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Recent innovations in smartphone technology have led to the development of a number of applications for the valid and reliable
measurement of physical performance. Smartphone applications offer a number of advantages over laboratory based testing
including cost, portability, and absence of postprocessing.However, smartphone applications for themeasurement of running speed
have not yet been validated. In the present study, the iOS smartphone application, SpeedClock, was compared to conventional timing
lights during flying 10m sprints in recreationally active women. Independent samples 𝑡-test showed no statistically significant
difference between SpeedClock and timing lights (𝑡(190) = 1.83,𝑝 = 0.07), while intraclass correlations showed excellent agreement
between SpeedClock and timing lights (ICC (2,1) = 0.93,𝑝 = 0.00, 95%CI 0.64–0.97). Bland-Altman plots showed a small systematic
bias (mean difference = 0.13 seconds) with SpeedClock giving slightly lower values compared to the timing lights. Our findings
suggest SpeedClock for iOS devices is a low-cost, valid tool for the assessment of mean flying 10m sprint velocity in recreationally
active females. Systematic bias should be considered when interpreting the results from SpeedClock.

1. Introduction

The use of emerging technologies such as smartphones and
tablets offers researchers and coaches opportunities to under-
take physical performance assessments in the field, rather
than the sports science laboratory. Current smartphone
technology includes advanced computing capacity, inertial
sensors, a global positioning system, and high speed video
capacity [1]. Recently developed smartphone applications
(APPs) for sport have capitalised on these advances and are
shown to be valid and reliable tools to assess lower limb
functional performance during countermovement jump [2,
3], drop jump [3], balance [4, 5], and maximal strength
[6] tests. However, while the assessments of jumping per-
formance and muscular strength are important character-
istics of human performance, sprint speed is critical for
success in a range of activities including football [7] and
netball [8]. Yet unlike other physical performance charac-
teristics, the assessment of sprinting capacity has received
relatively less attention in the peer-reviewed literature
[9].

Although fully automated timing systems using pressure
sensitive starting blocks or photo finish recording systems
remain the gold standard for the assessment of sprint running
performance, such systems are rarely found outside athletic
venues.They lack portability and are cost prohibitive tomany
teams, coaches, and athletes. Dual beam photocell systems
are increasingly used due to their lower cost, portability, and
capability to wirelessly send data to a handheld receiver. Dual
beam systems exhibit greater accuracy compared to single-
beam systems and have been recommended over single-
beam systems [10]. Recent developments in error detection
algorithms to address some of the shortcomings associated
with single-beam systems have shown promising results.
For example, the SmartSpeed (Fusion Sport, Coopers Plains,
Australia), single-beam systemwith error detection, has been
shown to comply with Australia’s National Sport Science
Quality Assurance standards, which require sprint testing
systems to achieve a maximal typical error of 0.05 seconds
over 30m. D’Auria and colleagues [11] showed that the
SmartSpeed system achieved a typical error of ≤0.03 seconds
at distances of 5, 10, and 20m.
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Studies also show that video analysis of running per-
formance has been shown to closely match fully auto-
mated timing systems [12] and dual beam photocell sys-
tems [13], even when recorded at 50 or 100Hz. Therefore,
even low-speed video capture may represent a low-cost
and portable option to assess running performance. Recent
innovations in smartphone technology have seen video
capture speeds up to 240Hz on iPhone 6. Coupled with
improved image detection algorithms and computing power,
smartphone APPs have been developed to allow coaches
and researchers to determine running speed using these
popular and low-cost tools. One such APP is SpeedClock
(http://appmaker.se/?m=5&s=0). SpeedClock uses the iOS
device camera to detect and recordmotion and, with the user
input of a reference distance, calculates speed. SpeedClock
can be used on a single standalone device, with the reference
frame defined by the edges of the image detection field, or
connected via Bluetooth with a second iOS device to record
time over longer distances.

Although APPs such as SpeedClock are purported to
accurately record sprint performance, to the best of our
knowledge, there are currently no studies which demonstrate
the validity of SpeedClock. Such studies are important in
confirming the usefulness of emerging technologies and
are of great interest to athletes, coaches, and researchers.
Therefore, the purpose of the present study is to examine
the validity of the SpeedClock APP using timing lights as a
reference.

2. Methods

2.1. Participants. Participants were a convenience sample of
24 recreationally active females (>18 years) recruited via
personal discussion with investigators. An information sheet
outlining the purpose, risks, and benefits of participation
was provided to all potential participants. Prior to inclusion
in the study, participants were screened for musculoskeletal,
neurological, or cardiorespiratory concerns which would
contraindicate the performance of maximal sprinting, using
stage one of the Adult Preexercise Screening System [14].
Written informed consent was obtained from all participants
prior to the commencement of data collection. This study
was approved by the institutional human research ethics
committee.

2.2. Protocols. Participants stature was measured using a
Seca 213 portable stadiometer (Seca GMBH, Hamburg) and
weight determined using a Seca robusta 813 portable scale
(Seca GMBH, Hamburg). All measures were performed
according to standardised protocols [15]. All participants
underwent a standardised warm-up comprising five minutes
of light jogging, static and dynamic stretching, and a series
of submaximal sprints. Participants then performed four
maximal effort 20m sprints, separated by five minutes of
passive rest. Participants started on a line between the first set
of timing lights and commenced the sprint in their own time.
Standardised instructions were provided regarding maximal
effort and to decelerate only when past the final set of timing

Figure 1: Screenshot of iPhone 5c showing motion detection zones
at each edge of the field of view.

lights. All sprintswere performed in an indoor sports stadium
(∼26∘C, 50% RH) on a suspended timber floor. Participants
wore their usual running shoes and apparel.

2.3. Instruments. Sprint times were recorded using Smart-
Speed Pro timing lights (Fusion Sport, Coopers Plains,
Australia), with gates at zero, 10, and 20 metres. This system
uses a single-beam design to improve battery life and ease of
setup, however, incorporates novel error detection algorithms
to reduce false triggers. In the event of multiple triggers, the
algorithm interprets the longest trigger as the true start time.
Gates were set at a height of 1.0m from the floor. Sprint times
were converted to mean sprint velocity (m/s) for 0–10m, 10–
20m, and 0–20m using a standard linear motion equation
(V = 𝑑/𝑡). To examine the validity of the SpeedClock iOS
application, the APP was installed on an iPhone 5c running
iOSVersion 9.2.1 (Apple Corporation, Cupertino, CA), which
records video at 60 frames per second. In SpeedM (Motion)
mode, the APP incorporates motion detection zones at each
edge of the image which trigger and terminate data collection
(Figure 1). For the present study, to ensure repeatability of
the method and tominimise movement of the device, iPhone
was mounted in a plastic tripod mount on a Velbon EX 330
tripod (Velbon Corporation, Tokyo, Japan), with the camera
lens 1.0m from the ground.The tripod was positioned 10.5m
perpendicular to the midpoint between the timing lights at
10 and 20m, such that the motion detection zones of the
application were aligned with the 10 and 20m timing lights.
The tracking sensitivity on the APP was set to 0.92 (arbitrary
units) to avoid false triggers from background movement.
In this manner, as the participant ran through the timing
lights at 10m, motion detection triggered data acquisition.
Similarly, as the participant ran through the timing lights at
20m, motion detection terminated data acquisition. Figure 2
shows the positioning of the timing lights and iOS device.
Mean velocity (m/s) for the flying 10m sprint was displayed
on-screen and manually recorded for later analysis.

2.4. Statistical Analysis. Descriptive statistics were calculated
for participant data. All four flying 10m sprints recorded
simultaneously using timing lights and the SpeedClock appli-
cation were used for analysis. Independent sample 𝑡-tests



Journal of Sports Medicine 3

Reflector ReflectorReflector

Direction of travel

iPhone 5c

10.5m from centre of running lane

Start
gate

(0m)
10m20m

Figure 2: Positioning of the timing lights and iOS device.

Table 1: Mean flying 10m sprint times for timing lights and
SpeedClock APP.

Timing lights SpeedClock APP
6.48 ± 0.49 6.31 ± 0.48

(two-tailed) were used to identify differences in average
velocity obtained from the timing lights and SpeedClock
APP. Between-device agreement was examined using intra-
class correlation coefficients (ICC 2,1) with 95% confidence
intervals (95% CI) and interpreted according to Munro [16].
Bland-Altman plots were then constructed using Microsoft
Excel (Microsoft Corporation, Redmond, USA) to visualise
the level of agreement between average velocity obtained
from the timing lights and the SpeedClock APP. With the
exception of Bland-Altman plots, all statistical analyses were
performed using Statistical Package for the Social Sciences
(SPSS), Version 22 (IBM Corporation, Chicago, Ill). Statisti-
cal significance was accepted at an alpha level of 𝑝 < 0.05.

3. Results

Twenty-four recreationally active females (mean age 26.6 ±
5.4 years, mean body mass index 25.0 ± 3.1 kg⋅m−2) pro-
vided informed consent and participated in the study. No
adverse events were reported. Results for mean flying 10m
sprint times are shown in Table 1. Independent samples 𝑡-
test showed no statistically significant difference in mean
flying 10m sprint velocity between data from the timing
lights (6.47 ± 0.49 sec) and the SpeedClock APP (6.31 ±
0.48 sec) (𝑡(190) = 1.83, 𝑝 = 0.07). Intraclass correlations
(ICC 2,1) showed excellent agreement in mean flying 10m
sprint velocity between data from the timing lights and the
SpeedClock APP (ICC (2,1) = 0.93, 𝑝 = 0.00, 95% CI
0.64–0.97). Bland-Altman plots to visualise the difference
between mean flying 10m sprint velocity determined by
timing lights and SpeedClock APP are shown in Figure 3. A
small systematic bias (mean difference = 0.13 seconds) shows
the APP consistently gave slightly lower values compared to
the timing lights.
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Figure 3: Bland-Altman plot depicting the level of agreement
between timing lights and SpeedClock application for 10m sprinting.

4. Discussion

To the best of our knowledge, no other studies comparing
APP-based measures of sprint running speed have been
published in the peer-reviewed literature. As such this study
makes an important contribution to the exercise and sports
science domain. The findings from the present study suggest
that the SpeedClock APP installed on an iPhone 5c recording
video at 60 frames per second is a valid measure of average
flying 10m sprint velocity in recreationally active females.

A number of other studies have examined the use of video
technology in determining sprint running performance. For
example, Haugen and colleagues [12] reported no system-
atic variation between Brower dual beam infrared timing
and Dartfish-based video analysis of 40m sprint times in
national level male and female track athletes. In another
study, Harrison and colleagues [13] reported the validity
of video recorded at 50Hz and at 100Hz, to determine
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mean sprint velocity over 3m. No statistically significant
differences and excellent ICCs were observed between a laser
sports measurement system and video recorded at either
frame rate. However, at medium to fast sprinting velocities,
video recorded at 100Hz compared more favorably with
laser-derived measures than video recorded at 50Hz, due to
the higher sampling rate. In the present study, mean flying
10m sprit velocity recorded using the SpeedClock APP was
not significantly different to that recorded using dual beam
timing lights. Moreover, ICCs showed excellent agreement
with Bland-Altman plots indicating only a small degree of
systematic bias, with a mean difference of −0.13 seconds
(1.97%). Although this level of mean difference may be
significant with respect to changes in sprint performance
over time, these values are likely within expected test-retest
reliability of sprinting performance, and researchers should
examine the smallest worthwhile change in performance to
determine if a real change has occurred.

One notable difference between the timing lights and the
SpeedClock APP is that the timing lights report data to three
decimal places, while the SpeedClockAPP reports data to two
decimal places. Therefore, we reran our ICC analysis using
velocities based on timing light data under similar conditions,
firstly truncated and then rounded to two decimal places.The
resultant analyses were not substantially different from our
initial findings (ICC (2,1) = 0.92, 𝑝 = 0.00, 95% CI 0.68–
0.97, and 0.93, 𝑝 = 0.00, 95% CI 0.64–0.97, resp.) and do not
change our interpretation of the validity of this APP.

Emerging technologies such as the use of smartphone
applications in sport have the potential to provide athletes,
coaches, and researchers with additional data not otherwise
available with a single laboratory based system. For example,
when using SpeedClock, an image of the participant can be
captured midway through the image capture field. This may
provide valuable data to assess running technique, and, since
the image is stamped with the mean velocity, it serves as a
permanent record of the attempt. Unlike GPS-based system,
SpeedClock is video-based and therefore can be used indoors.
Finally, unlike manual stopwatch timing, the data is not
affected by parallax error when standing at the start or finish
line, and in the case of SpeedClock, two devices can be used
together in a manner not unlike timing gates. In general,
smartphone-based APPs for sprint performance assessment
offer low-cost, portability, and ease of use, not otherwise
available with laboratory based systems, and their widespread
applicability to training, rehabilitation, and researchwarrants
further investigation.

A strength of the present study is the use of Bland-Altman
plots to examine systematic bias between methods used to
determine sprint velocity. However, a potential limitation is
the use of the iPhone 5c, which records video at 60 frames
per second. Future studies should examine the use of high
speed video on newer iOS devices as the increased resolution
afforded by the higher frame rate may improve accuracy and
reduce systematic bias. Future studies should also examine
other speed recording APPs on Android operating systems,
since, at the present time, SpeedClock is only available on iOS
and, although iOS devices are widely utilised, they are not the
sole software platform. Finally, future studies should examine

the validity of the SpeedClock or similar APPs over shorter
and longer distances and in clinical populations.

5. Conclusions

SpeedClock for iOS devices is a low-cost, valid tool for the
assessment of mean flying 10m sprint velocity in recreation-
ally active females. Further studies are required in different
populations and settings to generalise the findings from the
present study.
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