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Abstract— This paper is concerned with the problem of
delay-dependent H∞ control for linear discrete-time systems
with time-varying delay. A new finite sum inequality is first
established to derive a delay-dependent condition, under
which the resulting closed-loop system is asymptotically
stable (internally stable) with a prescribed H∞ attenuation
level via a memoryless state feedback. Then, an iterative
algorithm involving convex optimization is proposed to obtain
a suboptimal H∞ controller. Finally, a numerical example is
given to show the effectiveness of the proposed method.

Index Terms— Time-varying delay. Discrete-time linear sys-
tem. H∞ control. State feedback. Finite sum inequality.

I. INTRODUCTION

Recently, delay-dependent analysis and synthesis of dy-
namic continuous-time systems with time delay have re-
ceived considerable attention due to the obtained conditions
containing delay size information, and a large number of
excellent fruits have been reported in the literature (See
[5], [9], [13], [14] and references therein). However, little
attention has been paid on the same issues for discrete-
time systems with delay. One of the main reasons is that,
when the delay is time-invariant, they can be transformed
into systems with no time delay via the state augmentation
approach [1]. Therefore, the analysis and synthesis problems
for discrete-time systems with time-invariant delay can be
solved by means of the corresponding theories of discrete-
time systems with no delay. Nevertheless, this approach fails
to the cases that the delay is time-varying or the system
contains uncertainties.

This paper focuses on the delay-dependent H∞ control
of discrete-time systems with both time-varying delay and
norm-bounded uncertainties. For this issue, Song et al.
[10] derived a delay-dependent H∞ condition based on an
LMI, where the H∞ controller can be obtained by solving
an H∞ control problem for auxiliary discrete-time linear
systems with no delay. Fridman and Shaked [4] introduced
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the descriptor model transformation method to discuss the
same issue and some less conservative criteria were obtained
by employing Moon et al’s inequality to bound two cross-
terms. In this paper, different from [10] and [4], a new
finite-sum inequality is first introduced to deal with the H∞
control problem. By employing the finite-sum inequality, a
less conservative delay-dependent condition for H∞ control
is obtained. Then, an iterative algorithm involving convex
optimization is given to design a suboptimal H∞ controller,
under which the resulting closed-loop system has a pre-
scribed suboptimal H∞ performance. An example is finally
given to illustrate that the proposed method can achieve much
less conservative results.

Throughout this paper, l2[0,∞) denotes the space of
sequences {x(k)}, k = 0, 1, 2, · · · with the norm ‖x‖2

2 =∑∞
k=0 xT (k)x(k) < ∞; P > 0 means that P is asymptotic

positive definite; I is the identity matrix with appropri-
ate dimensions; diag{· · · } denotes a block-diagonal matrix;
col{· · · } denotes a column vector; and the symmetric terms
in a symmetric matrix are denoted by *, e.g., [ X Y

∗ Z ] =[
X Y

Y T Z

]
.

II. PROBLEM FORMULATION

Consider the following discrete-time uncertain linear sys-
tem with time-varying delay:




x(k+1)=(A0+∆A0(k))x(k)+(A1+∆A1(k))x(k−d(k))
+(B1+∆B1(k))w(k)+(B2+∆B2(k))u(k)

z(k)=(C0+∆C0(k))x(k)+(C1+∆C1(k))x(k−d(k))
+(D11+∆D11(k))w(k)+(D12+∆D12(k))u(k)

x(k)=φ(k), −h̄≤ k ≤ 0
(1)

where x(k) ∈ Rn, u(k) ∈ Rm and z(k) ∈ Rp are
the state, control input and controlled output, respectively.
w(k) ∈ Rq is the exogenous input, which belongs to
l2[0,∞). φ(k) is the initial condition. The coefficient matri-
ces A0, A1, B1, B2, C0, C1,D11 and D12 are known constant
real matrices with appropriate dimensions. The time-varying
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uncertainties considered here are assumed to be of the form[
∆A0(k) ∆A1(k) ∆B1(k) ∆B2(k)
∆C0(k) ∆C1(k) ∆D11(k) ∆D12(k)

]

=
[
D1

D2

]
F (k)

[
E1 E2 E3 E4

]
(2)

where F (k) is an unknown real time-varying matrix satis-
fying FT (k)F (k) ≤ I, ∀k; and D1,D2 and E1, E2, E3, E4

are appropriately dimensioned constant matrices that charac-
terize how the uncertainty, F (k), enters the nominal matrices
A0, A1, B1, B2, C0, C1,D11 and D12. The time-varying de-
lay, d(k), is a positive integer satisfying

h ≤ d(k) ≤ h̄, ∀k ≥ 0. (3)

where h and h̄ are constant positive integers.
Remark 1: Clearly, the time-varying delay d(k) is an

interval-like time-varying delay. When h = h̄ means that
the delay d(k) is time-invariant, while h = 1 stands for

0 < d(k) ≤ h̄, ∀k ≥ 0.

which was used in [4], [6], [10].
This paper aims to design a memoryless state feedback

controller as
u(k) = Kx(k) (4)

such that the resulting closed-loop system by (1) and (4)
is asymptotically stable with a prescribed H∞ attenuation
level γ, i.e. (i) the closed-loop system is asymptotically stable
when w(k) = 0, ∀k > 0; (ii) the H∞ performance ‖z‖2 <
γ‖w‖2, is guaranteed for all nonzero w(k) ∈ l2[0,∞) and
and a prescribed γ > 0 under the condition φ(k) = 0, −h̄ ≤
k ≤ 0, for all uncertainties and time-varying delay satisfying
(2) and (3).

In the next sections, two vectors are frequently used:

y(k) = x(k + 1) − x(k) (5)

ξ(k) = col{x(k), x(k − d(k)), w(k)} (6)

The following lemma discloses the relationship between the
vectors ξ(k) and y(k).

Lemma 1: For any matrices M1,M2, Z11, Z12, Z22, R ∈
Rn×n, where R = RT , and Z13, Z23,M3 ∈ Rn×q , Z33 ∈
Rq×q, the following inequality holds:

−
k−1∑

j=k−d(k)

yT (j)Ry(j) ≤ ξT (k)


υ11 υ12 M3+h̄Z13

∗ υ22 −M3+h̄Z23

∗ ∗ h̄Z33


ξ(k)

(7)

where 


R M1 M2 M3

∗ Z11 Z12 Z13

∗ ∗ Z22 Z23

∗ ∗ ∗ Z33


 ≥ 0 (8)

with

υ11 = MT
1 + M1 + h̄Z11

υ12 = −MT
1 + M2 + h̄Z12

υ22 = −MT
2 − M2 + h̄Z22

Proof: Denoting M = [M1 M2 M3] and Z = (Zij)3×3,
from (8), we have

k−1∑
i=k−d(k)

[
y(i)
ξ(k)

]T [
R M
∗ Z

] [
y(i)
ξ(k)

]
≥ 0. (9)

After some simple manipulations, (9) gives

−
k−1∑

i=k−d(k)

yT (i)Ry(i) ≤ 2ξT (k)MT [I −I 0]ξ(k)

+ d(k)ξT (k)Zξ(k),

which gives (7) from (3). �
Remark 2: The formula (7) is called a finite sum inequal-

ity based on quadratic terms. It plays an important role in
the sequence for delay-dependent stability analysis.

III. MAIN RESULTS

This section presents our main results. First, we consider
delay-dependent H∞ control of the nominal system of (1)
with F (k) = 0,∀k > 0. The resulting closed-loop nominal
system of (1) by (4) is given as follows.



x(k+1) =(A0+B2K)x(k)+A1x(k−d(k))+B1w(k)
z(k) =(C0+D12K)x(k)+C1x(k−d(k))+D11w(k)
x(k)=φ(k), −h̄≤ k ≤ 0

(10)
Applying Lemma 1 yields the following result.
Proposition 1: Given γ > 0, the system (10) is asymp-

totically stable with a prescribed H∞ performance γ for
any time-varying delay satisfying (3) if there exist matrices
P > 0, R > 0, Q > 0,M := [M1 M2 M3], Z := (Zij)3×3

with appropriate dimensions such that

Ω1 :=




Φ ΓT
1 hΓT

1 ΓT
2

∗ −P−1 0 0
∗ ∗ −hR−1 0
∗ ∗ ∗ −I


 < 0 (11)

Ω2 :=
[
R M
∗ Z

]
≥ 0 (12)

where

Φ =


� PA1−MT

1 +M2+h̄Z12 PB1+M3+h̄Z13

∗ −MT
2 −M2+h̄Z22 −M3+h̄Z23

∗ ∗ −γ2I+h̄Z33




�=PAK +AT
KP +MT

1 +M1+(h̄−h+1)Q+h̄Z11

Γ1 = [AK A1 B1]
Γ2 = [C0+D12K C1 D11]

AK = A0 + B2K − I

Proof: Choose a Lyapunov-Krasovskii functional can-
didate as

V (k) = V1(k) + V2(k)



where

V1(k) = xT (k)Px(k)+
0∑

θ=−h̄+1

k−1∑
j=k−1+θ

yT (j)Ry(j)

V2(k) =
k−1∑

i=k−d(k)

xT (i)Qx(i)+
−h+1∑

j=−h̄+2

k−1∑
l=k+j−1

xT (l)Qx(l)

where P > 0, R > 0,and Q > 0 are to be determined and
y(k) defined in (5). Taking the forward difference gives

∆V1(k) =V1(k + 1) − V1(k)

=2xT (k)Py(k)+yT (k)(P +hR)y(k)

−
k−1∑

j=k−̄h

yT (j)Ry(j) (13)

From (10), we have

y(k) = AKx(k)+A1x(k−d(k))+B1w(k) (14)

In addition, from (3), it is easily deduced that

−
k−1∑

j=k−h̄

yT (j)Ry(j) ≤ −
k−1∑

j=k−d(k)

yT (j)Ry(j) (15)

Substituting (7) into (15), and together with (13) and (14)
yields

∆V1(k) ≤ ξT (k)[Ξ + ΓT
1 (P + h̄R)Γ1]ξ(k) (16)

where Γ1 is defined in (11) and

Ξ =


PAK +AT

KP +υ11 PA1+υ12 PB1+M3+h̄Z13

∗ υ22 −M3+h̄Z23

∗ ∗ h̄Z33




where υ11, υ12, υ22 are defined in (7).
Similar to [12], we obtain

∆V2(k) ≤ (h̄−h+1)xT(k)Qx(k)−xT(k−d(k))Qx(k−d(k)).
(17)

Therefore, from (16) and (17), we have

∆V (k) ≤ ξT (k)[Ξ + Ξ1 + ΓT
1 (P + h̄R)Γ1]ξ(k) (18)

where Ξ1 = diag{(h̄−h+1)Q,−Q, 0}.
Now, we prove the conclusion from two aspects. First,

we show that the system (10) with w(k) = 0,∀k ≥ 0, is
asymptotically stable if (11) and (12) are satisfied. For this
situation, (18) becomes

∆V (k) ≤ ξ̃T (k)[Ξ̃ + Γ̃T
1 (P + h̄R)Γ̃1]ξ̃(k) (19)

where

ξ̃(k) = col{x(k), x(k − d(k))}
Γ̃1 = [AK A1]

Ξ̃ =
[
PAK +AT

KP +υ11+(h̄−h+1)Q PA1+υ12

∗ −Q+υ22

]

On the other hand, the matrix inequality (11) implies
Ξ̃ Γ̃T

1 h̄Γ̃T
1

∗ − P−1 0
∗ ∗ −h̄R−1


 < 0 (20)

Applying Schur complement yields ∆V (k) < 0 if (11) and
(12) are true. Thus, we can conclude from the Lyapunov-
Krasovskii stability theorem in [5] that the system (10) with
w(k) = 0,∀k ≥ 0, is asymptotically stable.

Next, under zero initial condition, the system (10) has a
prescribed H∞ attenuation level γ, i.e. ‖z‖2 < ‖w‖2 for all
w(k) �= 0. To show this, we rewrite (18) as

∆V (k)+zT (k)z(k)−γ2wT (k)w(k)

≤ ξT (k)[Φ+ΓT
1 (P +h̄R)Γ1+ΓT

2 Γ2]ξ(k) (21)

where Φ and Γ2 are defined in (11). Clearly, if the matrix
inequality (11) holds, using Schur complement gives

∆V (k)+zT (k)z(k)−γ2wT (k)w(k) < 0 (22)

Taking the sum of two side of (22) from 0 to ∞ yields
∞∑

k=0

[zT (k)z(k) − γ2wT (k)w(k)] < V (0) − V (∞)

Under zero initial condition, V (0) = 0, we have
∞∑

k=0

[zT (k)z(k) − γ2wT (k)w(k)] < 0

that is, ‖z‖2 < γ‖w‖2, which completes the proof. �
Remark 3: From the proof of Proposition 1, it is clear

to see that the new inequality (7) plays an important role
in the derivation of the delay-dependent condition. With its
help, neither model transformation nor bounding technique
for cross terms is employed.

Clearly, the matrix inequality (11) is nonlinear due to the
terms PAK and AT

KP etc. In order to solve the controller
gain K from (11) and (12), we rewrite Proposition 1 as
follows.

Proposition 2: Given γ > 0, the system (10) is asymptot-
ically stable with a prescribed H∞ performance γ for any
time-varying delay satisfying (3) if there exist real matrices
P > 0,R > 0,Q > 0, Y,N1, N2, N3,Z := (Zij)3×3 with
appropriate dimensions such that

Υ1 :=




Σ ΠT
1 h̄ΠT

1 ΠT
2

∗ −P 0 0
∗ ∗ −h̄R 0
∗ ∗ ∗ −I


 < 0 (23)

Υ2 :=



PR−1P N1 N2 N3

∗ Z11 Z12 Z13

∗ ∗ Z22 Z23

∗ ∗ ∗ Z33


 ≥ 0 (24)

where

Σ =


� A1P−NT

1 +N2+h̄Z12 B1+N3+h̄Z13

∗ −NT
2 −N2+h̄Z22 −N3+h̄Z23

∗ ∗ −γ2I+h̄Z33




� =(A0−I)P+P(A0−I)T +B2Y +Y T BT
2

+NT
1 +N1+(h̄−h+1)Q+h̄Z11

Π1 =[(A0−I)P + B2Y A1P B1]
Π2 =[C0P+D12Y C1P D11]



Moreover, a suitable controller gain is given by K = Y P−1.
Proof: See the full version of the paper.

If we set P = R, then matrix inequalities (23) and (24)
become linear, in which case it is easy to get a minimum
H∞ performance γmin for given delay bounds h̄ and h,
or to get a maximum delay upper bound h̄ for given γ
and h by using a convex optimization algorithm. However,
this setting leads to more conservative results. In order to
derive much better results, similar to [8], we convert the non-
convex feasibility problem formulated by (23) and (24) into
a nonlinear minimization problem subject to LMIs. In the
beginning, we introduce a new matrix variable, S > 0, such
that PR−1P ≥ S, then, we replace the matrix inequality
(24) with 


S N1 N2 N3

∗ Z11 Z12 Z13

∗ ∗ Z22 Z23

∗ ∗ ∗ Z33


 ≥ 0 (25)

PR−1P ≥ S (26)

On the other hand, it is easily shown that PR−1P ≥ S is
equivalent to [

S−1 P−1

∗ R−1

]
≥ 0

Let T = S−1, L = P−1, J = R−1. By employing the cone
complementarity problem proposed by [3], the nonlinear
minimization problem subject to LMIs can be formulated
as follows.

Minimize Tr(ST + PL + RJ) (27)

Subject to (23), (25) and[
T L
L J

]
≥ 0, P > 0, R > 0, Q > 0[

S I
I T

]
≥ 0,

[P I
I L

]
≥ 0,

[R I
I J

]
≥ 0




(28)

If the obtained value of Tr(ST +PL+RJ) is exactly equal
to 3n, then it is clear from Proposition 2 that system (10)
is asymptotically stable with a prescribed H∞ attenuation
level γ via the memoryless controller (4) with K = Y P−1.
Applying the linearization method ([3]), we can easily derive
a suboptimal H∞ performance γmin for given delay bounds
h and h̄ or a suboptimal maximum delay upper bound h̄
for given γ and h by an iterative algorithm given in the
following.

Algorithm: Minimize γ for given delay bounds h and h̄.
1) Choose a sufficiently large initial γini such that

(23), (25) and (28) are feasible. Set γso = γini.
2) Find a feasible set

(S0,P0,R0, T 0, L0, J0,Q0, N0
j ,Z0

ij (i, j = 1, 2, 3))
satisfying (23), (25) and (28). Set l = 0.

3) Solve the following LMI problem for the varibles
(S,P,R, T, L, J,Q, Nj ,Zij (i, j = 1, 2, 3)):

Minimize Tr(SlT +T lS+P lL+LlP+RlJ+J lR)
Subject to (23), (25) and (28).

Set Sl+1 = S, T l+1 = T, P l+1 = P ,
Ll+1 = L, Rl+1 = R, J l+1 = J .

4) If matrix inequality (24) and

|Tr(SlT+T lS+P lL+LlP+RlJ+J lR)−6n| < ε (29)

where ε is a prescribed sufficiently small positive
number, are satisfied, then set γso = γini and decrease
γini to some extent and back to Step 2. If one of
the conditions (24) and (29) is not satisfied within a
specfied number of iterations, then exit, otherwise, set
l = l + 1 and go to Step 3.

Remark 4: The proposed algorithm provides an approach
to obtaining a suboptimal H∞ performance for given bounds
h and h̄. It can be also used to derive a suboptimal delay
upper bound h̄ for given γ and h. The algorithm takes the
matrix inequality (24) as one of stopping criteria since our
main aim is to find a feasible solution such that (23) and (24)
are satisfied, on the other hand, it is very difficult to exactly
obtain the minimum value, 6n, of Tr(SlT+T lS+P lL+LlP+
RlJ+J lR). The example in the next section shows that this
algorithm can achieve some satisfactory results.

In the sequel, we present a robust result for H∞ control
of system (1) with uncertainties. Combining Proposition 2
with Lemma 2.4 in [11] gives the following result.

Proposition 3: Given γ > 0, the system (1) is asymp-
totically stable with a prescribed H∞ performance γ for
any uncertainties satisfying (2) and any time-varying delay
satisfying (3) if there exist real matrices P > 0,R >
0,Q > 0, Y,N1, N2, N3,Z := (Zij)3×3 with appropriate
dimensions and a scalar ε > 0 such that (24) and the
following matrix inequality hold:



Σ ΠT
1 hΠT

1 ΠT
2 εΠT

3 ΠT
4

∗ −P 0 0 εD1 0
∗ ∗ −hR 0 εhD1 0
∗ ∗ ∗ −I εD2 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI




< 0 (30)

where Σ,Π1,Π2 are defined in (23); and

Π3 = [DT
1 0 0]

Π4 = [E1P + E4Y E2P E3]

Moreover, a suitable controller gain is given by K = Y P−1.
The previous algorithm is also valid for Proposition 3 only

if we replace (23) with (30) in the algorithm. It will be shown
by a numerical example that the obtained results are of less
conservatism.

IV. A NUMERICAL EXAMPLE

In this section, a numerical example is used to demonstrate
the validity of the proposed method.

Example 1: Consider the system


x(k+1)=(A0+DF (k)E1)x(k)+B1w(k)+B2u(k)
+ (A1 + DF (k)E2)x(k − d(k))

z(k)=C0x(k) + D12u(k)
x(k)=0, − h̄≤ k ≤ 0

(31)



TABLE I

THE MAXIMUM DELAY BOUND h̄ FOR SYSTEM (31)

Method h̄ K
Lee & Kwon [7] 41 [−0.6311 − 2.3615]

Fridman & Shaked [4] 67 unprovided
Proposition 3 70 [-93.2010 -71.2670]

TABLE II

THE ACHIEVED MINIMUM H∞ PERFORMANCES γ AND

CORRESPONDING CONTROLLER GAIN K FOR h̄ = 64

γ K Number of Iterations
20 [−31.9456 − 41.2442] 154
18 [−36.1621 − 48.5035] 171
17 [−39.0994 − 53.8247] 186
16 [−44.9680 − 62.3831] 223

15.5 [−46.4416 − 68.1845] 235

where

A0 =
[
1 0
0 1.01

]
, A1 =

[−0.02 −0.005
0 −0.01

]

B1 =
[
0
1

]
, B2 =

[
0

0.01

]

C0 = [1 0], D12 = 0.1, D = 0.02I

E1 = E2 = 0.01I, FT (k)F (k) ≤ I.

and d(k) is a delay satisfying (3).
In the following, two cases of delay d(k) are considered.
Case 1: delay d(k) is time-invariant, i.e. h = h̄.

In this case, we calculated the maximum delay bound h̄,
which can ensure that system (31) is asymptotically stable
via memoryless state feedback (4). The obtained results are
listed in Table I.

Moreover, Fridman and Shaked [4] also calculated the
achieved minimum H∞ performance and γmin = 180.07
was obtained for h̄ = 64. However, applying Proposition
3 combined with the iterative algorithm yields much less
conservative results, which are listed in Table II. Note from
the table that the proposed method provides much less H∞
performance, γ = 15.5, than [4] for the same delay upper
bound h̄.
Case 2: delay d(k) is time-varying satisfying h ≤ d(k) ≤ h̄.

In this case, the proposed conditions in [6], [10] in-
corporating with Lemma 2.4 in [11] are infeasible to this
example. It is concluded from [4] that system (31) is robustly
stabilizable for all h̄ ≤ 43. When h̄ = 43, the system
achieved the minimum H∞ performance γmin = 169.4722
via memoryless state feedback (4) with K = [−6.7766 −
20.5924]. However, from Proposition 3, the system (31) is
robust stabilizable for h̄ ≤ 48. When h̄ = 48, different γ
values, much less than 169.4722, are achieved for different
h, which are listed in Table III.

Clearly, the above results obtained by Proposition 3 are
much less conservative than those in [4], [6], [10], which
clearly shows the effectiveness of the proposed method in
this paper.

TABLE III

THE ACHIEVED MINIMUM H∞ PERFORMANCES γ AND CORRESPONDING

CONTROLLER GAIN K FOR DIFFERENT h WHEN h̄ = 48

h γ K
1 65 [−24.8606 − 74.4157]
8 50 [−24.9197 − 76.6840]

18 40 [−22.2636 − 68.8382]
28 30 [−18.0179 − 57.7737]
38 20 [−14.5769 − 50.1003]
43 18 [−8.6551 − 36.0802]

V. CONCLUSION

This paper discussed the robust H∞ control problem for
discrete-time linear systems with both time-varying delays
and uncertainties. To solve the robust H∞ control problem,
a new Finite Sum Inequality based on quadratic terms is
first established. Then, with its help, a less conservative
delay-dependent criterion has been derived, under which
the resulting closed-loop system can achieve a prescribed
H∞ performance. In addition, an iterative algorithm has
been proposed to design a suboptimal H∞ controller. A
numerical example has been finally given to demonstrate the
effectiveness of the proposed method.
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