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Abstract
Two laboratory-based near infrared systems were compared for the purpose
of quantifying kaolinite within Weipa bauxites. The two systems were based
on different instrument technologies, a Bruker MPA (multi-purpose
analyser) FTNIR (Fourier transform near infrared) instrument, and a Foss
Model 6500 pre-dispersive grating instrument. Systems were compared in
terms of accuracy, robustness, sample throughput and ease of use. The
MPA-based system was superior in terms of accuracy (root mean squared
error of prediction (RMSEP) = 0.88%m/m), throughput and ease of use.
The Model 6500 had an advantage of offering the most robust measurement
with greater time stability and lower errors in repeated and repacked
measurements. However, addition of a small number of temporally
displaced and repacked samples in the calibration set improved robustness
of the MPA system, matching the Model 6500.

Keywords: kaolinite, bauxite, near infrared, mineral, signal to noise, 6500,
MPA

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bauxite quality is assessed on its suitability for alumina
refining, namely, the potential alumina yield and running
costs for refinement. In the Bayer process of alumina
extraction, silica dissolved in the digestion phase must
be removed as sodalite, consuming valuable caustic soda.
The mineral kaolinite, also termed reactive silica, is the
primary source of soluble silicates and hence a significant
expense in the refinement process. Estimated soda losses
can account for as much as 20% of alumina production
costs in high silica bauxites [1]. Precise determination of
kaolinite content is therefore important to bauxite mining
and refining industries but accurate analyses are complicated
by the complex bauxite mineralogy. Techniques such as
atomic absorption spectroscopy and x-ray fluorescence cannot
directly discriminate minerals of similar atomic composition
such as gibbsite, boehmite and kaolinite. On the other hand,
wet chemical methods and x-ray diffraction are prohibitively
slow for large-scale analysis.

Near infrared spectroscopy (NIRS) offers a rapid
and economical alternative for quantitative mineralogical
determinations. NIRS utilizes the 12 500–4000 cm−1 region
of the electromagnetic spectrum, residence to the numerous
bands arising from vibrational overtones and combinational
transitions of OH, CH, NH functional groups [2]. The strong
dependence of the band position to the molecular structure and
atomic composition suggests that bauxite minerals containing
hydroxyl (OH) groups such as kaolinite, gibbsite, boehmite,
hydrohematite and goethite should possess a characteristic
presence in the near infrared (NIR) spectrum. The main
advantage of NIRS is low absorptivity of NIR radiation. This
characteristic permits analysis of solid samples with large path
length without requiring a costly and sometimes hazardous
preparation. NIRS is however a secondary method and due to
the inherently poor resolution of NIR spectra, requires careful
calibration for quantitative analysis.

Quantitative mineralogical analysis of bauxite using NIRS
remains relatively unexplored, or at least undocumented in the
public domain. A number of studies have been conducted
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analysing the spectra of bauxite minerals including kaolinite
[3–7], gibbsite and boehmite [6] demonstrating that the
NIR spectra of these bauxite minerals were characteristic
of the location of OH groups within the lattice structure.
Walker appears to be the first and only researcher to analyse
bauxite [8, 9] and published preliminary work developing
quantitative calibration models using the PIMA II portable
instrument [10]. Walker developed partial least-squares-based
(PLS) calibration models for kaolinite, gibbsite, boehmite and
hematite, with corresponding R2 values of 0.73, 0.87, 0.89
and 0.85. It is expected that the calibration performance can
be improved by utilizing systems based on modern laboratory
grade instruments as well as application of new chemometric
data treatment prior to PLS calibration.

In this study, two NIR systems (one Fourier transform, the
other pre-dispersive) were trialled and assessed for suitability
in determination of kaolinite content in Weipa bauxites. The
spectral data were collected and PLS calibration models were
optimized utilizing a number of proven data treatments.

Systems were compared on four criteria: (1) accuracy, (2)
robustness, (3) sample throughput and (4) ease of use.
Accuracy was assessed by the root mean squared error of
prediction (RMSEP) when the model was applied to an
independent test set (see section 2). The throughput
was assessed on time taken for sample presentation and
measurement. Ease of use was assessed on the number of
steps and degree of complexity for preparing the sample and
measuring its NIR spectrum.

In this context, robustness is the stability of measurement
against natural experimental variations within same-operator,
same-laboratory conditions. Robustness was evaluated by
assessing the error introduced through four aspects of routine
measurement. The first aspect was time stability of the
system, which is subject to instrumental drift and seasonal
effects [11]. The contribution from the latter is only expected
to be minor given that the laboratory was air-conditioned.
The second aspect was concerned with instrumental noise
inherent in the repeated measurement of one sample. The
third and fourth aspects were concerned with the operator
and sample variability due to handling and repacking of the
sample, respectively. These two aspects are most likely to
impact the scattering profile and homogeneity of the sample,
having obvious impact on the NIR spectrum.

2. Theory

2.1. Assessment of accuracy/error

Accuracy of calibration models and error from experimental
variations were assessed by RMSEP on the appropriate
validation set:

RMSEP =
√∑N

i=1

∑G
g=1 (ŷi,g − yi)2

N · G

where ŷi,g is the prediction made on the gth of G repeated
spectral measurements for the ith of N samples. The significant
difference between the accuracy of two models was tested
using the method reported by Fearn [12], using a 5% level of
significance.

2.2. Spectral noise

Spectral noise was quantified using the root mean square
(RMS) of residuals. The signal-to-noise ratio (SNR) provides
a measure of the noise relative to the average signal strength.
The SNR was determined as the averaged RMS noise to mean
signal ratio at each wavenumber:

rms =
√∑N

i=1

∑G
g=1(xi,g − x̄i )2

N · G

snr = rms./x̄

SNR = 1

p

p∑
j=1

snrj

xi,g is the spectrum of the gth repeated measurement of
the ith sample
x̄i is the mean spectrum for this ith sample
snr is the signal-to-noise ratio spectrum
x̄ is the mean spectrum of the set of N samples
./ is elementwise division
snrj is the signal-to-noise ratio for the jth of p
wavenumbers/wavelengths.

3. Experimental details

3.1. Samples

Rio Tinto Aluminium Mining and Refining Research and
Technical Support (RTA M&R R&TS) provided 263 bauxite
samples with reference analysis from two different mine sites
in the Weipa region. To develop calibrations for kaolinite,
samples were divided into a calibration set consisting of 204
samples and a validation set consisting of 59 samples. The
calibration and validation sets had similar and heavily skewed
distributions of the mineral contents. A distribution of the
sample sets is shown in figure 1.

Weipa bauxites have only two silica bearing minerals:
kaolinite and quartz. Kaolinite content was therefore
determined through the difference between total silica obtained
from XRF and quartz content measured using a gravimetric
digestion in hydrofluoric acid.

Prior to reference analyses and spectral measurement the
bauxite samples were sieved, ground and dried. The samples
were dry sieved to with an upper sieve size of 16 mm and a
lower sieve size of 1.3 and 0.3 mm for the first and second
mine site respectively. The sieved faction was ground using
a Rocklabs ring grinder for 3 min producing a particle size
distribution with 95% material less than 75 µm. The samples
were then dried for 2 h at 105 ◦C to remove free moisture.

3.2. Instruments

The two new candidate systems were based on different
laboratory grade instruments. The first system was based
on the multi-purpose analyser (MPA) (Bruker Optik GmbH,
Ettlingen, Germany) and the second system was based on the
Model 6500 (Foss NIRSystems Inc., Silver Springs, USA).

The MPA is a Fourier transform (FT) NIR instrument
with a single lead-sulfide (PbS) detector offering a full range
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Figure 1. Distribution of kaolinite content in the calibration (left) and validation (right) sets.

measurement between 12 000 and 3600 cm−1 at variable
resolution (2 cm−1 maximum).

The Model 6500 is a pre-dispersive grating NIR
instrument with a dual silicon and PbS detector system offering
full range measurement of visible and near infrared, 25 000–
4000 cm−1 (400–2500 nm). The Model 6500 has a fixed
resolution of 10 nm corresponding to a resolution of 37 cm−1

at 6060 cm−1 and makes spectral measurements in 2 nm steps
(7 cm−1 at 6060 cm−1).

3.3. Spectral acquisition

Sample presentation was optimized for each instrument.
The MPA instrument was capable of 30 sample batch
measurements using a circular sample carousel. Samples
were presented in disposable glass vials (MGlas AG IN 440)
approximately 20 mm in diameter. Approximately 5 g of
powdered bauxite sample was dispensed into the vial to
provide a sample thickness of 15–20 mm to ensure a
condition of zero transmittance. Spectral measurement was
performed over the instrument’s full spectral range (12 000–
3600 cm−1) at a 16 cm−1 resolution. For each sample in the
carousel, a reference was measured followed by ten spectra
measured before progressing to the next position. Each
spectrum (average of 32 forward and backward scans) took
approximately 9 s to acquire.

The Model 6500 instrument offered presentation of the
samples in a spinning cup module to provide a measurement
stable against sample orientation. The sample cups were filled
with 9 g of bauxite powder which was levelled and compacted
at 3.2 kPa (382 g compression mass). The sample cup was
placed into the spinning cup module and rotated during the
measurement. For each sample a reference was collected,
followed by ten spectra measured over the instrument’s full
range, 25 000–4000 cm−1 (400–2500 nm). The Model 6500
had a constant 10 nm resolution (37 cm−1 resolution at
6060 cm−1) and performed measurement at 2 nm intervals
(7 cm−1 resolution at 6060 cm−1). An individual spectrum
was an average of 32 forward and backward scans and had a
35 s acquisition time. Sample cups were cleaned using ethanol
and a low-lint soft tissue Kimwipe (Kimberly-Clark Australia
Ltd, 1098).

Table 1. Calibration models and predictive results for both systems.

System Treatment RMSEP R2 PLS factors

MPAa AS 1.3 0.989 4
MPAa SNV, SG2, AS 0.94 0.993 5
MPAa AS, OSC2 0.89 0.994 2
6500 AS 1.4 0.986 4
6500 AS, OSC2 1.1 0.989 1
6500 SG1, AS, OSC1 0.99 0.992 6

a Optimal MPA models developed at a 16 cm−1 resolution.

The order of sample presentation was randomized by
sample number, ensuring no correlation between the order
of measurement and mineral content. The same sample order
was used for both systems.

A number of ‘runs’ (using identical sample presentation
methods described above) were conducted to obtain the
relevant data sets to assess robustness of the models with
respect to the four experimental aspects: drift, repeated
measurement, operator handling and replicate measurement
(repacking). These runs are described below.

Due to the limited availability of the MPA instrument,
the measurements to assess the different aspects of the
experimental error were conducted at 8 cm−1 prior to the
investigation on the impact of spectral resolution [13] which
identified a 16 cm−1 resolution for model development.
Consequently models developed at 8 cm−1 for the experimental
error analysis did not perform as well as the optimized models
at a 16 cm−1 resolution reported in table 1.

Run 1 (full set measurement)—the spectral data for all
263 samples. Ten consecutive measurements were made for
each sample before progressing to the next. This set served as
a basis for model development, optimization and comparison
of the two systems.

A subset of run 1 consisting of spectral data of ten
randomly selected samples was used to assess the instrumental
error. The calibration models were developed on the remaining
253 samples and then used to predict on the ten-sample set.

Run 2 (drift)—spectral data of all 263 samples were
measured a second time using the same procedure as for run
1. The measurement of the samples for run 2 was conducted
at least one month after the first. This data set was used to test
the models for stability against drift.
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Run 3 (operator)—each of the ten samples used to
assess the instrumental error was measured ten consecutive
times. Between each successive measurement the sample was
removed from its holder (carousel or spinning cup module)
and then replaced. This data set was used to assess the
operator experimental error and also encompasses elements
of the instrumental error.

Run 4 (replicate)—using the same ten samples as in
run 3, ten consecutive spectral measurements were made for
each sample, repacking the sample between each successive
measurement. This data set was used to assess the replicate
measurement error, which encompasses the operator and
instrumental errors.

3.4. Chemometric model development

Quantitative calibration models were developed using PLS
regression. Models were optimized in a three step process:
(1) find optimal spectral window, (2) optimize data treatment
parameters and (3) find the best permutation of data treatments.

The best contiguous spectral window was found by
iteratively developing PLS models based on the autoscaled
data for each possible contiguous window. The best spectral
window was identified by the model producing the lowest
RMSEP.

Once the spectral window had been determined, the data
treatment needed to be optimized. The data treatments trialled
included autoscaling (AS), mean centring (MC), first- and
second-order Savitzky Golay derivatives (SGx where x is
the order of differentiation), multiplicative scatter correction
(MSC), standard normal variate (SNV) and orthogonal signal
correction (OSCx where x is the number of components
to use in the correction). The first step was to optimize
the ‘polynomial order’ and ‘window width’ parameters for
Savitzky Golay derivative and the ‘tolerance’ parameter for
orthogonal signal correction. This was again achieved
through a linear search of possible parameter values selecting
those that produced a PLS module with the lowest RMSEP.
Once parameters were set, all possible permutations of data
treatments were trialled and PLS models developed on the
treated data. The final calibration was selected as the model
with (significantly) the lowest RMSEP and simplest data
treatment.

3.5. Software

The manufacturers’ recommended software OPUS 5.5 (Bruker
Optik GmbH, 2005) and Vision 2.51 (Foss NIRSystems, Inc.
2001) were used to control and interface the MPA and Model
6500 instruments respectively. Data treatment, PLS modelling
and noise calculations were performed using Matlab R© 7.1
(Mathworks, Inc. 2005) with PLS Toolbox 3.5 (Eigenvector
Research, Inc. 2004). The selection of spectral window, data
treatment parameters and the search of different data treatment
permutations were accomplished using Matlab scripts.

4. Results/discussion

4.1. Accuracy

The spectra of three bauxite samples (high medium and low
kaolinite concentration) measured using both the MPA and

Figure 2. (a) Pure kaolinite spectrum acquired on the MPA. (b)–(d)
Bauxite spectra acquired using the MPA system with high, medium
and low amounts of kaolinite respectively. (e)–(g) Bauxite spectra
acquired using the Model 6500 system with high, medium, low
kaolinite content respectively. Vertical grey lines mark dominant
absorption bands. Spectra offset for clarity.

Model 6500 systems are shown in figure 2 below. A pure
kaolinite spectrum measured using the MPA system is also
shown. The Weipa bauxite samples were rich in kaolinite and
gibbsite and consequently these two minerals dominated the
NIR spectrum. The bauxite samples in figure 2 were selected
to have relatively low gibbsite content to best illustrate the
impact of the kaolinite mineral on the bauxite spectrum. Five
dominant kaolinite bands were most prevalent in the bauxite
spectra: four peaks at 7176, 7067, 4527, 4193 cm−1 and a
shoulder at 4622 cm−1. The peaks at 7176 and 7067 cm−1

are attributed to the first overtones of the fundamental OH
vibrations at 3669 and 3619 cm−1 [3]. The remaining bands
4622, 4527 and 4193 cm−1 attributed to combinations of
the fundamental Al–OH stretching and deformation modes
[5]. The broad band located at 5100 cm−1 increases with
increasing kaolinite content but does not originate from
molecular vibrations from the kaolinite structure. Rather,
the 5100 cm−1 band is due to absorbed or coordinated water
resulting from a shearing of the kaolinite layers during grinding
[5, 6].

The difference in resolution of the two instruments was
obvious in the OH overtone region (6400–7400 cm−1 [5]).
The MPA system had a constant wavenumber resolution of
16 cm−1 whilst the Model 6500 had a constant wavelength
resolution of 10 nm. At lower wavenumber, such as the
Al–OH combination region (4000–4800 cm−1), the resolution
was visibly similar for both instruments. However, at higher
wavenumber, in the OH overtone region, the MPA provided
much better spectral definition, particularly around the
7065 cm−1 peak. Additionally, the MPA system also resolved
a fine peak structure: 6958, 6896 and 6850 cm−1.

The SNR was evaluated at each wavelength for each
instrument and is presented in figure 3. The obvious
observation was that the MPA system demonstrated a superior
SNR in all wavelength regions. The superior SNR was purely
a result of a stronger absorbance signal and not lower signal
noise. The stronger absorbance signal was attributed to the
high optical throughput of the Fourier transform instrument in
combination with the reduced sample density which would
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Figure 3. Signal-to-noise ratio for each wavenumber for both MPA
and Model 6500 systems. Vertical green lines mark the position of
dominant kaolinite bands. The dashed vertical line denotes the end
of MPA window whilst the shaded area denotes the spectral window
selected for the Model 6500.

increase average sample reflectance. Another observation
was that the Model 6500 system had a poor SNR at the
kaolinite bands, particularly in the OH overtone region where
the kaolinite bands correspond to local minima.

The spectral windows for both systems were very
different. The MPA system achieved best calibration of
autoscaled data over the 8500–3700 cm−1 window whilst the
best window for the Model 6500 was determined to be 5620–
4240 cm−1. The two spectral windows are also shown in
figure 3.

Extension of the spectral window into the noisy lower
wavenumbers was highly beneficial to model performance for
the MPA system. This result was attributed to the presence
of the fundamental OH vibration located at 3694 cm−1

[3]. Extension of the window beyond 3700 cm−1 proved
fruitless and calibrations degraded as a direct result of the low
signal to noise at the end of the PbS detectors useful range.
Comparatively, the Model 6500 made use of a small spectral
window, concentrating on the Al–OH combination bands at
4527 and 4622 cm−1 with calibrations improving marginally
by omission of the overtone region around 7000 cm−1. The
slight improvement observed by utilizing the region containing
only the Al–OH combination bands was best explained by
the greater SNR observed at the 4527 and 4622 cm−1 bands,
providing more stable data at the influential wavenumbers for
subsequent calibration.

Trialling of the many permutations of MC, AS, SNV,
MSC, first and second order SG derivatives and OSC was a
computationally and temporally expensive process. The single
most beneficial treatment was rudimentary AS which yielded
very similar prediction results, RMSEP ∼ 1.35%m/m, on both
systems requiring four PLS factors in the final model. Applied
individually, SNV, MSC and derivation provided no additional
benefit for calibration, suggesting that baseline effects and
multiplicative scatter effects were not the most dominant
sources of spectral variation in either system. However,
when applied prior to AS, some combinations of SNV/MSC
and derivatives proved beneficial. OSC (preceded by AS)
performed well on the data sets for both systems, offering a
30% reduction in the RMSEP over the autoscaled model and
requiring only two PLS factors.
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Figure 5. Model coefficients for the MPA AS, OSC2 model.
Vertical lines mark the position of reported kaolinite bands.

Approximately 1200 calibration models were developed
across both systems; the two best models for each instrument
are shown in table 1 with the models developed from
autoscaled data for reference. For the MPA system, the best
calibration using spectral data collected at a 16 cm−1 resolution
that was autoscaled with two-component OSC. The Model
6500 achieved best calibration results by first derivative, AS
and single-component OSC.

The autoscaled two-component OSC calibration for the
MPA system was significantly better than all other models (at
the 5% level) achieving an accuracy of 0.89% with the R2

value of 0.994 requiring only two PLS factors. Predicted
kaolinite content against the reference kaolinite content is
shown in figure 4. The predicted values were tightly clustered
around the ideal predicted-equals-reference line with the
greatest residual error arising from the samples of higher
kaolinite concentration, a result directly reflective of the
skewed kaolinite distribution within the calibration set. The
model coefficients (figure 5) for the resulting calibration
provide confidence in the robustness of the model, displaying a
smooth spectral-like form with the positive and most influential
coefficients aligned with the kaolinite bands observed in the
bauxite spectra. The importance of extending the spectral
window to 3700 cm−1 to capture variation of the 3694 cm−1

fundamental was justified by the large magnitude of the
coefficient in this region. The coefficients also confirmed
that the band at 5100 cm−1 had little correlation to kaolinite
content.
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Figure 6. (a) Mean spectra on the MPA and Model 6500 systems for run 1 and run 2. Mean spectra for both runs lie on top of each other.
(b) The percentage difference between run 1 and run 2 for the MPA and Model 6500 systems.

Table 2. RMSEP (%m/m) on the validation sets for the first and
second runs (R1 and R2 respectively) for both MPA and Model
6500 systems. Models were developed from the calibration set for
the first run and the calibration set for the first run extended with 20
samples of the second run.

Model
using run 1 Model using

calibration set extended set

Model System R1 R2 R1 R2

Autoscaling MPA 1.34 1.42 1.33 1.40
Autoscaling Model 6500 1.36 1.18 1.36 1.17
AS, OSC2 MPA 1.09 1.23 1.11 1.14
SG1, AS, OSC2 Model 6500 1.00 0.95 0.99 0.95

MPA models developed from data measured at an 8 cm−1

resolution.

4.2. Robustness against aspects of the experimental method

4.2.1. Time stability (drift). The first aspect to be assessed
was the time stability of the systems. The mean spectra and
difference between the mean spectra of the validation sets of
run 1 and run 2 for each system can be seen in figures 6(a)
and (b), respectively. The mean spectra were very similar
for both runs on each system. Both systems displayed an
average increase across the spectral range in the order of
0.5%. The MPA showed a relatively constant offset of spectra
interrupted by minima around 5341 cm−1 and 7343 cm−1

reflecting changes in the ambient humidity and temperature,
coinciding with a failing air-conditioning unit.

The mean difference between runs on the Model 6500
system had an unexpected spectral profile. It was not
anticipated that the sample structure changed at all during the
month between measurement and it was difficult to explain
this profile in terms of instrumental drift. It was suspected
that the difference in the mean spectra was due to a change in
the experimental method as the operator became more adept
at preparing the samples.

Table 2 shows the RMSEP for models developed using the
calibration set from the first run (column 3), and the calibration
set of the first run extended with 20 samples from the second
run (column 4), when used to predict on the validation sets
of the first and second runs. The autoscaled models for both
the MPA and Model 6500 are included to give a reference and
demonstrate the impact of the data treatments.

Table 3. Averaged signal-to-noise ratio for the instrument, handling
and repack sets on the MPA and Model 6500 instruments.

Window (cm−1) Instrument Handling Repack

MPA 8500–3700 3000 160 130
6500 5640–4240 1600 700 84

The autoscaled models show a distinct difference in the
accuracy of predictions between the two runs. The MPA
predicts worse on the second run whilst the Model 6500
predicts far better on the second run, in agreement with the
prior suggestion that the operator is learning the presentation
method.

Treating the MPA data with AS and OSC improved the
predictions on both sets. However, the optimized MPA model
is still less accurate on the second run, indicative of a unique
spectral variation introduced in the second run. The model was
stabilized by inclusion of spectral data of 20 samples from
the second run in the calibration set without sacrificing
accuracy suggesting this method as an acceptable method for
model maintenance [14].

Application of the SG1, OSC1 data treatment to the Model
6500 spectral data yielded approximately equal results when
predicting on the validation sets of either run 1 or run 2
demonstrating time stability.

4.2.2. Repeat, operator and repack error. The RMS residual
spectra (refer to figures 7(a) to (c)) and averaged SNR (refer
table 3) were calculated for the instrument, handling and
repack data sets.

The MPA has a clearly superior instrument noise (refer
figure 7(a)) with an averaged signal to noise almost double
that of the Model 6500 due to both slightly improved RMS
noise and superior signal strength.

The operator’s handling of the sample produced great
spectral variation in the MPA system, comparable to that of
repacking the sample. The origin of these variations was
attributed to changes in the scattering profile due to either
redistribution of the powder sample by mechanical vibration
or differences in orientation of the sample to the beam when
placed in the sample carousel. This conclusion was confirmed
by figure 7(b). The MPA operator RMS spectrum displayed
a footprint of the bauxite spectrum—a result best explained
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Figure 7. RMS residual spectra for (a) instrument sets, (b) handling
and (c) repack sets. The shaded area depicts the Model 6500
window.

a changing degree of multiplicative scatter. The Model 6500
system on the other hand displayed much greater stability
against handling of the sample. This result was most likely due
to the rotation of the sample during measurement, averaging
differences in scatter due to sample orientation. However,
it may also be due to stabilization of the powder due to the
compression of the sample.

RMS noise for both systems was comparable for replicate
measurements. The main source of spectral variation for both
systems was believed to be a changing scattering profile. This
would appear valid for both systems where, again, the RMS
noise spectra (figure 7(c)) display a footprint of the bauxite
spectrum.

Table 4. Standard deviation (%m/m) of model predictions for each
experimental aspect.

Model System Repeated Operator Replicate

Autoscaling MPA 0.04 0.21 0.18
Autoscaling Model 6500 0.21 0.11 0.19
AS, OSC2 MPA 0.10 0.39 0.36
AS, OSC2a MPA 0.19 0.23 0.22
SG1, AS, OSC1 Model 6500 0.17 0.17 0.18

a Calibration set of run 1 extended with 20 samples from run 2.

The variation in predictions on the different data sets
yielded results that were, for the most part, in agreement with
the signal-to-noise values of table 3, that is, smaller spread of
predictions for higher SNR. The repeatability values calculated
for each data set for both autoscaled and the optimized models
are shown in table 4. Autoscaled models were also used as a
rudimentary reference to examine the impact of data treatment
on the spread of predictions.

For autoscaled data, the MPA model displayed excellent
repeatability for consecutive measurements (0.04%m/m) and
displayed repeatability in the order of 0.2%m/m for both
handling and repacking of the sample.

The Model 6500 system produced interesting results
for the autoscaled data, displaying a large error in repeated
measurements (0.21%m/m) whilst the error in operator aspect
was considerably less (0.11%m/m). This counter-intuitive
result was attributed to heating of the sample with sustained
exposure to the NIR beam (order of minutes) during the ten
repeated measurements. The RMS spectra for the repeated
measurement set (figure 7(a)) displayed a spurious variation
in the region about 5257 cm−1 (overtones of water [4, 5])
which consequently aligns with large model coefficients. The
5257 cm−1 peak was not present in the RMS spectrum of
the operator set since there is a delay between the repeated
measurements during the removal/replacement of the sample
from/to the holder. Indicative of the SNR, the repack error
was identical to that of the MPA system (∼0.2%m/m).

The optimized model for the Model 6500 system was
robust to experimental variations demonstrating good stability
with a constant experimental error of approximately 0.2%m/m
across each aspect. The optimized model for the MPA
system was much less stable than the autoscaled model,
with the spread of the predictions almost doubling in each
aspect. For the MPA system, removal of major spectral
variation uncorrelated to kaolinite concentration through
OSC emphasized minor, and weakly-correlated, spectral
variations introduced though sample-to-sample variations in
the experimental method. Extending the calibration set with
20 replicate measurements eliminated the weak correlations,
creating a robust model matching the stability of the Model
6500 system.

4.3. Throughput and ease of use

This study was aimed to directly compare the MPA and Model
6500 spectral systems consisting of both the instrument and
presentation method. The two important points of difference
between the systems were the sample throughput and ease of
use.
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The MPA system had a 30 s preparation time (dispensing
5 g of sample into a disposable glass vial) and a 9 s spectral
acquisition time with batch measurement of up to 30 samples.

Conversely, the Model 6500 required approximately 30 s
to dispense, level and compact the sample, 35 s of spectral
measurement, and an additional 45 s to clean the sample cup
after the measurement. The process was also complicated
by scratching of the quartz window of the sample cup with
frequent use. The scratching was believed to originate
from abrasion from hard minerals when wiping the window
clean. This would need to be addressed if the Model 6500
system was to be adopted for large-scale analysis. In terms
of both throughput and ease of use the MPA system was
clearly superior with a 30 s sample preparation and 9 s
spectral measurement, with the ability of 30-sample batch
measurement.

5. Conclusion/recommendation

Two NIR spectroscopic systems were developed, trialled and
compared for the purpose of quantitative measurement of
kaolinite content in Weipa bauxites. For both systems, PLS
calibrations were optimized by an iterative selection of spectral
window and data treatments. The FTNIR MPA-based system
achieved a predictive accuracy of 0.89%m/m with R2 of 0.994.
The pre-dispersive grating based Foss Model 6500 achieved a
predictive accuracy of 0.99%m/m and R2 of 0.992. The MPA
system produced the most accurate calibration, significant at
the 5% level.

Both systems were robust against the repeated
measurement, operator handling and replicate measurement
(repacking), with the MPA requiring replicate measurement of
a small number of samples. Time stability demonstrated a need
for both systems to keep models updated with new samples
(frequency yet to be determined) to capture new variations due
to changes in instrument behaviour, experimental method, or
environmental conditions.

The MPA system displayed a number of practical
advantages over the Model 6500 system including preparation
time, acquisition time, ease of sample preparation and batch
measurement of samples.

In conclusion, the MPA system was recommended for the
quantification of kaolinite within Weipa bauxites due to its
superior accuracy, throughput and ease of use.
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