004).

Magee, B. (1998) Confessions of a Philosopher, London: Phoenix.
March, S. T. and G. F. Smith (1995) “Design and Natural Science Research on Information Technology,”

Decision Support Systems, (15), pp. 251-266.
Markus, M., L. A. Majchrzak, and L. Gasser (2002) “A Design Theory for Systems That Support Emergent

Knowledge Processes,” MIS Quarterly, (26)3, pp. 179-212.
Markus, M. L. and D. Robey (1988) “Information Technology and Organizational Change: Causal Structure

in Theory and Research,” Management Science, (34)5, pp. 583-598.
McNurlin, B. C. and R. H. Sprague (2002) Information Systems Management, 5th edition, Upper Saddle

River, NJ: Prentice Hall.
Mingers, J. (2000) “The Contribution of Critical Realism as an Underpinning Philosophy for OR/MS and

Systems,” Journal of the Operational Research Society, 51(11), pp. 1256-1270.

334

Issue 5 Volume 8 Article 2

Morrison, J. and J. F. George (1995) “Exploring the Software Engineering Component in MIS Research,”
Communications of the ACM, (7)38, pp. 80-91.

Nagel, E. (1979) The Structure of Science, Indianapolis, IN: Hackett Publishing Co.
Nunamaker, J. F., M. Chen, and T. Purdin (1990-91) “Systems Development in Information Systems

Research,” Journal of Management Information Systems, (7)3, pp. 89-106.
OED (Oxford English Dictionary Online), http://dictionary.oed.com (current Aug. 10, 2004).
O’Hear, A. (1989) Introduction to the Philosophy of Science, Oxford, UK: Clarendon Press.
Orlikowski, W. J. and C. S. Iacono (2001) “Research Commentary: Desperately Seeking the “IT” in IT

Research – A Call to Theorizing the IT Artifact,” Information Systems Research, (12)2, pp. 121-134.
Owen, C. (1997) “Design Research: Building the Knowledge Base,” Journal of the Japanese Society for the

Science of Design, (5)2, pp. 36-45.
Passmore, J. (1967) “Logical Positivism” in P. Edwards (ed.) Encyclopaedia of Philosophy (Volume V), New

York: Macmillan, pp. 52-57.
Popper, K. (1980) The Logic of Scientific Discovery, London: Unwin Hyman.
Popper, K. (1986) Unended Quest an Intellectual Autobiography, Glasgow: Fontana.
Preston, M. and N. Mehandjiev (2004) “A Framework for Classifying Intelligent Design Theories,”

Proceedings of WISER-04, November, Newport Beach, CA.
Purao, S. (2002) “Design Research in the Technology of Information Systems: Truth or Dare,” GSU

Department of CIS Working Paper, Atlanta: Georgia State University.
Rossi, M. and M. Sein (2003) “Design Research Workshop: A Proactive Research Approach,” Presentation

delivered at IRIS 26, August 9 – 12, 2003,
http://tiesrv.hkkk.fi/iris26/presentation/workshop_designRes.pdf (current Jan. 16, 2004).
Sarker, S. and A. Lee (2002) “Using a Positivist Case Research Methodology to Test Three Competing

Theories-in-use of Business Process Reengineering,” Journal of the AIS, (2)7.
Savelson, R. et al. (2003) “On the Science of Education Design Studies,” Educational Researcher, (1)32, pp.

25-28.
Scharff, R. C. and V. Dusek (2003) Philosophy of Technology: The Technological Condition: An Anthology,

Malden, MA: Blackwell Publishing.
Schön, D. (1983) The Reflective Practitioner, New York: Basic Books.
Shneiderman, B. (1998) Designing the User Interface: Strategies for Effective Human-Computer Interaction,

Reading, MA: Addison-Wesley.
Simon, H. (1981) The Sciences of the Artificial, 2nd edition, Cambridge, MA: MIT Press.
Simon, H. (1996) The Sciences of the Artificial, 3rd edition, Cambridge, MA: MIT Press.
Sommerville, I. (2001) Software Engineering, New York: Addison-Wesley.
Takeda, H. et al. (1990) “Modeling Design Processes,” AI Magazine, (11)4, Winter, pp. 37-48.
Turban, E. and J. Aronson (2001) Decision Support Systems and Intelligent Systems, Upper Saddle River, NJ:

Prentice-Hall.
Tsoukas, H. (1989) “The Validity of Idiographic Research Explanations,” Academy of Management Review,

(14)4, pp. 551-561.
Vaishnavi, V. and W. Kuechler (2004/5) “Design Research in Information Systems,”

http://www.isworld.org/Researchdesign/drisISworld. (current Mar., 2006).
 Van Aken, J. (2004) “Management Research Based on the Paradigm of the Design Sciences: The Quest

for Field-tested and Grounded Technological Rules,” Journal of Management Studies, (41)2, pp.
219-246.

Van Aken, J. (2005) “Management Research as a Design Science: Articulating the Research Products of
Mode 2 Knowledge Production in Management,” British Journal of Management, (16)1, pp. 19-36.

Venable, J. (2006) “The Role of Theory and Theorising in Design Science Research,” First International
Conference on Design Science Research in Information Systems and Technology, Claremont,
California, pp. 1-18.

Walls, J. G., G. R. Widemeyer, and O. A. El Sawy (1992) “Building an Information System Design theory for
Vigilant EIS, Information Systems Research, (3)1, pp. 36-59.

Walls, J. G., G. R. Widmeyer, and O. A. El Sawy (2004) “Assessing Information System Design Theory in
Perspective: How Useful Was Our 1992 Rendition?,” Journal of Information Technology Theory and
Practice, (6)2, pp. 43-58.

Weber, R. (1987) “Toward a Theory of Artifacts: A Paradigmatic Base for Information Systems Research,”
Journal of Information Systems, (1)1, Spring, pp. 3-19.

Weber, R. (1997) Ontological Foundations of Information Systems, Melbourne: Coopers & Lybrand.
Wyssusek, B. (2004) “Onotology and Ontologies in Information Systems Analysis and Design: A Critique,”

Tenth Americas Conference on Information Systems, New York, New York.

Issue 5 Volume 8 Article 2
335

About the Authors
Shirley Gregor is the ANU Endowed Chair in Information Systems at the Australian National University,
Canberra, where she heads the National Centre for Information Systems Research and is Head of the
School of Business and Information Management. Professor Gregor’s current research interests include the
adoption and strategic use of information and communications technologies, intelligent systems and
human-computer interface issues, and the theoretical foundations of information systems. Professor
Gregor spent a number of years in the computing industry in Australia and the United Kingdom before
beginning an academic career. She has published in journals including Management Information Systems
Quarterly, International Journal of Electronic Commerce, International Journal of Human Computer
Studies, European Journal of Information Systems and Information Technology & People. Professor Gregor
was inaugural President of the Australasian Association of Information Systems 2002-2003 and was made
an Officer of the Order of Australia in the Queen’s Birthday Honours list in June 2005 for services as an
educator and researcher in the field of information systems and for the development of applications for
electronic commerce in the agribusiness sector.

David Jones is a Senior Lecturer and Head of E-Learning and Materials Development at Central
Queensland University, Rockhampton. His research interests include e-learning, information systems
development and adoption, ateleological systems development and the theoretical foundations of
information systems. He has published over 40 journal and conference papers within the field of
information systems and e-learning and co-authored a book on e-learning.

Copyright © 2007, by the Association for Information Systems. Permission to make digital or hard copies of
all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and full citation
on the first page. Copyright for components of this work owned by others than the Association for
Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers for commercial use, or to redistribute to lists requires prior specific permission and/or fee.
Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn:
Reprints, or via e-mail from ais@gsu.edu.

