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1. Introduction 
It is common to characterize earthquake seismicity of a region by specifying values for the a and b 
parameters of the Guttenberg-Richter seismicity model. Estimations of these parameters can be derived 
from a number of statistical processes. In situations where a comprehensively complete catalogue of 
earthquake events is not available, methods provided by the statistics of extreme events (the so-called 
extreme value theory (EVT)) have been applied, using reduced variate probability plotting. 
 
The generalized EVT cumulative distribution function (cdf) reduces to one of three specific Fisher 
Tippett distributions, depending on the value chosen for its three parameters, î, è(> 0), and k(> 0). 

These three distributions are summarized below (Johnson et al, 1995). 
 
Fisher Tippett Type 1: 
 
 Pr[X ≤ x] = exp{-exp{-1/è(x � î)}}   � Eq. 1 
 
Fisher Tippett Type 2: 
 
 Pr[X ≤ x] = 0, where x < î ,� Eq. 2 
 = exp{-exp{-(1/è(x � î))k}}, where x ≥ î. 
  
Fisher Tippett Type 3: 
 
 Pr[X ≤ x]  = {-exp{-(1/è(î - x))k}}, where x ≤ î, � Eq. 3 
 = 1, where x > î 
 
The Type 2 distribution is often referred to as the Fréchet distribution. The Type 3 distribution is often 
referred to as the Weibull distribution. The Type 1 distribution is mostly referred to as the Gumbel 
distribution, but is sometimes referred to as the log-Weibull distribution. In this paper it will be referred 
to as the Gumbel distribution. 
 
There are two common criticisms made, arguing that the probability plotting method of analysing 
extreme events to estimate regional seismicity is of little value to practical seismology. These criticisms 
are that: 
 
1. The extreme value methods only assess the few maximum value events and ignore the many other 

important smaller events. 
2. The various methods of determining the plotting positions used to calculate the reduced variate are 

arbitrary in nature. Therefore the choice of plotting position algorithm can be used to manipulate 
the results. 

 
This paper addresses these two criticisms via counter-arguments and a demonstration that the reduced 
variate probability plotting method in conjunction with Gumbel statistics of extreme events can 
reproduce accurate estimates of a priori seismicity parameters used to generate synthetic earthquake 
calenders. Our analysis consists of two parts. Firstly we demonstrate that the probability plotting 
method estimates to within 2% accuracy, the Gumbel parameters of a synthetic dataset constructed 
with a priori values of these parameters. Secondly we apply the Gumbel method to analyse synthetic 
seismicity calendars generated from a Gutenberg-Richter distribution with prescribed a- and b-values. 
Our results testify that the Gumbel method accurately estimates the a and b values of the underlying G-
R source distribution, via statistical analysis of only the extreme values of the synthetic catalogues. 
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2. Are important data being ignored? 
Statistical analysis aims to provide an accurate model for a given set of observations, using some 
assumptions about the underlying process giving rise to the observations. In the case of regional 
seismicity, one assumes the underlying process gives rise to a Gutenberg-Richter frequency-magnitude 
distribution: a two-parameter model determining the average rate of seismicity (a value) and the scaling 
of recurrence intervals with given earthquake magnitude (b value). For a particular region, one aims to 
estimate the values for these two parameters via curve fitting of the observed historical seismicity. 
Since the dataset of observations is invariably only a small subset (or sampling) of the seismic history 
and the observations may contain errors (e.g. imprecise magnitude determination or poor detection 
level) one cannot expect to obtain an arbitrarily accurate estimation of the model parameters. 
 
It is well-known that estimated values for the model parameters may be significantly skewed when 
using a dataset which does not provide a sample a data set containing adequate samples of the full 
range of observable values. Seismicity particularly suffers from this limitation as historical seismic 
catalogues are typically complete for large magnitudes (the extreme values of the G-R distribution) but 
incomplete or non-existent for smaller magnitudes. Historical catalogues are biased towards extreme 
values. 
 
The Fisher-Tippett probability distributions are specifically formulated to model the extreme data 
values that are invariably found in samples extracted from underlying source distributions. EV 
distributions provide a parameterisation for the extreme values that is related to the parameters of the 
source distribution, while taking into account the inherent bias towards extreme values in the dataset 
under analysis. It was Fisher and Tippet (1928) who proved that no matter what source probability 
distribution data is derived from, the distribution of extreme data values will necessarily converge to 
one of the three forms Eq. 1, 2 or 3. 
 
The perception that extreme value methods ignore important small value data is false. EV methods are 
designed to model the distribution of extreme values accurately, not the distribution of non-extreme 
values. Including these later values in the analysis would be erroneous. Since the dataset of extreme 
values is complete, one does not suffer from the finite sampling issues when estimating the parameters 
of the EV distribution. It must be emphasised that EV methods make allowance for the bias towards 
extreme values in the original dataset. This is codified in the relationship between EV model 
parameters and those of the source distribution. Thus it is possible, by analysing a catalogue of extreme 
values, to accurately estimate the parameters of the source distribution. Given the indisputable bias 
towards large magnitudes in seismic catalogues, EV methods are well-suited for modelling regional 
seismicity.  

3. The probability integral transformation theorem 
The theorem of probability integral transformation states that any cumulative distribution function, 
considered as a function of its random variable X, is itself a uniform random variable on the closed 
interval (0,1) (Bury, 1999, p 25). 
 

F(X; è) = U      � (Eq. 4) 
 
where è represents parameters, either known or not yet determined. 
 
A consequence of this theorem is that all possible values of X are equally likely. So that any sample 
variate F(xi; è) derived from the parent distribution F(X; è) can be expressed in the form: 
 

F(xi; è) = ui      � (Eq. 5) 
 
where ui is a value in the closed interval (0, 1), and where all values of ui are equally likely. 
 
A corollary of the probability integral transformation theorem is that: 
 

xi = F-1(ui; è)       � (Eq. 6). 
 
This corollary has two important applications in practice � simulated random observations, and 
probability plotting. 



 
 

3.1. Simulating random variates 
The corollary of the probability integral transformation theorem provides a means of simulating 
random variates from any known probability distribution. By substituting random numbers ui from the 
closed (0, 1) interval into the inverse of the distribution�s cumulative distribution function, independent 
identically distributed random variates can be generated. 
 
For example (Bury, 1999, p 268), the cdf of the Gumbel distribution may be expressed in the form 
 

F(x; µ, ó) = exp{-exp{-1/ ó (x - µ)}} = u  (say).  � (Eq. 7) 
 
By inversion 
 
 x = µ - óln(-ln(u))     � (Eq.8) 
 
Therefore, simulated random variates xi from the Gumbel distribution can be generated using the 
following formula, where ui is a random number on the closed interval (0, 1). 
 
 xi = µ - óln(-ln(ui))     � (Eq.9) 

3.2. Probability plotting 
Manipulation of Eq. 9 produces the following linear relation. 
 
 -ln(-ln(pi)) = 1/ó (xi - µ)    � (Eq.10) 
 
where the u notation has been replaced by a p, for reasons that will become clear below.  
 
This relation provides a potential means of testing whether a set of n experimental observations {xi}n is 
a sample from a Gumbel distribution. If the reduced variates {-ln(-ln(pi))}n are plotted against the 
experimental observations {xi}n, and a straight line graph results, then the postulated Gumbel parent 
distribution is confirmed, and ordinary linear regression can be used to estimate the parameters ó and µ 

from the slope and intercept. There is one difficulty in accomplishing this task. In any real experimental 
situation the observations {xi}n are known, but the n reduced variates {-ln(-ln(pi))}n cannot be 
calculated exactly because the plotting positions {pi}n are unknown. 
 
The only things that can be assumed regarding the pi values is that they are in the closed interval (0, 1), 
and that each value has equal likelihood of presence. This information suggests a widely used, but 
controversial, method for producing artificial plotting positions that can be substituted for the actual 
ones. The method used to determine the substitute plotting positions can be described as follows. 
 
The n observations are first ordered and ranked according to their relative values. Depending on the 
requirements of the particular situation this ranking may be in ascending or descending order. The 
examples described here will use ascending order. The ordered observations are notated as 
 

{xi}
*
n ≡ {x1 ≤ x2 ≤ x3 ≤ �  ≤ xn-2 ≤ xn-1 ≤ xn} 

 
where x1 is the smallest valued variate, xn is the largest valued variate, and the subscript values are the 
variate ranks. 
 
The next step is the controversial part of the method. The rank value of the mth ordered variate is used 
to determine an artificial plotting position quantile pm for that variate. There is no single definitive 
formula or equation for doing this. However, there are guidelines for doing so. 
 
Gumbel (1958) expressed the following five conditions as requirements that substitute plotting 
positions should necessarily fulfil. 
 

1. The plotting position should be such that all observations can be plotted. 
2. The plotting position should lie between the observed frequencies (m � 1)/n and m/n and 

should be universally applicable, i.e., it should be distribution-free. This excludes the 



 
 

probabilities of the mean, median, and modal mth value which differ for different 
distributions. 

3. The return period of a value equal to or larger than the largest observation, and the 
return period of a value smaller than the smallest observation, should approach n, the 
number of observations. This condition need not be fulfilled by the choice of the mean 
and median mth value. 

4. The observations should be equally spaced on the frequency scale, i.e., the difference 
between the plotting positions of the (m + 1)th and the mth observation should be a 
function of n only, and independent of m. This condition � need not be fulfilled for the 

probabilities at the mean, median, or modal mth values. 
5. The plotting position should have an intuitive meaning, and ought to be analytically 

simple. The probabilities at the mean, modal, or median mth value have an intuitive 
meaning. However, the numerical work involved is prohibitive [at the time of writing. 
Current computing capabilities now make these calculations routine]. 

 
The simplest approach is to assume that the value of the plotting position quantile is equal to its 
fractional position in the ranked list, m/n. This would assign the quantile 1/n to the smallest plotting 
position and n/n = 1 to the largest. This is unsatisfactory because it leaves no room at the upper end for 
values greater than the largest variate observed thus far. 
 
Most plotting position formulae are ratios of the form (m ± a)/(n ± b) where the addends and 

subtrahends are chosen to improve estimates in the extreme tails of the postulated distribution. 
 
Gumbel (ibid) recommended the following quantile formulation, which calculates the mean frequency 
of the mth variate. 
 
 pm = m / (n + 1)      � (Eq. 11) 
 
This formulation ensures that any plotting position is as near to the subsequent one as it is to the 
previous. It also produces a symmetrical sample cdf in the sense that the same plotting positions will 
result from the data regardless of whether they are assembled in ascending or descending order. 
 
A more sophisticated formulation is  
 
 pm = (m � 0.3) / (n + 0.4)     � (Eq. 12) 
 
This formulation approximates the median of the distribution free estimate of the sample variate to 
about 0.1% and, even for small values of n, produces parameter estimations comparable to the results 
obtained by maximum likelihood estimations (Bury, 1999, p 43). 

4. Using the Gumbel Distribution to model extreme 
earthquakes 

Cinna Lomnitz (1974) showed that if an homogeneous earthquake process with cumulative magnitude 
distribution 
 

F(m; â) = 1 - e- â m;   m ≥ 0     ... (Eq. 13) 
 
is assumed (compare with Eq. 24) , where â is the inverse of the average magnitude of earthquakes in 
the region under consideration; and á is the average number of earthquakes per year above magnitude 
0.0; then y, the maximum annual earthquake magnitude, will be distributed according to the following 
Gumbel cdf. 
 

G(y; á, â) = exp(-á exp(-â y));   y ≥ 0   ... (Eq. 14) 
 
Using the probability integral transformation theorem, simulated maximum yearly earthquakes can be 
generated using the following inversion formula. 
 

yi = -(1/â) ln((1/á) ln(1/ui))    ... (Eq. 15) 
 



 
 

The conversion factors to transform Eq. 4 and 6 to Eq. 11 and 12 are as follows. 
 

á = exp(µ / ó)      ... (Eq. 16) 
 

â = 1 / ó       ... (Eq. 17) 
 
Conversely: 
 

ó = 1 / â       ... (Eq. 18) 
 

µ    = (1/â)  ln(á)      ... (Eq. 169 
 
Manipulation of Eq. 15 produces the following linear relation. 
 
 -ln(-ln(pi)) = â yi  - ln(á)    � (Eq. 20) 
 
where p represents the plotting position, and the left hand expression is the reduced variate that can be 
used to plot data that is postulated as being drawn from a Gumbel distribution. 

5. Demonstration of Gumbel Probability Plotting. 
Eq. 15 was used to generate ten random, one thousand year catalogues of synthetic annual extreme 
earthquake magnitudes, using the input parameters á = 48, and â = 1.37. Each set of data was analysed 

by plotting Eq. 20, with the plotting positions determined using both Eq. 11 and 12. Figures 1a and 1b 
show one of the ten resulting graphical plots obtained using each plotting method. The dotted lines in 
Figure 1 are the ordinary linear regression approximations. The linear approximation equations and 
coefficients of linear determination (r2) are shown at the top right hand corner of each graph. The visual 
interpretation of the graph is that, for the majority of the lower magnitude data, the Gumbel distribution 
is appropriate; but, for magnitudes above about 6.0 (i.e. for the extreme of the extreme values), the 
assumption of a Gumbel distribution may be suspect (in fact, a Weibull analysis may be more 
appropriate for those data). 
 

 
Estimations of á and â were made using ordinary linear regression of each set of data. Table 1 

summarises the resulting approximations, as well as showing the average and standard deviations of the 
estimated parameters.  
 

Gumbel Plot using plotting position G(y) = j/(N+1) y = 1.3132x - 3.7419

R2 = 0.9987
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Gumbel Plot using plotting position G(y) = (j - 0.3)/(N+0.4) y = 1.3199x - 3.7627

R2 = 0.9986
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Figure 1(a) : Gumbel Probability Plot using 
i/(n+1) 

Figure 1(b) : Gumbel Probability Plot using     
(i-0.3)/(n+0.4) 



 
 

Table 1 : Parameter estimations using Gumbel Probability Plotting 
It is evident that both 
plotting methods can 
estimate á and â within 
standard relative errors of 
2.4% and 0.7% respectively, 
if sufficient trials are made. 
It is expected that trials with 
a larger number of data sets 
would improve the relative 
errors. 
 
In real situations it may only 
be possible to extract a 
single useful data set from 
the earthquake history. This 
will limit the precision of 
parameter estimation in 
practice. For single 
estimations, there is a 95% 
confidence that á and â can 
be estimated within two 

standard deviations of the averages quoted in Table 1. That is, within 15% and 5% respectively. 
 
It is clear from this demonstration that the fundamental method of probability plotting is scientifically 
sound in that it can reproduce accurate approximations of underlying process model parameters (at 
least for the two plotting position formulations used in this demonstration). 
 
It is pointed out that the forgoing error analysis pertains to the method itself. Other errors in the 
inferred results of particular analyses may be introduced by faulty data. In particular incorrect 
determination of earthquake magnitudes may adversely affect inferred results. 

6. Demonstration of Gutenberg-Richter Parameter estimation 
using the Gumbel distribution. 

6.1. Background Theory 
The Gutenberg-Richter (G-R) seismicity relation of earthquake frequency versus magnitude may be 
expressed as: 
 
 N(m ≥ M) = 10(a � b m)     � (Eq. 21) 
 
where N(m ≥ M) is the number of earthquakes observed having magnitudes greater than or equal to M; 
and a and b are parameters specific to the observed data set. As a pragmatic mathematical and practical 
choice, the lower limit of M, M0 is usually assigned the value zero. In that formulation the parameter a 
represents the logarithm to the base 10 of the number of independent earthquakes in the observation 
period with magnitude greater than or equal to zero.  
 
 a = log10 N(m ≥ M0) => N(m ≥ M0) = 10a   � (Eq. 22) 
 
If it is assumed that all earthquake included in the data set are independent, and that each event has 
equal probability of occurring, then Eq. 21 can be normalised to produce a frequency relation as 
follows, 
 
 Pr(m ≥ M) = N(m ≥ M)/ N(m ≥ M0) = 10(a � b m) 10-a  = 10� b m � (Eq. 23) 
 
It can be seen from Eq. 23 that the value of the parameter b determines the propensity for lower or 
higher magnitude earthquakes. Smaller values of b model a system that has a greater propensity for 
larger magnitude earthquakes. It also demonstrates that magnitude of the earthquakes is not dependent 
on the a parameter. The cdf formulation is as follows. 

á â Parameter 
estimation pi=i/(n+1) pi=(i-0.3)    

/(n+0.4) 
pi=i/(n+1) pi=(i-0.3)    

/(n+0.4) 

Data Set 1 42.17857 43.06256 1.313218 1.319945 
Data Set 2 44.00797 45.03307 1.328423 1.335858 
Data Set 3 44.30699 45.27417 1.338465 1.345506 
Data Set 4 51.20298 52.48388 1.409218 1.417366 
Data Set 5 41.95601 42.79609 1.317657 1.324136 
Data Set 6 49.80841 50.87322 1.374311 1.381216 
Data Set 7 47.47786 48.46969 1.362259 1.369031 
Data Set 8 50.64748 51.86245 1.382438 1.390142 
Data Set 9 42.62512 43.62954 1.33023 1.337812 
Data Set 10 43.24977 44.15485 1.348617 1.355476 
Average 45.75 46.76 1.35 1.36 
StdDev 3.49 3.60 0.03 0.03 
StdError 1.10 1.14 0.0095 0.0095 
Rel Error 2.4% 2.4% 0.7% 0.7% 
ExactValue 48.00 48.00 1.37 1.37 



 
 

 
 Pr(m ≤ M) = 1 - 10� b m     � (Eq. 24) 
 
Using the probability integral transformation theorem, Eq. 24 can be inverted to produce a random 
magnitude generator 
 
 m = -1/b log10(1 - u)      � (Eq. 25) 
 
where u is a random number in the closed (0, 1) interval.  Eq 25 also provides the reduced variate for 
conducting a G-R plot to test whether a data set is drawn from a G-R distribution. 
 
If it is further assumed that the timing of the earthquake events is a Poisson process, then a random 
event generator can be devised (c.f. Bury, 1999, p 104). 
 
 t =  -10-a ln(v)       � (Eq. 26) 
 
where t is a random time interval between events, v is a random number in the closed (0, 1) interval, 
and 10-a is the average time between events.  
 
From Eqs. 13 and 24, and the fact that á and 10

a specify the average time between events in the 
Gumbel and G-R formulations respectively, the relationships between the Gumbel parameters á and â 
and the G-R parameter a and b are seen to be 
 
 e-â = 10-b => b = â log10e   � (Eq. 27) 
 
 á = 10

a  => a = log10á   � (Eq. 28) 
 
Using the same parameter values that were employed in the demonstration of Gumbel plotting, if á = 

48, then a ≈ 1.69; and if  â = 1.37, then b ≈ 0.59. 

6.2. Simulated G-R Catalogues 
Using Eqs. 25 and 26, with a = 1.69 and b = 0.59, eleven 131 year catalogues of earthquake events 
were generated. Figures 2(a) and 2(b) show analysis of one typical year of synthetic earthquakes using 
the Gutenberg-Richter frequency/magnitude method, and with a Gutenberg-Richter reduced variate 
plot. 
 

Linear regression of the data used in Figure 1(a) estimates a to be approximately 1.68, and b to be 
about 0.54: which agrees with the actual input parameters used to generate the data. Similar linear 
analysis of the data plot in Figure 2(b) estimates the b parameter to be 0.52. 
 
Visual inspection of Figure 2(b) shows that, although it is reasonable to use the G-R relation to analyse 
the earthquakes with synthetic magnitudes up to 1.3, events above that magnitude should not be so 
treated in this particular case. 
 

Simulated G-R Frequency/Magnitude with a = 1.69 b = 0.59  
y = -0.5395x + 1.6833

R2 = 0.957
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Figure 2(a) : G-R Frequency/Magnitude chart Figure 2(b) : G-R Probability Plot 



 
 

Figures 3(a) and 3(b) show analysis of the same 131 year of synthetic earthquakes using the Gumbel 
extreme event method, with the full annual extreme data set, and with the extreme of the annual 
extreme values truncated.  
 

Tables 2 and 3 provide a listing of the a and b parameter estimations and averages obtained using the 
Gumbel extreme value method of analysis, from the full extreme data set, and with the extreme of the 
extreme values omitted. It can be seen that both methods are capable of recovering the a priori 
parameter values, and that using the full data set provides the better relative errors. 
 

 Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

Set 
7 

Set 
8 

Set 
9 

Set 
10 

Set 
11 

Avg Rel 
Err 

a 1.79 1.51 1.67 1.71 1.76 1.70 1.89 1.57 1.61 1.63 1.55 1.67 1.8% 
b 0.62 0.52 0.56 0.61 0.64 0.59 0.65 0.56 0.56 0.58 0.55 0.59 1.7% 

Table 2 : Parameter estimations and average using full extreme data set. 
 

 Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Set 
6 

Set 
7 

Set 
8 

Set 
9 

Set 
10 

Set 
11 

Avg Rel 
Err 

a 1.64 1.59 1.62 1.70 2.00 1.71 1.82 1.64 1.69 1.59 1.58 1.69 2.4% 
b 0.56 0.54 0.55 0.61 0.72 0.60 0.63 0.59 0.58 0.57 0.55 0.59 3.4% 

Table 3 : Parameter estimation and averages using truncated data set. 
 

7. Summary 
It has been demonstrated that analysis of multiple synthetic earthquake catalogues, derived from a 
Gumbel seismicity model, using Gumbel distribution plotting of annual extreme earthquake 
magnitudes, is capable of estimating the a priori á and â parameters values within a relative error of 
2%. There is a 95% confidence that individual estimations of á and â will be within 15% and 5% 
respectively of the true value. 
 
Acceptable parameter estimates are obtained using either full annual extreme data sets, or truncated 
data sets with the extreme of the extreme values omitted from the data plot, but the full data set 
provides smaller relative errors. 
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Gumbel plot of annual extreme events catalogue 01 y = 1.4207x - 4.1209

R2 = 0.9805
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Gumbel plot of truncated annual extreme events catalogue 01y = 1.2987x - 3.7658

R2 = 0.9939
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Figure 3(a) : Gumbel analysis full data set Figure 3(b) : Gumbel analysis truncated data set 


