
1 

 

Modelling and Simulating the Propagation of 

Computer Worms 

 

 

Xiang Fan 

 

 

Doctor of Philosophy 

 

 

CQUniversity Australia 

School of Engineering and Technology 

 

 

July 2013 

 

 



2 

 

CERTIFICATE OF AUTHORSHIP AND 

ORIGINALITY OF THESIS (DECLARATION) 

 

The work contained in this thesis has not been previously submitted either in whole or 

in part for a degree at CQUniversity or any other tertiary institution. To the best of my 

knowledge and belief, the material presented in this thesis is original except where due 

reference is made in text. 

 

Signed: 

 

Date: 30 July 2013 

 

 

 

 

 

 

 

fanx2
Pencil



3 

 

COPYRIGHT STATEMENT 

 

This thesis may be freely copied and distributed for private use and study, however, no 

part of this thesis or the information contained therein may be included in or referred to 

in publication without prior written permission of the author and/or any reference fully 

acknowledged. 

 

Signed: 

 

Date: 30 July 2013 

 

 

 

 

 

 

 

 

 

fanx2
Pencil



4 

 

Abstract 

Active worms propagate across networks by employing various target discovery 

techniques. It is anticipated that a future active worm would employ multiple target 

discovery techniques simultaneously to greatly accelerate its propagation. Strategies 

that future active worms might employ to shorten the slow start phase in their 

propagation are studied. Their respective cost-effectiveness is assessed. 

This thesis also presents a study on modelling and simulating the propagation of Peer-

to-Peer (P2P) worms. Motivated by the aspiration to invent an easy-to-employ 

instrument for research on the propagation of P2P worms, I model the propagation 

processes of P2P worms by difference equations of logic matrix, which are essentially 

discrete-time deterministic propagation models of P2P worms. To the best of my 

knowledge, I am the first using logic matrix in network security research. The 

instrument’s ease of employment, which is demonstrated by its applications in our 

simulation experiments, makes it an attractive tool to conduct research on the 

propagation of P2P worms. 

The major contributions in this thesis are firstly, the combination of target discovery 

techniques that can best accelerate propagation of active worms was suggested; 

secondly, strategies to shorten an active worm’s slow start phase in its propagation were 

assessed based on a cost and benefit analysis; thirdly, I proposed a novel logic matrix 

approach to modelling the propagation of P2P worms; and fourthly, I found the impacts 

of the two different topologies on a P2P worm’s attack performance, and compared the 

effects of two different quarantine tactics. 
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Chapter 1 Introduction 

1.1 Background 

A computer worm is ‘a program that self-propagates across a network exploiting 

security or policy flaws in widely-used services’ [1]. In order to spread, computer 

worms need to discover hosts with a certain particular vulnerability by employing some 

target discovery techniques. 

Computer worms employing topological scanning as their target discovery technique 

are called topology-aware worms. Typical examples of topology-aware worms are 

worms attacking a flaw in a Peer-to-Peer (P2P) application and propagating across the 

P2P network by getting lists of peers from their victims and directing their subsequent 

attacks to those peers. This sort of topology-aware worms are called P2P worms. 

In recent years, computer worms have been one of the most serious threats to current 

Internet infrastructure due to their rapid propagation, causing huge amount of financial 

loss and social disruption. In order to find an effective defense mechanism to curb the 

rapid propagation of computer worms, we must study their propagation mechanisms 

thoroughly because I believe only by fully understanding the attack mechanisms can we 

perform effective and comprehensive defence [2, 3]. 

In this thesis, propagation mechanisms of computer worms are studied systematically. 

Due to the crucial role that target discovery techniques play in determining the 

propagation characteristics of computer worms, a thorough study of the various target 
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discovery techniques is imperative if we want to have a deep insight into how to find an 

effective solution to the rapid propagation of computer worms across the Internet. 

1.2 Aim of the Research and Justification 

The aim of this research is to establish mathematical models of computer worms, 

especially P2P worms. 

All of the existing models are not applicable to computer worms employing topological 

scanning. The proposed models are suitable for modeling P2P worms because these 

models take into account topology of a P2P network. 

1.3 Methodology 

There are several different ways to study the characteristics of a piece of self-

propagating code. The most powerful approach is probably the creation of realistic 

mathematical models that allow behavior prediction in a closed form. The problem with 

this approach is that such models are not generally available and are usually hard or 

even impossible to create. In a sense simulation is a mathematical model in which some 

of the functions used rely heavily on iteration. In order to reduce computational 

complexity, abstraction and approximation of the inner mechanisms of the object 

studied are often used. This allows computation of functions that are not well 

understood in a mathematical sense. Here, the analytical approach of mathematical 

modeling is replaced with an experimental approach, in which scenarios are simulated 

and then analysed. Simulation experiments are often very effective tools to understand 

complex processes. 
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For the proposed research, I will first establish mathematical models of computer 

worms. Then, I will conduct simulation experiments based on the mathematical models 

established. Finally, results from the simulation experiments will be analysed to draw 

conclusions. 

1.4 Scope of the Research 

Chapters 3 and 4 are dedicated to investigation of non-P2P worm propagation. In 

chapters 5 and 6, logic matrix representation is used for investigation of P2P worm 

propagation. Since these 2 kinds of computer worms are fundamentally different in 

terms of their respective propagation mechanism, which has been covered in the thesis, 

I treat them separately. Therefore, how to employ the combination of target discovery 

techniques to accelerate P2P worm propagation using the logic matrix representation is 

outside the scope of this research. 

1.5 Major Contributions of the Thesis 

The major contributions of this thesis are as follows. 

• It was found that uniform scanning is an indispensable elementary target 

discovery technique of active worms. This point is of extreme importance when 

multiple target discovery techniques are to be employed, which means uniform 

scanning must be included as one of those target discovery techniques to be 

employed. 

• I found the combination of target discovery techniques that can best accelerate 

the propagation of active worms. 
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• I proposed a discrete-time deterministic CFAP model of active worms. 

• Ii was derived from mathematical analysis that in order to accelerate an active 

worm’s propagation, I must try to let the active worm infect the first susceptible 

hosts and enter its fast spread phase as soon as possible. This point gives 

guidance to how to best accelerate an active worm’s propagation. 

• I proposed several strategies to shorten an active worm’s slow start phase in its 

propagation, and found the cost-effective hit-list size and average size of 

internally generated target lists based on our cost and benefit analysis. 

• I proposed a novel logic matrix approach to modelling the propagation of P2P 

worms by modelling the propagation processes of P2P worms by difference 

equations of logic matrix. 

• I found the impacts of the two different topologies, namely structured and 

unstructured P2P networks, on a P2P worm’s attack performance; and compared 

the effects of two different quarantine tactics, namely random quarantine and 

priority quarantine. 

1.6 Structure of the Thesis 

This thesis is organized as follows. 

• Chapter 2 surveys related work, which sets the stage for later chapters. 

• Chapter 3 examines the impact of employing multiple target discovery 

techniques simultaneously on the propagation characteristics of active worms. 



18 

 

• Chapter 4 investigates the impact of shortening the slow start phase in the 

propagation of active worms on their propagation characteristics. 

• Chapter 5 derives from first principle an innovative logic matrix formulation of 

the propagation process of P2P worms under three different conditions [4, 5]. 

• Chapter 6 applies the logic matrix approach in simulation experiments [6-8]. 

• Finally, Chapter 7 concludes this thesis. 
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Chapter 2 Related Work 

Computer worms can be classified according to the techniques by which they discover 

new targets to infect: scanning, pre-generated target list, internally generated target lists, 

or passive monitoring [1]. Active worms choose only the first three target discovery 

techniques. 

2.1 Target Discovery Techniques of Active Worms 

As mentioned in the previous section, active worms seek out victim hosts by employing 

such target discovery techniques as scanning, pre-generated target list, or internally 

generated target lists. In this section, I discuss these target discovery techniques and 

different types of them, if any, one by one, followed by a comparison of their respective 

means to accelerate propagation. 

2.1.1 Scanning 

Among those target discovery techniques given above, scanning, which ‘entails probing 

a set of addresses to identify vulnerable hosts’, is the most widely employed technique 

by active worms [1]. This target discovery technique could be implemented differently, 

which leads to several different types of scanning such as uniform scanning, preferential 

scanning, sequential scanning, routable scanning, selective scanning, or importance 

scanning. These different types of scanning approaches are detailed as follows. 

The uniform scanning approach probes each IP address from within the whole IPv4 

address space with equal probability. Therefore, it needs a perfect random number 

generator to generate target IP addresses at random. This scanning approach has been 
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employed by famous worms such as the Code-RedI v1 and v2 worms [9]. However, the 

Code-RedI v1 worm’s random number generator was initialized with a fixed seed, so 

that it spread slowly and never compromised many hosts. Unlike the Code-RedI v1 

worm, the Code-RedI v2 worm used a random seed in its random number generator, so 

that each infected computer tried to infect a different list of randomly generated IP 

addresses [9]. This seemingly minor change had a major impact: more than 359,000 

hosts were infected with the Code-RedI v2 worm in just fourteen hours [9]. 

The preferential scanning approach probes each IP address from within the whole IPv4 

address space with different probabilities. If preference is given to local IP addresses, 

which means closer IP addresses are to be probed with higher probability, it is termed 

localized scanning. For example, The CodeRedII worm employed the localized 

scanning approach by probing IP addresses closer to the currently infected host with 

higher probability [9]. It is important to note that preference could be given to any 

factors other than closeness of IP addresses to produce preferential scanning based on 

that particular factor chosen. For example, if preference is given to IP addresses far 

away, non-localized scanning could be produced. 

The sequential scanning approach probes IP addresses sequentially [10]. In selecting the 

starting IP address of a sequence, it could choose a closer IP address with higher 

probability than an IP address farther away. For example, the Blaster worm [10] 

employed the sequential scanning approach, which for the starting IP address of a 

sequence, chose the first address of the infected host’s class C /24 network with a 

probability of 0.4 and a random IP address from within the entire IPv4 address space 

with a probability of 0.6. 
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The routable scanning approach probes each IP address from within the routable 

address space rather than the whole IPv4 address space [11]. The information provided 

by Border Gateway Protocol (BGP) routing tables could be used by this scanning 

approach to determine which IP addresses are routable since BGP routing tables contain 

all  routable IP addresses [11]. Active worms employing this scanning approach need to 

carry a list of all routable IP addresses with them, which adds a big payload to them. 

This big payload will reduce the worms’ propagation speed. 

Active worms implementing the idea of routable scanning could carry a list of /n 

prefixes that contain all routable IP addresses to reduce the big payload mentioned 

above. For example, the CodeRedII worm has already implemented this idea by 

eliminating 127.0.0.0/8 (1 /8 prefix for loopback addresses) and 224.0.0.0/4 (equivalent 

to 16 /8 prefixes for multicast addresses) from its scanning space, and thus its scanning 

space was reduced to 93.4% of the entire IPv4 address space (239 out of 256 /8 

prefixes) at the cost of carrying a very short list of /8 and /4 prefixes. 

The selective scanning approach probes each IP address from within the selected 

address space rather than the whole IPv4 address space [11]. For example, since BGP 

routing tables provide detailed information about what Autonomous System (AS) owns 

a specific network prefix, active worms employing this scanning approach could limit 

their scanning space to that specific network prefix only in order to propagate only 

within the AS with that specific network prefix. 

All these scanning approaches discussed above have not exploited information on the 

distribution of vulnerable hosts in their respective scanning space. If information on the 

distribution of vulnerable hosts is exploited to increase the probability of discovering 
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and vulnerable hosts, a new type of scanning approach emerges, which is termed 

importance scanning [12]. 

There exist two cases, in which the importance scanning approach is implemented 

differently. In one case where the distribution of vulnerable hosts is obtainable in 

advance, such information will be incorporated into the implementation of importance 

scanning. In the other case where the distribution of vulnerable hosts is not obtainable 

in advance, self-learning such information will be incorporated into the implementation 

of importance scanning [13]. 

2.1.2 Pre-generated Target List (Hit-List) 

A pre-generated target list contains IP addresses of vulnerable hosts obtained in 

advance, and thus termed so. It is also called a hit-list [14]. An incomplete hit-list could 

be used to increase the number of initially infected hosts. A complete hit-list creates a 

‘flash’ worm, capable of infecting all vulnerable hosts extremely rapidly [15]. They are 

discussed in more details as follows. 

Active worms employing the incomplete hit-list approach could greatly reduce the time 

needed to infect the first certain number of hosts, if the number of vulnerable hosts 

contained in the hit-list is greater than or equal to that certain number. This is achieved 

by infecting those vulnerable hosts contained in the hit-list at first in a very short period. 

The essence of this target discovery technique is to speed the initial infection by 

increasing hitting probability (the probability of hitting a vulnerable or infected host) to 

100% at the very early stage of active worms’ propagation. 
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Since a complete hit-list contains IP addresses of all vulnerable hosts, the complete hit-

list approach could be used to accelerate active worms’ propagation from the beginning 

to the end, during which period hitting probability remains 100%, while the incomplete 

hit-list approach can only infect part of all vulnerable hosts in a short time period. 

Sometimes flash worms cannot reach its full propagation speed due to the bandwidth 

limit. Furthermore, a complete hit-list of vulnerable hosts is not easy, if not impossible, 

to obtain, and thus its feasibility is greatly discounted. Therefore, the complete hit-list 

approach is not a feasible target discovery technique for worm authors. 

2.1.3 Internally Generated Target Lists 

Internally generated target lists are lists found on infected hosts which contain 

information about other potential vulnerable hosts. These lists could be used by 

topological worms, which search for local information to find new targets by trying to 

discover the local communication topology. 

The Morris worm in 1988 employed this target discovery technique to propagate. Since 

the Internet at that time was very sparse, uniform scanning would be ineffective. E-mail 

worms (although not active worms) have frequently employed this target discovery 

technique, as they obtain information about new targets from their victim. Active 

worms attacking a flaw in peer-to-peer applications could easily get lists of peers from 

their victims and use those peers as the basis of their attacks, which is another example 

of employing this target discovery technique. 
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2.2 Mathematical Models of Active Worms 

Due to computer worms’ similarity to biological viruses in their spreading behaviors, 

mathematical models developed to model propagation of infectious diseases have been 

adapted to model propagation of computer worms [16]. In epidemiology area, both 

deterministic and stochastic models exist for modeling the spreading of infectious 

diseases [17-20]. In network security area, both deterministic and stochastic models of 

active worms based on their respective counterpart in epidemiology area have emerged. 

In this section, I will introduce several deterministic and stochastic models of active 

worms developed by other researchers, followed by a comparison of their respective 

pros and cons, which naturally leads to tradeoffs among them. 

2.2.1 Deterministic Models 

Deterministic models of active worms could be further divided into two categories: 

continuous-time and discrete-time. A continuous-time deterministic model is expressed 

by single differential equation or set of differential equations, while a discrete-time 

deterministic model is expressed by single difference equation or set of difference 

equations. Following are three different examples of continuous-time deterministic 

models of active worms in a homogeneous system. By ‘homogeneous’ I mean there is 

no topology constraint, or, in other words, an infected host is able to directly reach and 

infect an arbitrary susceptible host. Except the internally generated target lists, all other 

target discovery techniques employed by active worms satisfy this condition. 
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I. The Classical Simple Epidemic Model 

In the classical simple epidemic model [17-20], all hosts stay in one of only two states 

at any time: ‘susceptible’ (denoted by ‘S’) or ‘infectious’ (denoted by ‘I’), and thus it is 

also called the SI model. This model assumes that once a host is infected by a worm, it 

will stay in ‘infectious’ state forever. For a finite population of size N, it could be 

defined by the following single differential equation: 

( ) ( )[ ( )]dI t I t N I t
dt

β= − , (2.1) 

where I(t) denotes the number of infectious hosts at time t; and β = η (average worm 

scanning rate) / Ω (the size of a worm’s scanning space) stands for the pairwise rate of 

infection in epidemiology studies [21]. At beginning (t = 0), I(0) hosts are infectious 

and the other N − I(0) hosts are all susceptible. 

Let i(t) stand for the fraction of the population that are infectious at time t, and thus i(t) 

= I(t)/N, which yields I(t) = Ni(t). Substituting Ni(t) for I(t) in equation (2.1) and 

rearranging it leads to the differential equation below:  

( ) ( )[1 ( )]di t N i t i t
dt

β= − . (2.2) 

Differential equation (2.2) has following general analytical solution: 

( )

( )
( )

1

N t T

N t T

ei t
e

β

β

−

−
=

+
, (2.3) 

which is the logistic equation. A particular analytical solution of differential equation 

(2.2) given its initial condition i(0) = I(0)/N is as follows: 
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(0)( )
(0) [ (0)] N t

Ii t
I N I e β−=

+ −
. (2.4) 

Staniford et al. [14] presented a propagation model for the Code-RedI v2 worm, which 

is essentially the above classical simple epidemic model. 

II. The Classical General Epidemic (Kermack-McKendrick) Model 

In the classical general epidemic model (the Kermack-McKendrick model) [17-20], all 

hosts stay in one of only three states at any time: ‘susceptible’ (denoted by ‘S’), 

‘infectious’ (denoted by ‘I’) or ‘removed’ (denoted by ‘RI’ in this thesis), and thus it is 

also called the SIRI model in this thesis. This model does not assume that once a host is 

infected by a worm, it will stay in ‘infectious’ state forever. It takes into account the 

removal process of infectious hosts. However, this model does assume that once a host 

is removed, it will stay in ‘removed’ state forever. The removed hosts cannot be 

infected anymore and they do not try to infect others. 

For a finite population of size N, this model could be defined by the following set of 

differential equations: 

( )( ) ( )[ ( ) ( )]

( ) ( )

I
I

I

dR tdI t I t N I t R t
dt dt

dR t I t
dt

β

γ

 = − − −

 =


,            (2.5) 

where I(t) denotes the number of infectious hosts at time t; RI(t) denotes the number of 

removed hosts from previously infectious hosts at time t; β stands for the pairwise rate 

of infection; and γ stands for the rate of removal of infectious hosts. It is important to 

note that a removed host at time t is a host that is once infected but has been removed 

before time t. 
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III. The Two-Factor Worm Model 

In the two-factor worm model [16], all hosts stay in one of only four states at any time: 

‘susceptible’ (denoted by ‘S’), ‘infectious’ (denoted by ‘I’), ‘removed from susceptible’ 

(denoted by ‘RS’ in this thesis) or ‘removed from infectious’ (denoted by ‘RI’ in this 

thesis), and thus in this thesis I name it the SIRSRI model. The same as the above 

classical general epidemic model, this model takes into account the removal process of 

infectious hosts. Furthermore, it also takes into account the removal process of 

susceptible hosts, which is one of the two extra factors accounted for in this model. This 

model assumes that once a host is removed, it will stay in ‘removed’ state forever, 

whether it has previously been susceptible or infectious. The other of the two extra 

factors accounted for in this model is the inconstant pairwise rate of infection, which is 

modeled as a function of time. By considering the above two extra factors, this model is 

called the two-factor worm model. 

The set of differential equations defining the two-factor worm model for a finite 

population of size N is presented as follows: 

( )( ) ( ) ( )[ ( ) ( ) ( )]

( ) ( )

I
S I

I

dR tdI t t I t N I t R t R t
dt dt

dR t I t
dt

β

γ

 = − − − −

 =


,            (2.6) 

where I(t) denotes the number of infectious hosts at time t; RS(t) denotes the number of 

removed hosts from previously susceptible hosts at time t; RI(t) denotes the number of 

removed hosts from previously infectious hosts at time t; β(t) stands for the pairwise 

rate of infection at time t; and γ stands for the rate of removal of infectious hosts. 
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IV. The Analytical Active Worm Propagation (AAWP) Model 

Following is an example of discrete-time deterministic models of active worms in a 

homogeneous system. It is called the Analytical Active Worm Propagation (AAWP) 

model [22]. This model applies only to active worms employing the uniform scanning 

approach since it was derived based on that scanning approach. 

Let mi and ni denote the total number of vulnerable hosts (including the infected ones) 

and the number of infected hosts at time tick i (i ≥ 0), respectively. At beginning when i 

= 0, N hosts are vulnerable or infected (m0 = N) and h hosts are infected (n0 = h). If 

there are mi vulnerable hosts (including the infected ones), and ni infected hosts at time 

tick i (i ≥ 0), then on average, at the next time tick, there will be 

32

1( )[1 (1 ) ]
2

isn
i im n− − −  (2.7) 

newly infected hosts, where s is the scanning rate [22]. Given death rate d and patching 

rate p, at the next time tick, there will be (d + p) ni infected hosts that will change to 

either vulnerable hosts without being infected or invulnerable hosts, and the total 

number of vulnerable hosts (including the infected ones) will be reduced to (1 − p) mi. 

Therefore, at the next time tick, the number of infected hosts will be  

1 32

1( )[1 (1 ) ] ( )
2

isn
i i i i in n m n d p n+ = + − − − − + .            (2.8) 

The total number of vulnerable hosts (including the infected ones) at that time tick will 

be mi+1 = (1 − p) mi, which yields  

( ) ( )0= 1  1  i i
im p m p N− = − . (2.9) 
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Therefore, 

1 32

1(1 ) [(1 ) )[1 (1 ) ]
2

isni
i i in d p n p N n+ = − − + − − − − ,            (2.10) 

where i ≥ 0 and n0 = h. Using the set of difference equations, I can find propagation 

characteristics of active worms employing the uniform scanning approach. 

2.2.2 Stochastic Models 

Stochastic models of active worms are based on the theory of stochastic processes. All 

of them are discrete-time in nature. Following are two examples of stochastic models of 

active worms. 

I. The Density-Dependent Markov Jump Process Model 

A stochastic density-dependent Markov jump process propagation model [23] of active 

worms employing the uniform scanning approach drawn from the field of epidemiology 

[18, 21] is as follows. 

Assume N hosts could potentially become infected by the worm. At a given time t ≥ 0, 

the set of N potential hosts is split into infected and susceptible subpopulations, 

represented by I(t) and S(t) respectively. I(t) is the number of hosts which are infected 

by the worm at time t, and S(t) is the number of hosts which could become infected, but 

are not at time t. The pair (S(t), I(t)) = (s, i) is the ‘state’ of the epidemic. At time t = 0, 

(S(0), I(0)) = (s0, i0), where i0 ≥ 1, is the initial state of the epidemic. Due to the random 

scanning propagation behavior of active worms employing the uniform scanning 

approach, at time t > 0, S(t) and I(t) are random variables. Since infectious hosts are not 

removed, for all t ≥ 0, I(t) + S(t) = N holds. If the propagation process is at a state (s, i), 
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the next state must be (s-1, i+1) and the next state after that must be (s-2, i+2) and so on 

until state (0, N) is reached. From state (0, N) no other state can be reached, so state (0, 

N) is an absorbing state and almost surely a time tfin is eventually reached such that 

(S(tfin), I(tfin)) = (0, N) [24]. Because the destinations of the infectious packets are 

selected by the infectious hosts with a uniform distribution, any one infectious packet 

sent at time t has a probability of S(t)/232 of being sent to a susceptible host. At time t, 

the I(t) infectious hosts transmit infectious packets each at the rate η, so (η/232)S(t)I(t) is 

the rate at which (S(t), I(t)) = (s, i) goes to (s-1, i+1). From [21], this process can then be 

modeled as a jump process with a jump intensity: 

( , )( , ) 322a a b bs i s i a aq s iη
= , (2.11) 

if sb = sa – 1 and ib = ia + 1, or 0 otherwise. 

The above process is Markovian because at state (S(t), I(t)) = (s, i), the current jump 

intensity depends only on the current state (s, i) and is independent of the previous 

states of the process. Consequently, this stochastic epidemic propagation process is by 

definition a density-dependent Markov jump process because the jump intensity at state 

(s, i) depends on the ‘densities’ of the number of susceptible hosts s and the number of 

infected hosts i. 

II. The Galton-Watson Markov Branching Process Model 

Sellke et al. [25] presented a stochastic Galton-Watson Markov branching process 

model to characterize the propagation of active worms employing the uniform scanning 

approach. This model is detailed as follows. 
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Assume N hosts could potentially become infected by the worm. All infected hosts can 

be classified into generations in the following manner. The initially infected hosts 

belong to the 0-th generation. All hosts that are directly infected by the initially infected 

hosts are the 1st generation hosts, regardless of when they are infected. In general, an 

infected host Hb is an (n+1)-th generation host if it is infected directly by a host Ha 

from the n-th generation. Hb is also called an offspring of Ha. Let ξ be the random 

variable representing the number of offspring of one infected host scanning M times. 

During the early phase of the propagation, the vulnerability density d, defined as the 

probability of successfully finding a vulnerable host in one scan, remains constant 

(N/232) since the number of infected hosts is much smaller than the number of 

vulnerable hosts in the population. Thus, during the initial phase of the worm 

propagation, ξ is a binomial (M, p) random variable. Hence, 

{ } ( ) (1 )M k M k
kP k p pξ −= = − , k = 0, 1, …, M. Let In be the number of infected hosts in 

the n-th generation. I0 is the number of initially infected hosts. During the early phase of 

the worm propagation, each infected host in the n-th generation infects a random 

number of vulnerable hosts, independent of one another, according to the same 

probability distribution. These newly infected hosts are the (n+1)-th generation hosts. 

Let ( )n
kξ  denote the number of hosts infected by the k-th infected host in the n-th 

generation. The number of infected hosts in the (n+1)-th generation can be expressed as 

( )
1

1

nI
n

n k
k

I ξ+
=

= , (2.12) 

where ( )n
kξ are independent binomial (M, p) random variables. 
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The Galton-Watson branching process is a Markov process that models a population in 

which each individual in generation n independently produces some random number of 

individuals in generation n+1, according to a fixed probability distribution that does not 

vary from individual to individual [26, 27]. During the initial phase of the worm 

epidemic, each infected host in generation n independently produces some random 

number of infected hosts in generation n+1, according to the same probability 

distribution. Therefore, the early phase of active worms’ propagation could be modeled 

by a stochastic Galton-Watson branching process. 

2.2.3 A Comparison of the Mathematical Models 

The deterministic models (both continuous-time and discrete-time) of active worms are 

deterministic abstraction and approximation of a process that is inherently stochastic. 

Therefore, the stochastic models more accurately describe the propagation dynamics of 

active worms.  

Since propagation of active worms is a discrete event process, the discrete-time 

deterministic model of active worms (the AAWP model) is more accurate than its 

continuous-time counterparts (i.e., the SI model, the SIRI model, and the SIRSRI 

model) in the deterministic regime. 

The classical general epidemic model (the SIRI model) improves the classical simple 

epidemic model (the SI model) by considering the removal of infectious hosts due to 

patching. However, this model is still not suitable for modeling propagation of active 

worms because patching will remove both susceptible hosts and infectious hosts, and 

the pairwise rate of infection is not constant for rampantly spreading active worms such 
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as the Code-RedI v2 worm and the Slammer worm. The two-factor worm model (the 

SIRSRI model) extends the SIRI model to account for the removal of susceptible hosts 

due to patching and at the same time considers the pairwise rate of infection as a 

function of time rather than a constant. Accounting for these two factors makes this 

model more accurately reflect the propagation dynamics of the Code-RedI v2 worm 

[16]. 

The AAWP model is based on discrete-time and thus more accurate if macro-scope 

modeling is needed. In this model, a host cannot infect other hosts before it is infected 

completely. But in models based on continuous-time, a host begins devoting itself to 

infecting other hosts even though only a ‘small part’ of it is infected. All of the three 

continuous-time models do not consider the time an infectious host takes to infect other 

hosts, while the AAWP model does. The time to infect a host is an important factor for 

the spread of active worms [28]. Beside, in the AAWP model, the case that worms 

infect the same destination at the same time is considered, while all of the three 

continuous-time models ignore this case. In fact, it is not uncommon for a susceptible 

host to be hit by two or more scans at the same time. Finally, rebooting to change an 

infectious host’s state to ‘susceptible’ has been taken into account in the AAWP model. 

The stochastic density-dependent Markov jump process propagation model could be 

used to characterize the whole process of active worms’ propagation, while the Galton-

Watson Markov branching process model presented above only applies to the initial (or 

early) phase of active worms’ propagation due to the assumption that vulnerability 

density remains constant. 
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Deterministic approximation is accurate for macro-scale systems. When modeling the 

propagation of active worms, macro-scale networks are often considered. Therefore, 

deterministic models of active worms are still applicable to the propagation of active 

worms spreading in macro-scale networks. The possible variability in the stochastic 

propagation of active worms is minor under certain conditions, and thus use of 

deterministic models as a reasonable approximation of the stochastic density-dependent 

Markov jump process model is justified if those conditions are satisfied [23]. However, 

in the early phase of the propagation of active worms, the number of infected hosts is 

very small and thus variance cannot be ignored. Therefore, the stochastic Galton-

Watson Markov branching process model, which takes into account the variance, is 

more accurate than its deterministic counterparts during this period [25]. 

2.3 Peer-to-Peer Networks and Worms 

A peer-to-peer (P2P) network is a type of decentralized and distributed network 

architecture in which individual nodes in the network (called "peers") act as both 

suppliers and consumers of resources, in contrast to the centralized client–server model 

where client nodes request access to resources provided by central servers. 

In a peer-to-peer network, tasks (such as searching for files or streaming audio/video) 

are shared amongst multiple interconnected peers who each makes a portion of their 

resources (such as processing power, disk storage or network bandwidth) directly 

available to other network participants, without the need for centralized coordination by 

servers [29]. 



35 

 

A peer-to-peer network is designed around the notion of equal peer nodes 

simultaneously functioning as both "clients" and "servers" to the other nodes on the 

network. This model of network arrangement differs from the client–server model 

where communication is usually to and from a central server. A typical example of a 

file transfer that uses the client-server model is the File Transfer Protocol (FTP) service 

in which the client and server programs are distinct: the clients initiate the transfer, and 

the servers satisfy these requests. 

Peer-to-peer networks generally implement some form of virtual overlay network on 

top of the physical network topology, where the nodes in the overlay form a subset of 

the nodes in the physical network. Data is still exchanged directly over the underlying 

TCP/IP network, but at the application layer peers are able to communicate with each 

other directly, via the logical overlay links (each of which corresponds to a path through 

the underlying physical network). Overlays are used for indexing and peer discovery, 

and make the P2P system independent from the physical network topology. Based on 

how the nodes are linked to each other within the overlay network, and how resources 

are indexed and located, we can classify networks as unstructured or structured (or as a 

hybrid between the two) [30-32]. 

Unstructured peer-to-peer networks do not impose a particular structure on the overlay 

network by design, but rather are formed by nodes that randomly form connections to 

each other [33]. Gnutella, Gossip, and Kazaa are examples of unstructured P2P 

protocols [34]. 

If a peer wants to find a desired piece of data in the network, the query has to be flooded 

through the network to find as many peers as possible that share the data. Flooding 
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causes a very high amount of signaling traffic in the network, and does not ensure that 

search queries will always be resolved. Popular content is likely to be available at 

several peers and any peer searching for it is likely to find the same thing. But if a peer 

is looking for rare data shared by only a few other peers, then it is highly unlikely that 

search will be successful. Since there is no correlation between a peer and the content 

managed by it, there is no guarantee that flooding will find a peer that has the desired 

data [35]. On the other hand, because there is no structure globally imposed upon them, 

unstructured networks are easy to build and allow for localized optimizations to 

different regions of the overlay [36]. Also, because the role of all peers in the network is 

the same, unstructured networks are highly robust in the face of high rates of "churn" -- 

that is, when large numbers of peers are frequently joining and leaving the network [37, 

38]. 

In structured peer-to-peer networks the overlay is organized into a specific topology, 

and the protocol ensures that any node can efficiently search the network for a 

file/resource, even if the resource is extremely rare [39]. 

The most common type of structured P2P networks implement a distributed hash table 

(DHT) [40, 41], in which a variant of consistent hashing is used to assign ownership of 

each file to a particular peer [42, 43]. This enable peers to search for resources on the 

network using a hash table: that is, (key, value) pairs are stored in the DHT, and any 

participating node can efficiently retrieve the value associated with a given key [44, 45]. 

However, in order to route traffic efficiently through the network, nodes in a structured 

overlay must maintain lists of neighbors that satisfy specific criteria. This makes them 

less robust in networks with a high rate of churn (i.e. with large numbers of nodes 
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frequently joining and leaving the network) [46]. More recent evaluation of P2P 

resource discovery solutions under real workloads has pointed out several issues in 

DHT-based solutions such as high cost of advertising/discovering resources and static 

and dynamic load imbalance [47]. 

Notable distributed networks that use DHTs include BitTorrent's distributed tracker, the 

Kad network, the Storm botnet, YaCy, and the Coral Content Distribution Network. 

Some prominent research projects include the Chord project, Kademlia, PAST storage 

utility, P-Grid, a self-organized and emerging overlay network, and CoopNet content 

distribution system. DHT-based networks have also been widely utilized for 

accomplishing efficient resource discovery for grid computing systems [48, 49], as it 

aids in resource management and scheduling of applications. 

Harmful data can also be distributed on P2P networks by modifying files that are 

already being distributed on the network. This type of security breach is created by the 

fact that users are connecting to untrusted sources, as opposed to a maintained server. In 

the past this has happened to the FastTrack network when the RIAA managed to 

introduce faked chunks into downloads and downloaded files (mostly MP3 files). Files 

infected with the RIAA virus were unusable afterwards or even contained malicious 

code. The RIAA is also known to have uploaded fake music and movies to P2P 

networks in order to deter illegal file sharing [50]. Consequently, the P2P networks of 

today have seen an enormous increase of their security and file verification 

mechanisms. Modern hashing, chunk verification and different encryption methods 

have made most networks resistant to almost any type of attack, even when major parts 

of the respective network have been replaced by faked or nonfunctional hosts. 
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Some researchers have explored the benefits of enabling virtual communities to self-

organize and introduce incentives for resource sharing and cooperation, arguing that the 

social aspect missing from today's P2P systems should be seen both as a goal and a 

means for self-organized virtual communities to be built and fostered [51]. Ongoing 

research efforts for designing effective incentive mechanisms in P2P systems based on 

principles from game theory are beginning to take on a more psychological and 

information-processing direction. 

Therefore, due to the continuously increasing popularity of P2P networks, P2P worms, 

which are computer worms spreading themselves by utilizing the features of P2P 

networks, have been one of the most serious threats to current internet infrastructure. 

The common limitation of all of the existing mathematical models of computer worms 

is that all of them are not applicable to computer worms employing topological 

scanning. P2P worms are much more difficult to model than non-P2P worms due to 

their different propagation mechanism from non-P2P worms. All existing mathematical 

models of computer worms are derived from propagation mechanism of non-P2P 

worms, and thus they are obviously not applicable to P2P worms since they do not 

embody propagation mechanism of P2P worms. 

The novel logic matrix approach proposed in this thesis models the propagation 

processes of P2P worms by difference equations of logic matrix, which are essentially 

discrete-time deterministic propagation models of P2P worms. The proposed models are 

suitable for modeling P2P worms because these models take into account topology of a 

P2P network. 



39 

 

I use an experimental approach to conducting the research. According to [10-13, 16, 22, 

55, 56], similar approaches have been effectively applied in their respective study 

carried out in this domain. 
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Chapter 3 Propagation Acceleration by Employing 

Multiple Techniques 

According to Xiang et al.[52], an active worm is not limited to employing single target 

discovery technique only, and thus future active worms could employ multiple target 

discovery techniques simultaneously in an attempt to accelerate their propagation [53]. 

To find an effective countermeasure to this sort of future worms, we must study their 

propagation mechanisms thoroughly, and investigate their propagation characteristics 

under various scenarios. Therefore, I studied propagation mechanisms of active worms 

employing a combination of two or three different target discovery techniques from 

attackers’ perspective. I also performed a series of simulation experiments to investigate 

their propagation characteristics under various scenarios. 

3.1 Theoretical Studies 

3.1.1 The Significance of Target Discovery Techniques 

The life cycle of a worm from when it is released to when it finishes infecting 

vulnerable hosts, consists of the initialization phase, the network propagation phase, and 

the payload activation phase [54]. Once a host is infected, each worm instance begins 

with the initialization phase. Following the initialization phase is the network 

propagation phase, which is the phase that encompasses the behavior that describes how 

a worm moves through a network. In this phase, a worm attempts to infect its target 

hosts by performing a sequence of actions including target acquisition, network 

reconnaissance, attack, and infection. Once a target host is infected, the initialization 
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phase of the new instance of the worm begins. Any time following the initialization 

phase comes the payload activation phase. To date, payloads that significantly affect 

propagation characteristics of a worm have been rare. The Code Red worms, the 

Slammer worm, and the Witty worm are all examples of payloads that occurred to the 

exclusion of network propagation. Figure 3.1 illustrates the relationship among the 

phases in the life cycle of worms and the actions performed in the network propagation 

phase. 

 

Figure 3.1: Phases in the life cycle of worms and actions in the network 

propagation phase 

 

Since target acquisition and network reconnaissance together essentially dictate target 

discovery technique(s) employed by a worm, the significance of target discovery 

techniques in shaping a worm’s propagation characteristics was derived from the life 

cycle of worms in [52]. 
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This chapter explores how to accelerate the propagation of active worms by employing 

multiple target discovery techniques. 

3.1.2 The Significance of Shortening the Slow Start Phase 

For the classical simple epidemic model given in the previous chapter, Figure 3.2 shows 

the dynamics of It -- denoted by I(t) in equation (2.1) -- as time goes on for a certain set 

of parameters [55, 56]. 

 

Figure 3.2: Propagation curve of the classical simple epidemic model 

 

According to Figure 3.2, we can roughly partition a worm’s propagation into three 

phases: the slow start phase, the fast spread phase, and the slow finish phase. During the 

slow start phase, since It << N, model (2.1) becomes 
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t
t

dI N I
dt

β≈ , (3.1) 

which means that the number of infectious hosts increases exponentially approximately. 

After a certain number of susceptible hosts are infected and then participate in infecting 

others, the worm enters its fast spread phase where susceptible hosts are infected at a 

fast, nearly constant rate. When most susceptible hosts have been infected, the worm 

enters its slow finish phase because the few susceptible hosts leftover are difficult for 

the worm to find. 

Since t
t

Ii
N

= , the shape of ti -- denoted by ( )i t in equations (2.2), (2.3) and (2.4) -- against 

t  will be exactly the same as that of tI  with scale-down by a factor of N . In other 

words, ti is 0I
N

at 0t = and converges to 1 when t goes to positive infinite. 

According to equation (2.4), 

0

0 0( )t N t

Ii
I N I e β−=
+ −

. (3.2) 

Letting 0a I= , 0b N I= − , and c Nβ= − will transform equation (3.2) to  

t ct

ai
a be

=
+

. (3.3) 

The first derivative of ti is worked out and shown as follows: 

2( )

ct
t

ct

di abce
dt a be

−
=

+
. (3.4) 

We can then work out the second derivative of ti and let it equal to 0: 

2

2 0td i
dt

= . (3.5) 
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This will lead to
4

tdi c
dt

= − and 50%ti = . In other words, the maximum rate at which 

susceptible hosts are infected equals to
4 4
c Nβ

− = , and this maximum rate is achieved at 

the moment when 50%of susceptible hosts are infected. 

I define fast spread as that with a rate not less than 50%of the maximum rate, which is 

8
c

− . 2( ) 8

ct
t

ct

di abce c
dt a be

−
= = −

+  
leads to 15%,85%ti ≈ . In other words, according to our 

definition of fast spread, when less than 15% of susceptible hosts are infected, the worm 

is in its slow start phase; when more than 85% of susceptible hosts are infected, the 

worm is in its slow finish phase; in between, the worm is in its fast spread phase. 

It is obvious that in order to accelerate a worm’s propagation, we must try to let the 

worm infect the first 15% susceptible hosts and enter its fast spread phase as soon as 

possible. On the other hand, the last 15% susceptible hosts leftover are not important for 

attackers if infection of 85% susceptible hosts will serve their purposes, which is 

usually the case. 

Next chapter explores how to accelerate the propagation of active worms by shortening 

the slow start phase. 

3.1.3 The Proposed Propagation Model of Active Worms 

Here, I present the proposed discrete-time deterministic Compensation Factor Adjusted 

Propagation (CFAP) model of active worms employing uniform scanning as their target 

discovery technique. Let η and Ω stand for an active worm’s scanning rate and scanning 

space, respectively. For a finite population of size N, assume at time t, there 
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exist tI infectious hosts. Then at time 1t
η

+ , by assuming the probability of different 

infectious hosts hitting the same susceptible host to be 0, there will be 1t t tI I I+ = + ∆  

infectious hosts, where 

( )t t
t

I N II −
∆ =

Ω
. (3.6) 

During the process that more and more susceptible hosts are infected and then 

participate in infecting others, the probability of different infectious hosts hitting the 

same susceptible host is not a constant. Therefore, the actual number of newly infected 

hosts is less than that predicted by equation (3.6). Here, I introduce a compensation 

factor denoted by tC to account for the difference between them, which varies as time 

goes on. Therefore, the discrete-time deterministic CFAP model could be described by 

the following difference equation: 

1
( )t t

t t t
I N II I C+

−
= + −

Ω
. (3.7) 

There exist two methods to determine tC , which are mathematical analysis or 

simulation. To predict tC in a closed form (i.e., with no or very little iteration), 

mathematical analysis is usually employed. However, in some situations it could be 

very difficult, if not impossible, to derive a formula of tC as a function of t . Then, I have 

to perform simulation experiments to find approximate value of tC at each time t . 
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3.2 Simulation Experiments 

3.2.1 Effective Tools to Understand Complex Processes 

There are four different ways to study the characteristics of a piece of self-propagating 

code, which are using test beds, performing real world experiments, creating 

mathematical models, and performing simulation experiments [57]. 

Test beds allow to actually set free a piece of self-replicating code in an isolated and 

limited environment and to observe its behavior. The most obvious limit of test beds is 

that they cannot be created in a size approaching the size of the Internet. Using the 

Internet itself to do real world experiments is not an option for scientific study because 

of the damage being done. The most powerful approach is probably the creation of 

realistic mathematical models that allow behavior prediction in a closed form. The 

problem with this approach is that such models are not generally available and are 

usually hard or even impossible to create. 

In a sense simulation is a mathematical model in which some of the functions used rely 

heavily on iteration. In order to reduce computational complexity, abstraction and 

approximation of the inner mechanisms of the object studied is often used. This allows 

computation of functions that are not well understood in a mathematical sense. Here, 

the analytical approach of mathematical modeling is replaced with an experimental 

approach, in which scenarios are simulated and then analyzed. Simulation experiments 

are often very effective tools to understand complex processes. 
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3.2.2 Efficient Way to Understand Complex Processes 

I systematically examined propagation characteristics of active worms employing the 

single target discovery technique only, and a combination of two or three different 

target discovery techniques by conducting a series of simulation experiments under 

various scenarios. In order to reduce simulation time, I performed our simulation 

experiments in a class A /8 subnet. In other words, I used scale-down by a factor of 8
1
2

to 

explore worm dynamics. According to Weaver et al. [58], scale-down introduces two 

notable artifacts: a bias towards more rapid propagation (propagation curve being 

shifted to the left due to scale-up of the density of initially infected hosts), and an 

increase in stochastic effects. Although these artifacts are significant, scale-down can 

still capture general behavior as long as the scale-down factor is not too extreme [58]. 

Therefore, scale-down is an efficient way to understand complex processes if the scale-

down factor is appropriately chosen. 

The simulation experiments were based on the assumption that susceptible hosts are 

uniformly distributed in the above address space with vulnerability density 

approximately equivalent to that of the Slammer worm. I also assumed average worm 

scanning rate to be equivalent to the Slammer’s as well. All simulations started with 

only 1 initially infected host, which is equivalent to 82 initially infected hosts in the 

Slammer’s case. Outputs from all simulations are the numbers of infected hosts against 

time. 

These assumptions are necessary to make the simulation experiments not 

overwhelmingly complicated. Since simulation experiments are based on similar 
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assumptions, simulation results are comparable. Besides, these assumptions capture the 

major features of computer worms while ignore the minor ones, so they are realistic and 

will not make the simulation results much different from real cases. 

In order to eliminate variation in results from different simulation runs for each certain 

scenario, I performed 10 simulation runs for each scenario using the simulator 

implemented in C programming language custom made for the simulation experiments. 

Results from all simulation runs are then averaged to produce final result for each 

scenario. I repeated the simulation experiments 10 times and found that the standard 

deviation of the average to be 0, which indicated that stochastic effects could be 

eliminated, and the scale-down factor chosen was appropriate. 

3.2.3 Scenarios Simulated 

I. Simple Scenarios 

Before I studied propagation characteristics of active worms employing a combination 

of two or three different target discovery techniques, I had studied propagation 

characteristics of active worms employing only one of the following target discovery 

techniques: uniform scanning; a complete hit-list; or internally generated target lists. 

The above three kinds of active worms became the first 3 scenarios to be simulated, 

which are summarized in Table 3.1. Propagation rate of active worms employing 

uniform scanning only was the baseline to be compared to. Since an incomplete hit-list 

when not combined with any other target discovery technique(s) cannot let a worm 

infect more hosts than those in the list, in practice it must be combined with other target 

discovery technique(s). Therefore, I chose a complete hit-list as one of the above 3 
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fundamental target discovery techniques. Size of internally generated target list might 

vary with different hosts. For simplicity, average size of internally generated target lists 

was chosen as a candidate parameter, whose influence on a worm’s propagation 

characteristics was to be investigated. 

 

Table 3.1: A summary of the 3 simple scenarios simulated 
Scenario Code Target Discovery Technique Employed 

U Uniform Scanning Only 

H100% A Complete Hit-list Only 

I1 Internally Generated Target Lists Only with Average Size of 1 

I2 Internally Generated Target Lists Only with Average Size of 2 

I3 Internally Generated Target Lists Only with Average Size of 3 

 

Table 3.2: A summary of simulation results of the 3 simple scenarios 
Scenario Code Average Time (in seconds) to Infect 99% Susceptible Hosts 

U 142 

H100% 1 

I1 
Indefinite (maximum infection rate of 7% achieved in 1 

second) 

I2 
Indefinite (maximum infection rate of 79% achieved in 1 

second) 

I3 
Indefinite (maximum infection rate of 94% achieved in 1 

second) 
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According to the results (Table 3.2) from our simulation experiments, a complete hit-list 

makes a worm propagate extremely rapidly. However, the feasibility of this approach is 

discounted by the extreme difficulties that will be encountered by attackers in gathering 

such a list. Due to their exactly same propagation mechanism, an incomplete hit-list lets 

a worm infect all susceptible hosts in the list as soon as a complete hit-list does. 

Therefore, an incomplete hit-list is a more feasible approach. It is obvious that active 

worms only employing internally generated target lists with average size not greater 

than 3 cannot achieve infection of over 99% susceptible hosts. An explanation to this 

phenomenon could be that less than 99% of all susceptible hosts are in the combined 

internally generated target lists of all susceptible hosts infected. However, average size 

of internally generated target lists has a great influence on the maximum infection rate 

(maximum percentage of susceptible hosts a worm can infect). A slight increase in 

average size from 1 to 3 leads to a dramatic increase in the maximum infection rate. 

Furthermore, maximum infection rates are achieved in 1 second for all average sizes (1, 

2, or 3). As I mentioned earlier in this paper, infection of 85% susceptible hosts would 

usually serve attackers’ purposes. Therefore, internally generated target lists with 

average size of 3 (with maximum infection rate of 94%) could be employed by active 

worms to accelerate their propagation. A comparison of propagation curves of the 3 

simple scenarios is illustrated by Figure 3.3. 

 



51 

 

 

255

1

300

1

282

0

50

100

150

200

250

300

0 50 100 150

N
um

be
r o

f I
nf

ec
tio

us
 H

os
ts

Time (in seconds)

Uniform Scanning 
Only

A Complete Hit-List 
Only

Internally Generated 
Target Lists Only (with 
Average Size of 3)

 

Figure 3.3: A comparison of propagation curves of the 3 simple scenarios 

 

II. Scenarios with Moderate Complexity 

Then, propagation characteristics of active worms employing a combination of two 

different target discovery techniques formed the focus of this research. As I mentioned 

earlier in this chapter, in order to accelerate a worm’s propagation, we must try to let the 

worm infect the first 15% susceptible hosts and enter its fast spread phase as soon as 

possible. According to the simulation results of the above 3 simple scenarios, both an 

incomplete hit-list and internally generated target lists can let a worm infect a certain 

percentage of susceptible hosts in just one second. Therefore, each of these two target 

discovery techniques could be followed by uniform scanning to let the worm infect 

those susceptible hosts leftover. In our simulation experiments, active worms employing 

an incomplete hit-list followed by uniform scanning as their target discovery techniques 

would sequentially probe all those hosts in the hit-list prior to employing uniform 

scanning. Active worms employing internally generated target lists followed by uniform 
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scanning would sequentially probe all those hosts in the target lists generated in process 

prior to employing uniform scanning. 

The above two kinds of active worms formed the basis of the 6 scenarios with moderate 

complexity to be simulated, which are summarized in Table 3.3. Since I intended to 

shorten a worm’s slow start phase, in which less than15% of susceptible hosts are 

infected, an incomplete hit-list with size up to 15% of the number of all susceptible 

hosts was employed. Both size of incomplete hit-list and average size of internally 

generated target lists were candidate factors whose influences on a worm’s propagation 

characteristics were to be investigated. I have simulated a limited number of scenarios. 

More scenarios could be investigated to determine the relationship between average 

time to infect 99% susceptible hosts and size of hit-list, and the relationship between 

average time to infect 99% susceptible hosts and average size of internally generated 

target lists. 
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Table 3.3: A summary of the 6 simulated scenarios with moderate complexity 
Scenario Code Target Discovery Techniques Employed 

H5%+U 
An Incomplete Hit-list with Size = 5% of the Number of All 

Susceptible Hosts; Followed by Uniform Scanning 

H10%+U 
An Incomplete Hit-list with Size = 10% of the Number of All 

Susceptible Hosts; Followed by Uniform Scanning 

H15%+U 
An Incomplete Hit-list with Size = 15% of the Number of All 

Susceptible Hosts; Followed by Uniform Scanning 

I1+U 
Internally Generated Target Lists with Average Size of 

1;Followed by Uniform Scanning 

I2+U 
Internally Generated Target Lists with Average Size of 2; 

Followed by Uniform Scanning 

I3+U 
Internally Generated Target Lists with Average Size of 3; 

Followed by Uniform Scanning 

 

 

Table 3.4: A summary of simulation results of the 6 scenarios with moderate 

complexity 
Scenario Code Average Time (in seconds) to Infect 99% Susceptible Hosts 

H5%+U 99 

H10%+U 89 

H15%+U 85 

I1+U 60 

I2+U 36 

I3+U 21 
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According to the results (Table 3.4) from the simulation experiments, an incomplete hit-

list with size of 5% of the number of all susceptible hosts followed by uniform scanning 

accelerates a worm’s propagation dramatically. However, this approach’s capability to 

accelerate active worms’ propagation is diminishing while size of the hit-list is 

increasing. Active worms employing internally generated target lists followed by 

uniform scanning performed especially well under all average sizes (1, 2, or 3) of the 

target lists. Here, average size of the target lists has a great influence on a worm’s 

propagation rate. The larger the average size becomes, the faster the worm propagates. 

I have also investigated propagation characteristics of active worms employing both an 

incomplete hit-list and internally generated target lists as their target discovery 

techniques. According to our simulation results of the 3 simple scenarios, an incomplete 

hit-list ought to be employed prior to internally generated target lists because generally 

the former is more effective to boost the number of initially infected hosts. Therefore, in 

our simulation experiments, active worms employing both an incomplete hit-list and 

internally generated target lists as their target discovery techniques would sequentially 

probe all those hosts in the hit-list prior to sequentially probing all those hosts in the 

target lists generated in process. Our simulation results show that active worms 

employing internally generated target lists with average size not greater than 3 cannot 

achieve infection of over 99% susceptible hosts, even if the number of initially infected 

hosts is boosted by an incomplete hit-list of size up to 15% of the number of all 

susceptible hosts. A simple and efficient way to infect those leftover susceptible hosts is 

by uniform scanning. Therefore, I believe uniform scanning is an indispensable 

elementary target discovery technique of active worms. 
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III. Complex Scenarios 

Finally, propagation characteristics of active worms employing a combination of three 

different target discovery techniques were examined. In our simulation experiments, 

active worms employing an incomplete hit-list followed by internally generated target 

lists followed by uniform scanning as their target discovery techniques would 

sequentially probe all those hosts in the hit-list prior to prior to sequentially probing all 

those hosts in the target lists generated in process. Once those lists were exhausted, they 

would start uniform scanning. 

The above kind of active worm formed the basis of the 9 complex scenarios to be 

simulated, which are summarized in Table 3.5. Both size of incomplete hit-list and 

average size of internally generated target lists were candidate factors whose influences 

on a worm’s propagation characteristics were to be investigated. I have simulated a 

limited number of scenarios. More scenarios could be investigated to determine the 

relationship between average time to infect 99% susceptible hosts and size of hit-list 

and average size of internally generated target lists. 
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Table 3.5: A summary of the 9 complex scenarios simulated 
Scenario Code Target Discovery Technique(s) Employed 

H5%+I1+U 

H5%+I2+U 

H5%+I3+U 

An Incomplete Hit-list with Size = 5% of the Number of All 

Susceptible Hosts; Followed by Internally Generated Target Lists 

with Average Size of 1, 2, or 3; Followed by Uniform Scanning 

H10%+I1+U 

H10%+I2+U 

H10%+I3+U 

An Incomplete Hit-list with Size = 10% of the Number of All 

Susceptible Hosts; Followed by Internally Generated Target Lists 

with Average Size of 1, 2, or 3; Followed by Uniform Scanning 

H15%+I1+U 

H15%+I2+U 

H15%+I3+U 

An Incomplete Hit-list with Size = 15% of the Number of All 

Susceptible Hosts; Followed by Internally Generated Target Lists 

with Average Size of 1, 2, or 3; Followed by Uniform Scanning 

 

 

Table 3.6: A summary of simulation results of the 9 complex scenarios 
Scenario 

Code 

Average Time (in seconds) to Infect 99% 

Susceptible Hosts 

H5%+I1+U 54 

H5%+I2+U 34 

H5%+I3+U 18 

H10%+I1+U 55 

H10%+I2+U 36 

H10%+I3+U 19 

H15%+I1+U 53 

H15%+I2+U 35 

H15%+I3+U 18 
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According to the results (Table 3.6) from our simulation experiments, an additional 

incomplete hit-list only accelerates a worm’s propagation slightly, compared to the 

results of the last 3 scenarios in Table 3.4. Increasing size of the hit-list has little effect 

on a worm’s rate of propagation. However, average size of internally generated target 

lists has a great influence on a worm’s rate of propagation. The larger the average size 

becomes, the faster the worm propagates. It could also be found that further increasing 

size of the additional incomplete hit-list might slow down the propagation, which could 

be explained by overlap of hosts in the hit-list and the internally generated target lists. 

In other words, the results indicate the combination of the three different target 

discovery techniques is not the best for attackers taking into account the added effort 

they have to make to build the worm. I found internally generated target lists with 

average size of 3 followed by uniform scanning is the most effective and efficient 

among all approaches examined in this paper to accelerate propagation of active worms. 
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Chapter 4 Propagation Acceleration by Shortening the 

Slow Start Phase 

Zou et al. [55, 56] partition a worm’s propagation into three phases: the slow start 

phase, the fast spread phase, and the slow finish phase. According to [53], the best way 

to accelerate a worm’s propagation is to shorten the period of the slow start phase and 

let the worm enter its fast spread phase as soon as possible. Xiang et al. [52] point out 

that an active worm is not limited to employing single target discovery technique only, 

and thus future active worms could employ multiple target discovery techniques 

simultaneously in an attempt to accelerate their propagation. I believe this strategy 

could also be utilized to shorten the slow start phase in the propagation of active worms 

[59]. Therefore, I studied propagation mechanisms of active worms employing a 

combination of two different target discovery techniques in an attempt to shortening its 

slow start phase. I also performed a series of simulation experiments to investigate their 

propagation characteristics under various scenarios. 

4.1. Preliminary Studies 

4.1.1 The Approach Chosen and Set-up of the Simulation Experiments 

I performed simulation experiments to understand the propagation characteristics of 

active worms. In order to reduce simulation time, I performed our simulation 

experiments in a class A /8 subnet. In other words, I used scale-down by a factor of 1/28 

to explore worm dynamics. 
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Our simulation experiments were based on the same assumptions as those on which the 

simulation experiments described in Chapter 3 were based. They include assumptions 

regarding distribution of susceptible hosts, vulnerability density and average worm 

scanning rate, details of which were given in the setup described in Chapter 3. All 

simulations started with only 1 initially infected host, which is equivalent to 28 initially 

infected hosts in the Slammer’s case. Outputs from all simulations are the numbers of 

infected hosts against time. 

In order to eliminate variation in results from different simulation runs for each certain 

scenario, I performed 10 simulation runs for each scenario using the simulator 

implemented in C programming language custom made for our simulation experiments. 

Results from all simulation runs are then averaged to produce final result for each 

scenario. 

4.1.2 Potential Approaches to Shortening the Slow Start Phase 

Before I studied propagation characteristics of active worms employing a combination 

of two different target discovery techniques in an attempt to shorten it slow start phase, 

I had studied propagation characteristics of active worms employing only one of the 

following target discovery techniques: uniform scanning; a complete hit-list; or 

internally generated target lists. 

The above three kinds of active worms formed the basis of the scenarios to be 

simulated, which are summarized in Table 4.1. Propagation rate of active worms 

employing uniform scanning only was our baseline to be compared to. Since an 

incomplete hit-list only cannot let a worm infect more hosts than those in the list, in 
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practice it must be combined with other target discovery technique(s). Therefore, I 

chose a complete hit-list as one of the above 3 fundamental target discovery techniques. 

Average size of internally generated target lists was a candidate factor whose influence 

on a worm’s propagation characteristics was to be investigated. 

 

Table 4.1: A list of the scenarios simulated 
Scenario Target Discovery Technique Employed 

Uniform Uniform scanning only 

Hit-List_100% A complete hit-list only 

Target_Lists_1 Internally generated target lists (with average size of 1) only  

Target_Lists_2 Internally generated target lists (with average size of 2) only  

Target_Lists_3 Internally generated target lists (with average size of 3) only  

Target_Lists_4 Internally generated target lists (with average size of 4) only  

Target_Lists_5 Internally generated target lists (with average size of 5) only  

Target_Lists_6 Internally generated target lists (with average size of 6) only  
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Table 4.2: A summary of simulation results of the scenarios simulated 
Scenario Average Time (in seconds) to Infect 99% Susceptible Hosts 

Uniform 142 

Hit-List_100% 1 

Target_Lists_1 
Indefinite 

(average maximum infection rate 7% achieved in 1 second) 

Target_Lists_2 
Indefinite 

(average maximum infection rate 79% achieved in 1 second) 

Target_Lists_3 
Indefinite 

(average maximum infection rate 94% achieved in 1 second) 

Target_Lists_4 
1 with probability 0.45 and indefinite with probability 0.55 

(average maximum infection rate 98% achieved in 1 second) 

Target_Lists_5 
1 with probability 0.97 and indefinite with probability 0.03 

(average maximum infection rate 99% achieved in 1 second) 

Target_Lists_6 
1 with probability 1 

(average maximum infection rate 100% achieved in 1 second) 

 

According to the results (Table 4.2) from our simulation experiments, a complete hit-list 

makes a worm propagate extremely rapidly. However, the feasibility of this approach is 

discounted by the extreme difficulties that will be encountered by attackers in gathering 

such a list. Due to their exactly same propagation mechanism, an incomplete hit-list lets 

a worm infect all susceptible hosts in the list as soon as a complete hit-list does. 

Therefore, an incomplete hit-list is a more feasible approach. 

According to results from the simulation experiments, active worms only employing 

internally generated target lists with average size not greater than 5 cannot achieve 
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infection of over 99% susceptible hosts. An explanation to this phenomenon could be 

that less than 99% of all susceptible hosts are in the combined internally generated 

target lists of all susceptible hosts infected. However, average size of internally 

generated target lists has a great influence on the average maximum infection rate 

(average maximum percentage of susceptible hosts a worm can infect). A slight 

increase in the average size from 1 to 6 leads to a dramatic increase in the average 

maximum infection rate. Furthermore, average maximum infection rates are achieved in 

1 second for all average sizes (1 to 6). As I mentioned in Chapter 3, infection of 85% 

susceptible hosts would usually serve attackers’ purposes. Therefore, internally 

generated target lists with average size of 3 or greater (with average maximum infection 

rate of 94% or greater) could be employed by active worms to shorten its slow start 

phase. 

We can see from the above simulation results that both a complete hit-list and internally 

generated target lists with average size of 6 (2% of the number of all susceptible hosts) 

are able to let the worm infect all susceptible hosts in just 1 second. Compared to 

uniform scanning only, both of them will reduce a worm’s average time to infect over 

99% susceptible hosts by 141 seconds. However, the same as a complete hit-list is hard 

to obtain, target lists with average size of 6 are not always available. Since neither an 

incomplete hit-list with size less than 99% of the number of all susceptible hosts nor 

target lists with average size of 5 or less are able to infect over 99% susceptible hosts, 

both of them have to be combined with other target discovery technique(s) to enable a 

worm to infect those leftover susceptible hosts. I believe uniform scanning is the 

simplest and best way to achieve that purpose. Therefore, I studied propagation 
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characteristics of active worms employing an incomplete hit-list with increasing size 

and internally generated target lists with increasing average size followed by uniform 

scanning. In the next section, I will detail our investigation of employing the strategy 

proposed in chapter 3 to shorten the slow start phase in the propagation of active 

worms. 

4.2 Employing Multiple Techniques to Shorten the Slow Start 

Phase 

After having identified several target discovery techniques that could be utilized to 

shorten the slow start phase in the propagation of active worms, a reasonably 

comprehensive investigation of employing the strategy proposed in Chapter 3 to shorten 

the slow start phase is carried out by conducting a series of simulation experiments. I 

systematically examined propagation characteristics of active worms employing an 

incomplete hit-list with increasing size followed by uniform scanning and internally 

generated target lists with increasing average size followed by uniform scanning by 

conducting a series of simulation experiments under various scenarios. 

4.2.1 An Incomplete Hit-List with Increasing Size 

As implied in the last section, the time needed to infect the first certain percentage 

(approximately 15% according to our calculations) of susceptible hosts dominates the 

time to infect over 85% susceptible hosts. Therefore, I only need to investigate rate of 

propagation for an incomplete hit-list with size up to 15% of the number of all 

susceptible hosts. 
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In our simulation experiments, active worms employing an incomplete hit-list followed 

by uniform scanning as their target discovery techniques would sequentially probe all 

those hosts in the hit-list prior to employing uniform scanning. I started with a hit-list 

with size of 1% of the number of all susceptible hosts and kept increasing its size by 1% 

at a time until it reached 15%. 

Scenarios simulated and their results are summarized in Table 4.3. I also worked out 

decreases in average time required to infect a certain percentage (say 99%) of 

susceptible hosts. For each additional 1% increasing of size of the hit-list, decreases in 

average time required to infect over 99% of susceptible hosts are significantly unequal. 

Therefore, a cost (increase in hit-list size) and benefit (decrease in time required to 

infect a certain percentage of susceptible hosts) analysis was conducted to discover the 

most cost-effective and cost-efficient hit-list size. 
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Table 4.3: A summary of the scenarios simulated and their results (1) 

Scenario 

Average Time (in 

seconds) to Infect 99% 

Susceptible Hosts 

Decrease in Average Time (in seconds) 

to Infect 99% Susceptible Hosts Caused 

by Increase by 1% in Hit-List Size  

Hit-List_0%+Uniform 142  

Hit-List_1%+Uniform 120 22 

Hit-List_2%+Uniform  110 10 

Hit-List_3%+Uniform  110 0 

Hit-List_4%+Uniform 108 2 

Hit-List_5%+Uniform 100 8 

Hit-List_6%+Uniform 96 4 

Hit-List_7%+Uniform 95 1 

Hit-List_8%+Uniform 93 2 

Hit-List_9%+Uniform 94 -1 

Hit-List_10%+Uniform 90 4 

Hit-List_11%+Uniform 94 -4 

Hit-List_12%+Uniform  88 6 

Hit-List_13%+Uniform  88 0 

Hit-List_14%+Uniform 81 7 

Hit-List_15%+Uniform 86 -5 

Hit-List_20%+Uniform 80 1 

Hit-List_25%+Uniform 80 0 

Hit-List_30%+Uniform  72 1 

Hit-List_35%+Uniform  73 0 

Hit-List_40%+Uniform 70 0 

Hit-List_45%+Uniform 63 1 

Hit-List_50%+Uniform 61 0 
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According to the results from our simulation experiments, an incomplete hit-list with 

size of 1% of the number of all susceptible hosts followed by uniform scanning 

accelerates a worm’s propagation dramatically. This strategy reduces a worm’s average 

time required to infect over 99% susceptible hosts by 22 seconds compared to uniform 

scanning only. (denoted by Hit-List_0%+Uniform in Table 4.3). However, this 

approach’s capability to accelerate active worms’ propagation is diminishing while size 

of hit-list keeps increasing. 

In this chapter, I define a cost-effective action as one with a ratio of additional benefit 

gained to additional cost paid for that benefit gained not less than one third of that of the 

best case. The threshold is set arbitrarily. Since simulation results are compared to each 

other, relative effectiveness rather than absolute effectiveness matters. The set threshold 

does not affect the relative effectiveness rankings of simulation results. Because my 

cost and benefit analysis is unique, there are no existing benchmarks in terms of cost-

effectiveness. Therefore, I do not compare my simulation results with those in 

benchmark in terms of cost-effectiveness. 

To simplify our cost and benefit analysis, I assume the cost involved in discovering 

each additional susceptible host is same. Based on this assumption, we will have to 

make same effort in increasing size of hit-list by each percentage. However, our benefit 

gained (reduced average time to infect over 99% susceptible hosts) from each 

percentage increase in hit-list size is not same at all. The maximum benefit (22 seconds) 

is gained when the first 1% susceptible hosts are found and incorporated into a worm’s 

hit-list. When the fifth 1% susceptible hosts are found and incorporated into a worm’s 

hit-list, we still gain a benefit of 8 seconds, which is not less than one third of 22 
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seconds. Therefore, it is still cost effective according to the definition given above. 

However, after that, benefits gained are all less than one third of 22 seconds, which 

indicates they are all not cost-effective. 

Based on the above cost and benefit analysis, I suggest a hit-list with size of 5% of the 

number of all susceptible hosts followed by uniform scanning is a cost-effective target 

discovery technique that could be employed by active worms to accelerate their 

propagation by approximately 30% ( 142 100
142
− ) compared to employing uniform scanning 

only. 

4.2.2 Internally Generated Target Lists with Increasing Average Size 

As I discovered in the last section, active worms only employing internally generated 

target lists with average size not greater than 5 cannot achieve infection of over 99% 

susceptible hosts, but they can achieve their respective average maximum infection 

rates in just 1 second for all average sizes (1 to 6). Therefore, internally generated target 

lists with average size of not greater than 5 could be employed by active worms to 

shorten their slow start phase dramatically. I believe if this target discovery technique is 

combined with uniform scanning, it will enable a worm to infect over 99% susceptible 

hosts. 

In our simulation experiments, active worms employing internally generated target lists 

followed by uniform scanning as their target discovery techniques would sequentially 

probe all those hosts in the target lists generated in process prior to employing uniform 

scanning. I started with target lists of average size 1 and kept increasing their average 

size by 1 at a time until it reached 5. Since internally generated target lists with average 
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size greater than 5 will enable a worm to infect over 99% susceptible hosts in a very 

short time period, it is not necessary to combine them with uniform scanning. 

Scenarios simulated and their results are summarized in Table 4.4. I also worked out 

decreases in average time required to infect a certain percentage (say 99%) of 

susceptible hosts. For each additional increase by 1 in average size of internally 

generated target lists, decreases in average time required to infect over 99% of 

susceptible hosts are significantly unequal. Therefore, a cost (increase in average size of 

internally generated target lists) and benefit (decrease in time required to infect a certain 

percentage of susceptible hosts) analysis was conducted to discover the most cost-

effective and cost-efficient average size of internally generated target lists. 

 

Table 4.4: A summary of the scenarios simulated and their results (2) 

Scenario 

Average Time (in 

seconds) to Infect 99% 

Susceptible Hosts 

Decrease in Average Time (in seconds) to 

Infect 99% Susceptible Hosts Caused by 

Increase by 1 in Average Size of 

Internally Generated Target Lists  

Target_Lists_0+Uniform 142  

Target_Lists_1+Uniform 60 82 

Target_Lists_2+Uniform 36 24 

Target_Lists_3+Uniform 21 15 

Target_Lists_4+Uniform 9 12 

Target_Lists_5+Uniform 2 7 
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According to the results from our simulation experiments, internally generated target 

lists with average size of 1 followed by uniform scanning accelerates a worm’s 

propagation dramatically. This strategy reduces a worm’s average time required to 

infect over 99% susceptible hosts by 82 seconds compared to uniform scanning only. 

(denoted by Target-Lists_0+Uniform in Table 4.4). However, this approach’s capability 

to accelerate active worms’ propagation is diminishing while average size of internally 

generated target lists keeps increasing. 

To simplify our cost and benefit analysis, I assume the cost involved in increasing 

average size of internally generated target lists by 1 remains unchanged. Based on this 

assumption, we will have to make same effort in increasing average size of internally 

generated target lists by 1. However, our benefit gained (reduced average time to infect 

over 99% susceptible hosts) from each increase by 1 of average size of internally 

generated target lists is not same at all. The maximum benefit (82 seconds) is gained 

when the average size of internally generated target lists is increase from 0 to 1. When 

the average size of internally generated target lists is increased from 1 to 2, we gain a 

benefit of 24 seconds, which is less than one third of 82 seconds. Therefore, it is not 

cost effective according to our definition given in the last sub-section. After that, 

benefits gained are all less than one third of 82 seconds, which indicates they are all not 

cost-effective. 

Based on the above cost and benefit analysis, I suggest average size of internally 

generated target lists of 1 (approximately 0.33% of the number of all susceptible hosts) 

followed by uniform scanning is a cost-effective target discovery technique that could 
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be employed by active worms to accelerate their propagation by approximately 60% 

( 142 60
142
− ) compared to employing uniform scanning only. 

4.2.3 A Combination of the Above Two Approaches 

I have also investigated propagation characteristics of active worms employing both an 

incomplete hit-list and internally generated target lists as their target discovery 

techniques. According to our simulation results, an incomplete hit-list ought to be 

employed prior to internally generated target lists because generally the former is more 

effective to boost the number of initially infected hosts. Therefore, in our simulation 

experiments, active worms employing both an incomplete hit-list and internally 

generated target lists as their target discovery techniques would sequentially probe all 

those hosts in the hit-list prior to sequentially probing all those hosts in the target lists 

generated in process. Our simulation results show that active worms employing 

internally generated target lists with average size not greater than 3 cannot achieve 

infection of over 99% susceptible hosts, even if the number of initially infected hosts is 

boosted by an incomplete hit-list of size up to 15% of the number of all susceptible 

hosts. 
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Chapter 5 The Logic Matrix Approach to Propagation 

Modelling of Peer-to-Peer Worms 

At the beginning of this chapter, I extend definition of a matrix to allow its elements to 

be variables or constants of logic type; and term such kind of matrices logic matrices. 

Several operations of logic matrices are defined. Then, topology, state, vulnerability 

status and quarantine status of a network are represented by its topology logic matrix, 

state logic matrix, vulnerability logic matrix, and quarantine logic matrix, respectively. 

Finally, an innovative logic matrix formulation of the propagation process of P2P 

worms under three different conditions is derived from first principle. 

5.1 Logic Matrix and Its Operations 

I extend the definition of matrix to allow variables or constants of logic type as its 

elements and term such kind of matrix logic matrix. The values of variables of logic 

type can only be one of the two constants of logic type: True (denoted by ‘T’) or False 

(denoted by ‘F’). If a logic matrix has only one row or one column, we can also term it 

row logic vector or column logic vector, respectively. 

I define absolute value of a variable l of logic type (denoted by |l|) as 1 when its value is 

‘T’, and 0 when ‘F’; and define absolute value of a logic matrix L (denoted by |L|) as the 

total number of its elements with value ‘T’. According to the above definitions, the 

absolute value of a logic matrix L can be worked out by summing the absolute value of 

its each element l, i.e., 
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∑= lL .   (5.1) 

A logic matrix L can be inverted. The resultant L is a logic matrix of the same 

dimension with its element linv being the result of logic NOT operation of the 

corresponding element l of the logic matrix to be inverted. It can be defined 

mathematically as follows: 

llinv = ,   (5.2) 

where the bar over l indicates logic NOT operation. 

Two logic matrices A and B can be added together if and only if their dimensions are 

the same, i.e., they have the same number of rows and the same number of columns. 

The resultant S = A + B is a logic matrix of the same dimension with its element sij (in 

the i-th row and the j-th column) being the result of logic OR operation of the 

corresponding elements aij and bij of the two logic matrices to be added together. It can 

be defined mathematically as follows: 

ijijij bas += ,   (5.3) 

where the + sign between aij and bij indicates logic OR operation. 

Mutation law applies to the logic matrix addition defined above. 

Two logic matrices A and B can be multiplied element-by-element if and only if their 

dimensions are the same, i.e., they have the same number of rows and the same number 

of columns. The resultant P = AB is a logic matrix of the same dimension with its 

element pij (in the i-th row and the j-th column) being the result of logic AND operation 
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of the corresponding elements aij and bij of the two logic matrices to be multiplied 

element-by-element. It can be defined mathematically as follows: 

ijijij bap = ,   (5.4) 

where aijbij indicates logic AND operation of aij and bij. 

Mutation law applies to the logic matrix element-by-element multiplication defined 

above. 

A logic matrix A can be multiplied by another logic matrix B in the manner of 

traditional matrix multiplication if and only if their inner dimensions are the same, i.e., 

number of columns of the multiplicand logic matrix (the left one) is equal to number of 

rows of the multiplier logic matrix (the right one). The resultant P = AB is a logic matrix 

with the same number of rows as A and the same number of columns as B. I define 

value of element pij (in the  i-th row and the j-th column) of the product as determined 

by the following equation: 

kj

n

k
ikij bap ∑

=

=
1 ,   (5.5) 

where aikbkj indicates logic AND operation of aik and bkj, n denotes inner dimensions of 

the multiplicand and the multiplier logic matrices, and ∑ denotes logic OR operation of 

all  resultants of those logic AND operations. 

Contrary to logic matrix addition and logic matrix element-by-element multiplication, 

mutation law does not apply to the logic matrix multiplication in the manner of 

traditional matrix multiplication defined above. 
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Now the stage for later discussion has been set. In the next two sections, I will introduce 

the concepts of a P2P network’s topology logic matrix, state logic matrix, vulnerability 

logic matrix, and quarantine logic matrix, respectively; and derive our innovative logic 

matrix formulation of the propagation process of P2P worms under three different 

conditions from first principle. 

5.2 The Logic Matrix Representations 

According to the traditional directed graph theory, a P2P overlay network can be 

represented by a directed graph G, with its set of vertices V representing all peers 

connected to form the network, and its set of directed edges E representing all directed 

links among these peers. A directed link from peer i to peer j means peer j is a 

neighbour of peer i, but peer i is not a neighbour of peer j if there does not exist a 

directed link from peer j to peer i at the same time. A peer is only able to send messages 

to its neighbours directly. 

Topology of a P2P overlay network consisting of n peers can be represented by an n by 

n square matrix T with its element tij (in the i-th row and the j-th column) indicating 

whether there is a directed link from peer i to peer j. 

In this thesis, I propose a different approach from that used under the traditional 

directed graph theory to indicating the existence or not of a directed link. The logic 

constant ‘T’ is used to indicate there is a directed link, and the logic constant ‘F’ to 

indicate there is not. Therefore, topology of a P2P overlay network consisting of n peers 

can be represented by an n by n logic square matrix. I term it topology logic matrix of 

the P2P overlay network. 
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Each row of the topology logic matrix of a P2P overlay network forms a row logic 

vector, which is a logic vector representation of outbound links (neighbours) of a 

particular peer belonging to the network. I call this row logic vector the peer’s topology 

out-degree logic vector. Each column of the topology logic matrix of a P2P overlay 

network forms a column logic vector, which is a logic vector representation of inbound 

links of a particular peer belonging to the network. I call this logic column vector the 

peer’s topology in-degree logic vector. For example, the i-th row of a topology logic 

matrix represents all outbound links (neighbours) of peer i; and the j-th column of the 

topology logic matrix represents all inbound links of peer j. 

It can be easily derived that values of topology in-degree and topology out-degree of 

each peer belonging to a P2P overlay network equate to the absolute values of the 

peer’s topology in-degree logic vector and topology out-degree logic vector, 

respectively, which can be worked out by using equation (5.1). 

I represent states of all the n peers belonging to the P2P overlay network by a row logic 

vector S of length n with its element sj (the j-th element) indicating whether peer j has 

been infected by the worm and become infectious. The logic constant ‘T’ is used to 

indicate a peer has been infected and become infectious, and the logic constant ‘F’ to 

indicate it has not. I term the above row logic vector the P2P overlay network’s state 

logic vector. It can be derived that the total number of infected and infectious peers in a 

P2P overlay network equates to the absolute value of the network’s state logic vector, 

which can be worked out by using equation (5.1). 

A healthy peer vulnerable to the worm can be infected by the worm and become 

infectious. However, a peer which is not vulnerable to the worm will not be infected by 
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the worm and become infectious. I represent vulnerability status of all the n peers in the 

P2P overlay network by a row logic vector V of length n with its element vj (the j-th 

element) indicating whether peer j is vulnerable to the worm. The logic constant ‘T’ is 

used to indicate a peer is vulnerable to the worm, and the logic constant ‘F’ to indicate it 

is not. I term the above logic row vector the P2P overlay network’s vulnerability logic 

vector. It can be derived that the total number of peers vulnerable to the worm in a P2P 

overlay network equates to the absolute value of the network’s vulnerability logic 

vector by using equation (5.1). 

I represent quarantine status of all the n peers belonging to the P2P overlay network by 

a row logic vector Q of length n with its element qj (the j-th element) indicating whether 

peer j has been quarantined for the worm. A quarantined healthy peer will not be 

infected by the worm; and a quarantined infected and infectious peer will be cured and 

will not be infected again by the worm. The logic constant ‘T’ is used to indicate a peer 

has been quarantined, and the logic constant ‘F’ to indicate it has not. I term the above 

row logic vector the P2P overlay network’s quarantine logic vector. It can be derived 

that the total number of quarantined peers in a P2P overlay network equates to the 

absolute value of the network’s quarantine logic vector, which can be worked out by 

using equation (5.1). 

5.3 The Logic Matrix Formulation 

Based on the above extensions to matrix and its operations and extensions to the matrix 

representation of a network in the traditional directed graph theory, I am now ready to 
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derive our innovative logic matrix formulation of the propagation process of P2P 

worms. The derivation is based on the following assumptions. 

An infected and infectious peer will send the worm packets to all other peers belonging 

to the same P2P overlay network to which it has a outbound link, regardless of the state 

(infected by the worm and infectious or not) and the quarantine status (quarantined for 

the worm or not) of those peers. A healthy (not infected by the worm and not infectious) 

peer will be infected by the worm and become infectious once it receives the worm 

packets from an infectious peer, provided the healthy peer is not quarantined for the 

worm. An infected and infectious peer will remain in that state once it receives the 

worm packets from an infectious peer, provided the infected and infectious peer is not 

quarantined for the worm. A healthy peer quarantined for the worm will not be infected 

by the worm; and an infected and infectious peer quarantined for the worm will be 

cured and will not be infected again by the worm. 

There are a total of n peers belonging to a logical (not physical) P2P overlay network 

under consideration. Initially, there are a total of I0 peers which are infected by the 

worm and infectious. 

According to the above assumptions, the logical P2P overlay network’s initial state 

(State 0) can be represented by its initial state logic vector S0 of length n; and the 

absolute value of S0 equates to the total number of peers which are initially infected by 

the worm and infectious (I0), i.e., 

00 IS = .   (5.6) 
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Generally, State g of the logical P2P overlay network can be represented by its state 

logic vector Sg of length n; and the absolute value of Sg equates to the total number of 

peers which are infected by the worm and infectious at that state (Ig), i.e., 

gg IS = .   (5.7) 

The next state (State g+1) of the logical P2P overlay network can be represented by its 

state logic vector Sg+1 of length n; and the absolute value of Sg+1 equates to the total 

number of peers which are infected by the worm and infectious at that state (Ig+1), i.e., 

11 ++ = gg IS .   (5.8) 

I notice that the logical P2P overlay network’s next state represented by its state logic 

vector Sg+1 is fully determined by the network’s current state represented by its state 

logic vector Sg, the network’s topology represented by its topology logic matrix T, the 

network’s vulnerability status represented by its vulnerability logic vector V, and the 

network’s quarantine status represented by its quarantine logic vector Q. 

If all peers are vulnerable to the P2P worm, I find the relationship among Sg+1, Sg, T, V, 

and Q can be described mathematically as follows: 

QTSSS ggg +=+1 .   (5.9) 

Let Sg
new stand for the second term in the above equation (after the + sign), the above 

equation can be simplified to 

new
ggg SSS +=+1 .   (5.10) 
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The term represented by Sg
new actually says if at State g at least one peer among those 

peers from which peer j has inbound links is infectious, peer j will be infected by the 

worm and become infectious at State g+1 provided peer j is not quarantined. 

Since both Sg and Q are row logic vectors of length n and T is an n by n square logic 

matrix, Sg
new will be a row logic vector of length n. It can be derived that Sg

new is a logic 

vector representation of all those peers that can be infected by the worm at State g+1, 

given the network’s state at State g represented by its state logic vector Sg, the 

network’s topology represented by its topology logic matrix T, and the network’s 

quarantine status represented by its quarantine logic vector Q. Sg
new may or may not 

include peer or peers infected by the worm at states prior to State g+1. Then, equations 

(5.9) and (5.10) can be easily derived. 

If quarantined is not enforced at all and not all peers are vulnerable to the P2P worm, 

equation (5.9) will be changed to 

TVSSS ggg +=+1 .   (5.11) 

The term represented by the second term in the above equation (after the + sign) 

actually says if at State g at least one peer among those peers from which peer j has 

inbound links is infectious, peer j will be infected by the worm and become infectious at 

State g+1 provided peer j is vulnerable to the worm. 

If quarantined is not enforced at all and all peers are vulnerable to the P2P worm, 

equation (5.11) will be simplified to 

TSSS ggg +=+1 .   (5.12) 
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Equation (5.12) is also a special case of equation (5.9) when Q is a row logic vector 

with all its elements being ‘F’. 

Equations (5.9), (5.11), and (5.12) are actually discrete-time deterministic propagation 

models of P2P worms under three different conditions, respectively, written in the form 

of difference equations of logic matrix. 

Starting from some certain state, there will be no newly infected peer to occur and thus 

actually, the propagation will stop. The state from which the propagation will cease is 

the earliest state whose state logic vector SG satisfies the following equation: 

GG SS =+1 ,   (5.13) 

where SG+1 stands for the state logic vector of the state immediately after the state with 

state logic vector SG. 

I call the earliest state whose state logic matrix SG satisfies (13) the final state of the 

P2P overlay network. 

The proposed logic matrix approach essentially translates the propagation processes of 

P2P worms into a sequence of logic matrix operations. 
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Chapter 6 Simulation Experiments: Applications of the 

Logic Matrix Approach 

6.1 Evaluation Metrics 

Our evaluation metric for attack performance in this chapter is a P2P worm’s coverage 

rate (denoted by c) in a logical P2P overlay network. It is defined as the ratio of number 

of peers in the network that can be infected by the worm to number of peers in the 

network that are vulnerable to the worm. It can be worked out by using the following 

equation: 

V
S

c G=
,   (6.1) 

where SG is the state logic vector of the network when the propagation process has just 

stopped, and V is the vulnerability logic vector to the worm of the network. 

One of our evaluation metrics for network-related characteristics of P2P networks in 

this chapter is vulnerability rate (denoted by v) to a P2P worm of a logical P2P overlay 

network, which is defined as the ratio of number of peers in the network that are 

vulnerable to the worm to total number of peers in the network. It can be worked out by 

using the following equation: 

n
V

v =
,   (6.2) 
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where V is the vulnerability logic vector to the worm of the network, and n is total 

number of peers in the network.  

Vulnerability rate is set to be from 0% to 100% with 20% interval to fully investigate 

the impact of vulnerability rate on coverage rate. The basis for parameters variation (the 

20% interval) in the simulations of this chapter is small enough to reveal the impact of 

vulnerability rate on coverage rate and large enough to minimise simulation time. 

The rest two of our evaluation metrics for network-related characteristics of P2P 

networks in this chapter are topology out-degree, which refers to the number of logical 

neighbours maintained by each peer locally; and network size, which refers to total 

number of peers in a P2P network. 

Our defence-related evaluation metric in this chapter is quarantine rate (denoted by q) 

for a P2P worm of a logical P2P overlay network. It is defined as the ratio of number of 

peers belonging to the network that are quarantined for the worm to total number of 

peers belonging to the network; and can be worked out by using the following equation: 

n
Q

q =
,   (6.3) 

where Q is the quarantine logic vector for the worm of the network and n is total 

number of peers belonging to the network. 

I apply the proposed logic matrix approach in the simulation experiments under the 

following three different conditions using MathWorks’ MATLAB. 
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6.2 All Peers Being Vulnerable to the P2P Worm and No 

Quarantine 

In this case, I investigate the impacts of the two different topologies, namely the simple 

random graph topology and the pseudo power law topology on the coverage rate of P2P 

worms. 

6.2.1 The Simple Random Graph Topology 

I investigate the impacts of the two parameters, namely the number of initially infected 

computers belonging to a P2P network and the mean value of topology out-degree of 

the network, on the coverage rate of P2P worms in the network. 

The implementation in MATLAB assumes there are a total of 10,000 peers (computers) 

belonging to the logical P2P overlay network under consideration. Therefore, the 

topology of the overlay network is represented by its topology logic matrix, which is a 

10,000 by 10,000 square logic matrix; and its initial state is represented by its initial 

state logic vector, which is a 1 by 10,000 logic matrix (row logic vector). In the 

experiments conducted for this sub-section, I assume each peer has the same value of 

topology out-degree. Peers to which each peer has outbound links are randomly selected 

from all peers except the peer itself belonging to the overlay network, which means I do 

not allow loop, that is, no peer has an outbound link to itself. Therefore, I call the 

topology of the overlay network in the experiments conducted for this sub-section the 

simple random graph topology. 
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I conduct the experiments with MATLAB under different combinations of values of the 

number of initially infected computers and the mean value of topology out-degree. 

Firstly, I fix the number of initially infected peers (computers) belonging to the overlay 

network to be 1, and try to find out the impact of mean value of topology out-degree on 

the coverage rate of P2P worms in the overlay network. The initially infected peer is 

randomly select from all peers belonging to the overlay network. A total of 5 scenarios 

listed in Table 1 are investigated. Experiment for each scenario is repeated 100 times. 

Then, the mean value of coverage rate and coefficient of variation of coverage rate are 

worked out. Results from the experiments are listed in Table 6.1. 

 

Table 6.1: A list of the experimental results (only 1 initially infected peer randomly 

selected from all peers) 

Mean Value of 

Topology Out-

Degree 

Mean Value of 

Coverage Rate 

(%) 

Coefficient of 

Variation of 

Coverage Rate 

(%) 

1 1.23 54.81 

2 79.64 0.68 

3 94.08 0.27 

4 98.06 0.16 

5 99.31 0.09 

 

As shown by Table 6.1, mean value of topology out-degree has great impact on both 

mean value and coefficient of variation of coverage rate of P2P worms in the overlay 
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network featuring the simple random graph topology. Increase in mean value of 

topology out-degree results in increase in mean value of coverage rate but decrease in 

coefficient of variation of coverage rate. When mean value of topology out-degree is 

increased to 3, mean value of coverage rate is increased to over 90% and its coefficient 

of variation becomes very small, which indicates 3 is the minimum mean value of 

topology out-degree which can make a P2P worm be able to infect most peers with very 

high certainty. 

Then, I fix the number of initially infected peers (computers) belonging to the overlay 

network to be 10/100, and repeat the above experiments. Results from the experiments 

are listed in Table 6.2. 

 

Table 6.2: A list of the experimental results (a total of 10 /100 initially infected 

peers randomly selected from all peers) 

Mean Value of 

Topology Out-

Degree 

Mean Value of Coverage 

Rate (%) 

Coefficient of Variation of 

Coverage Rate (%) 

Initially 

infected 

peers=10 

Initially 

infected 

peers=100 

Initially 

infected 

peers=10 

Initially 

infected 

peers=100 

1 4.28 13.53 16.22 5.43 

2 79.80 80.06 0.63 0.62 

3 94.10 94.16 0.27 0.26 

4 98.03 98.06 0.15 0.15 

5 99.30 99.31 0.08 0.09 
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Table 6.2 shows similar trends to those shown by Table 6.1, which indicates the impact 

of number of initially infected peers on the coverage rate of a P2P worm in the overlay 

network featuring the simple random graph topology is insignificant. 

6.2.2 The Pseudo Power Law Topology 

Similar to the previous sub-section, I investigate the impacts of the two parameters, 

namely the number of initially infected computers belonging to a P2P network and the 

maximum value of topology out-degree of the network, on the coverage rate of P2P 

worms in the network. 

In the experiments conducted for this sub-section, I assume only a very small number 

(10 in the experiments) of peers have the maximum value of topology out-degree, and 

all other peers have the minimum value (1 in the experiments) of topology out-degree. 

Although the distribution of topology out-degree in the experiments does not strictly 

follow power law, it does have the most important features of power law distribution, 

namely peers with maximum value of topology out-degree are rare and most peers have 

minimum value of topology out-degree. Therefore, I call the topology of the overlay 

network in the experiments conducted for this sub-section the pseudo power law 

topology. 

I conduct our simulation under different combinations of values of the number of 

initially infected computers and the maximum value of topology out-degree. 

Firstly, I fix the number of initially infected peers (computers) belonging to the overlay 

network to be 1, and try to find out the impact of maximum value of topology out-

degree on the coverage rate in the overlay network. The initially infected peer is 
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randomly select from all peers belonging to the overlay network. A total of 5 scenarios 

are investigated. In the experiments conducted for this sub-section, I assume each peer 

has either the maximum value of topology out-degree or the minimum value of 

topology out-degree. Peers to which each peer has outbound links are randomly selected 

from all peers except the peer itself belonging to the overlay network. Experiment for 

each scenario is repeated 100 times. Then, the mean value of coverage rate and 

coefficient of variation of coverage rate are worked out. Results from the experiments 

are listed in Table 6.3. 

 

Table 6.3: A list of the experimental results (only 1 initially infected peer randomly 

selected from all peers) 
Maximum 

Value of 

Topology Out-

Degree 

Mean Value of 

Coverage Rate 

(%) 

Coefficient of 

Variation of 

Coverage Rate 

(%) 

100 3.17 200.74 

1000 13.83 209.20 

2000 14.54 226.10 

 

As shown by Table 6.3, when all initially infected peers are randomly selected from all 

peers, maximum value of topology out-degree has a little impact on both mean value 

and coefficient of variation of coverage rate of P2P worms in the overlay network 

featuring the pseudo power law topology. Increase in maximum value of topology out-

degree results in a little increase in mean value of coverage rate and a little increase in 
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coefficient of variation of coverage rate as well, which indicates the small gain in 

coverage rate could be offset by the small loss in certainty. The worm is not able to 

infect most peers with high certainty. 

After that, I fix the number of initially infected peers (computers) belonging to the 

overlay network to be 10, and repeat the above experiments. Results from the 

experiments are listed in Table 6.4. 

Table 6.4: A list of the experimental results (a total of 10 initially infected peers 

randomly selected from all peers) 
Maximum 

Value of 

Topology Out-

Degree 

Mean Value of 

Coverage Rate 

(%) 

Coefficient of 

Variation of 

Coverage Rate 

(%) 

100 11.25 79.51 

1000 33.06 111.27 

2000 36.23 120.07 

 

Table 6.4 shows similar trends (just an insignificantly higher coverage rate and an 

insignificantly lower coefficient of variation of coverage rate) to those shown by Table 

3, which indicates, when all initially infected peers are randomly selected from all 

peers, the impact of number of initially infected peers on the coverage rate of a P2P 

worm in the overlay network featuring the pseudo power law topology is insignificant. 

Finally, initially infected peers are randomly select from only those peers with 

maximum topology out-degree and I repeat all of the above experiments described in 

this sub-section. Results from the experiments are listed in Table 6.5 and Table 6.6. 
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Table 6.5: A list of the experimental results (only 1 initially infected peer randomly 

selected from only those peers with maximum topology out-degree) 
Maximum 

Value of 

Topology Out-

Degree 

Mean Value of 

Coverage Rate 

(%) 

Coefficient of 

Variation of 

Coverage Rate 

(%) 

100 20.74 26.65 

1000 78.21 11.17 

2000 95.33 0.89 

 

Table 6.6: A list of the experimental results (a total of 10 initially infected peers 

randomly selected from only those peers with maximum topology out-degree) 
Maximum 

Value of 

Topology Out-

Degree 

Mean Value of 

Coverage Rate 

(%) 

Coefficient of 

Variation of 

Coverage Rate 

(%) 

100 38.50 1.53 

1000 85.19 0.41 

2000 95.94 0.19 

 

As shown by Table 6.5 and Table 6.6, when all initially infected peers are randomly 

selected from only those peers with maximum topology out-degree, maximum value of 

topology out-degree has a great impact on both mean value and coefficient of variation 

of coverage rate of P2P worms in the overlay network featuring the pseudo power law 

topology. Increase in maximum value of topology out-degree results in increase in 

mean value of coverage rate but decrease in coefficient of variation of coverage rate. 
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However, the impact of number of initially infected peers is insignificant. When 

maximum value of topology out-degree reaches 2,000, the worm is able to infect most 

peers with very high certainty, regardless of number of initially infected peers. 

6.3 Not All Peers Being Vulnerable to the P2P Worm and No 

Quarantine 

6.3.1 Structured P2P Networks 

In a structured P2P network, topology out-degree d of each peer is a constant. It is 

characterized by the following probability distribution: 





=≠
==

0)(
1)(

kdP
kdP

,   (6.4) 

where k is a constant. 

In this section, I only consider structured P2P networks. Therefore, all peers in the 

network have the same topology out-degree. 

The objective is to investigate the impacts of the network-related characteristics 

(measured by the evaluation metrics: vulnerability rate v, topology out-degree d, and 

network size n) on a P2P worm’s attack performance in structured P2P networks 

(measured by the evaluation metric: coverage rate c). 
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6.3.2 Simulation Experiments 

Our simulation experiments include scenarios with vulnerability rate of 1.0. 

Experimental results from them set the benchmark to compare to. When all peers are 

vulnerable to the worm, equation (5.12) instead of equation (5.11) forms the foundation 

of our implementation of the proposed logic matrix approach. Otherwise, our 

implementation is based on equation (5.11). 

Our simulation experiments are based on the following assumptions: 

• Topology out-degree (d) of each peer in the structured P2P network under 

consideration strictly follows the probability distribution (6.4). Neighbours of a 

peer are randomly selected from all other peers except the peer itself. 

• Peers vulnerable to the worm are selected randomly from all peers in the 

network. 

• There is only 1 initially infected peer, which is selected randomly from all peers 

in the network that are vulnerable to the worm. 

Based on the above assumptions, I first populate the topology logic matrix of the 

structured P2P network under consideration by letting the probability that a randomly 

selected peer has k neighbours follow (6.4). Then, I populate the vulnerability logic 

vector of the network, before populating the initial state logic vector of the network. 

I conduct the simulation experiments for the three different sets of scenarios. Each of 

the simulation experiment is repeated 100 times, and then average values of coverage 

rate are reported as final results. 
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For the first set of scenarios, I fix topology out-degree at 3. I let vulnerability rate vary 

from 1.0 to 0.2 with step size – 0.2; and let network size vary from 1,000 to 10,000 with 

step size 1,000. A vulnerability rate of 1.0 actually means all peers in the network are 

vulnerable to the worm. The experimental results from the above set of scenarios are 

illustrated by Figure 6.1. 

 

 

Figure 6.1: Coverage rate as a function of vulnerability rate and network size 

when topology out-degree is fixed at 3 

 

Figure 6.1 shows that under the set conditions, the coverage rate of a P2P worm in a 

logical P2P overlay network will decrease if vulnerability rate is decreased. This is 

sensible since more vulnerable peers in the network naturally lead to higher attack 

performance measured by the coverage rate. The upper bound of the coverage rate is 

approximately 0.95. It is achieved when all peers are vulnerable, i.e., v = 1.0 (the top 

curve in Figure 6.1). The lower bound of the coverage rate is close to 0. It is achieved 
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when 20% peers are vulnerable, i.e., v = 0.2 (the bottom curve in Figure 6.1). The 

coverage rate drops significantly from above 0.6 to below 0.2 when vulnerability rate is 

decreased from 0.6 to 0.4. The above findings imply that both attackers and defenders 

can manipulate vulnerability rate v to improve or worsen attack performance, 

respectively, and more importantly that limiting vulnerability rate to be below 0.4 is 

critical to defenders. 

Besides, Figure 6.1 also shows that, when network size is in the range 1,000-10,000 

inclusive, it has no significant impact on attack performance measured by the coverage 

rate if both topology out-degree and vulnerability rate are fixed. This finding reveals 

that neither attackers nor defenders can manipulate network size n to improve or worsen 

attack performance, respectively. It also implies that I can choose a smaller value in the 

range 1,000-10,000 for network size n in our later experiments to shorten simulation 

time.  

For the second set of scenarios, I fix vulnerability rate at 0.5. I let topology out-degree 

vary from 1 to 5 with step size 1; and let network size vary from 1,000 to 10,000 with 

step size 1,000. The experimental results from the above set of scenarios are illustrated 

by Figure 6.2. 

 



94 

 

 

Figure 6.2: Coverage rate as a function of topology out-degree and network size 

when vulnerability is fixed at 0.5 

 

Figure 6.2 shows that under the set conditions, the coverage rate of a P2P worm in a 

logical P2P overlay network will increase if topology out-degree is increased. This is 

sensible since more neighbours a peer in the network has naturally lead to higher attack 

performance measured by the coverage rate. The upper bound of the coverage rate is 

approximately 0.85. It is achieved when all peers have 5 neighbours, i.e., d = 5 (the top 

curve in Figure 6.2). The lower bound of the coverage rate is 0. It is achieved when all 

peers have only 1 neighbour, i.e., d = 1 (the bottom curve in Figure 6.1). The coverage 

rate drops significantly from above approximately 0.4 to below 0.05 when topology out-

degree decreased from 3 to 2. The above findings imply that both attackers and 

defenders can manipulate topology out-degree d to improve or worsen attack 

performance, respectively, and more importantly that limiting topology out-degree to be 

below or equal to 2 is critical to defenders. 
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Based on the common finding from our first 2 sets of simulation experiments that when 

network size is in the range 1,000-10,000 inclusive, it has no significant impact on 

attack performance, for the third set of scenarios, I fix network size at 5,000 to shorten 

simulation time. I investigate the two cases given below: 

Case 1 - In this case, I let vulnerability rate vary from 0.1 to 1.0 with step size 0.1; and 

let topology out-degree vary from 1 to 5 with step size 1. Here, our focus is on the 

impact of vulnerability rate rather than topology out-degree on attack performance 

measured by the coverage rate. Therefore, I choose a smaller step size for vulnerability 

rate, but only a few topology out-degree values are investigated. 

The experimental results from the above case are illustrated by Figure 6.3. Figure 6.3 

shows that generally the coverage rate of a P2P worm in a logical P2P overlay network 

will increase if vulnerability rate is increased. This is sensible since more vulnerable 

peers in the network naturally lead to higher attack performance measured by the 

coverage rate. 
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Figure 6.3: Coverage rate as a function of topology out-degree and vulnerability 

rate when network size is fixed at 5,000 (Case 1) 

 

More importantly, Figure 6.3 also shows that the takeoff points on the curves do not 

correspond to the same value of vulnerability rate. Here, takeoff point refers to the point 

on a curve in Figure 6.3 immediately to the right of which the slope of the curve 

increases dramatically. For instance, when topology out-degree is fixed at 5, the takeoff 

point corresponds to vulnerability rate 0.2; and when topology out-degree is reduced to 

3, the takeoff point corresponds to vulnerability rate 0.3. Generally, the corresponding 

vulnerability rate will increase if topology out-degree is reduced. This is understandable 

since fewer neighbours demand more vulnerable peers to achieve the same attack 

performance. It can be found from Figure 6.3 that 0.2 is a critical value of vulnerability 

rate since if vulnerability rate is below that value, the worm cannot propagate 

successfully in the network. 

Case 2 - In this case, I let topology out-degree vary from 1 to 10 with step size 1; and 

let vulnerability rate vary from 0.2 to 1.0 with step size 0.2. Here, our focus is on the 
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impact of topology out-degree rather than vulnerability rate on attack performance 

measured by the coverage rate. Therefore, a large range of topology out-degree values 

are investigated, but I choose a larger step size for vulnerability rate. 

The experimental results from the above case are illustrated by Figure 6.4. Figure 6.4 

shows that generally the coverage rate of a P2P worm in a logical P2P overlay network 

will increase if topology out-degree is increased. This is sensible since more neighbours 

a peer in the network has naturally lead to higher attack performance measured by the 

coverage rate. 

 

 

Figure 6.4: Coverage rate as a function of vulnerability rate and topology out-

degree when network size is fixed at 5,000 (Case 2) 

 

More importantly, Figure 6.4 also shows that the takeoff points on the curves do not 

correspond to the same value of topology out-degree. When vulnerability rate is fixed at 

1.0, the takeoff point corresponds to topology out-degree 1; and when vulnerability rate 
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is reduced to 0.2, the takeoff point corresponds to topology out-degree 5. Generally, the 

corresponding topology out-degree will increase if vulnerability rate is reduced. This is 

understandable since fewer vulnerable peers demand more neighbours a peer in the 

network has to achieve the same attack performance. 

6.4 All Peers Being Vulnerable to the P2P Worm and 

Quarantine Being Existent 

6.4.1 Unstructured P2P Networks 

In an unstructured P2P network, topology out-degree (d) of each peer is a variable. It is 

characterized by the following power law distribution: 
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where Dmin and Dmax stands for minimum topology out-degree and maximum topology 

out-degree, respectively, A represents power law degree, and C is a constant. Set of 

equations (6.5) gives the probability that a randomly selected peer has k neighbours. 

In this section, I only consider unstructured P2P networks. Therefore, not all peers in 

the network have the same topology out-degree. 

Our paramount objective is to find a quarantine tactic whose enforcement will lead to a 

lower attack performance (measured by the attach-related evaluation metric: coverage 
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rate c) at a lower cost of defence effort (measured by the defence-related evaluation 

metric: quarantine rate q). 

According to probability theory, the following equations must hold: 
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where E(d) stands for expected value of topology out-degree. 

Then, it can be easily derived from equations (6.6) and (6.7) that power law degree A is 

a function of Dmin, Dmax, and E(d) described implicitly by the following equation: 
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Finally, once power law degree A is determined according to equation (6.8) given Dmin, 

Dmax, and E(d), the constant C can be worked out according to equation (6.6) or 

equation (6.7). 

The most important feature of the above power law distribution of topology out-degree 

in the unstructured P2P system is that there are fewer peers with larger topology out-

degree than those with smaller topology out-degree. 
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Let Dmin = 1, and Dmax vary from 100 to 1,000 and expected value of topology out-

degree E(d) vary from 2 to 32, I numerically determine power law degree A. The results 

are shown in Figure 6.5. 

 

 

Figure 6.5: Power law degree as a function of maximum topology out-degree and 

expected value of topology out-degree given minimum topology out-degree being 1 

 

Figure 6.5 shows that a larger maximum topology out-degree requires a larger power 

law degree, and that a larger expected value of topology out-degree demands a smaller 

power law degree. 

6.4.2 Simulation Experiments 

Our simulation experiments are based on the following assumptions: 

• Topology out-degree (d) of each peer belonging to the unstructured P2P network 

under consideration strictly follows the power law distribution (6.5). E(d) = 3, 
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Dmin = 1, and Dmax varies from 100 to 1,000 with step size 100. Neighbours of a 

peer are randomly selected from all other peers except the peer itself. 

• Peers quarantined are selected accordingly based on the quarantine tactics 

enforced, which are detailed in the next two subsections. 

• There is only 1 initially infected peer, which is selected randomly from all peers 

not quarantined. 

• I conduct the simulation experiments for the two different values of n (total 

number of peers belonging to the system). I first assume n to be 5,000 and then 

double it, i.e., assume n to be 10,000. I believe 10,000 peers are sufficient for 

our simulation experiments, and intend to investigate whether 5,000 peers will 

generate significantly different results. 

Based on the above assumptions, I populate the topology logic matrix of the 

unstructured P2P network under consideration by letting the probability that a randomly 

selected peer has k neighbours follow set of equations (6.5). How to populate the 

quarantine logic vector of the network is detailed later. Once it is populated, I can 

populate the initial state logic vector of the network. 

Our simulation experiments include scenarios with no quarantine at all. Experimental 

results from them set the benchmark to compare to. When there is no quarantine, 

equation (5.12) instead of equation (5.9) forms the foundation of our implementation of 

the proposed logic matrix approach. When quarantine is enforced, our implementation 

is based on equation (5.9). 

I conduct the simulation experiments for the two different quarantine tactics, namely 

random quarantine and larger topology out-degree priority quarantine. Each of our 
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simulation experiment is repeated 100 times, and then average values of coverage rate 

are reported as final results. 

I. Random Quarantine 

Random quarantine means peers quarantined are randomly selected from all peers. I 

populate the quarantine logic vector of the unstructured P2P network under 

consideration by letting each peer have the same probability of being quarantined when 

this quarantine tactic is enforced. Then, I populate the initial state logic vector of the 

network. 

I conduct the experiments for the 5 sets of scenarios with quarantine rate q varying from 

0 to 0.4 with step size 0.1. A quarantine rate of 0 actually means no quarantine at all. I 

include no quarantine as a special case of random quarantine, which facilitates 

comparison of experimental results. 

The experimental results from random quarantine are illustrated by Figure 6.6 and 

Figure 6.7 for the two cases: n (total number of peers belonging to the P2P network) = 

5,000 and n = 10,000, respectively. 
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Figure 6.6: Coverage rate under random quarantine as a function of maximum 

topology out-degree and quarantine rate when there are a total of 5,000 peers in 

the P2P system 

 

 

 

Figure 6.7: Coverage rate under random quarantine as a function of maximum 

topology out-degree and quarantine rate when there are a total of 10,000 peers in 

the P2P system 
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Figure 6.6 and Figure 6.7 show that generally, coverage rate of a P2P worm in a logical 

P2P overlay network will decrease if quarantine rate is increased. This is sensible 

because a higher defence effort will naturally lead to a lower attack performance. 

However, as mentioned previously, our paramount objective is to find a quarantine 

tactic whose enforcement will lead to a lower attack performance at a lower cost of 

defence effort. Therefore, the above finding cannot serve our paramount objective. 

Besides, Figure 6.6 and Figure 6.7 also show that maximum topology out-degree has no 

significant impact on attack performance and defence effort when it is in the range 100-

1,000 inclusive, and that 5,000 peers will not generate significantly different results. 

The above findings reveal that neither attackers nor defenders can manipulate n or Dmax 

to improve attack performance or reduce defence effort, respectively. They also imply 

that I can choose the smallest value of Dmax (100) and the smaller value of n (5,000) in 

our future experiments to shorten simulation time. 

II. Larger Topology Out-Degree Priority Quarantine 

Larger topology out-degree priority quarantine means peers with larger topology out-

degree are quarantined prior to peers with smaller topology out-degree. 

When this quarantine tactic is enforced, I populate the quarantine logic vector of the 

unstructured P2P network under consideration by following the procedure given below. 

Firstly, I work out absolute value of each peer’s topology out-degree logic vector. 

Secondly, all peers are sorted in descending order of the absolute value calculated 

above. By doing this, I actually sort all peers into a list in descending order of number 

of neighbours since, as mentioned previously, each peer’s topology out-degree logic 
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vector is a logic vector representation of its outbound links (neighbours). Thirdly, I 

quarantine peers in the same order as their order in the sorted list of peers. Then, I 

populate the initial state logic vector of the network. 

I conduct the experiments for the 5 sets of scenarios with quarantine rate q varying from 

0 to 0.16 (40% of 0.4, which is the maximum quarantine rate investigated under random 

quarantine) with step size 0.04. 

The experimental results from larger topology out-degree priority quarantine are 

illustrated by Figure 6.8 and Figure 6.9 for the two cases: n (total number of peers 

belonging to the P2P network) = 5,000 and n = 10,000, respectively. 

 

 

Figure 6.8: Coverage rate under priority quarantine as a function of maximum 

topology out-degree and quarantine rate when there are a total of 5,000 peers in 

the P2P system 
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Figure 6.9: Coverage rate under priority quarantine as a function of maximum 

topology out-degree and quarantine rate when there are a total of 10,000 peers in 

the P2P system 

 

Figure 6.8 and Figure 6.9 show that generally, coverage rate of a P2P worm in a logical 

P2P overlay network will decrease if quarantine rate is increased. Besides, Figure 6.8 

and Figure 6.9 also show that maximum topology out-degree has no significant impact 

on attack performance and defence effort when it is in the range 100-1,000 inclusive, 

and that 5,000 peers will not generate significantly different results. The above findings 

are the same as those from random quarantine. 

If I compare the bottom curve in Figure 6.6 to the bottom curve in Figure 6.8, it can be 

seen that larger topology out-degree priority quarantine demands a lower defence effort 

(quarantine rate q = 0.16) to achieve a lower attack performance (coverage rate c < 0.1), 

and that random quarantine demands a higher defence effort (quarantine rate q = 0.4) to 

achieve a higher attack performance (coverage rate c < 0.2). The same result as above 

can be found if I compare the bottom curve in Figure 6.7 to the bottom curve in Figure 
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6.9. The above finding exactly serves our paramount objective, which is to find a 

quarantine tactic whose enforcement will lead to a lower attack performance at a lower 

cost of defence effort. 

Therefore, according to our experimental results, larger topology out-degree priority 

quarantine outperforms random quarantine. Larger topology out-degree priority 

quarantine is exactly the quarantine tactic I am looking for since it demands only 40% 

(0.16/0.4) defence effort to achieve 50% (0.1/0.2) attack performance, compared to 

random quarantine. In other words, larger topology out-degree priority quarantine is 

much more efficient than random quarantine. 
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Chapter 7 Conclusions 

The aim of this research is to establish mathematical models of computer worms, 

especially P2P worms. This thesis presents a study on modeling and simulating the 

propagation of computer worms. I present the proposed discrete-time deterministic 

CFAP model of active worms. I also propose a novel logic matrix approach to 

modelling the propagation of P2P worms, which are essentially discrete-time 

deterministic propagation models of P2P worms. The approach’s ease of employment is 

demonstrated by its applications in the simulation experiments. 

Implications of this research for practitioners as well as implications to the broader 

security literature include that P2P worms are not only much more difficult to model but 

also much more difficult to defend than non-P2P worms, both due to their different 

propagation mechanism from non-P2P worms. Therefore, future offenders are more 

likely to employ P2P worms rather than non-P2P worms as a tool to launch their 

attacks. 

7.1 Major Contributions 

The major contributions of this thesis are as follows. 

• It was found that uniform scanning is an indispensable elementary target 

discovery technique of active worms. This point is of extreme importance when 

multiple target discovery techniques are to be employed, which means uniform 

scanning must be included as one of those target discovery techniques to be 

employed. 
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• I found the combination of target discovery techniques that can best accelerate 

the propagation of active worms. 

• I proposed a discrete-time deterministic CFAP model of active worms. 

• It was derived from mathematical analysis that in order to accelerate an active 

worm’s propagation, we must try to let the active worm infect the first 

susceptible hosts and enter its fast spread phase as soon as possible. This point 

gives guidance to how to best accelerate an active worm’s propagation. 

• I proposed several strategies to shorten an active worm’s slow start phase in its 

propagation, and found the cost-effective hit-list size and average size of 

internally generated target lists based on the cost and benefit analysis. 

• I proposed a novel logic matrix approach to modelling the propagation of P2P 

worms by modelling the propagation processes of P2P worms by difference 

equations of logic matrix. 

• I found the impacts of the two different topologies, namely structured and 

unstructured P2P networks, on a P2P worm’s attack performance; and compared 

the effects of two different quarantine tactics, namely random quarantine and 

priority quarantine. 

7.2 Limitations 

In our models, temporal issues, such as the time lag for P2P worms to infect peers and 

the time spent in quarantining peers, have not been considered since the paramount 
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objective of these models is to facilitate determining the maximum number of peers in a 

P2P system that can be infected. 

7.3 Future Work 

To make it more practical to accommodate the dynamic P2P network where peers can 

join and leave a network, a P2P network’s topology logic matrix needs to be updated 

once a peer joins or leaves the network, which means the topology logic matrix of the 

P2P network is constantly changing. In the future, I am going to incorporate the above 

idea in the simulation experiments. 

Besides, how to employ the combination of target discovery techniques to accelerate 

P2P worm propagation using the logic matrix representation could be a potential topic 

of future research. 
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a b s t r a c t

Propagation of Peer-to-Peer (P2P) worms in the Internet is posing a serious challenge to network security

research because of P2P worms’ increasing complexity and sophistication. Due to the complexity of the

problem, no existing work has solved the problem of modeling the propagation of P2P worms, especially

when quarantine of peers is enforced. This paper presents a study on modeling the propagation of P2P

worms. It also presents our applications of the proposed approach in worm propagation research.

Motivated by our aspiration to invent an easy-to-employ instrument for worm propagation research,

the proposed approachmodels the propagation processes of P2Pworms by difference equations of a logic

matrix, which are essentially discrete-time deterministic propagation models of P2P worms. To the best

of our knowledge, we are the first using a logic matrix in network security research in general and worm

propagation modeling in particular.

Ourmajor contributions in this paper are firstly, we propose a novel logicmatrix approach tomodeling

the propagation of P2P worms under three different conditions; secondly, we find the impacts of two

different topologies on a P2P worm’s attack performance; thirdly, we find the impacts of the network-

related characteristics on a P2P worm’s attack performance in structured P2P networks; and fourthly,

we find the impacts of the two different quarantine tactics on the propagation characteristics of P2P

worms in unstructured P2P networks. The approach’s ease of employment, which is demonstrated by

its applications in our simulation experiments, makes it an attractive instrument to conduct worm

propagation research.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Worms and their variants have been a serious challenge to

network security research formany years.Worms can be classified

according to the techniques by which they discover new targets

to infect. Scanning, which entails probing a set of addresses to

identify vulnerable hosts, is the technique most widely employed

by worms [1]. Scanning can be implemented differently, which

leads to several different types of scanning such as random

scanning, localized scanning [2], sequential scanning [3], routable

scanning [4], selective scanning [4], importance scanning [5,6], and

topological scanning. Topological scanning was employed by the

Morris InternetWorm of 1988 as its target discovery technique [7].

Worms employing all other types of scanning, except topolog-

ical scanning, among the above types do not need to have any

knowledge on the topology of the network they intend to prop-

agate across. On the contrary, worms employing topological scan-

ning must have more information on the network they intend to

∗ Corresponding author.

E-mail addresses: x.fan2@cqu.edu.au (X. Fan), yang@deakin.edu.au (Y. Xiang).

propagate over, or have the capability to discover that informa-
tion if they do not have it in advance. Therefore, worms employing
topological scanning are also called topology-aware worms.

Typical examples of topology-aware worms are worms attack-
ing a flaw in a Peer-to-Peer (P2P) application and propagating
across the P2P network by getting lists of peers from their victims
and directing their subsequent attacks to those peers. This sort of
topology-aware worms are called P2P worms. The Slapper worm
of 2003 was a typical example of P2P worms [8]. The subsequent
appearance of variations of the Slapper worm (the Slapper.B worm
a.k.a. Cinik and the Slapper.Cworma.k.a. Unlock) indicates that P2P
worms are becoming increasingly complex and sophisticated [8].

Due to the recent popularity of P2P systems with their increas-
ing number of users, they have become the most effective vehi-
cles for topology-aware worms to achieve the fastest propagation
across the Internet. Propagation of P2P worms on top of P2P sys-
tems can result in devastating damage, as illustrated by [9]. P2P
worms are posing a serious challenge to the Internet.

In order to find an effective and efficient countermeasure
against the propagation of P2P worms, we must fully understand
their propagation mechanisms. This paper presents a study on
modeling the propagation of P2P worms under three different
conditions. Our major contributions in this paper are firstly, we

0167-739X/$ – see front matter© 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.future.2010.04.009
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propose a novel logicmatrix approach tomodeling the propagation
of P2P worms under three different conditions; secondly, we find
the impacts of two different topologies on a P2P worm’s attack
performance; thirdly, we find the impacts of the network-related
characteristics on a P2P worm’s attack performance in structured
P2P networks; and fourthly, we find the impacts of two different
quarantine tactics on the propagation characteristics of P2Pworms
in unstructured P2P networks.

The rest of the paper is organized as follows. We survey related
work in Section 2. We present the proposed innovative logic
matrix approach in Section 3. Then, in Section 4, we use the
logic matrix approach to investigate the impacts of two different
topologies on a P2P worm’s attack performance, the impacts
of the network-related characteristics on a P2P worm’s attack
performance in structured P2P networks, and the impacts of two
different quarantine tactics on the propagation characteristics
of P2P worms in unstructured P2P networks. Finally, Section 5
concludes this paper, and points out future research directions.

2. Related work

Mathematical models developed to model the propagation of
infectious diseases have been adapted to model the propagation of
worms [10]. In the area of epidemiology, both deterministic and
stochastic models exist for modeling the spreading of infectious
diseases [11–14]. In the network security, both deterministic and
stochastic propagation models of worms based on their respective
counterparts in epidemiology have emerged.

Deterministic propagation models of worms can be further
divided into two categories: continuous-time and discrete-time.
Since the propagation of worms is a discrete event process,
discrete-time propagation models of worms are more accurate
than their continuous-time counterparts in the deterministic
regime.

Some typical examples of deterministic propagation models of
worms are as follows:

• In the classical simple epidemic model [11–14], all hosts stay
in one of only two states at any time: ‘susceptible’ (denoted by
‘S’) or ‘infectious’ (denoted by ‘I’), and thus it is also called the SI
model. Staniford et al. [15] presented a propagation model for
the Code-RedI v2 worm, which is essentially the above classical
simple epidemic model.

• The classical general epidemic model (Kermack–McKendrick
model) [11–14] improves the classical simple epidemic model
by considering removal of infectious hosts due to patching
(installing software designed to fix security vulnerabilities).

• The two-factor worm model [10] extends the classical general
epidemic model by accounting for removal of susceptible hosts
due to patching and considering the pair-wise rate of infection
as a variable rather than a constant.

• The discrete-time Analytical ActiveWorm Propagation (AAWP)
model [16] takes into account the time an infectious host takes
to infect other hosts, which is an important factor for the spread
of worms [17].

Among the abovemodels, all others are continuous-time except
the last one, which is discrete-time.

Stochastic propagation models of active worms are based on
the theory of stochastic processes. All of them are discrete-time in
nature.

Two typical examples of stochastic propagation models of
worms are as follows:

• Rohloff and Basar presented a stochastic density-dependent
Markov jump process propagation model [18], for worms
employing the randomscanning approach, drawn from the field
of epidemiology [12,19].

• Sellke et al. presented a stochastic Galton–Watson Markov

branching process model [20] to characterize the propagation

of worms employing the random scanning approach.

Amore detailed survey onmodeling the propagation process of

worms can be found in our previous work [21].

The common limitation is that all of the existing models are not

applicable to worms employing topological scanning. No existing

model can describe the propagation of P2P worms.

Our novel logic matrix approach proposed in this paper models

the propagation processes of P2P worms by difference equations

of a logic matrix, which are essentially discrete-time deterministic

propagation models of P2P worms. The proposed models are

suitable for modeling P2P worms because these models take into

account the topology of a P2P network. Existing models do not

consider topology issues, which is the root cause of their common

limitationmentioned above. Ourwork in this paper ismotivated by

the aspiration to invent an easy-to-employ tool to conduct network

security research in general and worm propagation modeling

research in particular, there being a current absence of such

research instruments. Using a logic matrix in worm propagation

modeling forms the major difference between this work and

existing work.

In our models, temporal issues, such as the time lag for worms

to infect peers and the time spent in quarantining peers, have

intentionally not been considered. We acknowledge these issues

and leave them as our future work. However, the paramount

objective of thesemodels is to facilitate determining themaximum

number of peers in a P2P system that can be infected, which is

the key element to lead effective defense mechanisms. Moreover,

these temporal issues are normally strongly affected by human

factors during the propagation process; these can be difficult to

decide.

3. The logic matrix approach to propagation modeling of Peer-
to-Peer worms

At the beginning of this section, we extend the definition

of a matrix to allow its elements to be variables or constants

of logic type; and term such kind of matrices logic matrices.

Several operations of logic matrices are defined. Next, the

topology, state, vulnerability status and quarantine status of a

network are represented by its topology logic matrix, state logic

matrix, vulnerability logic matrix, and quarantine logic matrix,

respectively. Finally, an innovative logic matrix formulation of the

propagation process of P2Pwormsunder three different conditions

is derived from first principles.

3.1. Logic matrix and its operations

We extend the definition of matrix to allow variables or

constants of logic type as its elements and term such a kind of

matrix a logic matrix. The values of variables of logic type can only

be one of the two constants of logic type: True (denoted by ‘T’) or

False (denoted by ‘F’). If a logic matrix has only one row or one

column, we can also term it a row logic vector or a column logic

vector, respectively.

We define the absolute value of a variable l of logic type

(denoted by |l|) as 1 when its value is ‘T’, and 0 when ‘F’; and

define the absolute value of a logic matrix L (denoted by |L|) as the
total number of its elements with value ‘T’. According to the above

definitions, the absolute value of a logicmatrix L can beworked out

by summing the absolute value of each of its elements l, i.e.,

|L| =
∑

|l|. (1)
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A logic matrix L can be inverted. The resultant L is a logic matrix of

the same dimension with its elements linv being the result of the

logical NOT operation of the corresponding element l of the logic

matrix to be inverted. It can be defined mathematically as follows:

linv = l, (2)

where the bar over l indicates logical NOT operation.

Two logic matrices A and B can be added together if and only if

their dimensions are the same, i.e., they have the same number of

rows and the same number of columns. The resultant S = A + B is

a logic matrix of the same dimension with its element sij (in the

i-th row and the j-th column) being the result of the logical OR

operation of the corresponding elements aij and bij of the two logic

matrices to be added together. It can be defined mathematically as

follows:

sij = aij + bij, (3)

where the + sign between aij and bij indicates the logical OR

operation.

A mutation law applies to the logic matrix addition defined

above.

Two logic matrices A and B can be multiplied element-by-

element if and only if their dimensions are the same, i.e., they have

the same number of rows and the same number of columns. The

resultant P = AB is a logic matrix of the same dimension with its

element pij (in the i-th row and the j-th column) being the result

of the logical AND operation of the corresponding elements aij and

bij of the two logic matrices to be multiplied element-by-element.

It can be defined mathematically as follows:

pij = aijbij, (4)

where aijbij indicates the logical AND operation of aij and bij.

A mutation law applies to the logic matrix element-by-element

multiplication defined above.

A logic matrix A can be multiplied by another logic matrix B in

the manner of traditional matrix multiplication if and only if their

inner dimensions are the same, i.e., the number of columns of the

multiplicand logic matrix (the left one) is equal to the number of

rows of the multiplier logic matrix (the right one). The resultant

P = AB is a logicmatrixwith the same number of rows as A and the

same number of columns as B. We define the value of element pij
(in the i-th row and the j-th column) of the product as determined

by the following equation:

pij =
n∑

k=1

aikbkj, (5)

where aikbkj indicates the logic AND operation of aik and bkj,

n denotes the inner dimensions of the multiplicand and the

multiplier logic matrices, and
∑

denotes the logical OR operation

of all resultants of those logical AND operations.

Contrary to logic matrix addition and logic matrix element-

by-element multiplication, a mutation law does not apply to the

logic matrix multiplication in the manner of traditional matrix

multiplication defined above.

Now the stage for later discussion has been set. In the

next two sub-sections, we will introduce the concepts of a P2P

network’s topology logic matrix, state logic matrix, vulnerability

logic matrix, and quarantine logic matrix, respectively; and derive

our innovative logicmatrix formulation of the propagation process

of P2Pwormsunder three different conditions from first principles.

3.2. The logic matrix representations

According to the traditional directed graph theory, a P2P overlay
network can be represented by a directed graph G, with its set of
vertices V representing all peers connected to form the network,
and its set of directed edges E representing all directed links among
these peers. A directed link from peer i to peer j means peer j is a
neighbor of peer i, but peer i is not a neighbor of peer j if there does
not exist a directed link from peer j to peer i at the same time. A
peer is only able to send messages to its neighbors directly.

Topology of a P2P overlay network consisting of n peers can be
represented by an n by n squarematrix T with its element tij (in the
i-th row and the j-th column) indicatingwhether there is a directed
link from peer i to peer j.

In this paper, we propose a different approach from that used
under the traditional directed graph theory to indicating the
existence or not of a directed link. The logic constant ‘T’ is used
to indicate there is a directed link, and the logic constant ‘F’ to
indicate there is not. Therefore, topology of a P2P overlay network
consisting of n peers can be represented by an n by n logic square
matrix. We term it the topology logic matrix of the P2P overlay
network.

Each row of the topology logic matrix of a P2P overlay network
forms a row logic vector, which is a logic vector representation of
outbound links (neighbors) of a particular peer belonging to the
network. We call this row logic vector the peer’s topology out-
degree logic vector. Each column of the topology logic matrix of
a P2P overlay network forms a column logic vector, which is a
logic vector representation of inbound links of a particular peer
belonging to the network. We call this logic column vector the
peer’s topology in-degree logic vector. For example, the i-th row of
a topology logicmatrix represents all outbound links (neighbors) of
peer i; and the j-th column of the topology logic matrix represents
all inbound links of peer j.

It can be easily derived that the values of topology in-degree
and topology out-degree of each peer belonging to a P2P overlay
network equate to the absolute values of the peer’s topology
in-degree logic vector and topology out-degree logic vector,
respectively, which can be worked out by using (1).

Similarly, we represent states of all the n peers belonging to the
P2P overlay network by a row logic vector S of length n with its
element sj (the j-th element) indicating whether peer j has been
infected by the worm and become infectious. The logic constant ‘T’
is used to indicate a peer has been infected and become infectious,
and the logic constant ‘F’ to indicate it has not. We term the above
row logic vector the P2P overlay network’s state logic vector. It
can be derived that the total number of infected and infectious
peers in a P2P overlay network equates to the absolute value of
the network’s state logic vector, which can be worked out by using
(1).

A healthy peer vulnerable to the worm can be infected by
the worm and become infectious. However, a peer which is not
vulnerable to the worm will not be infected by the worm and
become infectious. We represent the vulnerability status of all the
n peers in the P2P overlay network by a row logic vector V of
length n with its element vj (the j-th element) indicating whether
peer j is vulnerable to the worm. The logic constant ‘T’ is used to
indicate a peer is vulnerable to the worm, and the logic constant
‘F’ to indicate it is not. We term the above logic row vector the
P2P overlay network’s vulnerability logic vector. It can be derived
that the total number of peers vulnerable to the worm in a P2P
overlay network equates to the absolute value of the network’s
vulnerability logic vector by using (1).

We represent the quarantine status of all the n peers belonging
to the P2P overlay network by a row logic vectorQ of length nwith
its element qj (the j-th element) indicatingwhether peer j has been
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quarantined for the worm. A quarantined healthy peer will not be
infected by the worm; and a quarantined infected and infectious
peer will be cured and will not be infected again by the worm. The
logic constant ‘T’ is used to indicate a peer has been quarantined,
and the logic constant ‘F’ to indicate it has not. We term the above
row logic vector the P2P overlay network’s quarantine logic vector.
It can be derived that the total number of quarantined peers in a
P2P overlay network equates to the absolute value of the network’s
quarantine logic vector, which can be worked out by using (1).

3.3. The logic matrix formulation

Based on the above extensions to the matrix and its operations,
and extensions to the matrix representation of a network in the
traditional directed graph theory, we are now ready to derive our
innovative logic matrix formulation of the propagation process of
P2P worms. The derivation is based on the following assumptions:

An infected and infectious peer will send the worm packets
to all other peers belonging to the same P2P overlay network to
which it has a outbound link, regardless of the state (infected
by the worm and infectious or not) and the quarantine status
(quarantined for the worm or not) of those peers. A healthy (not
infected by the worm and not infectious) peer will be infected
by the worm and become infectious once it receives the worm
packets from an infectious peer, provided the healthy peer is not
quarantined for the worm. An infected and infectious peer will
remain in that state once it receives the worm packets from an
infectious peer, provided the infected and infectious peer is not
quarantined for the worm. A healthy peer quarantined for the
worm will not be infected by the worm; and an infected and
infectious peer quarantined for the worm will be cured and will
not be infected again by the worm.

The time lags from sending the worm packets, to receiving the
worm packets, to having the recipient peers infected by the worm,
to the peers infected by the worm becoming infectious will not be
considered, nor will the time spent in quarantining peers.

There are a total of n peers belonging to a logical (not physical)
P2P overlay network under consideration. Initially, there are a total
of I0 peers which are infected by the worm and infectious.

According to the above assumptions, the logical P2P overlay
network’s initial state (State 0) can be represented by its initial
state logic vector S0 of lengthn; and the absolute value of S0 equates
to the total number of peers which are initially infected by the
worm and infectious (I0), i.e.,

|S0| = I0. (6)

Generally, state g of the logical P2P overlay network can be
represented by its state logic vector Sg of length n; and the absolute
value of Sg equates to the total number of peers which are infected
by the worm and infectious at that state (Ig), i.e.,

|Sg | = Ig . (7)

The next state (State g + 1) of the logical P2P overlay network can
be represented by its state logic vector Sg+1 of length n; and the
absolute value of Sg+1 equates to the total number of peers which
are infected by the worm and infectious at that state (Ig+1), i.e.,

|Sg+1| = Ig+1. (8)

We notice that the logical P2P overlay network’s next state
represented by its state logic vector Sg+1 is fully determined by
the network’s current state represented by its state logic vector Sg ,
the network’s topology represented by its topology logic matrix T ,
the network’s vulnerability status represented by its vulnerability
logic vector V , and the network’s quarantine status represented by
its quarantine logic vector Q .

If all peers are vulnerable to the P2P worm, we find the

relationship among Sg+1, Sg , T , V , and Q can be described

mathematically as follows:

Sg+1 = Sg + SgTQ . (9)

Let Snewg stand for the second term in the above equation (after the

+ sign), the above equation can now be simplified to

Sg+1 = Sg + Snewg . (10)

The term represented by Snewg actually says if at State g at least

one peer among those peers from which peer j has inbound links

is infectious, peer j will be infected by the worm and become

infectious at State g + 1 provided peer j is not quarantined.

Since both Sg and Q are row logic vectors of length n and T is

an n by n square logic matrix, Snewg will be a row logic vector of

length n. It can be derived that Snewg is a logic vector representation

of all those peers that can be infected by the worm at State g + 1,

given the network’s state at State g represented by its state logic

vector Sg , the network’s topology represented by its topology logic

matrix T , and the network’s quarantine status represented by its

quarantine logic vector Q . Snewg may or may not include peer or

peers infected by the worm at states prior to State g + 1. Then,

(9) and (10) can be easily derived.

If quarantine is not enforced at all and not all peers are

vulnerable to the P2P worm, (9) will be changed to

Sg+1 = Sg + SgTV . (11)

The term represented by the second term in the above equation

(after the+ sign) actually says if at State g at least one peer among

those peers from which peer j has inbound links is infectious, peer

jwill be infected by the worm and become infectious at State g +1

provided peer j is vulnerable to the worm.

If quarantined is not enforced at all and all peers are vulnerable

to the P2P worm, (11) will be simplified to

Sg+1 = Sg + SgT . (12)

Eq. (12) is also a special case of (9) when Q is a row logic vector

with all its elements being ‘F’.

Eqs. (9), (11) and (12) are actually discrete-time deterministic

propagationmodels of P2P worms under three different condition,

respectively,written in the formof difference equations of the logic

matrix.

Starting from some certain state, therewill be no newly infected

peer to occur and thus actually, the propagationwill stop. The state

from which the propagation will cease is the earliest state whose

state logic vector SG satisfies the following equation:

|SG+1| = |SG|, (13)

where SG+1 stands for the state logic vector of the state

immediately after the state with state logic vector SG.

We call the earliest state whose state logic matrix SG satisfies

(13) the final state of the P2P overlay network.

The proposed logic matrix approach essentially translates the

propagation processes of P2P worms into a sequence of logic

matrix operations.

4. Simulation experiments: applications of the logic matrix
approach

Our evaluation metric for attack performance in this paper is

a P2P worm’s coverage rate (denoted by c) in a logical P2P overlay

network. It is defined as the ratio of number of peers in the network

that can be infected by theworm to number of peers in the network
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that are vulnerable to the worm. It can be worked out by using the
following equation:

c = |SG|
|V | , (14)

where SG is the state logic vector of the network when the
propagation process has just stopped, and V is the vulnerability
logic vector to the worm of the network.

One of our evaluation metrics for network-related characteris-
tics of P2P networks in this paper is vulnerability rate (denoted by
v) to a P2Pworm of a logical P2P overlay network, which is defined
as the ratio of number of peers in the network that are vulnerable to
theworm to total number of peers in the network. It can beworked
out by using the following equation:

v = |V |
n

, (15)

where V is the vulnerability logic vector to the worm of the
network, and n is total number of peers in the network.

The other two of our evaluation metrics for network-related
characteristics of P2P networks in this paper are topology out-
degree,which refers to the number of logical neighborsmaintained
by each peer locally; and network size, which refers to the total
number of peers in a P2P network.

Our defense-related evaluation metric in this paper is quaran-
tine rate (denoted by q) for a P2P worm of a logical P2P overlay
network. It is defined as the ratio of number of peers belonging to
the network that are quarantined for the worm to total number of
peers belonging to the network; and can be worked out by using
the following equation:

q = |Q |
n

, (16)

whereQ is the quarantine logic vector for thewormof the network
and n is total number of peers belonging to the network.

We apply the proposed logic matrix approach in our simulation
experiments under the following three different conditions using
MathWorks’ MATLAB.

4.1. All peers being vulnerable to the P2P worm and no quarantine at
all

In this case, we investigate the impacts of the two different
topologies, namely the simple random graph topology and the
pseudo power law topology on the coverage rate of P2P worms.

4.1.1. The simple random graph topology

We investigate the impacts of the two parameters, namely the
number of initially infected computers belonging to a P2P network
and the mean value of topology out-degree of the network, on the
coverage rate of P2P worms in the network.

Our implementation in MATLAB assumes there are a total of
10,000 peers (computers) belonging to the logical P2P overlay
network under consideration. Therefore, the topology of the
overlay network is represented by its topology logic matrix, which
is a 10,000 by 10,000 square logic matrix; and its initial state is
represented by its initial state logic vector, which is a 1 by 10,000
logic matrix (row logic vector). In the experiments conducted
for this sub-section, we assume each peer has the same value
of topology out-degree. Peers to which each peer has outbound
links are randomly selected from all peers except the peer itself
belonging to the overlay network, which means we do not allow
loop, that is, no peer has an outbound link to itself. Therefore,
we call the topology of the overlay network in the experiments
conducted for this sub-section the simple random graph topology.

Table 1
A list of the experimental results when there is only 1 initially infected peer, which

is randomly selected from all peers.

Mean value of topology

out-degree

Mean value of coverage

rate (%)

Coefficient of variation

of coverage rate (%)

1 1.23 54.81

2 79.64 0.68

3 94.08 0.27

4 98.06 0.16

5 99.31 0.09

We conduct our experiments with MATLAB under different
combinations of values of the number of initially infected
computers and the mean value of topology out-degree.

Firstly, we fix the number of initially infected peers (computers)
belonging to the overlay network to be 1, and try to find out the
impact of mean value of topology out-degree on the coverage
rate of P2P worms in the overlay network. The initially infected
peer is randomly select from all peers belonging to the overlay
network. A total of 5 scenarios listed in Table 1 are investigated. The
experiment for each scenario is repeated 100 times. Next, themean
value of coverage rate and coefficient of variation of coverage rate
are worked out. Results from the experiments are listed in Table 1.

As shown by Table 1, themean value of topology out-degree has
great impact on both the mean value and coefficient of variation
of coverage rate of P2P worms in the overlay network featuring
the simple random graph topology. An increase in the mean value
of topology out-degree results in an increase in the mean value
of coverage rate but a decrease in the coefficient of variation of
coverage rate. When the mean value of topology out-degree is
increased to 3, the mean value of coverage rate is increased to
over 90% and its coefficient of variation becomes very small, which
indicates 3 is the minimum mean value of topology out-degree
which can make a P2P worm able to infect most peers with very
high certainty.

Next, we fix the number of initially infected peers (computers)
belonging to the overlay network to be 10/100, and repeat the
above experiments. Results from the experiments are listed in
Table 2.

Table 2 shows similar trends to those shown by Table 1, which
indicates the impact of number of initially infected peers on the
coverage rate of a P2P worm in the overlay network featuring the
simple random graph topology is insignificant.

4.1.2. The pseudo power law topology

We investigate the impacts of the two parameters, namely the
number of initially infected computers belonging to a P2P network
and themaximum value of topology out-degree of the network, on
the coverage rate of P2P worms in the network.

In the experiments conducted for this sub-section, we assume
only a very small number (10 in our experiments) of peers have
the maximum value of topology out-degree, and all other peers
have the minimum value (1 in our experiments) of topology out-
degree. Although the distribution of topology out-degree in our
experiments does not strictly follow a power law, it does have the
most important features of power law distribution, namely peers
with themaximum value of topology out-degree are rare andmost
peers have the minimum value of topology out-degree. Therefore,
we call the topology of the overlay network in the experiments
conducted for this sub-section the pseudo power law topology.

We conduct our simulation under different combinations of
values of the number of initially infected computers and the
maximum value of topology out-degree.

Firstly, we fix the number of initially infected peers (computers)
belonging to the overlay network to be 1, and try to find out
the impact of the maximum value of topology out-degree on the
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Table 2
A list of the experimental results when there are a total of 10/100 initially infected peers, all of which are randomly selected from all peers.

Mean value of topology out-degree Mean value of coverage rate (%) Coefficient of variation of coverage rate (%)

Initially infected peers = 10 Initially infected peers = 100 Initially infected peers = 10 Initially infected peers = 100

1 4.28 13.53 16.22 5.43

2 79.80 80.06 0.63 0.62

3 94.10 94.16 0.27 0.26

4 98.03 98.06 0.15 0.15

5 99.30 99.31 0.08 0.09

Table 3
A list of the experimental results when there is only 1 initially infected peer, which

is randomly selected from all peers.

Maximum value of

topology out-degree

Mean value of coverage

rate (%)

Coefficient of variation

of coverage rate (%)

100 3.17 200.74

1000 13.83 209.20

2000 14.54 226.10

Table 4
A list of the experimental results when there are a total of 10 initially infected peers,

all of which are randomly selected from all peers.

Maximum value of

topology out-degree

Mean value of coverage

rate (%)

Coefficient of variation

of coverage rate (%)

100 11.25 79.51

1000 33.06 111.27

2000 36.23 120.07

coverage rate in the overlay network. The initially infected peer is

randomly select from all peers belonging to the overlay network. A

total of 5 scenarios are investigated. In the experiments conducted

for this sub-section, we assume each peer has either themaximum

value of topology out-degree or the minimum value of topology

out-degree. Peers to which each peer has outbound links are

randomly selected fromall peers except the peer itself belonging to

the overlay network. The experiment for each scenario is repeated

100 times. Next, the mean value of coverage rate and coefficient

of variation of coverage rate are worked out. Results from the

experiments are listed in Table 3.

As shown by Table 3, when all initially infected peers are

randomly selected from all peers, the maximum value of topology

out-degree has a little impact on both the mean value and

coefficient of variation of coverage rate of P2Pworms in the overlay

network featuring the pseudo power law topology. An increase

in the maximum value of topology out-degree results in a little

increase in the mean value of coverage rate and a little increase

in coefficient of variation of coverage rate as well, which indicates

the small gain in coverage rate could be offset by the small loss

in certainty. The worm is not able to infect most peers with high

certainty.

Then, we fix the number of initially infected peers (computers)

belonging to the overlay network to be 10, and repeat the above

experiments. Results from the experiments are listed in Table 4.

Table 4 shows similar trends (just an insignificantly higher

coverage rate and an insignificantly lower coefficient of variation

of coverage rate) to those shown by Table 3, which indicates, when

all initially infected peers are randomly selected from all peers, the

impact of number of initially infected peers on the coverage rate

of a P2P worm in the overlay network featuring the pseudo power

law topology is insignificant.

Finally, initially infected peers are randomly select from only

those peers with maximum topology out-degree and we repeat

all of the above experiments described in this sub-section. Results

from the experiments are listed in Tables 5 and 6.

Table 5
A list of the experimental results when there is only 1 initially infected peer, which

is randomly selected from only those peers with maximum topology out-degree.

Maximum value of

topology out-degree

Mean value of coverage

rate (%)

Coefficient of variation

of coverage rate (%)

100 20.74 26.65

1000 78.21 11.17

2000 95.33 0.89

Table 6
A list of the experimental results when there are a total of 10 initially infected peers,

all of which are randomly selected from only those peers with maximum topology

out-degree.

Maximum value of

topology out-degree

Mean value of coverage

rate (%)

Coefficient of variation

of coverage rate (%)

100 38.50 1.53

1000 85.19 0.41

2000 95.94 0.19

As shown by Tables 5 and 6, when all initially infected peers
are randomly selected from only those peers with maximum
topology out-degree, the maximum value of topology out-degree
has a great impact on both the mean value and coefficient of
variation of coverage rate of P2P worms in the overlay network
featuring the pseudo power law topology. An increase in the
maximum value of topology out-degree results in an increase in
the mean value of coverage rate but a decrease in the coefficient of
variation of coverage rate. However, the impact of the number of
initially infected peers is insignificant. When the maximum value
of topology out-degree reaches 2000, the worm is able to infect
most peers with very high certainty, regardless of the number of
initially infected peers.

4.2. Not all peers being vulnerable to the P2Pworm and no quarantine
at all

In a structured P2P network, the topology out-degree d of each
peer is a constant. It is characterized by the following probability
distribution:{
P(d = k) = 1
P(d �= k) = 0,

(17)

where k is a constant.
In this sub-section, we only consider structured P2P networks.

Therefore, all peers in the network have the same topology out-
degree.

Our objective is to investigate the impacts of the network-
related characteristics (measured by the evaluation metrics:
vulnerability rate v, topology out-degree d, and network size n)
on a P2P worm’s attack performance in structured P2P networks
(measured by the evaluation metric: coverage rate c).

Our simulation experiments include scenarios with vulnerabil-
ity rate of 1.0. Experimental results from them set the benchmark
to compare to. When all peers are vulnerable to the worm, (12)
instead of (11) forms the foundation of our implementation of the
proposed logicmatrix approach. Otherwise, our implementation is
based on (11).
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Fig. 1. Coverage rate as a function of vulnerability rate and network size when

topology out-degree is fixed at 3.

Our simulation experiments are based on the following
assumptions:

• Topology out-degree (d) of each peer in the structured P2P
network under consideration strictly follows the probability
distribution (17). Neighbors of a peer are randomly selected
from all other peers except the peer itself.

• Peers vulnerable to the worm are selected randomly from all
peers in the network.

• There is only 1 initially infected peer, which is selected
randomly from all peers in the network that are vulnerable to
the worm.

Based on the above assumptions, we first populate the topology
logic matrix of the structured P2P network under consideration
by letting the probability that a randomly selected peer has k
neighbors follow (17). Then, we populate the vulnerability logic
vector of the network, before populating the initial state logic
vector of the network.

We conduct our simulation experiments for the three different
sets of scenarios. Each of our simulation experiment is repeated
100 times, and then average values of coverage rate are reported
as final results.

For our first set of scenarios,we fix topology out-degree at 3.We
let vulnerability rate vary from 1.0 to 0.2 with step size −0.2; and
let network size vary from 1000 to 10,000 with step size 1000. A
vulnerability rate of 1.0 actuallymeans all peers in the network are
vulnerable to the worm. The experimental results from the above
set of scenarios are illustrated by Fig. 1.

Fig. 1 reveals that under the set conditions, the coverage rate
of a P2P worm in a logical P2P overlay network will decrease
if vulnerability rate is decreased. This is sensible since more
vulnerable peers in the network naturally lead to higher attack
performance measured by the coverage rate. The upper bound of
the coverage rate is approximately 0.95. It is achieved when all
peers are vulnerable, i.e., v = 1.0 (the top curve in Fig. 1). The
lower bound of the coverage rate is close to 0. It is achieved when
20% peers are vulnerable, i.e., v = 0.2 (the bottom curve in Fig. 1).
The coverage rate drops significantly from above 0.6 to below 0.2
when vulnerability rate is decreased from 0.6 to 0.4. The above
findings imply that both attackers and defenders can manipulate
vulnerability rate v to improve or worsen attack performance,
respectively, and more importantly that limiting vulnerability rate
to be below 0.4 is critical to defenders.

Fig. 1 also shows that, when network size is in the range
1000–10,000 inclusive, it has no significant impact on attack
performance measured by the coverage rate if both topology out-
degree and vulnerability rate are fixed. This finding implies thatwe

Fig. 2. Coverage rate as a function of topology out-degree and network size when

vulnerability is fixed at 0.5.

can choose a smaller value in the range 1000–10,000 for network
size n in our later experiments to shorten simulation time, and that
neither attackers nor defenders can manipulate network size n to
improve or worsen attack performance, respectively.

For our second set of scenarios, we fix vulnerability rate at 0.5.
We let topology out-degree vary from 1 to 5 with step size 1; and
let network size vary from 1000 to 10,000 with step size 1000. The
experimental results from the above set of scenarios are illustrated
by Fig. 2.

Fig. 2 reveals that under the set conditions, the coverage rate
of a P2P worm in a logical P2P overlay network will increase
if topology out-degree is increased. This is sensible since the
more neighbors a peer in the network has naturally leads to
higher attack performance measured by the coverage rate. The
upper bound of the coverage rate is approximately 0.85. It is
achieved when all peers have 5 neighbors, i.e., d = 5 (the top
curve in Fig. 2). The lower bound of the coverage rate is 0. It is
achieved when all peers have only 1 neighbor, i.e., d = 1 (the
bottom curve in Fig. 1). The coverage rate drops significantly from
above approximately 0.4 to below 0.05 when topology out-degree
decreased from3 to 2. The above findings imply that both attackers
and defenders can manipulate topology out-degree d to improve
or worsen attack performance, respectively, andmore importantly
that limiting topology out-degree to be below or equal to 2 is
critical to defenders.

Based on the common finding from our first 2 sets of simulation
experiments that when network size is in the range 1000–10,000
inclusive, it has no significant impact on attack performance, for
our third set of scenarios, we fix network size at 5000 to shorten
simulation time. We investigate the two cases given below:

Case 1—In this case, we let vulnerability rate vary from 0.1 to 1.0
with step size 0.1; and let topology out-degree vary from 1 to 5
with step size 1. Here, our focus is on the impact of vulnerability
rate rather than topology out-degree on attack performance
measured by the coverage rate. Therefore, we choose a smaller
step size for vulnerability rate, but only a few topology out-degree
values are investigated.

The experimental results from the above case are illustrated by
Fig. 3. Fig. 3 reveals that generally the coverage rate of a P2P worm
in a logical P2P overlay network will increase if vulnerability rate
is increased. This is sensible since more vulnerable peers in the
network naturally lead to higher attack performance measured by
the coverage rate.

More importantly, Fig. 3 also shows that the takeoff points on
the curves do not correspond to the same value of vulnerability
rate. Here, takeoff point refers to the point on a curve in Fig. 3
immediately to the right of which the slope of the curve increases
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Fig. 3. Coverage rate as a function of topology out-degree and vulnerability rate

when network size is fixed at 5000 (Case 1).

Fig. 4. Coverage rate as a function of vulnerability rate and topology out-degree

when network size is fixed at 5000 (Case 2).

dramatically. For instance, when topology out-degree is fixed at 5,
the takeoff point corresponds to vulnerability rate 0.2; and when
topology out-degree is reduced to 3, the takeoff point corresponds
to vulnerability rate 0.3. Generally, the corresponding vulnerability
rate will increase if topology out-degree is reduced. This is sensible
since fewer neighbors demand more vulnerable peers to achieve
the same attack performance. It can be found from Fig. 3 that 0.2
is a critical value of vulnerability rate, since if vulnerability rate is
below that value the worm cannot propagate successfully in the
network.

Case 2—In this case, we let topology out-degree vary from 1 to 10
with step size 1; and let vulnerability rate vary from 0.2 to 1.0
with step size 0.2. Here, our focus is on the impact of topology
out-degree rather than vulnerability rate on attack performance
measured by the coverage rate. Therefore, a large range of topology
out-degree values are investigated, butwe choose a larger step size
for vulnerability rate.

The experimental results from the above case are illustrated
by Fig. 4. Fig. 4 reveals that generally the coverage rate of a P2P
worm in a logical P2P overlay networkwill increase if topology out-
degree is increased. This is sensible since themore neighbors a peer
in the network has naturally leads to higher attack performance
measured by the coverage rate.

More importantly, Fig. 4 also shows that the takeoff points on
the curves do not correspond to the same value of topology out-
degree. When vulnerability rate is fixed at 1.0, the takeoff point
corresponds to topology out-degree 1; andwhen vulnerability rate

is reduced to 0.2, the takeoff point corresponds to topology out-

degree 5. Generally, the corresponding topology out-degree will

increase if vulnerability rate is reduced. This is sensible since fewer

vulnerable peers demand more neighbors a peer in the network

has, to achieve the same attack performance.

4.3. All peers being vulnerable to the P2P worm and quarantine being
existent

In an unstructured P2P network, the topology out-degree (d) of

each peer is a variable. It is characterized by the following power

law distribution:⎧⎪⎨
⎪⎩
Dmin ≤ k ≤ Dmax

P(d = k) = C

kA
P(d �= k) = 0,

(18)

where Dmin and Dmax stands for theminimum topology out-degree

and maximum topology out-degree, respectively, A represents the

power law degree, and C is a constant. The set of equations (18)

gives the probability that a randomly selected peer has kneighbors.

In this subsection,we only consider unstructured P2P networks.

Therefore, not all peers in the network have the same topology out-

degree.

Our paramount objective is to find a quarantine tactic whose

enforcement will lead to a lower attack performance (measured

by the attach-related evaluationmetric: coverage rate c) at a lower

cost of defense effort (measured by the defense-related evaluation

metric: quarantine rate q).

According to probability theory, the following equations must

hold:

1 =
Dmax∑

k=Dmin

P(d = k) = C

Dmax∑
k=Dmin

1

kA
, (19)

E(d) =
Dmax∑

k=Dmin

kP(d = k) = C

Dmax∑
k=Dmin

1

kA−1
, (20)

where E(d) stands for expected value of topology out-degree.

Then, it can be easily derived from (19) and (20) that the

power law degree A is a function of Dmin, Dmax, and E(d) described
implicitly by the following equation:

E(d) =

Dmax∑
k=Dmin

1

kA−1

Dmax∑
k=Dmin

1

kA

. (21)

Finally, once the power law degree A is determined according to

(20), given Dmin, Dmax, and E(d), the constant C can be worked out

according to (19) or (20).

Themost important feature of the above power lawdistribution

of topology out-degree in the unstructured P2P system is that there

are fewer peers with larger topology out-degree than those with

smaller topology out-degree.

Let Dmin = 1, Dmax vary from 100 to 1000 and the expected

value of topology out-degree E(d) vary from 2 to 32, we

numerically determine power law degree A. The results are shown

in Fig. 5.

Fig. 5 shows that a larger maximum topology out-degree

requires a larger power law degree, and that a larger expected

value of topology out-degree demands a smaller power law

degree.
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Fig. 5. Power law degree as a function of the maximum topology out-degree and

expected value of topology out-degree given the minimum topology out-degree

being 1.

Our simulation experiments are based on the following
assumptions:

• Topology out-degree (d) of each peer belonging to the
unstructured P2P network under consideration strictly follows
the power law distribution (18). E(d) = 3, Dmin = 1, and Dmax

varies from 100 to 1000 with step size 100. Neighbors of a peer
are randomly selected fromall other peers except the peer itself.

• Peers quarantined are selected accordingly, based on the
quarantine tactics enforced, which are detailed in the next two
subsections.

• There is only 1 initially infected peer, which is selected
randomly from all peers not quarantined.

• We conduct our simulation experiments for two different
values of n (total number of peers belonging to the system).
We first assume n to be 5000 and then double it, i.e., assume
n to be 10,000. We believe 10,000 peers are sufficient for
our simulation experiments, and intend to investigate whether
5000 peers will generate significantly different results.

Based on the above assumptions, we populate the topology
logic matrix of the unstructured P2P network under consideration
by letting the probability that a randomly selected peer has k
neighbors follow (18). How to populate the quarantine logic vector
of the network is detailed later. Once it is populated, we can
populate the initial state logic vector of the network.

Our simulation experiments include scenarios with no quaran-
tine at all. The experimental results from these set the benchmark
to compare to. When there is no quarantine, (12) instead of (9)
forms the foundation of our implementation of the proposed logic
matrix approach. When quarantine is enforced, our implementa-
tion is based on (9).

We conduct our simulation experiments for two different
quarantine tactics, namely random quarantine and larger topology
out-degree priority quarantine. Each of our simulation experiment
is repeated 100 times, and then the average values of coverage rate
are reported as final results.

4.3.1. Random quarantine

Random quarantine means peers quarantined are randomly
selected from all peers. We populate the quarantine logic vector of
the unstructured P2P network under consideration by letting each
peer have the same probability of being quarantined when this
quarantine tactic is enforced. Then, we populate the initial state
logic vector of the network.

We conduct our experiments for the 5 sets of scenarios with
quarantine rate q varying from 0 to 0.4 with step size 0.1. A
quarantine rate of 0 actuallymeansnoquarantine at all.We include

Fig. 6. Coverage rate under randomquarantine as a function ofmaximum topology

out-degree and quarantine rate when there are a total of 5000 peers in the P2P

system.

Fig. 7. Coverage rate under randomquarantine as a function ofmaximum topology

out-degree and quarantine rate when there are a total of 10,000 peers in the P2P

system.

no quarantine as a special case of random quarantine, which

facilitates comparison of experimental results.

The experimental results from random quarantine are illus-

trated by Figs. 6 and 7 for the two cases: n (total number of peers

belonging to the P2P network) = 5000 and n = 10,000, respec-

tively.

Figs. 6 and 7 reveal that generally, coverage rate of a P2P

worm in a logical P2P overlay network will decrease if quarantine

rate is increased. This is sensible because a higher defense effort

will naturally lead to a lower attack performance. However,

as mentioned previously, our paramount objective is to find a

quarantine tactic whose enforcement will lead to a lower attack

performance at a lower cost of defense effort. Therefore, the above

finding cannot serve our paramount objective.

Figs. 6 and 7 also show that maximum topology out-degree has

no significant impact on attack performance and defense effort

when it is in the range 100–1000 inclusive, and that 5000 peers

will not generate significantly different results. The implications

of the above findings include that we can choose the smallest

value of Dmax (100) and the smaller value of n (5000) in our

future experiments to shorten simulation time, and that neither

attackers nor defenders canmanipulate n orDmax to improve attack

performance or reduce defense effort, respectively.
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Fig. 8. Coverage rate under priority quarantine as a function ofmaximum topology

out-degree and quarantine rate when there are a total of 5000 peers in the P2P

system.

Fig. 9. Coverage rate under priority quarantine as a function ofmaximum topology

out-degree and quarantine rate when there are a total of 10,000 peers in the P2P

system.

4.3.2. Larger topology out-degree priority quarantine

Larger topology out-degree priority quarantine means peers
with larger topology out-degree are quarantined prior to peers
with smaller topology out-degree.

When this quarantine tactic is enforced, we populate the
quarantine logic vector of the unstructured P2P network under
consideration by following the procedure given below:

Firstly, we work out the absolute value of each peer’s
topology out-degree logic vector. Secondly, all peers are sorted in
descending order of the absolute value calculated above. By doing
this, we actually sort all peers into a list in descending order of
number of neighbors since, as mentioned previously, each peer’s
topology out-degree logic vector is a logic vector representation
of its outbound links (neighbors). Thirdly, we quarantine peers in
the same order as their order in the sorted list of peers. Then, we
populate the initial state logic vector of the network.

We conduct our experiments for the 5 sets of scenarios with
quarantine rate q varying from 0 to 0.16 (40% of 0.4, which is the
maximum quarantine rate investigated under random quarantine)
with step size 0.04.

The experimental results from larger topology out-degree
priority quarantine are illustrated by Figs. 8 and 9 for the two cases:
n (total number of peers belonging to the P2P network)= 5000 and
n = 10,000, respectively.

Figs. 8 and 9 reveal that generally, coverage rate of a P2P worm
in a logical P2P overlay network will decrease if quarantine rate

is increased. Figs. 8 and 9 also show that maximum topology

out-degree has no significant impact on attack performance and

defense effort when it is in the range 100–1000 inclusive, and that

5000 peers will not generate significantly different results. The

above findings are the same as those from random quarantine.

If we compare the bottom curve in Fig. 6 to the bottom curve

in Fig. 8, it can be found that larger topology out-degree priority

quarantine demands a lower defense effort (quarantine rate q =
0.16) to achieve a lower attack performance (coverage rate c <
0.1), and that random quarantine demands a higher defense effort

(quarantine rate q = 0.4) to achieve a higher attack performance

(coverage rate c < 0.2). The same result as above can be found if

we compare the bottom curve in Fig. 7 to the bottom curve in Fig. 9.

The above finding exactly serves our paramount objective, which is

to find a quarantine tactic whose enforcement will lead to a lower

attack performance at a lower cost of defense effort.

Therefore, according to our experimental results, larger topol-

ogy out-degree priority quarantine outperforms random quaran-

tine. Larger topology out-degree priority quarantine is exactly the

quarantine tactic we are looking for since it demands only 40%

(0.16/0.4) defense effort to achieve 50% (0.1/0.2) attack perfor-

mance, compared to random quarantine. In other words, larger

topology out-degree priority quarantine is much more efficient

than random quarantine.

5. Conclusion

This paper presents a study on modeling the propagation

processes of P2P worms. In this paper, based on our definitions of

logic matrix and its operations, we have proposed the logic matrix

representation of a P2P overlay network’s topology, topology

out-degree, topology in-degree, state, vulnerability status, and

quarantine status; and derived our unique logic matrix approach

to modeling the propagation of P2P worms. Based on this

model, we find the impacts of the two different topologies on

a P2P worm’s attack performance, the impacts of the network-

related characteristics on a P2P worm’s attack performance in

structured P2P networks, and the impacts of the two different

quarantine tactics on the propagation characteristics of P2Pworms

in unstructured P2P networks.

To the best of our knowledge, we are the first using logic

matrix in network security research in general and worm

propagation research in particular. The proposed approach’s ease

of employmentmakes it an attractive instrument to conductworm

propagation research. We have demonstrated the innovative logic

matrix formulation proposed in this paper, which are discrete

time deterministic propagation models of P2P worms described

by difference equations of logic matrix, is a highly effective and

efficient tool for investigating the propagation processes of P2P

worms.

In the future, we plan to extend P2P worm models by

considering temporal issues, such as the time lag for worms to

infect peers and the time spent in quarantining peers. Time series-

based matrices can be potentially used in the extended model. We

will also look for a more effective and efficient quarantine tactic if

temporal issues are considered.

To make it more practical to accommodate the dynamic P2P

networkwhere peers can join and leave a network, a P2P network’s

topology logic matrix needs to include peers that will join the

network in the future. It also needs to be updated once a peer

joins or leaves the network. This could be simulated by randomly

selecting peers joining and leaving the network, which means the

topology logic matrix of the P2P network is constantly changing.

We are going to incorporate the above idea into the simulation

conducted previously.
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Abstract— Peer-to-Peer (P2P) worms have become the most 
serious problem in the Internet because of its adaptive 
propagation features. Due to the complexity of the problem, 
no existing work has solved the problem of modeling the 
propagation of P2P worms, especially when quarantine of 
peers is enforced. This paper presents a study on modeling 
and simulating the propagation of structured P2P worms 
under random quarantine. Based on the extended logic 
matrix approach for modeling the propagation of P2P 
worms, we simulated the impacts of topology out-degree, the 
number of initially infected peers, and quarantine rate on 
the propagation characteristics of P2P worms in a 
structured logical P2P overlay network. The optimal 
quarantine ratios leading to maximum quarantine efficiency 
with topology out-degree under 3 have been revealed by our 
simulation. This approach is easy to use, which further 
enhances its potential of wide adoption in securing peer-to-
peer networks in the future.  
 
Index Terms— Modeling, Simulating, Propagation, 
Structured, Peer-to-Peer, Worms 
 

I.  INTRODUCTION 

Peer-to-peer networks have become popular in 
networked communications but are often vulnerable to 
viruses spreading. Great effort has been made on securing 
applications of peer-to-peer networks [1-4]. 
Computer/Internet worms can be classified according to 
the techniques by which they discover new targets to 
infect. Scanning to probe a set of vulnerable hosts is the 
technique widely employed by worms [5]. Scanning can 
be implemented differently and different implementations 
lead to several different types of scanning, such as 
random scanning, localized scanning [6], sequential 
scanning [7], routable scanning [8], selective scanning [8], 
importance scanning [9][10], and topological scanning. 
Topological scanning was employed by the Morris 
Internet Worm of 1988 as its target discovery technique 
[11]. 

Computer/Internet worms employing all other types of 
scanning except topological scanning among the above 
types do not need to have any knowledge on topology of 
the network they intend to propagate across. On the 
contrary, computer/Internet worms employing topological 
scanning must have some information on the network 
they intend to propagate over, or have the capability to 
discover that information if they do not have it in advance. 
Therefore, computer/Internet worms employing 

topological scanning are also called topology-aware 
worms.  

Typical examples of topology-aware worms are worms 
attacking a flaw in a Peer-to-Peer (P2P) application and 
propagating across the P2P network by getting lists of 
peers from their victims and directing their subsequent 
attacks to those peers. This sort of topology-aware worms 
is called P2P worms. The Slapper worm of 2003 was a 
typical example of P2P worms [12]. The subsequent 
appearance of variations of the Slapper worm (the 
Slapper.B worm a.k.a. Cinik and the Slapper.C worm 
a.k.a. Unlock) indicates that P2P worms are becoming 
increasingly complex and sophisticated [12]. 

Due to recent popularity of P2P systems with 
increasing number of users, P2P systems have become 
the most effective vehicles for topology-aware worms to 
achieve fast propagation across the Internet. Propagation 
of P2P worms on top of P2P systems can result in 
significant damages as illustrated by [13]. P2P worms are 
posing a serious challenge to network security. 

In order to find an effective and efficient counter 
measure against propagation of P2P worms, we must 
fully understand their propagation characteristics. This 
paper presents a study on modeling and simulating the 
propagation of structured P2P worms under random 
quarantine. In this paper, we firstly expand our recently 
proposed logic matrix approach for modeling propagation 
of P2P worms. We then use this extended model to 
simulate the impacts of topology out-degree, the number 
of initially infected peers, and quarantine rate on 
propagation characteristics of P2P worms in a structured 
logical P2P overlay network. Based on the simulation 
results, optimal quarantine ratios that can lead to 
maximum quarantine efficiency with a topology out-
degree of 3 or less are revealed. 

The rest of the paper is organized as follows. We 
survey related work in Section 2, before presenting our 
proposed innovative logic matrix approach in Section 3. 
Then, in Section 4, we apply the proposed approach to 
our simulation experiments to investigate the impacts of 
topology out-degree, the number of initially infected 
peers, and quarantine rate on propagation characteristics 
of P2P worms in a structured logical P2P overlay network, 
and to look for the relationship between quarantine 
efficiency and quarantine ratio. Finally, Section V 
concludes this paper, and points out future research 
directions. 



II.  RELATED WORK 

Mathematical models developed to model the 
propagation of infectious diseases have been adapted to 
model the propagation of computer/Internet worms [14]. 
In epidemiology area, both deterministic and stochastic 
models exist for modeling the spreading of infectious 
diseases [15-18]. In network security area, both 
deterministic and stochastic propagation models of 
computer/Internet worms based on their respective 
counterpart in epidemiology area have emerged. 

Deterministic propagation models of computer/Internet 
worms can be further divided into two categories: 
continuous-time and discrete-time. Since the propagation 
of computer/Internet worms is a discrete event process, 
discrete-time propagation models of computer/Internet 
worms is more accurate than its continuous-time 
counterparts in the deterministic regime. Some typical 
examples of deterministic propagation models of 
computer/Internet worms are as follows. 

1) In the classical simple epidemic model [15-18], 
all hosts stay in one of the only two states at any time: 
‘susceptible’ (denoted by ‘S’) or ‘infectious’ (denoted by 
‘I’), and thus it is also called the SI model. Staniford et al. 
[19] presented a propagation model for the Code-RedI v2 
worm, which is essentially the above classical simple 
epidemic model. 

2) The classical general epidemic model (Kermack-
McKendrick model) [15-18] improves the classical 
simple epidemic model by considering removal of 
infectious hosts due to patching (installing software 
designed to fix security vulnerabilities). 

3) The two-factor worm model [14] extends the 
classical general epidemic model by accounting for 
removal of susceptible hosts due to patching and 
considering the pair-wise rate of infection as a variable 
rather than a constant. 

4) The discrete-time Analytical Active Worm 
Propagation (AAWP) model [20] takes into account the 
time an infectious host takes to infect other hosts, which 
is an important factor for the spread of worms [21]. 

Among the above models, all others are continuous-
time except the last one, which is discrete-time. 

Stochastic propagation models of computer/Internet 
worms are based on the theory of stochastic processes. 
All of them are discrete-time in nature. Two typical 
examples of stochastic propagation models of 
computer/Internet worms are as follows. 

1) Rohloff and Basar [22] presented a stochastic 
density-dependent Markov jump process propagation 
model for computer/Internet worms employing the 
random scanning approach drawn from the field of 
epidemiology [16][23].  

2) Sellke et al. [24] presented a stochastic Galton-
Watson Markov branching process model to characterize 
the propagation of computer/Internet worms employing 
the random scanning approach. 

However, all of the above models are not applicable to 
computer/Internet worms employing topological 
scanning. In recent years, based on the survey on 
modeling the propagation process of computer/Internet 

worms [25], we have worked on developing new 
approaches to support understanding topological scanning 
based worm propagation, in which some progress has 
been made [26, 27]. The extended logic matrix approach 
presented in this paper is part of our continuous effort on 
the project.  

In our extended model, we have taken into account 
removal, due to quarantine, of both susceptible and 
infectious peers. However, temporal issues, such as the 
time lag for worms to infect peers and the time spent in 
quarantining peers, have not been considered 
intentionally. The paramount objective of these models is 
to facilitate determining the maximum number of peers in 
a P2P system that can be infected in an infinite period, 
which forms another difference between this work and 
exiting work, in addition to using logic matrix in worm 
propagation modeling.  

III.  THE EXTENDED LOGIC MATRIX APPROACH 

A.   Logic matrix and operations 
As mentioned previously, using logic matrix in worm 

propagation modeling forms the major difference 
between this work and exiting work. Our reasons of using 
logic matrix include ease of derivation of the propagation 
model proposed in this paper, and the model’s ease of 
employment. 

We extend the definition of matrix to allow variables 
or constants of logic type as its elements and term such 
kind of matrix as logic matrix. The values of variables of 
logic type can only be one of the two constants of logic 
type: True (denoted by ‘T’) or False (denoted by ‘F’). If a 
logic matrix has only one row or one column, we can also 
term it logic row vector or logic column vector, 
respectively. 

We define absolute value of a variable l of logic type 
(denoted by |l|) as 1 when its value is ‘T’, and 0 when ‘F’; 
and define absolute value of a logic matrix L (denoted by 
|L|) as the total number of its elements with value ‘T’. 
According to the above definitions, the absolute value of 
a logic matrix L can be worked out by summing the 
absolute value of its each element l, i.e., 

 

∑= lL  .    (1) 
 
A logic matrix L can be inverted. The resultant is a 

logic matrix of the same dimension with its element linv 
being the result of logic NOT operation of the 
corresponding element l of the logic matrix to be 
inverted. It can be defined mathematically as follows: 

 

llinv =  ,    (2) 
 

where the bar over l indicates logic NOT operation. 
Two logic matrices A and B can be added together if 

and only if their dimensions are the same, i.e., they have 
the same number of rows and the same number of 
columns. The resultant S = A + B is a logic matrix of the 
same dimension with its element sij (in the i-th row and 



the j-th column) being the result of logic OR operation of 
the corresponding elements aij and bij of the two logic 
matrices to be added together. It can be defined 
mathematically as follows: 

 

ijijij bas +=  ,   (3) 
 

where the + sign between aij and bij indicates logic OR 
operation. 

Two logic row vectors (or logic column vectors) A and 
B can be multiplied element-by-element if and only if 
their dimensions are the same, i.e., they have the same 
number of columns (or number of rows). The resultant P 
= AB is a logic row vector (or logic column vector) of the 
same dimension with its element pij (in the i-th row and 
the j-th column) being the result of logic AND operation 
of the corresponding elements aij and bij of the two logic 
row vectors (or logic column vectors) to be multiplied. It 
can be defined mathematically as follows: 

 

ijijij bap =  ,    (4) 
 

where aijbij indicates logic AND operation of aij and bij. 
A logic matrix A can be multiplied by another logic 

matrix B in the manner of traditional matrix 
multiplication if and only if their inner dimensions are the 
same, i.e., number of columns of the multiplicand logic 
matrix (the left one) is equal to number of rows of the 
multiplier logic matrix (the right one). The resultant P = 
AB is a logic matrix with the same number of rows as A 
and the same number of columns as B. We define value 
of element pij (in the i-th row and the j-th column) of the 
product as determined by the following equation: 

 

kj

n

k
ikij bap ∑

=

=
1

 ,   (5) 

 
where aikbkj indicates logic AND operation of aik and bkj, 
n denotes inner dimensions of the multiplicand and the 
multiplier logic matrices, and ∑  denotes logic OR 
operation of all  resultants of those logic AND operations. 

Contrary to logic matrix addition and logic vector 
multiplication, mutation law does not apply to logic 
matrix multiplication in the manner of traditional matrix 
multiplication.  

B.  Topology logic matrix, state logic vector, and 
quarantine logic vector of a P2P overlay network 

According to the traditional directed graph theory, a 
P2P overlay network can be represented by a directed 
graph G, with its set of vertices V representing all peers 
connected to form the network, and its set of directed 
edges E representing all directed links among these peers. 
A directed link from peer i to peer j means peer j is a 
neighbor of peer i, but peer i is not a neighbor of peer j if 
there does not exist a directed link from peer j to peer i at 
the same time. A peer is only able to send messages to its 
neighbors directly. 

Topology of a P2P overlay network consisting of n 
peers can be represented by an n by n square matrix T 
with its element tij (in the i-th row and the j-th column) 
indicating whether there is a directed link from peer i to 
peer j. In this paper, we propose a different approach 
from that used under the traditional directed graph theory 
to indicating the existence or not of a directed link. The 
logic constant ‘T’ is used to indicate there is a directed 
link, and the logic constant ‘F’ to indicate there is not. 
Therefore, topology of a P2P overlay network consisting 
of n peers can be represented by an n by n logic square 
matrix. We term it topology logic matrix of the P2P 
overlay network. 

Each row of the topology logic matrix of a P2P overlay 
network forms a logic row vector, which is a logic vector 
representation of outbound links (neighbors) of a 
particular peer belonging to the network. We call this 
logic row vector the peer’s topology out-degree logic 
vector. Each column of the topology logic matrix of a 
P2P overlay network forms a logic column vector, which 
is a logic vector representation of inbound links of a 
particular peer belonging to the network. We call this 
logic column vector the peer’s topology in-degree logic 
vector. For example, the i-th row of a topology logic 
matrix represents all outbound links (neighbors) of peer i; 
and the j-th column of the topology logic matrix 
represents all inbound links of peer j. 

It can be easily derived that values of topology in-
degree and topology out-degree of each peer belonging to 
a P2P overlay network equate to the absolute values of 
the peer’s topology in-degree logic vector and topology 
out-degree logic vector, respectively, which can be 
worked out by using (1). 

Next, we represent states of all the n peers belonging to 
the P2P overlay network by a logic row vector S of length 
n with its element sj (the j-th element) indicating whether 
peer j has been infected by the worm and become 
infectious. The logic constant ‘T’ is used to indicate a 
peer has been infected and become infectious, and the 
logic constant ‘F’ to indicate it has not. We term the 
above logic row vector the P2P overlay network’s state 
logic vector. 

It can be easily derived that the total number of 
infected and infectious peers in a P2P overlay network 
equates to the absolute value of the network’s state logic 
vector, which can be worked out by using (1). 

Finally, we represent quarantine status of all the n 
peers belonging to the P2P overlay network by a logic 
row vector Q of length n with its element qj (the j-th 
element) indicating whether peer j has been quarantined 
for the worm. A quarantined healthy peer will not be 
infected by the worm; and a quarantined infected and 
infectious peer will be cured and will not be infected 
again by the worm. The logic constant ‘T’ is used to 
indicate a peer has been quarantined, and the logic 
constant ‘F’ to indicate it has not. We term the above 
logic row vector the P2P overlay network’s quarantine 
logic vector. 

It can be easily derived that the total number of 
quarantined peers in a P2P overlay network equates to the 



absolute value of the network’s quarantine logic vector, 
which can be worked out by using (1). 

C.  The extended logic matrix approach for modeling 
propagation of P2P worms 

The derivation of our proposed novel logic matrix 
approach to modeling the propagation of P2P worms is 
based on the following assumptions: 

1) An infected and infectious peer will send the 
worm packets to all other peers belonging to the same 
P2P overlay network to which it has a outbound link, 
regardless of the state (infected by the worm and 
infectious or not) and the quarantine status (quarantined 
for the worm or not) of those peers. A healthy (not 
infected by the worm and not infectious) peer will be 
infected by the worm and become infectious once it 
receives the worm packets from an infectious peer, 
provided the healthy peer is not quarantined for the worm. 
An infected and infectious peer will remain in that state 
once it receives the worm packets from an infectious peer, 
provided the infected and infectious peer is not 
quarantined for the worm. A healthy peer quarantined for 
the worm will not be infected by the worm; and an 
infected and infectious peer quarantined for the worm 
will be cured and will not be infected again by the worm. 

2) The time lags from sending the worm packets, to 
receiving the worm packets, to having the recipient peers 
infected by the worm, to the peers infected by the worm 
becoming infectious will not be considered, nor will the 
time spent in quarantining peers. 

3) There are a total of n peers belonging to a 
logical (not physical) P2P overlay network under 
consideration. Initially, there are a total of I0 peers which 
are infected by the worm and infectious. 

According to the above assumptions, the logical P2P 
overlay network’s initial state (State 0) can be 
represented by its initial state logic vector S0 of length n; 
and the absolute value of S0 equates to the total number of 
peers which are initially infected by the worm and 
infectious (I0), i.e., 

 

00 IS =  .    (6) 
 
Generally, State g of the logical P2P overlay network 

can be represented by its state logic vector Sg of length n; 
and the absolute value of Sg equates to the total number of 
peers which are infected by the worm and infectious at 
that state (Ig), i.e., 

 

gg IS =  .    (7) 

 
The next state (State g+1) of the logical P2P overlay 

network can be represented by its state logic vector Sg+1 
of length n; and the absolute value of Sg+1 equates to the 
total number of peers which are infected by the worm and 
infectious at that state (Ig+1), i.e., 

 

11 ++ = gg IS  .    (8) 

We notice that the logical P2P overlay network’s next 
state represented by its state logic vector Sg+1 is fully 
determined by the network’s current state represented by 
its state logic vector Sg, the network’s topology 
represented by its topology logic matrix T, and the 
network’s quarantine status represented by its quarantine 
logic vector Q. We find the relationship among Sg+1, Sg, T, 
and Q can be described mathematically as follows: 

 

( )[ ]QTSSS ggg +=+1  .  (9) 
 
Let Sgnew stand for the second term in the above 

equation (after the + sign), the above equation can be 
simplified to 

 
new
ggg SSS +=+1  .   (10) 

 
The term represented by Sgnew actually says if at State 

g at least one peer among those peers from which peer j 
has inbound links is infectious, peer j will be infected by 
the worm and become infectious at State g+1 provided 
peer j is not quarantined. 

Since both Sg and Q are logic row vectors of length n 
and T is an n by n logic square matrix, Sgnew will be a 
logic row vector of length n. It can be derived that Sgnew is 
a logic vector representation of all those peers that can be 
infected by the worm at State g+1, given the network’s 
state at State g represented by its state logic vector Sg, the 
network’s topology represented by its topology logic 
matrix T, and the network’s quarantine status represented 
by its quarantine logic vector Q. Sgnew may or may not 
include peer or peers infected by the worm at states prior 
to State g+1. Then, (9) and (10) can be easily derived. 

When quarantined is not enforced at all, (9) will be 
simplified to 

 
( )TSSS ggg +=+1  .   (11) 

 
Equation (11) is a special case of (9) when is a logic 

row vector with all its elements being ‘T’ because Q is a 
logic row vector with all its elements being ‘F’.  

Equations (9) and (11) are actually discrete-time 
deterministic propagation models of P2P worms under 
quarantine and under no quarantine, respectively, written 
in the form of difference equations of logic matrix. 

Starting from some certain state, there will be no 
newly infected peer to occur and thus actually, the 
propagation will stop. The state from which the 
propagation will cease is the earliest state whose state 
logic vector SG satisfies the following equation:  

 

GG SS =+1  ,    (12) 
 

where SG+1 stands for the state logic vector of the state 
immediately after the state with state logic vector SG.  

The innovative logic matrix approach proposed above 
essentially translates the propagation processes of P2P 



worms into a sequence of logic matrix operations, which 
can be implemented easily with any matrix-friendly 
mathematics programs such as MathWorks’ MATLAB. It 
is this feature of the approach that facilitates its 
applications in the research of the propagation 
characteristics of P2P worms. 

IV.  APPLICATIONS OF THE PROPOSED APPROACH 

A.  Evaluation metrics 
Our attack-related evaluation metric in this paper is a 

P2P worm’s final infection or coverage (denoted by c) in 
a logical P2P overlay network. It is defined as the number 
of peers belonging to the network that can be infected by 
the worm; and can be worked out by using the following 
equation: 

 

GSc =  ,    (13) 
 

where SG is the state logic vector of the network when the 
propagation process has just stopped. 

Our defense-related evaluation metric in this paper is 
quarantine rate or ratio (denoted by q) for a P2P worm of 
a logical P2P overlay network. It is defined as the ratio in 
percentage form of the number of peers belonging to the 
network that are quarantined for the worm to the total 
number of peers belonging to the network; and can be 
worked out by using the following equation: 

 

%100×=
n
Q

q  ,   (14) 

 
where Q is the quarantine logic vector for the worm of 
the network and n is total number of peers belonging to 
the network. 

Our paramount objective is to find a quarantine tactic 
whose enforcement will lead to a lower attack 
performance (measured by the attach-related evaluation 
metric: coverage c) at a lower cost of defense effort 
(measured by the defense-related evaluation metric: 
quarantine rate q). 

B.  Topology of structured P2P systems 
Existing P2P systems can be classified into two broad 

categories, namely structured and unstructured, according 
to distributions of their topology out-degree. Topology 
out-degree defines the number of logical neighbors 
maintained by each peer locally. 

In a structured P2P network, topology out-degree d of 
each peer is a constant. It is characterized by the 
following probability distribution: 
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 ,   (15) 

 
The set of equations (15) gives the probability that a 

randomly selected peer has k neighbors. 

C.  Settings of simulation experiments 
We apply the proposed logic matrix approach in our 

simulation experiments using MathWorks’ MATLAB. 
Our applications are limited to the research of structured 
P2P systems and the simulation experiments are based on 
the following assumptions: 

1) Topology out-degree (d) of each peer belonging 
to the structured P2P system under consideration strictly 
follows the power law distribution (15). d varies from 1 
to 3 with step size 1. Neighbors of a peer are randomly 
selected from all other peers except the peer itself. 

2) Peers quarantined are selected according to the 
quarantine tactic enforced, which are detailed in the next 
subsection.  

3) The number of initially infected peers, which are 
selected randomly from all peers not quarantined, varies 
from 1 to 100 with step size 1. 

4) We conduct our simulation experiments for n 
(total number of peers belonging to the system) = 1,000. 
1,000 peers are sufficient for our simulation experiments 
since more peers will not generate significantly different 
results.  

Based on the above assumptions, we populate the 
topology logic matrix of the structured P2P system under 
consideration by letting the probability that a randomly 
selected peer has k neighbors follow (15). How to 
populate the quarantine logic vector of the system is 
detailed in the next subsection. Once it is populated, we 
can populate the initial state logic vector of the system. 

Our simulation experiments include scenarios with no 
quarantine at all. Experimental results from them set the 
benchmark to compare to. When there is no quarantine, 
(11) instead of (9) forms the foundation of our 
implementation of the proposed logic matrix approach. 
When quarantine is enforced, our implementation is 
based on (9). Each of our simulation experiment is 
repeated 100 times, and then average values of coverage 
are reported as final results.  

D.  Experimental results 
Random quarantine means peers quarantined are 

randomly selected from all peers. We employ random 
quarantine in our simulation experiments. We populate 
the quarantine logic vector of the structured P2P system 
under consideration by letting each peer have the same 
probability of being quarantined when this quarantine 
tactic is enforced. Then, we populate the initial state logic 
vector of the system. We conduct our experiments for the 
6 sets of scenarios with quarantine rate q varying from 
0% to 50% with step size 10%. A quarantine rate of 0% 
actually means no quarantine at all. We include no 
quarantine as a special case of random quarantine, which 
facilitates comparison of experimental results.  

The experimental results from no quarantine at all 
when topology out-degree is 1, 2 and 3 are shown in Fig. 
1, Fig. 2 and Fig. 3, respectively.  
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Fig. 1 Final infection as a function of initial infection (quarantine 

rate = 0%) when topology out-degree is 1. 
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Fig. 2 Final infection as a function of initial infection (quarantine 

rate = 0%) when topology out-degree is 2. 
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Fig. 3 Final infection as a function of initial infection (quarantine 
rate = 0%) when topology out-degree is 3. 

 
Fig. 1, Fig. 2 and Fig. 3 reveal that coverage of a P2P 

worm in a logical P2P overlay network will increase 
when either topology out-degree or the number of 
initially infected peers is increased. However, the former 
has much more significant effect on the coverage than the 
latter.  

The experimental results from random quarantine with 
varying quarantine rate when topology out-degree is 1, 2 
and 3 are shown in Fig. 4, Fig. 5 and Fig. 6, respectively. 
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Fig. 4 Final infection as a function of initial infection and quarantine 

rate when topology out-degree is 1. 
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Fig. 5 Final infection as a function of initial infection and quarantine 

rate when topology out-degree is 2. 
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Fig. 6 Final infection as a function of initial infection and quarantine 
rate when topology out-degree is 3. 

 



Fig. 4, Fig. 5 and Fig. 6 reveal that coverage of a P2P 
worm in a logical P2P overlay network will decrease 
when quarantine rate is increased. They also reveal that 
coverage of a P2P worm in a logical P2P overlay network 
will increase when either topology out-degree or the 
number of initially infected peers is increased.  

We define quarantine efficiency as a ratio of reduced 
number of final infection to number of quarantined peers. 
In other word, quarantine efficiency is defined as the 
average number of final infection each quarantined peer 
will reduce. The relationship between quarantine 
efficiency and quarantine ratio when topology out-degree 
is 1, 2 and 3 are shown in Fig. 7, Fig. 8 and Fig. 9, 
respectively. 

 

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

Quarantine Ratio (%)

Q
ua

ra
nt

in
e 

E
ffi

ci
en

cy
 (%

)

Topology Out-Degree d = 1 under Random Quarantine

 
 

Fig. 7 Quarantine efficiency (%) as a function of quarantine ratio 
(%) when initial infection ratio is set at 1% and topology out-degree is 1. 
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Fig. 8 Quarantine efficiency (%) as a function of quarantine ratio 

(%) when initial infection ratio is set at 1% and topology out-degree is 2. 
 
Fig. 7, Fig. 8 and Fig. 9 reveal the following. In the 

case of topology out-degree = 1, maximum quarantine 
efficiency of approximately 90% is achieved when 
quarantine ratio is approximately 5%. In the case of 
topology out-degree = 2, maximum quarantine efficiency 
of approximately 140% is achieved when quarantine ratio 
is approximately 40%; however, quarantine efficiency is 
still greater than 120% when quarantine ratio is 
approximately 5%. In the case of topology out-degree = 3, 
maximum quarantine efficiency of approximately 130% 
is achieved when quarantine ratio is approximately 60%; 
however, quarantine efficiency is still greater than 100% 

when quarantine ratio is approximately 5%. Therefore, 
when we only know topology out-degree is not greater 
than 3 but do not know its exact value, a quarantine ratio 
of 5% could be chosen because it will lead to quite, if not 
most, high quarantine efficiency. 
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Fig. 9 Quarantine efficiency (%) as a function of quarantine ratio 

(%) when initial infection ratio is set at 1% and topology out-degree is 3. 

V.  CONCLUSIONS AND FUTURE RESEARCH 

In this paper, based on our extension to matrix and its 
operations, we propose our logic matrix/vector 
representations of a P2P overlay network’s topology, 
state, and quarantine status, and present our innovative 
logic matrix approach to modeling the propagation of 
P2P worms. We find, from the applications of the 
approach in our simulation experiments, that coverage of 
a P2P worm in a structured logical P2P overlay network 
will increase when either topology out-degree or the 
number of initially infected peers is increased; and that 
the former has much more significant effect on the 
coverage than the latter. It is also found that coverage of a 
P2P worm in a structured logical P2P overlay network 
will decrease when quarantine rate is increased. Our most 
significant finding is that a quarantine ratio of 5% will 
lead to quite, if not most, high quarantine efficiency when 
topology out-degree is not greater than 3.  

In the future, we are going to look for a more effective 
and efficient quarantine tactic by applying the proposed 
discrete- time deterministic propagation model of P2P 
worms in investigating the impacts of other potential 
quarantine tactics on the propagation characteristics of 
P2P worms in a logical P2P overlay network.  
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