
2008 Institute of Electrical and Electronics
, Inc.

reserved.
I use of this material, including one hard copy
tion, is permitted.

to reprint, republish and/or distribute this
in whole or in part for any other purposes must

ined from the IEEE.
information on obtaining permission, send an e-mail

to stds-igr@ieee.org.
~~~~sing to view this document, you agree to all

of the copyright laws protecting it.
.~~..41 documents posted on this site may carry

ifferent copyright restrictions.
ific document information, check the copyright
the beginning of each document.

2008 Institute of Electrical and Electronics
t:nalrleE~rs, Inc.

riahts reserved.
I use of this material, including one hard copy
tion, is permitted.

on to reprint, republish and/or distribute this
"~IiIlIll~' in whole or in part for any other purposes must

lJeoOltained from the IEEE.
rmation on obtaining permission, send an e-mail

111.::;~~,aUI~ to st -i rieee.or .
ene)osing to view this document, you agree to all

ns of the copyright laws protecting it.
...._"'-"..... __ 1documents posted on this site may carry

different copyright restrictions.
~lIL.I'C:;"",,,ific document information, check the copyright
Ice~ at the beginning of each document.



A Novel Classifier Selection Approach for Adaptive Boosting Algorithms 
 

 

ABM Shawkat Ali and Tony Dobele 

 

School of Computing Sciences 

Central Queensland University 

Rockhampton, QLD 4702, Australia 

E-mail: {s.ali,t.dobele}@cqu.edu.au 

 

 

Abstract 
 

Boosting is a general approach for improving 

classifier performances. In this research we 

investigated these issues with the latest Boosting 

algorithm AdaBoostM1. A trial and error classifier 

feeding with the AdaBoostM1 algorithm is a regular 

practice for classification tasks in the research 

community. We provide a novel statistical information-

based rule method for unique classifier selection with 

the AdaBoostM1 algorithm. The solution also verified 

a wide range of benchmark classification problems. 

 

1. Introduction 
 

Boosting is a well established method in the 

machine learning community for improving the 

performance of any learning algorithm. The boosting 

algorithms were first presented by Schapire [1] and 

Freund [2]. Continuing this research they introduced a 

new generation of boosting algorithm called Adaptive 

Boosting (AdaBoost) [3-7]. Schapire and Freund 

argued that this new boosting algorithm has certain 

properties which make it more practical and easier to 

implement than its predecessors [8]. In this paper we 

investigate this issue within a wide range of 

classification problems. 

During the AdaBoost performance testing we noted 

that classifier feeding with the AdaBoost algorithm is a 

trial and error approach. It is a lengthy process to find 

out a suitable classifier for a specific problem. Our 

present research provides a statistical information-

based classifier selection for the AdaBoost algorithm. 

The rest of the paper is organized as follows: first we 

provide a brief description of boosting, AdaBoostM1 

and some popular base classifiers. After that we 

summarize the experimental outcome of our current 

research. We conclude our research with a discussion 

of the limitations and future prospects of our research. 

 

2. Algorithm description and experimental 

setup  
 

In boosting, a relatively weak learning algorithm is 

repeatedly applied to a set of training data, with 

classifiers being produced at each iteration. These 

classifiers are finally combined into one composite 

classifier. Provided that the algorithm can produce 

classifiers that are at least slightly better than random 

guessing, boosting can significantly reduce the 

classification error rate [9]. 

With AdaBoost, which can be used to boost a wide 

range of learning algorithms, data instances are 

weighted after each iteration. AdaBoost is adaptive in 

that the weight of an instance is increased when the 

classification is incorrect. AdaBoost may be 

susceptible to noisy data, but is less susceptible to 

overfitting than most other learning algorithms. It can 

identify outliers which are usually the instances with 

the greatest weight [10].  

AdaBoost.M1 and AdaBoost.M2 were developed 

by Schapire and Freund from their AdaBoost 

algorithm. For binary classification problems the two 

versions are equivalent, differing only in the way they 

handle problems with more than two classes [9]. 

AdaBoost.M1 has access to a learning algorithm 

(which the developers generically title WeakLearn) 

which it calls repeatedly with distributions over the 

training set. WeakLearn calculates a hypothesis, or 

classifier, that attempts to correctly classify all 

instances of the test data. As described previously, 

examples that are incorrectly classified are given 

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00  © 2007



greater weighting for the next pass. Finally, the boost 

algorithm combines all the hypotheses into one final 

hypothesis [9]. 

We chose four classifiers, namely J48, 

DecisionStump, NaïveBayes and PART as a base 

classifier for the AdaBoostM1 algorithm. All these 

classifiers are available in the WEKA [11] 

implementation. WEKA is a Java based machine 

learning tools. The DecisionStump classifier is a 

default setting with AdaBoostM1 in WEKA. The 

following section provides a brief explanation about 

the base classifiers. 

J48: J4.8 is a supervised learning algorithm which 

induces a decision tree. It was developed by the 

developers of the Weka package (please see below) 

and is based on the widely-used C4.5 algorithm 

developed by J.R.Quinlan [11]. A decision tree is a tool 

for carrying out classification of data instances input to 

it. Decision trees have production rules of the type IF – 

THEN (IF feathers = ‘yes’ THEN Animal = ‘bird’). 

Data are input firstly to the root node, which typically 

has a binary output, leading to two edges (‘branches’). 

Which edge is followed depends on the answer to the 

condition posed in the node. Each edge may lead to a 

subsequent node with further outputs. Finally, the 

choices lead to a ‘leaf’ node which definitively 

classifies the instance into one class or another with no 

further choices [12]. 

DecisionStump: A DecisionStump is a simplified 

Decision Tree, having just one level. Usually a weak 

classifier, decision stumps are commonly used with a 

boosting algorithm to markedly increase classification 

accuracy. Interestingly, missing values are simply 

treated as a third class [11]. 

NaïveBayes: Naïve Bayes is based on the well-
known Bayes Theorem. It is termed ‘naïve’ because it 

assumes that attributes of the training set are 

conditionally independent and that the prediction 

procedure is not influenced by any hidden or latent 

attributes. It works by calculating the maximum 

posterior probability of each class [13, 14]. 

PART: Part is developed from the C4.5 and 

RIPPER algorithms and is a partial decision tree 

algorithm. However, unlike C4.5 and RIPPER, PART 

does not have to perform global optimization in order 

to generate rules [14]. 

We fed all these base algorithms with AdaBoostM1 

to classify a wide range of problems. First, we fed each 

classifier one-by-one with AdaBoostM1 and kept a 

record of the classification performance for the 113 

problems. We selected all data sets from two different 

data repositories [15, 16]. All classification problems 

descriptions are available in Appendix I. We chose ten- 

fold cross validation over the experiment. Then we 

collected the descriptive statistical information about 

each of the 113 classification problems. The list of 

descriptive statistics is follows: 

 

Statistical Name  Symbolic Name 
 Geometric mean  geomean 

 harmonic mean harmmean 

 statistical mean sm 

 median me 

 trim mean, trimmean 

 inter quartile range  iqr  

 mad ma 

 range r 

 standard deviation std 

 variance v 

 prctile p 

 chi-square cumulative distribution chiscdf 

 normal cumulative distribution normcdf 

 skewness s 

 kurtosis k 

 correlation coefficient cc 

 Z-score z 

 

The explanations of these descriptive statistical 

terms are available in any statistical text book. 

Moreover one can find the implementation in the 

Statistical Toolbox in Matlab [17]. 

We constructed a data matrix with these statistical 

algorithms and the name of the best algorithm 

performance. Then we employed the C5.0 [18] 

algorithm to generate the rules. These rules have been 

considered to select a unique classifier for 

AdaBoostM1 algorithms to classify any problem with 

better accuracy and faster computation. 

 

3. Experimental results 
 

We observed from the experiment that the J48 

classifier is the best choice for the AdaBoostM1 

algorithm and it shows the highest percentage of 

average accuracy for the 113 problems. However, in 

terms of computational complexity DecisionStump is 

the best choice among the four classifiers. 

The rules were generated using the C5.0 decision 

tree algorithm to select a unique classifier for the 

AdaBoostM1 algorithm. C5.0 has two parameters, 

pruning confidence (c) and minimum cases (m). 

Pruning confidence affects error estimation and 

therefore how severely the tree may be pruned; a 

smaller value of c enables more pruning and a higher 

value less pruning. Minimum cases affect how the tree 

fits the data; a higher value of m allows more pre-

pruning. The value of m should be at least two for 

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00  © 2007



every node in the tree [14]. We tuned both parameters 

to produce the best rule. The generated rules were 

verified by ten-fold cross validation and the percentage 

of accuracy is summarized with the rules. These rules 

are as follows: 

 

3.0.1 Rules for J48 Classifier 
 

Rule: IF Z > 71.932 OR harmmean <= 36.87 
and s > 1.6085 OR harmmean <= 36.87 and p > 
18.2 OR trimmean > 57.731 THEN select J48 
Classifier for AdaBoostM1 Algorithm. 

 
Rule Accuracy = 85.72% 
 

3.0.2 Rules for DecisionStump Classifier 
 

Rule: IF s <= 1.6085 and z > 40.276 OR 
geomean <= 0.4649 and trimmean > 0.88472 and s 
<= 1.6085 OR geomean > 117.06 OR ma <= 
0.96388 and k <= 5.2902 OR trimmean <= 57.731 
and s <= 1.6085 THEN select DecisionStump 
Classifier for AdaBoostM1 Algorithm. 

 
Rule Accuracy = 81.24% 

 

3.0.3 Rules for NB Classifier 
 

Rule: IF trimmean <= 57.731 and normcdf <= 
0.84223 and s > 0.77518 and s <= 1.736 and Z > 
18.205 OR geomean <= 8.97 and iqr <= 2.2064 and 
normcdf > 0.84223 and cc > 0.17111 OR trimmean 
<= 57.731 and s <= 1.736 THEN select NB 
Classifier for AdaBoostM1 Algorithm. 

 
Rule Accuracy = 80% 
 

3.0.4 Rules for PART Classifier 
 
Rule: IF trimmean > 81.997 and trimmean <= 

98.664 OR harmmean > 5.0671 and trimmean <= 
98.664 and iqr > 14.778 and s <= 13.596 OR 
geomean <= 117.06 and trimmean > 137.04 OR r 
<= 0.652 and s > 1.7405 OR iqr <= 14.778 and 
normcdf > 0.85796 THEN select PART Classifier 
for AdaBoostM1 Algorithm. 

 
Rule Accuracy = 70.59% 

 
4. Conclusions 

 

This research contributes a new approach to 

selecting a unique classifier for the AdaBoostM1 

algorithm. A rule based approach has been introduced 

for the unique classifier selection. These rules are 

generated based on described statistical information of 

113 classification problems. All generated rules 

showed higher accuracy during the ten-fold cross 

validation except for the PART algorithm. The PART 

algorithm showed the best classification performance 

for only a few data sets. This performance could be 

increased by considering more classification problems. 

We have planned to extend our research using more 

problems from different domains with a variety of 

classifiers.  

 

5. References 

 

[1] R. E. Schapire, “The strength of weak learnability,” 

Machine Learning, vol. 5, no. 2 pp 197–227, 1990. 

[2] Y. Freund, “Boosting a weak learning algorithm by 

majority,” Information and Computation, vol.121 no. 2 pp 

256–285, 1995. 

[3] A. Grove and D. Schuurmans, “Boosting in the limit: 

Maximizing the margin of learned ensembles,” in 

Proceedings of the Fifteenth National Conference on 

Artifical Intelligence 1998, pp. 692–699. 

[4] G. Ratsch, T. Onoda and K. Muller, “Regularizing 

AdaBoost,” Advances in Neutral Information Processing 

Systems 11. 1999. 

[5] G. Ratsch, T. Onoda and K. Muller, “Soft Margins for 

AdaBoost,” Machine Learning, 42, pp287–320, 2000. 

[6] G. Lebanon and J. Lafferty, “Boosting and maximum 

likelihood for exponential models,” Neural Information 

Processing Systems (NIPS). 2001. 

[7] R. Jin, Y. Liu, L. Si, J. Carbonell and A. Hauptmann, “A 

New Boosting Algorithm Using Input-Dependent 

Regularizer,” in Proceedings of Twentieth International 

Conference on Machine Learning (ICML’03) 2003. 

[8] Y. Freund and R. E. Schapire, “A decision-theoretic 

generalization of online learning and an application to 

boosting”, Unpublished manuscript available electronically 

(on our web pages, or by email request). An extended 

abstract appeared in Computational Learning Theory: 

Second European Conference, EuroCOLT ’95, pp 23–37, 

Springer-Verlag, 1995. 

[9] Y. Freund and R.E. Schapire, “Experiments with a new 

boosting algorithm,” In the Proceeding of International 

Conference on Machine Learning, pp 148–156, 1996. 

[10] P. Radeva, Theoretical analysis of AdaBoost, online, 

accessed 15 February 2007. Available at: 

http://iua-share.upf.es/wikis/seminaris/images/5/59/ 

Adaboost.pdf 

[11] I.H. Witten and E. Frank, Data Mining: Practical 

Machine Learning Tools and Techniques, Morgan 

Kaufmann, 2005. 

[12] P. Tan, M. Steinbach and V. Kumar, Introduction to 

Data Mining, Addison-Wesley, 2006. 

[13] G.H. John and P. Langley, “Estimating continuous 

distributions in Bayesian classifiers,” in Proceedings of the 

Eleventh Conference on Uncertainty in Artificial 

Intelligence, Morgan Kaufmann, San Mateo, CA, pp. 338–

345, 1995. 

[14] S. Ali and K.A. Smith, "On Learning Algorithm 

Selection for Classification," Applied Soft Computing, 

Elsevier Science, vol.6, no. 2, pp.119-138, January 2006. 

[15] C. Blake and C.J. Merz, UCI Repository of machine 

learning databases, University of California, Irvine, CA, 

2002. http://www.ics.uci.edu/mlearn/ mlrepository.html. 

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00  © 2007



[16] T. S. Lim, Knowledge Discovery Central datasets, 2002, 

http://www.kdcentral.com/. 

[17] Statistics Toolbox User’s Guide, version 3, The 

MathWorks Inc., USA, 2001. URL: http://www. 

mathworks.com. 

[18] See 4: http://www.rulequest.com/see5-info.html, 

Accessed: 02 February 2007. 

 

Appendix I: Datasets description. 

# 

Data 

set 

Data set name #  

Instances 

#  

Attributes 

# 

Class 

1 abalone 1253 9 3 

2 adp 1351 12 3 

3 adult+stret 20 5 2 

4 adult-stret 20 5 2 

5 allbp 840 7 3 

6 ann1 1131 7 3 

7 ann2 1028 7 3 

8 aph 909 19 2 

9 art 1051 13 2 

10 australian 690 15 2 

11 balance-sca 625 5 3 

12 bcw 699 10 2 

13 bcw_noise 683 19 2 

14 bld 345 7 2 

15 bld_noise 345 16 2 

16 bos 910 14 3 

17 bos_noise 506 26 2 

18 breast-canc 286 7 2 

19 breast-canc 699 10 2 

20 bupa 345 7 2 

21 c 1500 16 2 

22 cleveland-heart 303 14 5 

23 cmc 1473 10 3 

24 crx 490 16 2 

25 dar 1378 10 5 

26 dhp 1500 8 2 

27 DNA-n 1275 61 3 

28 dna 2000 61 3 

29 dna_noise 2000 81 3 

30 dph 590 11 2 

31 echocardiogram 131 8 2 

32 flare 1389 11 2 

33 german 1000 25 2 

34 glass 214 10 6 

35 h-d 303 14 2 

36 hayes-roth 132 6 3 

37 hea 270 14 2 

38 hea_noise 270 21 2 

39 heart 270 14 2 

40 hepatitis 155 20 2 

41 horse-23 368 23 2 

42 horse-colic 368 28 2 

43 house-votes-84 435 17 2 

44 hyp 2847 16 2 

45 hypothyroid 1265 26 2 

46 iris 150 5 3 

47 khan 1063 6 2 

48 kr-vs-kp 1279 37 2 

49 labor-neg 40 17 2 

50 led-noise 1047 10 10 

51 lenses 24 6 3 

52 letter-a 1334 17 2 

53 lung-cancer 32 57 2 

54 lymphography 148 19 8 

55 mha 1269 9 4 

56 monk1 556 7 2 

57 monk2 601 7 2 

58 monk3 554 7 2 

59 mushroom 1137 12 2 

60 nettalk_str 1141 8 5 

61 page-blocks 1149 11 5 

62 pendigits-8 1399 17 2 

63 pha 1070 10 5 

64 phm 1351 12 3 

65 phn 1500 10 2 

66 pid 532 8 2 

67 Pima 768 9 2 

68 poh 527 12 2 

69 post-operative 90 9 3 

70 primary-tum 339 18 2 

71 pro 1257 13 2 

72 promoter 106 58 2 

73 pvro 590 19 2 

74 rph 1093 9 2 

75 satimage 1351 11 6 

76 shuttle-landing 

control 

15 7 2 

77 sick-euthyroid 1582 16 2 

78 sma 409 8 4 

79 smo 1855 9 2 

80 smo_noise 1855 16 2 

81 sonar 208 61 2 

82 splice 1589 61 3 

83 t_series 62 3 2 

84 tae 151 6 3 

85 tae_noise 151 11 2 

86 thy 1887 22 3 

87 thynoise 1132 11 3 

88 tic-tac-toe 958 10 2 

89 titanic 2201 4 2 

90 tmris 100 4 2 

91 tqr 1107 12 2 

92 trains-

transformed 

10 17 2 

93 va-heart 200 9 4 

94 veh 846 19 4 

95 veh_noise 761 31 4 

96 vehicle 658 20 0 

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00  © 2007



97 votes_noise 391 31 2 

98 waveform 5000 22 2 

99 waveform_noise 5000 41 2 

100 wdbc 569 31 2 

101 wine 178 14 3 

102 wpbc 199 34 2 

103 xaa 94 19 4 

104 xab 94 19 4 

105 xac 94 19 4 

106 xad 94 19 4 

107 xae 94 19 4 

108 xaf 94 19 4 

109 xag 94 19 4 

110 xah 94 19 4 

111 xai 94 19 4 

112 yha 1601 10 2 

113 zoo 101 17 7 

 

6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007)
0-7695-2841-4/07 $25.00  © 2007


	copyright notice
	novel classifier selection approach.pdf

