


An H∞ control design approach to networked control systems

Xiefu Jiang and Qing-Long Han*

Abstract— This paper is concerned with the design problem
of robust H∞ control for linear networked control systems
(NCSs) with network-induced delay and data packet dropout.
By choosing a new Lyapunov-Krasovskii functional, a sufficient
condition on the existence of robust H∞ controller is derived
in the form of a matrix inequality. No model transformation is
needed and no redundant matrix variable is introduced. Then
an iterative algorithm is introduced for obtaining the robust
H∞ controller design method based on the matrix inequality.
No parameter needs to be selected in advance. Two numerical
examples are finally given to illustrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

In many complicated control systems, such as manufac-

turing plants, power plants, automobiles, aircraft, and ro-

bot manipulators, communication networks are employed to

exchange information and control signals between spatially

distributed system components, like supervisory computers,

controllers, and intelligent input-output (I/O) devices, e.g.

smart sensors and actuators [10]. The feedback control sys-

tems wherein the control loops are closed via the communi-

cation channel are called networked control systems (NCSs).

The introduction of control network “bus” architectures can

improve the efficiency, flexibility, and reliability of these

integrated applications, reducing installation, reconfiguration,

and maintenance time and costs [6]. Since an NCS operates

over a network, data transfers between the controller and the

remote system, e.g. sensors and actuators in a distributed

control system, will induce network delay in addition to

the controller processing delay. There are essentially three

kinds of delays: (1) communication delay τsc between the

sensor and the controller; (2) computational delay τc in the

controller and (3) communication delay τca between the

controller and the actuator [7]. The overall network-induced

delay, which is also the transfer delay of data packets, can

be computed by τ = τsc + τ c + τ ca. Due to many uncertain

factors, the network-induced delays are generally considered

as time-varying ones [9], [15], [12]. Some methodologies

have been formulated based on several types of network

behaviors and configurations in conjunction with different

ways to treat the delay problem [7], [12]. As for H∞ control
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of NCSs, few results are available in the literature. Recently,

[12] has investigated the problem of robust H∞ control of

the following system controlled through a network.






ẋ(t) = [A+∆A(t)]x(t)+[B+∆B(t)]u(t)+Bww(t),
z(t) = Cx(t) + D1u(t),
x(t0) = x0,

(1)

where x(t) ∈ R
n is the state vector; u(t) ∈ R

p is the input

vector; w(t) ∈ L2[0,∞) is the exogenous disturbance signal;

z(t) ∈ R
r is the controlled output; A, B , Bw, C, and D1 are

some constant matrices of appropriate dimensions; ∆A(t)
and ∆B(t) denote the parameter uncertainties of the system

(1) satisfying

[ ∆A(t) ∆B(t) ] = DF (t)[ E Eb ], (2)

where D, E, and Eb are some constant matrices of ap-

propriate dimensions. F (t) ∈ R
l×m is an unknown time-

varying matrix function with Lebesgue measurable elements

satisfying
FT (t)F (t) ≤ I. (3)

Both time-varying network-induced delay and data packet

dropout are considered by [12] simultaneously. The follow-

ing bounding was used in [12].

−
∫ t

t−η
ẋT (s)R1ẋ(s)ds

= −
∫ t

ikh
ẋT (s)R1ẋ(s)ds −

∫ ikh

t−η
ẋT (s)R1ẋ(s)ds

≤ −
∫ t

ikh
ẋT (s)R1ẋ(s)ds.

It is clear that −
∫ ikh

t−η
ẋT (s)R1ẋ(s)ds ≤ 0 due to R1 > 0.

−
∫ ikh

t−η
ẋT (s)R1ẋ(s)ds was bounded by the over bounding

“0”. Moreover, when designing the controller, some matrix

variables Mi(i = 1, 2, 3, 4), which are in fact “independent”

ones, need to be supposed that Mi = ρiM1(i = 2, 3, 4)
and some parameters ρi(i = 2, 3, 4) need to be selected

in advance. These have brought more conservatism for

controller design. How to reduce the conservatism motivates

the present study.

In this paper, we will study the problem of designing

robust H∞ network-based controller for the system (1) by

employing the following new functional

V (t) = xT (t)Px(t) +
∫ t

t−τm

xT (s)Q1x(s)ds

+τm

∫ 0

−τm

ds
∫ t

t+s
ẋT (θ)R1ẋ(θ)dθ

+
∫ t

t−η
xT (s)Q2x(s)ds

+η
∫ 0

−η
ds

∫ t

t+s
ẋT (θ)R2ẋ(θ)dθ

+δ
∫ −τm

−η
ds

∫ t

t+s
ẋT (θ)Sẋ(θ)dθ, (4)

where P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, and

S > 0. In order to derive a much less conservative result,

we will avoid the over bounding for −
∫ t−τm

t−η
ẋT (s)Sẋ(s)ds,

which is corresponding to −
∫ t

t−η
ẋT (s)R1ẋ(s)ds in [12].

Based on an integral inequality recently derived in [4], we

will give a sufficient condition on the existence of robust
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H∞ controller in the form of matrix inequalities. No model

transformation will be needed and no redundant matrix

variable will be introduced. In order to design the controller

by using MATLAB LMI Toobox, we will introduce an

iterative algorithm. No parameter will be selected in advance.

We will also give some numerical examples to illustrate the

effectiveness of the proposed results.

II. PROBLEM STATEMENT

In the following, for simplicity, we will write

A(t) � A + ∆A(t), B(t) � B + ∆B(t).

Throughout this paper, suppose that all the system’s states

are available for state feedback. In the presence of the control

network, which is shown in Fig. 1, data transfers between the

controller and the remote system, e.g. sensors and actuators

in a distributed control system will induce networked delay

in addition to the controller proceeding delay. There are

essentially three kinds of delay: (1) communication delay

τsc between the sensor and the controller; (2) computational

delay τ c in the controller; and (3) communication delay τca

between the controller and the actuator.

Fig. 1. The networked control system.

First, since there exists the communication delay τsc

between the sensor and the controller and computational

delay τ c in the controller, which is shown in Fig. 1, the

following control law is employed for the system (1) – (3)

u(t+) = Kx(t − τsc
k − τ c

k),
t ∈ {kh + τsc

k + τ c
k , k = 1, 2, · · ·},

(5)

where K is a controller gain to be determined. h is the

sampling period. Second, substituting (5) into (1) yields the

closed-loop system by considering the communication delay

τ ca between the controller and the actuator






ẋ(t) = A(t)x(t) + B(t)Kx(kh) + Bww(t),
z(t) = Cx(t) + D1Kx(kh),

t ∈ [kh + τk, (k + 1)h + τk+1), k = 1, 2, · · · .
(6)

Considering the data packet dropout, the closed-loop system

(6) can be modified as [12]






ẋ(t) = A(t)x(t) + B(t)Kx(ikh) + Bww(t),
z(t) = Cx(t) + D1Kx(ikh),

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · ,
(7)

where ik, k = 1, 2, · · · are some integers and {i1, i2, i3, · · ·}
⊂ {0, 1, 2, · · ·}. The time-delay τk = τsc

k + τ c
k + τ ca

k denotes

the time from the instant ikh when sensor nodes sample

sensor data from a plant to the instant when actuators transfer

data to the plant (as shown in Fig. 2). Obviously,
⋃∞

k=1[ikh+
τk, ik+1h + τk+1) = [t0,∞), t0 ≥ 0. In this paper, u(t) = 0
is assumed before the first control signal reaches the plant.

Fig. 2. Time diagram for data packets.

Throughout this paper, the following assumptions, defini-

tion and lemma are needed.

Assumption 1: [12] The sensor is clock-driven; the con-

troller and actuator are event-driven.

Assumption 2: [12] There exist two constants τm ≥ 0 and

η > 0 such that
{

(ik+1 − ik)h + τk+1 ≤ η,

τk ≥ τm, k = 1, 2, · · ·
(8)

Remark 1: Since x(ikh) = x(t − (t − ikh)), defining

τ(t) = t − ikh, t ∈ [ikh + τk, ik+1h + τk+1), k = 1,2,· · ·,
rewrite (7) as

{

ẋ(t) = A(t)x(t) + B(t)Kx(t − τ(t)) + Bww(t),
z(t) = Cx(t) + D1Kx(t − τ(t)),

(9)

where τ(t) is piecewise-linear with derivative τ̇(t) = 1 for

t �= tk and τ(t) is discontinuous at the points t = tk, k =
1,2,· · ·. It is clear that τk ≤ τ(t) ≤ (ik+1 − ik)h + τk+1 for

t ∈ [ikh+τk, ik+1h+τk+1), k = 1,2,· · ·. So the system (7) is

equivalent to the linear system (9) with interval time-varying

delay. The initial condition of the state x(t) on [t0 − η, t0]
is supplemented as

x(t) = φ(t), t ∈ [t0 − η, t0] with φ(t0) = x0, (10)

where φ(t) is a continuous function on [t0 − η, t0].
Definition 1: [12] For a prescribed scalar γ > 0, system

(9) is said to be robustly exponentially stable with an H∞

norm bound γ, if

(1) System (9) with w(t) ≡ 0 is robustly exponentially

stable, that is, there exist constants α > 0 and β > 0
such that ‖x(t)‖≤α sup

t0−η≤s≤t0

‖φ(s)‖ e−β(t−t0) for t ≥

t0 for all admissible uncertainties satisfying (2), (3);

(2) The controlled output z(t) satisfies ‖z(t)‖2 ≤
γ ‖w(t)‖2 for all nonzero w(t) ∈ L2[0,∞) under the

condition x(t) ≡ 0, ∀t ∈ [t0 − η, t0].
By Remark 1, the system (7) is equivalent to the time-

delay system (9). In the following, what the system (7) is

robustly exponentially stable with an H∞ norm bound γ

means that the delay system (9) is robustly exponentially

stable with an H∞ norm bound γ.

Lemma 1: [4] For any constant matrix W ∈ R
n×n, W =

WT > 0, scalar r > 0, and vector function ẋ : [−r, 0] → R
n

such that the following integration is well defined, then
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−r
∫ 0

−r
ẋT (t + ξ)Wẋ(t + ξ)dξ

≤ −(xT (t) − xT (t − r))W (x(t) − x(t − r)). (11)

For a prescribed scalar γ > 0, we define the performance

index

J(w) =
∫ ∞

0
[zT (θ)z(θ) − γ2wT (θ)w(θ)]dθ. (12)

III. MAIN RESULT

Rewrite the system described by (7), (2), and (3) as [2],

[3]

ẋ(t) = Ax(t) + BKx(ikh) + Dv(t) + Bww(t), (13)

g(t) = Ex(t) + EbKx(ikh), (14)

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · .

subject to uncertain feedback

v(t) = F (t)g(t). (15)

In view of (3), (14), and (15), we have

vT (t)v(t)

≤ [Ex(t) + EbKx(ikh)]T [Ex(t) + EbKx(ikh)],(16)

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · · .

We now state and establish the following proposition

which gives a sufficient condition on the existence of the

network-based H∞ controller for the system (1) – (3).

Proposition 1: For some given scalars τm, η, and γ, the

closed-loop system (7) is robustly exponentially stable with

an H∞ norm bound γ, if there exist a scalar ε̃ > 0, matrices

X > 0, Q̃1 > 0, Q̃2 > 0, R̃1 > 0, R̃2 > 0, S̃ > 0, Y of

appropriate dimensions such that

Γ =

[

Γ11 Γ12

ΓT
12 Γ22

]

< 0, (17)

where

Γ11 =

















Υ1 BY R̃1 R̃2 ε̃D Bw

(BY )T −2S̃ S̃ S̃ 0 0

R̃1 S̃ Υ2 0 0 0

R̃2 S̃ 0 Υ3 0 0
ε̃DT 0 0 0 −ε̃I 0
BT

w 0 0 0 0 −γ2I

















,

ΓT
12 =













τmAX τmBY 0 0 ε̃τmD τmBw

ηAX ηBY 0 0 ε̃ηD ηBw

δAX δBY 0 0 ε̃δD δBw

EX EbY 0 0 0 0
CX D1Y 0 0 0 0













,

Γ22 = −diag
{

XR̃−1
1 X, XR̃−1

2 X, XS̃−1X, ε̃I, I
}

,

with
δ = η − τm, Υ1 = AX + XAT + Q̃1 + Q̃2 − R̃1 − R̃2,

Υ2 = −Q̃1 − R̃1 − S̃,Υ3 = −Q̃2 − R̃2 − S̃.

Moreover, the controller gain of (5) is K = Y X−1.

Proof: Taking the derivative of V (t) with respect to t

along the trajectory of the system (13) yields

V̇ (t) = 2xT (t)P [Ax(t) + BKx(ikh) + Dv(t) + Bww(t)]

+xT (t)(Q1 + Q2)x(t) − xT (t − τm)Q1x(t − τm)

−xT (t − η)Q2x(t − η) + ẋT (t)(τ2
mR1 + η2R2

+δ2S)ẋ(t) − τm

∫ t

t−τm

ẋT (s)R1ẋ(s)ds

−η
∫ t

t−η
ẋT (s)R2ẋ(s)ds − δ

∫ t−τm

t−η
ẋT (s)Sẋ(s)ds

(18)

for t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·.

Use Lemma 1 to obtain

−τm

∫ t

t−τm

ẋT (s)R1ẋ(s)ds

≤ −[x(t) − x(t − τm)]T R1[x(t) − x(t − τm)], (19)

−η
∫ t

t−η
ẋT (s)R2ẋ(s)ds

≤ −[x(t) − x(t − η)]T R2[x(t) − x(t − η)], (20)

and

−δ
∫ t−τm

t−η
ẋT (s)Sẋ(s)ds

= −δ
∫ t−τm

ikh
ẋT (s)Sẋ(s)ds − δ

∫ ikh

t−η
ẋT (s)Sẋ(s)ds

≤ −[x(t − τm) − x(ikh)]T S[x(t − τm) − x(ikh)]

−[x(t − η) − x(ikh)]T S[x(t − η) − x(ikh)]. (21)

From (18) — (21), we have

V̇ (t) ≤ xT (t)[PA + AT P + Q1 + Q2]x(t)

+2xT (t)P [BKx(ikh) + Dv(t) + Bww(t)]

−xT (t − τm)Q1x(t − τm) − xT (t − η)Q2x(t − η)

+ẋT (t)(τ2
mR1 + η2R2 + δ2S)ẋ(t)

−[x(t) − x(t − τm)]T R1[x(t) − x(t − τm)]

−[x(t) − x(t − η)]T R2[x(t) − x(t − η)]

−[x(t − τm) − x(ikh)]T S[x(t − τm) − x(ikh)]

−[x(t − η) − x(ikh)]T S[x(t − η) − x(ikh)]

= ξT (t)Ωξ(t) (22)

for t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·, where

ξT(t)=[ xT(t) xT(ikh) xT(t−τm) xT(t−η) vT(t) wT(t)],

Ω =

















Υ̃1 Ω12 R1 R2 Ω15 Ω16

ΩT
12 Ω22 S S Ω25 Ω26

R1 S Υ̃2 0 0 0

R2 S 0 Υ̃3 0 0
ΩT

15 ΩT
25 0 0 DT ΘD DT ΘBw

ΩT
16 ΩT

26 0 0 BT
wΘD BT

wΘBw

















,

with

Υ̃1 = PA + AT P + Q1 + Q2 − R1 − R2 + AT ΘA,

Υ̃2 = −Q1 − R1 − S,

Υ̃3 = −Q2 − R2 − S,

Ω12 = PBK + AT ΘBK,

Ω15 = PD + AT ΘD,

Ω16 = PBw + AT ΘBw,

Ω22 = (BK)T ΘBK − 2S,

Ω25 = (BK)T ΘD

Ω26 = (BK)T ΘBw

Θ = τ2
mR1 + η2R2 + δ2S.

From (16), using S-procedure yields

V̇ (t) ≤ ξT (t)Φξ(t) (23)
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for ε > 0 and t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·,
where

Φ=Ω +

















(1, 1) (1, 2) 0 0 0 0
(1, 2)′ (2, 2) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −εI 0
0 0 0 0 0 0

















where

(1, 1) = εET E,

(1, 2) = εET EbK,

(2, 2) = ε(EbK)T EbK.

It is easy to see that if

Φ +

















CT C (1, 2) 0 0 0 0
(1, 2)′ (2, 2) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −γ2I

















< 0 (24)

(1, 2) = CT D1K,

(2, 2) = (D1K)T D1K.

then

V̇ (t) ≤ −zT (t)z(t) + γ2wT (t)w(t) (25)

for t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·. By Schur

complement, (24) is equivalent to
[

Φ11 Φ12

ΦT
12 Φ22

]

< 0 (26)

where

Φ11 =

















Υ̂1 PBK R1 R2 PD PBw

(BK)T P −2S S S 0 0

R1 S Υ̃2 0 0 0

R2 S 0 Υ̃3 0 0
DT P 0 0 0 −εI 0
BT

wP 0 0 0 0 −γ2I

















ΦT
12 =













τmA τmBK 0 0 τmD τmBw

ηA ηBK 0 0 ηD ηBw

δA δBK 0 0 δD δBw

E EbK 0 0 0 0
C D1K 0 0 0 0













Φ22 = diag{−R−1
1 ,−R−1

2 ,−S−1,−ε−1I,−I}

with Υ̂1 = PA + AT P + Q1 + Q2 − R1 − R2. Pre- and

post-multiplying both sides of (26) with

diag{X,X,X,X, ε̃I, I, I, I, I, I, I}

and its transpose, respectively, and introducing X = P−1,

Y = KX , Q̃1 = XQ1X , Q̃2 = XQ2X , R̃1 = XR1X ,

R̃2 = XR2X , S̃ = XSX and ε̃ = ε−1, then using Schur

complement yields (17).

First, we consider the robust exponential stability of the

closed-loop system (7) with w(t) ≡ 0. It is clear that the

following matrix inequality can be implied by (24).












(1, 1) (1, 2) R1 R2 (1, 5)
(1, 2)T (2, 2) S S (2, 5)

R1 S Υ̃2 0 0

R2 S 0 Υ̃3 0
(1, 5)T (2, 5)T 0 0 (5, 5)













< 0 (27)

where

(1, 1) = Υ̃1 + εET E,

(1, 2) = PBK + AT ΘBK + εET EbK,

(1, 5) = PD + AT ΘD,

(2, 2) = (BK)T ΘBK − 2S + ε(EbK)T EbK,

(2, 5) = (BK)T ΘD,

(5, 5) = DT ΘD − εI.

From (23) there exists a λ > 0 such that

V̇ (t) < −λxT (t)x(t) − λxT (ikh)x(ikh)
for t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·. Defining a

new functional as

Ṽ (t) = eσtV (t), (28)

where σ > 0 is a constant to be determined, then we have

‖x(t)‖
2
≤

M1 + M2

λmin(P )
sup

t0−η≤s≤t0

‖φ(s)‖
2
e−σ(t−t0), (29)

where

M1 = τmλmax(Q1)e
στm + ηλmax(Q2)e

ση

+M3(‖A‖ + ‖D‖ · ‖E‖),

M2 = λmax(P ) + τmλmax(Q1) + ηλmax(Q2)

+
1

2

(

τ3
mλmax(R1) + η3λmax(R2)

+2δ2τmλmax(S)
)

(‖A‖ + ‖D‖ · ‖E‖)

with M3 = τ3
mλmax(R1)e

στm + η3λmax(R2)e
ση +

δ2ηλmax(S)eση , and σ > 0 is a sufficiently small constant

such that
{

−λ + σλmax(P ) + σM1 < 0,

−λ + σM3(‖B‖ + ‖D‖ · ‖Eb‖) ‖K‖ < 0.
(30)

From (29) and by Definition 1, we can conclude that the

closed-loop system (7) with w(t) ≡ 0 is robustly exponen-

tially stable if matrix inequality (26) is satisfied.

Next, we consider the performance index (12) of the

system (7) under the condition x(t) ≡ 0, ∀t ∈ [t0 − η, t0].
Integrating both sides of (25) from ikh + τk to t, where

t ∈ [ikh + τk, ik+1h + τk+1), k = 1, 2, · · ·, we have

V (t) − V (ikh + τk)

≤
∫ t

ikh+τk

(

−zT (s)z(s) + γ2wT (s)w(s)
)

ds. (31)

Since
⋃∞

k=1[ikh + τk, ik+1h + τk+1) = [t0,∞) and V (t)
is continuous in t, it follows from (31) that

V (t) − V (t0) ≤
∫ t

t0

(

−zT (s)z(s) + γ2wT (s)w(s)
)

ds.

(32)
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Let t −→ ∞, then

∫ ∞

t0
zT (s)z(s)ds ≤ γ2

∫ ∞

t0
wT (s)w(s)ds,

which means that ‖z(t)‖2 ≤ γ ‖w(t)‖2. Q.E.D.

Remark 2: As a by-product, if we do not consider the

external disturbance, from the proof process of Proposition 1,

we can conclude that the closed-loop system (7) with w(t) ≡
0 is robustly exponentially stable if there exist a scalar ε > 0,

matrices P > 0 , Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, S > 0
of appropriate dimensions such that (27) is satisfied for a

given controller gain K.

Remark 3: As mentioned in the Introduction,

in order to derive a less conservative result, the

over bounding for the term −
∫ t−τm

t−η
ẋT (s)Sẋ(s)ds

should be avoided. From (21), one can clearly see

that in estimating the term −
∫ t−τm

t−η
ẋT (s)Sẋ(s)ds,

instead of using the over bounding “0” for the term

−
∫ t−τm

t−τ(t)
ẋT (s)Sẋ(s)ds, we use the “tighter” bounding

[

x(t − τ(t))
x(t − τm)

]T [

−S S

S −S

] [

x(t − τ(t))
x(t − τm)

]

, which is

semi-negative definite due to S > 0.

Notice that (17) is not an LMI and it can not be solved

directly by MATLAB LMI Toolbox. Similar to [13], the

matrix inequality (17) can also be solved by introducing

some new variables. First, we need to define three new

variables T1, T2 and T3 such that

XR̃−1
1 X ≥ T1, XR̃−1

2 X ≥ T2, XS̃−1X ≥ T3. (33)

(33) is equivalent to

X−1R̃1X
−1≤ T−1

1 , X−1R̃2X
−1≤ T−1

2 , X−1S̃X−1≤ T−1
3

(34)

or






























[

−T−1
1 X−1

X−1 −R̃−1
1

]

≤ 0,
[

−T−1
2 X−1

X−1 −R̃−1
2

]

≤ 0,
[

−T−1
3 X−1

X−1 −S̃−1

]

≤ 0

(35)

by Schur complement. Then, by introducing some new

variables T̄1, T̄2, T̄3, X̄ , R̄1, R̄2, S̄, (35) can be represented

as






















[

−T̄1 X̄

X̄ −R̄1

]

≤ 0,

[

−T̄2 X̄

X̄ −R̄2

]

≤ 0,
[

−T̄3 X̄

X̄ −S̄

]

≤ 0, T̄i = T−1
i (i = 1, 2, 3),

R̄j = R̃−1
j (j = 1, 2), S̄ = S̃−1, X̄ = X−1.

(36)

Now, using the similar idea to a cone complementary

linearization algorithm in [1], the original condition (17) can

be solved by the following minimization problem involving

LMI conditions instead of the original nonlinear matrix

inequality.

Minimize tr(X̄X + T̄1T1 + T̄2T2 + T̄3T3

+R̄1R̃1 + R̄2R̃2 + S̄S̃) subject to






























































[

Γ11 Γ12

ΓT
12 Γ̃22

]

< 0,

[

−T̄1 X̄

X̄ −R̄1

]

≤ 0,
[

−T̄2 X̄

X̄ −R̄2

]

≤ 0,

[

−T̄3 X̄

X̄ −S̄

]

≤ 0,
[

X I

I X̄

]

≥ 0,

[

T1 I

I T̄1

]

≥ 0,
[

T2 I

I T̄2

]

≥ 0,

[

T3 I

I T̄3

]

≥ 0,
[

R̄1 I

I R̃1

]

≥ 0,

[

R̄2 I

I R̃2

]

≥ 0,

[

S̄ I

I S̃

]

≥ 0,

(37)

where Γ̃22 = −diag {T1, T2, T3, ε̃I, I} . Similar to [1], the

above minimization problem can be solved by following

iterative algorithm.

Algorithm 1:

(1) For three given constants τm ≥ 0, η ≥ 0 and γ ≥ 0,

find a feasible solution under the LMIs conditions in

(37)

(X0, X̄0, Q̃10, Q̃20, R̃10, R̃20, S̃0, R̄10, R̄20,

S̄0, T10, T20, T30, T̄10, T̄20, T̄30, ε̃0, Y0).
Set k = 0. If there are none, exit.

(2) Solve the following LMIs problem with a feasible so-

lution (X, X̄, Q̃1, Q̃2, R̃1, R̃2, S̃, R̄1, R̄2, S̄, T1, T2, T3,

T̄1, T̄2, T̄3, ε̃, Y )

Minimize tr(X̄kX+XkX̄+T̄1kT1+T1kT̄1+T̄2kT2

+T2kT̄2+T̄3kT3+T3kT̄3+R̄1kR̃1+R̃1kR̄1

+R̄2kR̃2 + R̃2kR̄2 + S̄kS̃ + S̃kS̄)

subject to LMIs in (37).

Set Xk+1 = X, X̄k+1 = X̄, T1,k+1 = T1, T2,k+1 =
T2, T3,k+1 = T3, T̄1,k+1 = T̄1, T̄2,k+1 = T̄2, T̄3,k+1 =
T̄3, R̃1,k+1 = R̃1, R̃2,k+1 = R̃2, S̃k+1 = S̃, R̄1,k+1 =
R̄1, R̄2,k+1 = R̄2, S̄k+1 = S̄, ε̃k+1 = ε̃, Yk+1 = Y .

(3) If the conditions (17) is satisfied or is not satisfied

within a specified number of iterations, then exit.

Otherwise, set k = k + 1 and return to Step 2).

Once a solution of matrix inequality (17) can be found by

the iterative algorithm, the controller gain of (5) is designed

as K = Y X−1.

Remark 4: The first step of the algorithm and every

Step 2) are simple LMI problems. They can be solved by

MATLAB LMI Toolbox. Similar to Theorem 2.1 in [1], the

sequence tk � tr(X̄kX +XkX̄ + T̄1kT1 +T1kT̄1 + T̄2kT2 +
T2kT̄2+T̄3kT3+T3kT̄3+R̄1kR̃1+R̃1kR̄1+R̄2kR̃2+R̃2kR̄2+
S̄kS̃+S̃kS̄), k ≥ 0 is bounded below by 14n and decreasing.

Thus, the sequence {tk} converges to some value topt ≥ 14n.

Equality holds if and only if X̄X = I , T̄iTi = I(i = 1, 2, 3),
R̄jR̃j = I(j = 1, 2) and S̄S̃ = I at the optimum.

IV. NUMERICAL EXAMPLES

Example 1: Consider the following system

ẋ(t) =

[

0 1
0 −0.1

]

x(t) +

[

0
0.1

]

u(t). (38)

The network-based controller is designed as (5) with K =
[ −3.75 −11.5 ]. From [14], [8], [5], [11], [12], the
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maximum allowable transfer delays bound is 4.5 × 10−4,

0.0538, 0.7805, 0.8695 and 0.8871, respectively to guarantee

the stability of the system (38) controlled over a network.

By solving matrix inequality (27), the maximum allowable

transfer delay bound is 1.0081. For this example, our result

is less conservative than the results in [14], [8], [5], [11],

[12].

Moreover, in order to consider the effect of the external

disturbance on the system, (38) is re-expressed as [12]






ẋ(t) =

[

0 1
0 −0.1

]

x(t) +

[

0
0.1

]

u(t) +

[

0.1
0.1

]

w(t)

z(t) = [ 0 1 ]x(t) + 0.1u(t).
(39)

For the case of τm = 0, γmin = 6.82 is found for η = 0.8695
in [12], while γmin = 1.0005 is found by solving matrix

inequality (24).

Example 2: Consider the following uncertain system con-

trolled over a network [12]






















ẋ(t) =









−1 0 −0.5
1 −0.5 0
0 0 0.5



 + ∆A(t)



 x(t)

+ [ 0 0 1 ]T u(t) +
[

1 1 1
]T

w(t),
z(t) = [ 1 0 1 ]x(t) + 0.1u(t),

(40)

where ‖∆A(t)‖ ≤ 0.01. In [12], γmin = 1.9 is found under

the controller u(t) = [−0.5425 − 0.0014 − 1.3858]x(t)
for η = 0.5 and τm = 0.1. However, by solving matrix

inequality (24), γmin = 1.6242 is found under the same

situation. By using the iterative algorithm in this paper,

γmin = 1.62 is obtained under the controller u(t) =
[−0.6085 − 0.0072 − 1.4456]x(t). Therefore, the result

in this paper is less conservative than that in [12] for this

example.

V. CONCLUSIONS

The problem of robust H∞ controller for linear networked

control systems has been investigated. Based on a new

Lyapunov-krasovskii functional, a sufficient condition on the

existence of the controller has been derived in the form of a

matrix inequality. No model transformation has been needed

and no redundant matrix variable has been introduced. In

order to obtain a solution of the obtained matrix inequality,

an iterative algorithm has been introduced. No parameter has

been selected in advance. The effectiveness of the proposed

iterative algorithm has been illustrated through two numerical
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