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Abstract: This study was conducted to examine the effects of plant extract mixture, a
microencapsulated product composed of eugenol and garlic tincture (PE), on intestinal health in
broilers under necrotic enteritis (NE) challenge. A total of 960 d-old mixed-sex Cobb 500 chicks were
randomly distributed to 48-floor pens housing 20 birds per pen. Six treatments were applied: UC,
unchallenged control; CC, challenged control; PE, challenged group plus PE; AM, challenged group
plus antimicrobials (AM); FAP, challenged group plus a full dose of AM with PE; HAP, challenged
group plus a half dose of AM with PE in starter, grower and finisher phases. Birds in the challenged
groups were inoculated with Eimeria spp. on d 9 and Clostridium perfringens on d14. On d 16, CC
group had increased serum fluorescein isothiocyanate dextran (FITC-d), reduced villus surface
area, goblet cell number, upregulated CLDN1, JAM2 genes and reduced microbial diversity
compared to the UC group (p <0.05). Birds fed PE had reduced FITC-d, increased goblet cell number
and Bifidobacterium compared to the CC group (p < 0.05). Birds fed PE had reduced CLDN5
expression in male birds, and Bacteroides spp. in female birds than CC group (p < 0.05). These
findings suggest that PE supplementation mitigates the effect of NE by improved intestinal health
of birds.

Keywords: Plant extract; intestinal health; alternative to antimicrobials; clinical necrotic enteritis,
broiler chicken

1. Introduction

Necrotic enteritis (NE) is a devastating enteric bacterial disease in the highly
productive poultry industry with an estimated profitability loss of over US$6 billion per
annum [1]. It is primarily caused by Clostridium perfringens, a Gram-positive, ubiquitous,
anaerobic, spore-forming bacterium that is present in the normal intestinal flora of healthy
chickens [2]. The bacterium C. perfringens in the intestinal tract under the favourable
conditions together with one or more predisposing factors can become pathogenic due to
the overgrowth of NetB toxin-producing strains leading to the occurrence of NE. Among
many, coccidiosis and high level of animal protein are the most important predisposing
factors that were extensively studied [3,4]. Besides, other factors including a high level of
non-starch polysaccharides in feed, intestinal pH change, high stocking density,
contaminated litter or feed, and poor hygienic environment can compromise the intestinal
health of birds and create a favourable environment for the proliferation of C. perfringens,
and subsequent development of NE [5,6]. The sub-clinical form of NE is characterised by
impaired performance and reduced feed efficiency, whereas the clinical form of NE is
manifested by high flock mortality of up to 50% [7,8]. In addition, NE damages intestinal
mucosa and barrier functions by altering the expression of genes coding tight junction
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proteins. It also changes the microbial community balance and reduces diversity which
leads to a disruption of balanced microbial inhabitants [9-11].

Traditionally, in-feed antimicrobials (AM) have been used as growth promoters,
which are effective against NE. However, the ban and/or phasing-out of in-feed AM from
the poultry industry, owing to increasing public health concern about the development of
AM-resistant bacteria, has led to increased incidence of enteric diseases such as NE [12,13].
This has led to increased interest in exploring potential alternatives to in-feed AM that can
effectively control enteric diseases such as NE.

Plant extracts and their bioactive compounds have been widely used in traditional
medicine for decades [14]. In recent years, plant extracts has gained increased attention in
animal nutrition, mainly due to its beneficial effects on performance and health [15,16].
Promising effects of the plant extracts have been shown to mitigate the negative effects of
NE in broilers under challenged conditions [16,17]. Bioactive compounds derived from
plants, such as herbs and spices, are known to have antimicrobial, antifungal,
antiparasitic, anti-inflammatory, and antioxidative properties [18,19]. Studies have also
shown that the inclusion of plant extracts can modulate microbiota composition and
structure by increasing beneficial bacteria and decreasing pathogenic bacterial loads
[16,20]. It has shown that plant extracts supplementation can increase immune cells,
improve intestinal integrity and reduce oxidative stress through antioxidative and
immunomodulatory effects [19,21-23]. Among many potential plant extracts and their
bioactive compounds, the supplementations of garlic and eugenol alone or in combination
with different plant extracts have shown positive effects on growth performance and
intestinal health [24-28]. A recent study reported positive effects of a microencapsulated
product composed of eugenol and garlic tincture on performance under a subclinical NE
[29]. However, the mode of action of plant extracts in mitigating NE effects on intestinal
health is not well-documented. Moreover, the efficacy of plant extracts as alternatives to
in-feed AM in broilers under severe diseased conditions has been less known and
necessitates further investigation.

It was hypothesised that the supplementation of plant extract, a microencapsulated
product composed of eugenol and garlic tincture (PE), may help mitigate the negative
effects of clinical NE on intestinal health. This study was designed to examine the
capability of PE to improve intestinal health status under severe NE challenge. The
underlying mechanism of action of PE in controlling NE was investigated by determining
intestinal integrity, duodenal histomorphology, jejunal gene expressions, ileal and caecal
microbiota composition in NE challenged broilers. The potential of PE in the mitigation
of clinical NE effects on intestinal health was compared against an AM agent. In addition,
it was hypothesised that the supplementation of PE in combination with AM may exert
synergistic effects in improving intestinal health parameters. Therefore, the current study
was also designed to examine the effects of PE in combination with full and half dosages
of AM in broilers under clinical NE challenge and to compare their effectiveness with the
supplementation of an AM alone.
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2. Materials and Methods

2.1. Ethics statement

The study was reviewed and approved by the Animal Ethics Committee of
University of New England, Armidale, NSW 2351, Australia (AEC18-116). The study
followed all the regulations for the use of animals for scientific purposes assigned by the
Australian Bureau of Animal Health [30].

2.2. Design and husbandry

A total of 288 mixed-sex Cobb 500 birds were sampled from 960 birds used for a
performance experiment [31]. Birds were obtained on hatching day from Baiada hatchery
in Tamworth, NSW, Australia. All the birds were vaccinated against diseases such as
infectious bronchitis (spray, MSD Animal Health, Kenilworth, NJ 07033, USA) and
Newcastle disease (spray, Zoetis, Parsippany, NJ 07054, USA) at the hatchery. Upon
arrival, birds were weighed and randomly allocated to 48-floor pens measuring 75 x 120
cm? in a completely randomised design (CRD). The gender of birds was determined at an
earlier age by feather DNA sexing using high-resolution melting curve analysis [32]. Birds
were raised in a climate-controlled house with softwood shavings as bedding materials to
a depth of 8 cm. Each pen was featured a tube feeder and 3 nipple drinkers providing ad
libitum feed and freshwater. Lighting, temperature and relative humidity were
maintained following Cobb 500 guidelines [33].

2.3. Dietary treatments

Six treatment groups each with 8 replicate pens were applied in this study and each
pen housed 20 birds as an experimental unit among which randomly chosen 6 birds were
sampled for the relevant analysis. The six treatment groups were comprised of one
unchallenged group as control and 5 challenged groups to examine the effects of PE, a
microencapsulated product composed of 10% eugenol and 10% garlic tincture on
intestinal health of broilers under clinical NE challenge as shown in Table 1. The
treatments were: UC, unchallenged control, without additive or in-feed antimicrobial
(AM); CC, NE challenged control, without additive or in-feed AM; PE, NE challenged
group plus additive PE at 100 part per million (ppm); AM, NE challenged group plus AM
containing 50 ppm each active compound of narasin and nicarbazin; FAP, NE challenged
group plus a full dose of AM with PE; HAP, NE challenged group plus a half dose of AM
with PE in starter, grower and finisher phases. Diets were based on wheat, soybean meal,
sorghum, and meat and bone meal. Diets were formulated considering nutrients and the
matrix values of additives and phytase to meet the nutrient requirements of Cobb 500
birds [34]. Prior to feed formulation, the nutrient contents of feed ingredients were
determined using near-infrared spectroscopy (NIRS, Evonik AminoProx, Essen,
Germany). Diets were cold-pelleted and fed in 3 phases; starter phase (d 0 to 9), grower
phase (d 9 to 21), and finisher phase (d 21 to 35). Starter feed was crumbled further to
maximise feed intake. The detail of diet composition for each phase was reported earlier
[31].

2.4. Necrotic enteritis challenge

The NE challenge model was applied in the present study following previously
reported challenge protocols [4,35] where field strains of Eimeria spp. oocysts were
employed as a predisposing factor and C. perfringens as the causative agent to introduce
NE. In brief, on d 9, challenged birds were orally gavaged by using crop needles with field
strains of Eimeria spp. containing 5000 sporulated oocysts of both E. acervulina and E.
maxima, and 2500 sporulated oocysts of E. brunetti in 1 mL of 1% (w/v) sterile phosphate-
buffered saline (PBS) (Eimeria Pty Ltd., Ringwood, VIC, Australia). On d 14, challenged
birds were orally gavaged by using crop needles with 1 mL of C. perfringens (EHE-NE18)
containing approximately 108 CFU (CSIRO Livestock, Geelong, VIC, Australia).
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Simultaneously, unchallenged birds were orally gavaged by using crop needles with 1 mL
PBS on d 9 and sterile medium on d 14.

Table 1. Treatments applied in this study

Inclusion level; starter (d 0 to 9), . .
Necrotic enteritis

Treatments! Additives grower (d 9 to 21) and finisher (d 21
challenge?
to 35) phases, ppm

ucC - - Unchallenged
CcC - - Challenged
PE Plant extract 100 Challenged
AM Antimicrobial 50 of narasin and nicarbasin Challenged
FAP AM full dose + PE 50 +100 Challenged
HAP AM half dose + PE 25+100 Challenged

ppm = part per million.

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbasin; 50 ppm each active
compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.
2Challenged birds were orally gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14.

2.5. Sampling and FITC-d inoculation

On d 8, randomly chosen 2 birds (1 male and 1 female) from each pen were weighed,
electrically stunned (JF poultry equipment, Weltevreden Park, South Africa) and
euthanised by cervical dislocation to collect duodenal tissue samples for histomorphology
and jejunal tissue samples for gene expressions.

On d 16, 4 birds (2 males and 2 females) from each pen were randomly chosen,
weighed and orally gavaged with 1 mL fluorescein isothiocyanate dextran (FITC-d;
average molecular weight: 4,000, Sigma—-Aldrich Co., Missouri, USA) containing 4.17
mg/kg body weight on average. The inoculated birds were stunned after 2.5 h
(approximately) of inoculation by an electric stunner (JF poultry equipment, Weltevreden
Park, South Africa) and euthanised by cervical dislocation and followed by decapitation
method to collect blood, and intestinal samples. Ileal and caecal contents from 2 males and
2 females per pen were collected separately in 2 mL Eppendorf tubes and stored at -20 °C
for microbiota analysis. Approximately 2 cm of the proximal jejunal tissue from 2 males
and 2 females per pen was excised, flushed with chilled PBS and collected in 2 mL
Eppendorf tubes containing RNA later (Invitrogen, Thermo Fisher Scientific, California,
USA) and kept at 4 °C for 4 h before stored in -20 °C for gene expression analysis. Proximal
duodenal tissue from 2 males was excised, flushed with chilled PBS, fixed in 10% buffered
formalin and kept in containers containing formalin until samples were processed for
histology measurements.

Blood samples from 4 sampled birds per pen were collected separately in a clot
activator Vacutainer tube from the jugular vein by decapitation method. Blood samples
were kept at room temperature for approximately 3 h to allow clotting, centrifuged at
3,000 x g for 10 min to separate serum samples and immediately stored in a -20 °C until
the measurements were performed.

2.6. Serum FITC-d measurement

Fluorescence concentrations of diluted serum (1:1 in PBS) were determined at the
excitation wavelength of 485 nm and an emission wavelength of 528 nm on a multi-mode
microplate reader (SpectraMax M2e, Molecular Devices, San Jose, USA) and FITC-d
concentration per mL of serum was calculated based on a standard curve constructed with
a known concentration of FITC-d and expressed as pg/mL corrected with the individual
body weight of the birds.
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2.7. Histomorphology

Proximal duodenal tissues collected from male birds only for intestinal morphology
were sectioned (4 um) and processed using standard Haematoxylin and Eosin assay as
described by [36]. Villus height (VH), crypt depth (CD) and villus width (VW) were
measured with a minimum of 25 villi and associated crypts randomly chosen for
measurements. A previously described formula [37] was used to calculate villus surface
area (VSA); VSA= 2n(VW/2)(VH). Periodic acid-Schiff staining was used to visualise
goblet cells. Goblet cell numbers were counted with a minimum of 20 villi and associated
crypts randomly chosen for measurements and expressed as goblet cell numbers per
villus. Slides were scanned and parameters were measured using NDP.view 2.5 software
(Hamamatsu Photonics K.K., Higashi-ku, Hamamatsu city, 431-3196, Japan).

2.8. RNA extraction and cDNA synthesis

Total RNA from each jejunal tissue sample collected on d 8 and d 16 was extracted
after homogenisation in TRIsure™ (Bioline, Sydney, Australia) according to the
manufacturer’s instructions and following the method described by Samiullah et al. [38]
with slight modifications. Approximately 60 mg of jejunal tissue samples were placed
with a 3 mm metal bead in a 2 mL Eppendorf tube. Then, 1 mL TRIsure was added to the
Eppendorf tube and homogenised well using IKA homogeniser. After homogenisation,
the samples were incubated for 5 min at room temperature. After incubation, 200 uL of
chloroform was added and shaked vigorously by hand for 15 sec and followed by
incubation for 3 min at room temperature. The samples were centrifuged at 12000 x g for
15 min at 4 °C. The aqueous phase of the samples was transferred (upper phase) very
carefully into a 1.5 mL tube. A volume of 0.5 mL chilled isopropyl alcohol was added and
shaked vigorously by hand and followed by incubation for 10 min at room temperature.
The samples were centrifuged for 10 min at 12000 x g at 4 °C. The RNA pellet was visible
at this stage. All supernatant alcohol was removed and 1 ml of 75% ethanol was added to
wash the pellet. The samples were vortexed and centrifuged at 7500 x g for 5 min at 4 °C.
Again, all the supernatant alcohol was removed. Then the RNA pellet was re-dissolved in
150 pL of Nuclease free water and pipetted the solution up and down until the pellet was
completely dissolved in the water. The extracted RNA samples were stored at -80 °C. The
extracted RNA samples were purified using Rneasy Mini Kit, (Qiagen, Hilden, Germany)
based on the manufacturer's instructions. Approximately 100 uL of extracted RNA
samples were taken in 2 mL Eppendorf tube and 0.6 mL of the Lysis buffer RLY-ethanol
premix (1:1 ratio) was added. The samples were then mixed by vortexing. Then, the
ISOLATE II filter (violet) wsas placed in a collection tube and the lysate (RNA samples
with Lysis buffer RLY-ethanol premix) was loaded in the filter and followed by
centrifugation at 11000 x ¢ for 1 min. The ISOLATE II filter was discarded. A volume of
350 pl 70% ethanol was added to homogenise the lysate. The samples were pipetted up
and down (5 times) for mixing properly. Then, the lysate was pipetted 2-3 times and
loaded to the newly placed ISOLATE II RNA mini-column (blue) in a 2 mL collection tube
and centrifuged at 11000 x g for 30 sec. The column was placed in a new 2 mL collection
tube. A volume of 350 pul Membrane Desalting Buffer (MEM) was added and centrifuged
at 11,000 x ¢ for 1 min to dry the membrane. After that, 100 ul of DNase I (RDN) reaction
mixture was prepared by adding 10ul reconstituted DNase I to 90 ul Reaction buffer and
mixed the mixture by flicking, gently. A volume of 95 ul DNase I reaction mixture was
added directly onto the centre of the silica membrane and followed by incubation for 15
min at room temperature. Then, the samples were washed 3 times using wash buffer (200
ul RW1, 600 pl RW2 and 250 pl RW2) and centrifuged each time with a new collection
tube to dry the cilica membrane. After that, a volume of 100 pl of Nuclease-free water was
added directly onto center of the silica membrane and followed by centrifugation at 11,000
x ¢ for 1 min. The column was discarded and the purified RNA sample was stored at -80
°C. The quantity and purity of total RNA samples were measured using a NanoDrop ND-
8000 spectrophotometer (Thermo Fisher Scientific, Waltham, USA). An RNA 6000 Nano
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kit was applied to determine RNA integrity number (RIN) using the Agilent 2100
Bioanalyzer (Agilent Technologies, Inc., Waldbronn, Germany). The purified RNA
samples were considered as high-quality if the value of 260/230 was higher than 1.8,
260/280 value between 2.0 to 2.2, and the RIN number was greater than 7.0. The isolated
RNA of the tissue sample was reverse-transcribed using the QuantiTect Reverse
Transcription Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. In brief, one pg of each total RNA sample was incubated at 42 °C for 2 min
in 2 ul of 7 x genomic DNA (gDNA) Wipeout Buffer to avoid gDNA contamination. After
that, the gDNA elimination reaction was added to reverse-transcription reaction
components contained one pl of Quantiscript Reverse Transcriptase, 4 pl of 7 x
Quantiscript RT Buffer, and one pl of RT Primer Mix and mixed appropriately. The
Rotorgene 6000 real-time PCR machine (Corbett, Sydney, Australia) was applied to
incubate the mixture at 42 °C for 15 min followed by 95 °C for 3 min to convert the RNA
into cONA. The cDNA samples were then diluted 10 times with Nuclease-free water and
kept at -20 °C for further analysis.

2.9. Real-time quantitative polymerase chain reaction (RT-gPCR)

Amplification and detection were performed in duplicates using an SYBR Green kit
SensiFAST™ SYBR® No-ROX (Bioline, Sydney, Australia) with Rotorgene 6000 real-time
PCR machine (Corbett Research, Sydney, Australia). The PCR reaction was carried out in
a volume of 10 pL containing 2 pL of 10 x diluted cDNA template, 400 mm of each primer,
and 5 pL of 2 x SensiFAST™ SYBR® No-ROX. A total of 8 house-keeping genes, namely,
GAPDH, YWHAZ, 185, ACTB, HMBS, HPRT1, SDHA, and TBP were used for the
optimisation of reference genes using the gene expression stability measure (geNorm M)
module in gbase+ software version 3.0 (Biogazelle, Zwijnbeke, Belgium). The two most
stable house-keeping genes with the lowest M- value (< 0.5), TBP (M- value = 0.383) and
YWHAZ (M- value = 0.383) for d 8 and GAPDH (M- value = 0.085) and TBP (M- value =
0.088) for d 16 were chosen as optimised reference genes to normalise the expression of
the target genes. The amplification cycle (Cq) values for candidate target genes were
collected and imported into qBase+ version 3.0 software (Biogazelle, Zwijnbeke, Belgium)
and analysed against the reference genes. The gBase+ employed the arithmetic mean
method to transform logarithmic Cq values to linear relative quantity applying the
exponential function for relative quantification of genes [39,40] and the output data was
exported for the statistical analysis. The normalized relative quantities (NRQ) values were
calculated and analysed across all samples for each target gene. The primers employed in
this study were either sourced from previously published studies as presented in Table 2.
Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.,, Waldron, Germany) was used to
determine the specificity of each primer pair prior to gqPCR analysis using Agilent DNA
1000 Kit (Agilent Technologies, Inc.,, Waldron, Germany), and only specific primers
amplifying target fragments were used in the qPCR assay.
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Table 2. Sequences of primers used for quantitative real-time PCR

Annealing
Item Sequence Size (pb) temperature Reference
(°0)
F-GGATGTTTATTTGGGCGGC . .
TJ]P1 R-GTCACCGTGTGTTGTTCCCAT 187 60 Gharib-Naseri et al. [41]
F- ACGGCAGCACCTACCTCAA
OCLN R GGGCGAAGAAGCAGATGAG 123 60 Duetal. [42]
F-CTTCATCATTGCAGGTCTGTCAG ) .
CLDN1 R-AAATCTGCTGTTAACGGCTGTG 103 60 Gharib-Naseri et al. [41]
F-GCAGGTCGCCAGAGATACAG
CLDN5 R-CCACGAAGCCTCTCATAGCC 162 61 Kumar et al. [43]
F-AGACAGGAACAGGCAGTGCTAG
JAMZ R ATCCAATCCCATTTGAGGCTAC 135 60 Kumar et al. [43]
F- CCCTGGAAGTAGAGGTGACTG
MUCZ  p TGACAAGCCATTGAAGGACA 143 60 Fanetal. [44]
Reference genes on d 8
F-TAGCCCGATGATGCCGTAT .
TBP R GTTCCCTGTGTCGCTTGC 66 61 Lietal. [45]
F- TTGCTGCTGGAGATGACAAG .
YWHAZ R- CTTCTTGATACGCCTGITG 61 60 Bagés et al. [46]
Reference genes on d 16
F: GAAGCTTACTGGAATGGCTTTCC . .
GAPDH R: CGGCAGCTCAGCTCAACAA 66 61 Kuchipudi et al. [47]
F-TA ATGAT TAT
TBP GCCCGATGATGLCG 147 62 Li et al. [45]

R- GTTCCCTGTGTCGCTTGC

TJP1 = Tight junction protein 1; OCLN = Occludin; CLDN 1 = Claudinl; CLDN5 = Claudin 5; JAM2 = Junctional Adhesion Molecule
2; MUC2 = Mucin 2; TBP = TATA-Box Binding Protein; YWHAZ = Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase
Activation Protein Zeta; GAPDH = Glyceraldehyde 3-phosphate dehydrogenase.

2.10. Extraction of ileal bacterial DNA

The DNA from frozen ileal digesta samples collected on d 16 was extracted using a
QIAamp DNA Stool Mini Kit, Catalogue No. 51,504 (Qiagen, Inc., Hilden, Germany)
following the method described by Kheravii et al. [48].

2.11. Extraction of cecal bacterial DNA

The DNA of frozen caecal digesta samples collected on d 16 was extracted using
PowerFecal QIAcube® HT Kit (Qiagen, Inc., Hilden, Germany) following the method
described by Kumar et al. [49].

2.12. Quantification of ileal and caecal bacterial DNA

The bacterial DNA quantification methods described previously [50,51] were
employed in the current study. Briefly, the extracted ileal and caecal digesta DNA was
diluted 20 times in nuclease-free water, and 8 major bacterial groups were quantified
through quantitative real-time PCR with Rotorgene 6000 (Corbett, Qiagen, Inc., Hilden,
Germany). The master mix containing SYBR-Green (SensiMix SYBR No-Rox, Bioline,
Tennessee, USA) was used for duplicated qPCR reactions for each sample. The reaction
in a total volume of 10 uL containing 2 pL of diluted caecal DNA, 300 mmol/L of forward
and reverse primers, and 5 pL of 2 x SensiMix. The reaction mix containing SYBRGreen
was used for the quantification of genomic DNA copies of Lactobacillus spp.,
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Bifidobacterium spp., Bacteroides spp., Bacillus spp., Ruminococcus spp., Enterobacteriaceae, 294
total anaerobic bacteria. SensiFAST Probe SYBR No-ROX (Bioline, Tennessee, USA) was 295
used for C. perfringens for the Tagman-based assay. The specific 165 rRNA primers applied 29
for quantifying these bacterial groups are shown in Table 3. The number of target DNA 297
copies was calculated and bacterial quantity was expressed as logio (genomic DNA copy 298
number)/g digesta. 299
Table 3. The specific primers used for quantifying bacteria in ileal and caecal digesta 300
) ) Annealing
Bacteria group Primer sequence (5’ —3") Reference
temperature (°C)
' F- CAC CGC TAC ACA TGG AG 63 Rinttild et al.
Lactobacillus spp.
R- AGC AGT AGG GAATCTTCC A [52]
o ) F- GCG TCC GCT GTG GGC Requena et al.
Bifidobacterium spp. 63
R- CTT CTC CGG CAT GGT GTIT G [53]
. F- GAG AGG AAG GTC CCC CAC Layton et al
Bacteroides spp. 63
R- CGCTACTTG GCT GGT TCA G [54]
4 F- GCA ACG AGC GCA ACCCTT GA
Bacillus spp. 63 Zhang et al. [55]
R- TCA TCC CCA CCT TCC TCC GGT
) F- GGC GGC YTR CTG GGC TTT Ramirez-Farias
Ruminococcus spp. 63
R- CCA GGT GGA TWA CTT ATT GTGTTA A et al. [56]
F- CAT TGA CGT TAC CCG CAG AAG AAGC Bartosch et al.
Enterobacteriaceae 63
R- CTC TAC GAG ACT CAA GCT TGC [57]
F- ATG CAA GTC GAG CGA KG
Rinttild et al.
Clostridium R- TAT GCG GTATTA ATCTYCCITT
. 60 [52]; Wise and
perfringens TagMan Probe-5-FAM-TCA TCA TTC AAC CAA i
Siragusa [58]
AGG AGC AAT CC-TAMRA-3’
F- CGG YCC AGA CTCCTA CGG G
Total bacteria 63 Lee et al. [59]
R-TTA CCG CGGCTGCTGGCAC
2.13. 16S rRNA gene sequencing and data analysis 301

The V3-V4 regions of 165 rRNA genes were sequenced using Illumina MiSeq 2 x 302
300bp paired-end sequencing with 341f and 805r primers. The quality of the sequence 303
reads was checked with fastQC v0.11.9 [60]. The upstream analysis of sequence was 304
performed with QIIME2 [61] by employing DADA?2 [62] plugin for quality control and 305
denoising. The downstream statistical analysis of the amplicon sequence variant (ASV) 306
matrix and visualisation was performed with Calypso (http://cgenome.net:8080/calypso- 307
8.84) [63]. Experimental treatments and sex were set as biological condition and secondary 308
group, respectively. Two-way ANOVA analysis was performed for the univariate 309
analysis in Calypso. 310

2.14. Data analysis 311

All data generated in this study were examined for normal distribution before 312
statistical analysis. The histomorphology data were analysed as a completely randomised = 313
design using Fit Model of JMP® 14.0 (SAS Institute, Cary, NC, USA). The significant 314
differences between means were separated by the Least significant difference test. Data 315
collected from both male and female birds were subjected to 2-way ANOVA analysisasa 316
6 x 2 factorial arrangement to assess the main effects of the experimental treatment and 317


http://cgenome.net:8080/calypso-8.84
http://cgenome.net:8080/calypso-8.84

sex, and interaction of treatment x sex. The means were declared significantly different at
p <0.05.

3. Results

3.1. Serum FITC-d concentration

The effects of NE challenge and PE on serum FITC-d in broilers are shown in Table
4. Two-way ANOVA analysis indicated the main effect of experimental treatments was
significant on serum FITC-d concentration on d 16 (p <0.001). Sex effect was not significant
(p = 0.064) and there was no interaction between experimental treatment and sex (p =
0.502). The NE challenge significantly increased serum FITC-d concentration in the CC
group compared to the UC group. The supplementation of PE reduced serum FITC-d
concentration compared to the CC group, but increased it compared to the AM group.
Birds fed FAP had similar but fed HAP had higher serum FITC-d concentration compared
to the AM group.

Table 4. Effect of PE and NE challenge on serum FITC-d (ug/mL) on day 16*

Treatment? Serum FITC-d
Experimental treatment
ucC 0.2214
CcC 0.6472
PE 0.558>
AM 0.458¢
FAP 0.428¢
HAP 0.548v
SEM 0.018
Sex
Male 0.462
Female 0.491
SEM 0.011
p-value
Experimental treatment <0.001
Sex 0.064
Experimental treatment*Sex 0.502

PE = plant extract; NE = necrotic enteritis; FITC-d = fluorescein isothiocyanate dextran.

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin
and nicarbazin; 50 ppm each active compound); FAP, full dose of AM plus PE; HAP, half dose of
AM plus PE.

2Challenged birds were orally gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14.
a-<Values in a column with no common superscripts differ significantly (p < 0.05).

3.2. Histomorphology and goblet cell number

The effects of NE challenge and PE on duodenum histology on d 8 and d 16 are
presented in Table 5. One-way ANOVA analysis indicated that goblet cell number per
villus on d 8 (p = 0.041) showed significant differences. Prior to the NE challenge (d 8),
goblet cell numbers per villus were not different between UC and CC groups as expected.
Birds fed PE had similar goblet cell numbers per villus compared to the CC and AM
groups. However, birds fed FAP had higher goblet cell numbers per villus compared to
UC and CC while not significantly different from the rest of the additive groups.
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One-way ANOVA analysis indicated that VH (p < 0.001), CD (p < 0.001), VH:CD (p <
0.001), VSA (p < 0.001) and goblet cell number per villus (p < 0.001) on d 16 showed
significant differences. The NE challenge without supplementations significantly
decreased VH, VH:CD, VSA, goblet cell number per villus and increased CD and VW.
Birds supplemented with PE had increased goblet cell numbers per villus compared to
the CC group but VW, VH, CD, VH:CD and VSA were not different. Compared to the AM
group, birds fed PE had lower VH, CD and VSA whereas no differences were observed
for VW, VH:CD and goblet cell numbers per villus. Birds fed AM, FAP and HAP had
similar VH, CD, VH:CD VSA and goblet cell numbers per villus, while FAP group had
higher VW than HAP.

Table 5. Effects of PE and NE challenge on histomorphology in broilers on d 8 and d 16!

NE challenged?
Item ucC SEM p-value
CC PE AM FAP HAP

d 8 (before NE challenge)
VH, pym 1471 1460 1514 1480 1523 1495 32 0.715

CD, um 219 218 209 222 217 210 8 0.789
VW, um 149 146 149 148 149 147 2 0.788
VH:CD 6.75 6.76 7.31 6.72 7.03 7.17 0.20 0.198
VSA, mm? 0.686 0.669 0.707 0.686 0.714 0.687 0.015 0.323
Goblet cell

89.7¢ 90.3b¢ 93.5abe 92.74abe 96.32 94 .9ab 1.6 0.041

number/villus
d 16 (after NE challenge)
VH, pm 16852 10574 1153 1306b 1316b 1290« 35 <0.001

CD, um 236¢ 365 349> 391a 3962 372ab 14 <0.001
VW, um 1724 212¢ 215be 2303k 2452 222be 6 <0.001
VH:CD 7.232 2.94¢ 3.36b¢ 3.34be 3.33be 3.48p 0.17 <0.001
VSA, mm? 0.9092b 0.703¢ 0.780p« 0.9422 1.0152 0.897: 0.032 <0.001
Goblet cell

92.4a 59.74 68.1¢ 74.8bc 77.8> 75.7vc 2.8 <0.001

number/villus

NE = necrotic enteritis; PE, plant extract; VH = villus height; CD = crypt depth; VW = villus width; VSA = vllus surface area

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active
compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.

2Challenged birds were orally gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14

a-cValues in a row with no common superscripts differ significantly (p < 0.05).

3.3. Jejunal gene expression on d 8

The effects of experimental treatment and sex on jejunal gene expressions on d 8 are
presented in Table 6. Two-way ANOVA analysis indicated a significant main effect of sex
on OCLN (p = 0.033) and TJP1 (p = 0.026), where female birds had a lower expression of
OCLN and higher expression of T/P1 genes compared to the male birds. The expression
of CLDN1 and MUC2 genes were not different between male and female birds.
Experimental treatments had no effects on CLDN1, MUC2, OCLN and TJP1 genes, and no
interaction between experimental treatment and sex was observed on these genes (p >
0.05) on d 8.

Table 6. Experimental treatment and sex as main effects on jejunal gene expressions before challenge (d 8)*

Treatment CLDN1 Mucz OCLN TJP1
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Experimental treatment

ucC 1.025 1.187 1.122 1.142
CcC 1.023 1.140 1.117 1.057
PE 1.028 0.965 1.031 1.143
AM 1.057 1.145 0.989 1.027
FAP 1.075 1.063 0.976 1.091
HAP 1.133 1.096 1.187 1.074
SEM 0.094 0.111 0.096 0.109
Sex
Male 1.015 1.121 1.1552 0.988>
Female 1.099 1.077 0.985° 1.1902
SEM 0.055 0.064 0.055 0.063
p-value
Experimental treatment 0.959 0.777 0.568 0.968
Sex 0.278 0.633 0.033 0.026
Experimental treatment*Sex 0.996 0.563 0.569 0.381

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active
compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE. 2-*Values in a column with no common superscripts differ

significantly (p <0.05).

3.4. Jejunal gene expression on d 16

The effects of experimental treatment and sex on jejunal gene expressions on d 16 are
shown in Table 7. Two-way ANOVA analysis demonstrated significant main effects of
experimental treatment on CLDN1 (p < 0.001) and JAM2 (p < 0.001) gene expression and
sex on TJP1 (p = 0.038) gene expression. There was no interaction between experimental
treatment and sex (p > 0.05).

The NE challenge without supplementations upregulated the expression of CLDN1
and JAM?2 genes, but not T/P1. The expression of CLDN1 gene was not different among
the challenged groups with or without additives supplementation. The expression of
JAM?2 was not different between PE and CC groups but higher in the PE supplemented
birds compared to the AM group. The expression of JAM?2 was not different between FAP
and AM groups but higher in the HAP group compared to the AM group. The gene TJP1
was downregulated in female birds compared to the male birds but the expression of
CLDN1 and JAM2 genes were not different between male and female birds on d 16.

The expression of genes CLDN5, OCLN, and MUC2 is shown in Table 8. Two-way
ANOVA analysis showed that there was an interaction between experimental treatment
and sex on the expression of CLDN5 (p = 0.004), OCLN (p < 0.001) and MUC2 (p = 0.029)
genes. Birds fed PE, AM, FAP had downregulated CLDN5 gene compared to the CC group
in male birds but not in the female birds. Also, the UC and CC male birds had higher
expression of CLDN5 than the counterpart female birds, while FAP male birds had lower
expression than the counterpart female birds. The challenged groups with or without
additives supplementation had downregulated OCLN gene compared to the UC group in
the male birds but no difference was observed in female birds. Birds in CC group had
reduced MUC2 compared to UC but the extent of reduction differed between males and
females with the male birds responded to a greater extent. Birds fed FAP and HAP had
upregulated MUC2 gene compared to the CC group in male birds but not in female birds.
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Table 7. Experimental treatment and sex as main effects on jejunal gene expressions on d 16* 403

Treatment CLDN1 TJP1 JAM?2
Experimental treatment
ucC 0.5400 1.148 0.818¢
CC 1.4292 0.986 1.1982
PE 1.3122 1.143 1.120%
AM 1.1812 1.163 0.893¢d
FAP 1.1512 1.154 1.008bc
HAP 1.2952 1.157 1.096%
SEM 0.128 0.090 0.060
Sex
Male 1.153 1.2262 1.050
Female 1.150 1.024> 0.989
SEM 0.074 0.052 0.035
p-value
Experimental treatment <0.001 0.721 <0.001
Sex 0.965 0.008 0.214
Experimental treatment*Sex 0.151 0.723 0.085
UG, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 404
50 ppm each active compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE. 405
2-¢Values in a column with no common superscripts differ significantly (p <0.05). Challenged birds were orally 406
gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14. 407

408
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Table 8. Interactions between experimental treatment and sex on jejunal gene expressions on d 162

Sex Treatment CLDN5 OCLN Mucz
ucC 1.2212 2.191= 2.0412
CcC 1.3632 1.117bcd 0.7074
Male PE 0.984b<d 1.270° 0.956b¢
AM 0.8314 1.160b¢ 1.005b<d
FAP 0.878¢ 1.217b¢ 1.186b¢
HAP 1.0392bcd 1.102bd 1.248p¢
ucC 0.8164 0.999bcde 1.3290
CcC 0.99Qbed 0.767¢ 0.870¢
Female PE 1.245% 0.677¢ 0.874«
AM 0.944bed 0.809¢ 1.080b<d
FAP 1.280q® 0.822de 1.224bc
HAP 1.175abc 0.907<de 1.018p«d
p-value
Experimental treatment 0.243 <0.001 <0.001
Sex 0.750 <0.001 0.108
Experimental treatment*Sex 0.004 <0.001 0.029

1UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin;
50 ppm each active compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.

a-<Values in a column with no common superscripts differ significantly (p < 0.05). Challenged birds were orally
gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14.

3.5. lleal bacterial load by qPCR

The main effects of experimental treatment and sex on ileal microbiota on d 16 are
shown in Table 9. Two-way ANOVA analysis demonstrated significant main effects of
experimental treatment on Lactobacillus spp. (p < 0.001) Bifidobacteria spp. (p < 0.001), total
bacteria (p <0.001), Bacillus spp. (p <0.001), Enterobacteriaceae (p < 0.001), and C. perfringens
(p < 0.001), and sex on Lactobacillus spp. (p = 0.008), Bacillus spp. (p = 0.039) and
Ruminococcus spp. (p < 0.001). There was no interaction between experimental treatments
and sex (p > 0.05) except for Bacteroides spp. (p = 0.044).

The NE challenge significantly increased Lactobacillus spp. and Bifidobacteria spp.,
Bacillus spp., Enterobacteriaceae, C. perfringens and total bacteria loads in the CC group
compared to the UC group. Birds fed PE had similar Lactobacillus spp. and Bifidobacteria
spp., Bacillus spp., Enterobacteriaceae, C. perfringens and total bacteria loads compared to
the CC group, and had higher loads compared to the AM group. Birds fed FAP and HAP
had similar Lactobacillus spp. and Bifidobacteria spp., Bacillus spp., Enterobacteriaceae and
total bacteria loads whereas the HAP group had higher C. perfringens loads compared to
the AM group. Female birds had increased Lactobacillus spp., Bifidobacteria spp. and
Ruminococcus spp. compared to the male birds. The interaction between experimental
treatment and sex on Bacteroides spp. in the ileal content is shown in Figure 1. Birds fed PE
and HAP had decreased Bacteroides spp. loads compared to the CC group in female birds
but not in male birds.
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Table 9. Experimental treatment and sex as main effects on ileal microbiota on d 16*

Enteroba C.
Treatment Lactobac — Bifidob Bacillus Ruminoc cteriacea perfringe Total
illus acteria occus bacteria
e ns
Experimental treatment
ucC 7.264 5.96¢ 6.074d 5.69 5.30¢ 3.94¢ 8.82d
CcC 8.202 6.867 6.812b 6.08 8.21a 9.162 9.92a
PE 8.062 6.742> 6.952 5.68 8.112 8.94zb 9.752b
AM 7.57¢d 6.42¢d 6.63b¢ 5.75 7.18v 4.99¢ 9.40¢
FAP 7.51d 6.2(de 6.58¢ 5.61 7.08p 5.19¢ 9.41c¢
HAP 7.72b¢ 6.53b¢ 6.8120 5.59 7.24b 7.73p 9.57¢b¢
SEM 0.10 0.09 0.07 0.16 0.21 0.46 0.10
Sex
Male 7.610 6.52 6.58b 5.35b 7.09 6.50 9.46
Female 7.837 6.38 6.707 6.112 7.28 6.81 9.50
SEM 0.06 0.05 0.04 0.09 0.12 0.27 0.06
p-value
Experimental treatment <0.001 <0.001 <0.001 0.244 <0.001 <0.001 <0.001
Sex 0.008 0.070 0.039 <0.001 0.271 0.412 0.608
Experimental treatment*Sex 0.460 0.193 0.160 0.109 0.436 0.557 0.255

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active
compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.
a-<Values in a column with no common superscripts differ significantly (p <0.05). Challenged birds were orally gavaged with Eimeria
spp. on d 9 and Clostridium perfringens on d 14.
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Experimental treatment X sex, p = 0.044
23
3.2

5.1
5 abc abe
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44
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0

UC CC PE AM FAP HAP

Male = Female

Figure 1. Interaction between experimental treatment and sex on Bacteroides spp. loads on d 16 in ileal content. UC, unchallenged control; CC,
challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active compound); FAP, full dose of AM plus PE;
HAP, half dose of AM plus PE. Challenged birds were orally gavaged with Eimeria spp. on d 9 and Clostridium perfringens on d 14. 2-¢ Mean

values with no common superscripts differ significantly (p < 0.05).

3.6. Caecal bacterial load by qPCR

The effects of experimental treatment and sex on caecal microbiota on d 16 are shown
in Table 10. Two-way ANOVA analysis showed significant main effects of experimental
treatment on Lactobacillus spp. (p < 0.001), Bifidobacteria spp. (p = 0.007), total bacteria (p =
0.018), Bacillus spp. (p < 0.001), Ruminococcus spp. (p < 0.001), Enterobacteriaceae (p <0.001),
and C. perfringens (p < 0.001), and sex on Lactobacillus spp. (p < 0.001), Bifidobacteria spp. (p
= 0.007), Ruminococcus spp. (p = 0.031) and total bacteria (p = 0.007). There was no
interaction between experimental treatments and sex (p > 0.05).

The NE challenge significantly increased Lactobacillus spp., Bifidobacteria spp.,
Enterobacteriaceae, C. perfringens, total bacteria and decreased Bacillus spp. and
Ruminococcus spp. loads (CC vs UC). Birds fed PE had decreased Lactobacillus spp. load
compared to the CC group but Bifidobacteria spp., total bacteria, Bacillus spp., Ruminococcus
spp., Enterobacteriaceae, C. perfringens loads were not different. Birds fed PE had similar
Bifidobacteria spp., Bacillus spp., Ruminococcus spp., total bacteria but had higher
Lactobacillus spp., Enterobacteriaceae and C. perfringens loads compared to the AM group.
Birds fed FAP and HAP had similar Lactobacillus spp., Bifidobacteria spp., Bacillus spp.,
Ruminococcus spp. Enterobacteriaceae and total bacteria loads whereas the HAP group had
increased C. perfringens loads compared to the AM group. Female birds had increased
Lactobacillus spp., Bifidobacteria spp., total bacteria and decreased Ruminococcus spp.
compared to the male birds.
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Table 10. Experimental treatment and sex as main effects on caecal microbiota on d 16*

Enterob  C.
Treatment Lactoba  Bifidob  Bactero Bacillus Rumino acteriac  perfring Total
cillus acteria  ides coccus bacteria
eae ens
Experimental treatment
ucC 8.64¢ 8.46b¢ 5.85 7.64 9.572 8.484 0.27¢ 10.79¢
CcC 9.412 8.65 6.01 6.84¢ 9.04° 10.622 9.622 11.052
PE 9.09° 8.542b 5.88 7.02b¢ 9.05b 10.23% 9.29: 10.85%
AM 8.41¢ 8.40b¢ 5.78 7.20v 9.14° 9.28¢ 2.89° 10.64°
FAP 8.43¢ 8.36¢ 5.80 7.36% 9.21v 9.43¢ 3.87° 10.68°
HAP 8.64¢ 8.502b¢ 5.85 7.17be 9.08v 9.79b¢ 8.802 10.832®
SEM 0.11 0.06 0.07 0.13 0.06 0.15 0.58 0.09
Sex
Male 8.27° 8.31P 5.85 7.17 9.242 9.59 5.44 10.71°
Female 9.272 8.66° 5.87 7.22 9.13b 9.69 6.14 10.902
SEM 0.06 0.03 0.04 0.07 0.04 0.09 0.33 0.05
p-value
Experimental treatment <0.001 0.007 0.242 <0.001 <0.001 <0.001 <0.001 0.018
Sex <0.001 <0.001 0.742 0.655 0.031 0.457 0.136 0.007
Experimental treatment*Sex 0.670 0.100 0.553 0.761 0.665 0.538 0.538 0.592

'UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active
compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.

a-<Values in a column with no common superscripts differ significantly (p <0.05). Challenged birds were orally gavaged with Eimeria
spp. on d 9 and Clostridium perfringens on d 14.

3.7. Caecal microbiota diversity

A total of 96 caecal DNA samples from different treatment groups (male = 48 and
female = 48 birds) were sequenced for this study. Microbial community composition on d
16 is shown in Figure 2A, clustered bar chart of 20 most abundant genera and sequence
reads per sample in Figure 2B. There were significant differences in alpha diversity indices
(Figure 3A-D) among different treatment groups as assessed by Richness (p = 7e?), Chaol
(p = 4.5e%), Shannon index (p = 4.5e%) and Simpson’s index (p < 0.001). There were no
significant differences in alpha diversity in male and female birds as assessed by Richness
(p=0.91), Chaol (p =0.82), Shannon index (p = 0.37) and Simpson’s Index (p = 0.26). Alpha
diversity indices showed that the NE challenge significantly decreased richness (Richness
and Chaol indexes) and evenness (Shannon and Simpson indexes) as compared between
CC group and UC group. Birds fed PE had similar richness and evenness to the CC and
AM groups. Birds fed FAP and HAP had similar richness and evenness to the AM group.
Multivariate analysis, PCoA Bray-Curtis and RDA (p < 0.001) of OTU abundance were
tested for visualisation (Figure 3E, F, respectively). The RDA and PCoA analysis showed
that the UC group and CC were distinctly separated whereas the CC and PE were grouped
closely. The PE and AM were grouped separately whereas the AM and FAP were grouped
closely while the HAP was grouped in between PE and AM groups as expected.

The microbiota community differences at the genus level were compared in different
treatment groups as well as male and female birds using the linear discriminant analysis
(LDA) effect size method (LEfSe, Figure 4A, B). The LEfSe analysis identified that the UC
group was characterised with Faecalibacteria, unclassified Lachnospiraceae, unclassified
Bacillaceae and Candidatus Arthromitus. The CC group was characterised with Clostridium,
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Eubacterium and Subdoligranulum. The PE group was identified to have the most 493
abundance of unclassified and Bifidobacterium among all the groups. The male birds were 494
characterised with Oscillospira and the female birds were characterised with Enterococcus. 495

Two-way ANOVA analysis showed a significant main effect of experimental 496
treatment (Figure 5) on Proteobacteria, Actinobacteria, Tenericutes, Firmicutes and 497
unclassified phyla (adjusted p < 0.001 for all, Bonferroni). There was no sex effect at 498
phylum level (adjusted p > 0.05) and no interaction between experimental treatment and 499
sex (p > 0.05). The NE challenge significantly increased the abundance of Proteobacteria 500
and Actinobacteria, and decreased Firmicutes, Tenericutes and unclassified phyla. The 501
abundance of bacteria at phylum level was not different between the CC and PE groups. = 502
Birds fed PE had a similar abundance of Firmicutes compared to the AM group. Birds fed 503
FAP had a similar abundance of bacteria at phylum level compared to the AM group, 504
while birds fed HAP had a different abundance of Proteobacteria, Actinobacteria, 505
Tenericutes and unclassified phyla from AM group, but a similar abundance of 506

Firmicutes. 507
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Figure 2. Microbial community composition on d 16 (A) Clustered barchart showing 20 most abundant genera and (B) Sequence reads per sample.
UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin and nicarbazin; 50 ppm each active compound);
FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.
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Figure 3. Diversity of microbiota in the caecal content on d 16 showing alpha diversity indicesindices (A) Richness (p = 7e%7), (B) Shannon

Index (p = 4.5e°%), (C) Chaol (p = 4.5 and (D) Simpson’s Index (p < 0.001), and beta diversity (E) Principal coordinate analysis and (F)

Redundancy analysis (p < 0.001) at OTU level. UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial (narasin

and nicarbazin; 50 ppm each active compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.
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Figure 4. Relative abundance of caecal microbiota on d 16 showing linear discriminant analysis (LDA) effect size method (LEfSe) (A) treatment

groups and (B) sex. UC, unchallenged control; CC, challenged control; PE, plant extract; AM, antimicrobial.
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Figure 5. Relative abundance of caecal microbiota at phylum level on d 16. UC, unchallenged control; CC, challenged control; PE, plant extract;

AM, antimicrobial (narasin and nicarbazin; 50 ppm each active compound); FAP, full dose of AM plus PE; HAP, half dose of AM plus PE.
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4. Discussion

Supplementation of plant extracts to some extent has shown to be effective against
sub-clinical form of NE as reported in recent reviews [16-18]. However, the mechanism of
action of plant extracts on intestinal health is still not fully understood. Moreover, to be
potential alternatives to in-feed AM in the poultry industry, it necessitates examining the
efficacy of feed additives under severe diseased conditions. The current study assessed
the effects of PE, a microencapsulated product composed of eugenol and garlic tincture
on intestinal permeability, duodenal histomorphology, jejunal gene expressions, ileal and
caecal microbiota of birds under a clinical NE challenge. The objective was to investigate
the potential of PE supplementation in diet to modulate intestinal environment of broilers,
especially under challenged condition. The results observed in this study showed that
birds supplemented with PE had reduced serum FITC-d, increased goblet cell numbers
per villus, downregulated CLDN5 gene in male birds and decreased Bacteroides spp. loads
in female birds compared to the CC group. Furthermore, PE supplementation reduced
CD, and had no differences of VW, VH:CD, goblet cell numbers per villus and alpha
diversity indices compared to the AM group. These findings support the hypothesis that
dietary inclusion of PE improves intestinal integrity and helps to protect intestinal
damage of birds to some extent under the severe NE challenge condition. However,
contrary to our anticipations, diets supplemented with PE did not show synergistic effects
with AM, as the effects of PE supplementation in combination with a full-dose AM did
not demonstrate benefit compared to the birds fed AM alone. These findings reject our
hypothesis that PE supplementation in combination with AM may create synergism and
modulate the intestinal environment to promote intestinal health status in protecting birds
against clinical NE. These findings confirm the performance results from the same
experiment reported earlier [31].

In the current study, a successful clinical NE challenge was induced as shown by the
evident signs of NE such as reduced body weight gain, feed intake, increased feed
conversion ratio and intestinal lesions with high mortality of birds were observed in the
CC group compared to the UC group [31]. It has been reported that birds challenged with
NE have been associated with reduced feed intake, body weight gain and increased feed
conversion ratio [9,64] and increased mortality of up to 50% in severe condition [7,8]. In
the current study, birds challenged with Eimeria spp. and C. perfringens have shown
significant effects on intestinal health as indicated by increased permeability, impaired
histomorphology, tight junction genes and disrupts the microbial balance. These results
further confirm a successful introduction of NE challenge which are in line with
performance, intestinal lesions and Eimeria spp. oocyst counts results that have been
reported earlier [31]. It should be noted that the NE challenge model employed in this
study, where field strains of Eimeria spp. oocysts were used as a predisposing factor and
C. perfringens as a causative agent to induce NE. Therefore, it is plausible that the
inoculation of Eimeria spp. containing E. acervulina, E. maxima and E. brunetti prior to C.
perfringens to succumb NE may have contributed to microbial shifts and intestinal damage
observed in this study.

The results observed in the current study showed that birds fed PE had reduced
pathogenic Bacteroides spp. in ileal content of female birds compared to the CC group and
increased the abundance of beneficial Bifidobacterium (LefSe analysis) in caecal content,
suggesting the beneficial effects of a feed additive on small intestine against pathogens.
This study showed that birds fed PE had reduced serum FITC-d compared to the CC
group. This indicates the improved intestinal integrity in birds fed PE possibly by
controlling Eimeria replication. The improvement is consistent with the observation that
PE reduced ileal and caecal Eimeria spp. oocyst counts as reported earlier [31]. Increased
goblet cell numbers per villus, beneficial bacterial loads and reduced pathogenic bacterial
loads shown in this study are also shreds of evidence for the improved intestinal health
of the broilers by the PE supplementation. It has shown that enteric diseases such as NE
damages mucosa and impairs the function of tight junctions leading to increased intestinal
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permeability [10]. Furthermore, enteric inflammation can reduce goblet cell numbers,
primary sites for mucin secretions that subsequently disrupt the function of mucins to act
as a barrier against pathogens [65]. Thus, increased goblet cell numbers in PE
supplemented group demonstrated the beneficial effects of its supplementation in
protecting mucosal damage which in turn improved intestinal integrity. Moreover, birds
fed PE had similar VH:CD, goblet cell numbers and alpha diversity indices to the AM
treated birds further confirming the protective effects of PE on intestinal health.
Altogether, the current study data suggest beneficial effects of PE supplementation on
intestinal health might have contributed to the improved feed conversion ratio, livability,
uniformity, reduced ileal lesions and increased skin yellowness as reported previously
[31].

The intestinal barrier functions are regulated by tight junction proteins including
CLDN1, CLDNS5, TJP1, JAM2 and OCLN. Disruption of tight junction protein expression
leads to enteric leakage, and epithelial cell damage. Epithelial cells and mucosa play a
frontline defence against pathogenic invasion and help to maintain intestinal homeostasis.
Thus, damages in the epithelial cells and mucosa lead to a disruption of microbial
inhabitants and balance resulting in impaired nutrient absorption and performance
[66,67]. The results observed in the current study showed that NE challenge
downregulated OCLN in male birds and MUC2 in both male and female birds. These
results were consistent with previous findings in broilers where birds challenged with NE
had downregulated OCLN genes [41]. Interestingly, CLDN1 and JAM?2 were upregulated
by NE challenge and it is contrary to their function as tight junction proteins. However,
as discussed by Gharib-Naseri et al. [41], the upregulation of CLDNI may not be an
indication of better tight junction function but other mechanisms may be involved.
Therefore, we speculate that it may not be a good marker for the indication of gut integrity
at least in the NE challenge studies. The upregulation of JAM?2 is also opposite to what we
expect and further investigation is warranted to determine its response to NE challenge
and possibly alternative functions. Although the expression of these tight junction and
immunity genes were not different between PE and CC groups, PE supplementation led
to the expression of CLDN1, OCLN and MUC2 genes elevated to be statistically similar to
the AM group. Furthermore, birds fed PE and AM had downregulated CLDN5 gene
compared to the CC group in male birds but the expression of CLDN5 gene was not
different between birds fed PE and AM. These results were consistent with previous
findings in broilers where birds fed antimicrobials had downregulated CLDN5 gene
compared to the birds fed without additives under sub-clinical NE [11] and clinical NE
challenged conditions [43]. These results indicate the similar effects of PE
supplementation to AM implying its positive role in protecting the intestinal barrier of
birds from pathogenic bacterial infection.

The intestinal microbiota is comprised of a highly complex ecosystem that directly or
indirectly interacted with the host's health and performance. The microbiota profoundly
influenced the physiological, nutritional, metabolic and immunological status of the host.
It is widely accepted that enteric diseases such as NE alters the microbiota composition of
birds in the small intestine [4,11,68,69]. Such microbiota changes during disease outbreaks
may indicate the immune-modulatory and inflammatory responses of the intestine.
Therefore, it is apparent that microbiota plays a crucial role in NE occurrence and severity
[70]. In this study, caecal microbiota structure and composition were analysed via 16S
rRNA sequencing to further investigate the mode of action underlying PE in alleviating
NE-induced infection in the intestine. The results observed in the present study showed
that NE challenge significantly decreased alpha diversity indicated by richness and
evenness as also shown before Keerqin et al. [11]. In addition, PCoA and RDA analyses
showed that NE challenge altered beta diversity where the CC and UC were distinctly
grouped. Furthermore, NE challenge decreased Firmicutes, Tenericutes, unclassified
phyla, and increased the abundance of Proteobacteria and Actinobacteria phyla., In
addition, NE challenge increased the abundance of Clostridium, Eubacterium and
Subdoligranulum at genus level. These results together indicated the large microbial shifts
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in birds under NE challenge which further confirms the disruption of intestinal
environment by NE. Interestingly, PE addition did not show the positive effects in the
control of Clostridium in this study which was also evidenced with individual bacterial
quantification results by qPCR. Although bacterial populations were not different
between the PE and CC groups, PE supplementation led to alpha diversity and Firmicutes
phylum to the level statistically similar to the AM group. However, the increased
abundance of Bifidobacterium, a genus where probiotics are isolated, in the PE group may
indicate a positive effect of the additive to the broilers challenged with NE.

Similar to the caecal microbiota results, the NE challenge significantly affects the
bacterial composition in ileal content. Birds challenged with NE had different bacterial
loads compared to the UC group observed in this study. The results showed that female
birds fed PE had reduced Bacteroides spp. loads compared to the CC group. Bacteroides
spp. are common intestinal flora in healthy birds that, however, can turn up to be
pathogenic under diseased conditions [71]. It has shown that Bacteroides spp. can be
increased in the intestine when the birds are infected with pathogens [72]. It is likely that
the increased load of Bacteroides spp. in the intestine is due to the higher loads C.
perfringens and/or Eimeria colonisation in the intestine of the birds under NE challenge in
this study. These bacteria have shown excessive immunostimulatory and proteolytic
activities that negatively affect the immune response and impair intestinal health of the
host [71,73]. Therefore, reduced Bacteroides spp. loads by the inclusion of PE in diets may
indicate the beneficial effects of PE against pathogenic bacteria. However, further study is
required to understand how PE supplementation suppresses the growth of Bacteroides spp
in the gut of challenged broilers.

5. Conclusions

The current study indicates that the addition of a microencapsulated product
composed of eugenol and garlic tincture can improve intestinal integrity and increase
mucin-producing goblet cell numbers as a defensive response to the birds against NE. The
dietary addition of PE also modulates microbiota balance by suppressing pathogenic
while promoting beneficial microbial growth in the intestine as a secondary defensive
mechanism. Moreover, it has been shown that birds fed PE had improved feed efficiency
and reduced the severity of clinical NE challenge on intestinal health as indicated by
reduced intestinal lesions, and ileal and caecal Eimeria spp. oocyst counts [31]. Therefore,
itis recommended that PE supplementation could be beneficial to the NE affected broilers
as the current study findings. Further research is warranted to better understand the
mechanism and possible effects of PE supplementation to the birds under NE challenged
condition.
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