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Abstract 
 
This paper presents a technique which explores the fusion of clustering and a least square 

method for the classification of suspicious areas within digital mammograms into benign and 
malignant classes. It incorporates a clustering algorithm such as k-means in conjunction with a 
gram-schmidt based least square method. The main focus of the research presented in this 
paper is to (1) improve the classification of features from suspicious areas within digital 
mammograms and (2) examine the effects that the determined clusters and least square 
methods have on classification accuracy and efficiency. The proposed technique has been 
tested on a benchmark database and the results from preliminary experiments are discussed. 

 
 

1. Introduction 
 
Breast Cancer is a leading cause of mortality and morbidity [1-2] amongst women. A report 

by a National Cancer Institute [2] suggests that 1 in 11 women develop breast cancer in 
Australia, 1 in 8 in the United States and 1 in 9 in the United Kingdom and Canada. Since the 
aetiology of breast cancer is not known prevention at this stage seems unlikely which makes 
early detection more important. 

Digital mammography is one of the most reliable procedures for the early detection of breast 
cancer [1-2, 32-33]. Current image processing techniques [33] make primitive breast 
abnormality detection easier; however their classification as malignant or benign remains one 
of the most difficult tasks for radiologists and researchers due to a lack of individuality in 
benign and malignant class patterns. In many cases, both classes exhibit similar characteristics, 
i.e. size, shape and distribution of microcalcifications. Radiologists’ interpretation of such cases 
often produce screening errors; either to miss malignant cases or result in more benign biopsies. 
The ability of neural classifiers to learn from the attributes of given class patterns and to 
classify unknown patterns into appropriate classes using the acquired knowledge has shown its 
potential [3-10, 20, 23, 25, 27, 29, 31] in the field of digital mammography.  

Techniques such as artificial neural networks [4-9], fuzzy logic [4, 11], and wavelet 
transforms [12-13] are the most commonly used detection and classification systems. Chitre et 
al. [9] compared artificial neural networks and statistical methods for microcalcification pattern 
classification. They obtained a classification rate of 60%, which was better than statistical 
classifiers. A comparative study of a radial basis function (RBF) and a multi layer perceptron 
(MLP) neural networks for the classification of breast abnormalities using texture features was 
performed by Christoyianni et al. [10] and Bovis et al. [8]. They concluded that MLP obtained 
4% higher accuracy than RBF. Yu et al. [16] used a multilayer feed forward neural network. 
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Verma et al. [4] used a back-propagation neural network for the classification of suspicious 
lesions extracted using a fuzzy rule based detection system. They obtained an 88.9% 
classification rate using a manual combination of features. Zhang et al. [5] used a genetic 
algorithm for neural network learning in their study of microcalcification classification in 
digital mammograms. They have attained a 90.5% accuracy rate on test set at the cost of a low 
accuracy rate on training set. Wroblewska et al. [14] proposed a new segmentation and feature 
extraction technique for the reliable classification of microcalcifications which achieved low 
classification rate (78%) on DDSM database. 

A critical review of existing techniques [3-33] has shown that the accuracy rate for the 
classification of breast abnormalities is low and inconsistent. There are many reasons for low 
classification rates such as inappropriate training of classifiers, contradictory features which 
confuse classifiers, inconsistent feature values for benign and malignant suspicious areas, etc. 
The previous research showed that neural classifiers can achieve better performance [3-5, 8-10, 
20] than other traditional techniques in classifying benign and malignant patterns in digital 
mammography. Recent reviews [3, 20] have reported the superiority of neural networks over 
other techniques. However, there are many drawbacks with current neural classifiers for the 
diagnosis of breast cancer. 

The primary aim of this study is to incorporate an unsupervised clustering algorithm (k-
means clustering) with a least square method for determining clusters and weights for neural 
network based classifiers. These weights are used by a supervised learning algorithm to classify 
the features extracted from suspicious areas into malignant and benign classes. 

The remainder of this paper is organised into four sections. Section 2 discusses the proposed 
research methodology. Section 3 presents the experimental results obtained with the proposed 
approach. Section 4 covers a brief discussion and analysis on the experimental results obtained 
with the proposed methodology. In section 5, conclusions are drawn and future research 
directions are addressed. 

 
2. Proposed Research Methodology 

 
An overview of the research methodology is presented below in Figure 1. The research 

methodology consists of data collection, suspicious area extraction, feature extraction/selection, 
clustering, learning and classification processes. 

 

 
 

Figure 1. An overview of the proposed research methodology 
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The first step is data/image acquisition. A generally accepted practice with the use of 
adaptive pattern recognition techniques is to use two sets of data in order to train, test and 
determine the suitability of the diagnostic system. The digital mammograms from the 
University of South Florida’s Digital Database for Screening Mammography (DDSM) are used 
in this study to allow for comparisons with other researchers [17].  

The pre-processing, area extraction and feature extraction techniques from our previous 
research work was used to extract appropriate features from digital mammograms. The k-means 
clustering algorithm was used to cluster input features into a number of clusters. The learned 
cluster values were used to assign the weights of hidden layer (weights between inputs and 
hidden units) of a MLP type neural network. The network contained inputs (features), hidden 
units (single hidden layer) and outputs (benign and malignant classes). The weights of the 
output layer (weights between hidden units and outputs) were calculated by a modified-gram 
Schmidt (MGS) based least square method. The weights obtained by clustering and MGS were 
used in conjunction with supervised network training to classify input features into benign and 
malignant classes. The proposed methodology provides the ability to quickly, efficiently, and 
accurately identify suspicious areas into benign and malignant classes. 

 
3. Experimental Results 

 
The proposed methodology has been implemented in C++. The experimental results obtained 

from various experiments are presented below in Table 1.  In our preliminary experiments the 
number of features and the number of clusters were fixed and the number of hidden units was 
varied. The 5-page limit does not allow us to include all results in Table 1 so we have included 
results for a selected number of hidden units. The best results were obtained with 28 hidden 
units. 

 
Table 1. Classification Accuracy 

Classification Accuracy 
[%] 

# of 
Features 

#of 
Clusters 

#of 
Hidden 
Units Training Set Testing Set 

6 8 19 95 85 
6 8 20 95 86 
6 8 24 95 87 
6 8 26 95 88 
6 8 28 95 91 

 
4. Comparative Analysis 

 
The results obtained from the proposed methodology were analysed and compared with other 

existing techniques. The highest classification accuracy of 91% on test set was obtained using 
k-means and modified gram-schmidt for obtaining hidden and output weights. A comparison 
with other existing pattern classification systems is a difficult task as many systems are 
developed and tested on different datasets. Figure 2 shows the classification rates attained by 
our proposed research methodology and other researchers’ proposed techniques. Bovis et al. [8] 
attained 77% classification accuracy with BPNN and 78% with RBFNN on 161 breast images 
of the MIAS dataset. Wu et al. [7] used a dataset containing 500 masses from the China Society 
for Industrial and Applied Mathematics. They reported highest 87.77% classification accuracy 
using the weighted average fusion algorithm on balanced input patterns to their NN ensembles 
and 88.27% accuracy with the perceptron average fusion algorithm on imbalanced input 
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patterns. Panchal et al. [33] used an autoassociater-MLP based classifier and they reported 91% 
accuracy on a test set of the DDSM benchmark database, however the training of auto-
associator and MLP took much longer than the proposed methodology.  
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Figure 2. Proposed methodology vs. existing techniques 
 

5. Conclusion 
 
The research investigations presented in this paper has demonstrated that the combination of 

clustering algorithms with modified gram-schmidt can achieve good classification accuracy for 
benign and malignant patterns. The learning of hidden and output weights was very fast. The 
experiments showed that a small number of iterations was required for k-means and modified 
gram-schmidt to train the hidden and output weights of the network. Overall, the proposed 
approach is free from traditional problems faced by iterative learning processes and provides 
fast training with promising classification accuracy. The experiments were conducted with only 
one set of features and a fixed number of clusters. In our future research, we will conduct more 
experiments with various numbers of clusters and features. We are also planning to replace k-
means with other clustering algorithms such as self organising map and investigate its impact 
on the overall learning process and classification accuracy. 
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