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Abstract 9 

As the artificial defences often required for urban and industrial development, such as seawalls, 10 
breakwaters, and bund walls, directly replace natural habitats, they may produce population 11 
fragmentation and a disruption of ecological connectivity, compromising the delivery of ecosystem 12 
services.  Such problems have increasingly been addressed through “Working with Nature” (WwN) 13 
techniques, wherein natural features such as species and habitats are included as additional functional 14 
components within the design of built infrastructure.  There now exists a convincing body of 15 
empirical evidence that WwN techniques can enhance the structural integrity of coastal works, and at 16 
the same time promote biodiversity and ecosystem services.  While these benefits have often been 17 
achieved through modification of the hard surfaces of the coastal defence structures themselves, the 18 
desired ecological and engineering goals may often demand the creation of new soft substrates from 19 
sediment.  Here we discuss the design considerations for creating new sediment habitats in the 20 
intertidal zone within new coastal infrastructure works.  We focus on the sediment control structures 21 
required to satisfy the physiological and ecological requirements of seagrass and mangroves - two 22 
keystone intertidal species that are common candidates for restoration - and illustrate the concepts by 23 
discussing the case study of soft habitat creation within a major multi-commodity port.   24 

1 Introduction 25 

It is broadly recognised that the degree of degradation of coastal ecosystems is such that protection 26 
alone is no longer sufficient to guarantee the ongoing provision of their essential services (Abelson et 27 
al., 2016; Ounanian et al. 2018).  It has been argued that restoring or creating novel complex benthic 28 
ecosystems, and the services they provide, by increasing the abundance of keystone habitat-forming 29 
species, will be essential for meeting future human demographic challenges (Duarte et al., 2020).  As 30 
such, so-called “Working with Nature” (WwN) techniques have gained traction over recent decades 31 
as fundamental tools in conservation, and significant progress has been made to seat the efforts to 32 
create novel or restored ecosystems within broader ecological theory (Palmer et al, 2016; Statton et 33 
al, 2018).  For example, the modification of otherwise flat concrete surfaces of seawalls, greatly 34 
increasing the availability of ecological niches and substrate, has been used to encourage the 35 
settlement of native marine flora and fauna and increase biodiversity on seawalls (Perkol-Finkel et al 36 
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2018, Strain et al 2018, Strain et al 2020).  WwN approaches have also been used to control so-called 37 
“soft” or sediment habitats, such as the use of melaleuca fences to reduce wave energy and increase 38 
sediment accretion for mangrove restoration attempts (Van Coung et al, 2015).  Related concepts to 39 
WwN, often used somewhat interchangeably in the literature for purposeful efforts to restore or 40 
rehabilitate natural ecosystems, include building with nature, ecological engineering, ecoengineering, 41 
and reconciliation ecology.  In addition, many of the techniques applied in WwN projects of coastal 42 
ecosystem restoration have been used as components for achieving other end goals, such as for 43 
increasing natural capital (Cziesielski et al., 2021), building green infrastructure (Ruckelshaus et al., 44 
2016; Silva et al., 2017), and for promoting Ecosystem Based Adaptation (Hale et al., 2009; Sierra-45 
Correa and Kintz, 2015). 46 

While many habitat restoration and rehabilitation projects have been implemented at both 47 
experimental and large scale with ecosystem function as the primary focus, the opportunity to 48 
achieve ecological goals may also appear within the context of works of coastal engineering.  In these 49 
cases, natural or restored habitats are incorporated as functional elements within the design of the 50 
structure, commonly to augment coastal defenses (Sutton-Grier et al., 2018).  Indeed, these natural 51 
elements can prove more cost effective than traditional construction techniques, even before 52 
quantifying the ecosystem services (Narayan et al., 2016).  The possibility to leverage positive 53 
ecological outcomes within coastal development projects represents a promising opportunity for 54 
coastal ecosystem conservation, and there is a growing body of empirical evidence that the 55 
implementation of WwN approaches within coastal works can provide both ecological and 56 
operational benefits.  The habitat restoration techniques developed with protection as the primary 57 
function, however, may also be highly relevant for projects in industrial settings whose goal is 58 
conservation alone.  Several marine examples now exist that demonstrate how biodiversity and 59 
ecosystem services may be maintained within urban and engineered habitats (Hobbs et al. 2013, 60 
Perring et al. 2013, Mitsch & Jørgensen 2004, Firth et al. 2016b).  Coastal restoration initiatives 61 
involving oysters, seagrass, saltmarsh and mangroves have already demonstrated quantifiable 62 
improvements in water quality, carbon uptake and coastline stability (Das and Vincent 2009, 63 
Taillardat et al 2018, Lotze et al 2006).   64 

The design of WwN projects must commence from a clear identification of the sought ecological and 65 
functional outcomes, and how these two independent variables interact.  For example, which of the 66 
physical functions that the eco-engineered habitat will provide are essential (e.g. coastal defense, 67 
conservation of an endangered species), and which are just desirable (e.g. improved water quality, 68 
recreational use)?  Is the ecological goal “restoration” - recovery of the native ecosystem (Gann et al., 69 
2019) - or “rehabilitation” - recovery only of some ecosystem services (Miller and Bestelmeyer, 70 
2016; Zimmer, 2018)?  The choice of WwN strategy should then be determined with reference to this 71 
possibly complex metric.  While ecoengineering projects have commonly been driven from the 72 
conservation perspective (Dafforn et al., 2015; Mayer Pinto et al., 2017), there is now sufficient 73 
evidence that such techniques can achieve both conservation and construction benefits when 74 
employed in civil/industrial projects in the coastal zone, such as coastal defence (protection of 75 
infrastructure on erosive coastlines), but also bunded walls for containing reclaimed land or 76 
stormwater, wharves and marinas. and hence represent viable alternatives to traditional construction 77 
techniques (Gittman et al., 2014; Smith et al., 2017; Smallegan et al., 2016; Vuik et al., 2016; 78 
Narayan et al., 2016; Morris et al., 2018).  The reasons for the documented ecoengineering failures 79 
commonly stem from an incomplete appreciation of the physiological constraints and ecological 80 
traits of the target species (e.g. Samson and Rollon, 2008).   81 
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While a successfully restored ecosystem may, eventually, provide equivalent services to a conserved 82 
one, the practical challenges for implementing rehabilitation and conservation are divergent.  83 
Fundamentally, rehabilitation involves a purposeful change in the actual ecological function of a site, 84 
necessarily confronting the moral dilemma of ranking species importance.  This choice is often 85 
relatively straight-forward - as in the case of highly degraded ecosystems - but not always.  In 86 
practice, the task of engineering complex, functional ecosystems, potentially from a highly degraded 87 
state, begets both a sophisticated and broad understanding of the ecosystem ecology, and the 88 
resources necessary to implement, and monitor, the determined solutions. 89 

The introduction of new hard structures in the coastal zone has commonly been associated with 90 
negative impacts on habitat quality that reach beyond the project’s immediate footprint, by altering 91 
the near field patterns of sedimentation/erosion, providing a beachhead for invasive species, and 92 
interrupting connectivity of the native populations (Chapman 2003; Chapman and Bulleri, 2003; 93 
Browne and Chapman, 2014).  The new artificial habitats created are likely to give rise to 94 
depauperate ecosystems characterised by low biodiversity and dominated by invasive species (Bulleri 95 
and Airoldi, 2005; Glasby et al., 2007; Dafforn et al., 2015; O’Shaughnessy et al., 2019).  The 96 
prevalence of non-native taxa on hard coastal defences in urban areas may be related to their 97 
proximity to known invasion hubs such as marinas and shipping facilities (Seebens et al., 2013), to 98 
high rates of disturbance (Bulleri and Airoldi, 2005), and/or to relatively low levels of predation by 99 
mobile consumers (Simkanin, 2013).  The resulting degradation of ecosystem services brings 100 
quantifiable knock-on costs for society, and as a result, a significant degree of the research focus has 101 
been placed upon the hard surface itself – how the substrate may best be modified to sustain a native 102 
ecosystem (e.g. Perkol-Finkel et al., 2018).  103 

The sought operational or ecological goals may, however, involve modification of the landscape 104 
adjacent to the hard surface.  In particular, habitat restoration that involves manipulating the coastal 105 
bathymetry has often been used to arrest coastal recession.  This has been referred to as, among other 106 
names, “soft ecological engineering” (Temmerman et al., 2013, Narayan et al., 2016) and is 107 
embodied in the “living shoreline” approach developed in the 1960s (Garbisch and Garbisch 1994), 108 
where careful terraforming of degraded shores allowed colonization by saltmarsh, and the subsequent 109 
development of resilient dunes.  Rehabilitated mangrove, seagrass, coral and oyster habitats have 110 
been demonstrated to provide coastal protection that is as effective as traditional techniques (Narayan 111 
et al., 2016).  As these species are highly immersion sensitive, significant terraforming may be 112 
required to ensure that the substrate lies at a suitable elevation.  In the case of sediment substrate, this 113 
may be achieved by modifying the hydrodynamic conditions to encourage natural sedimentation (e.g. 114 
Winterwerp et al., 2020), or by the deliberate placing of sediments from another source (Yozzo et al., 115 
2004; Baptist et al., 2019).  In particular, the potential exists for dredged material that is presently 116 
destined to land reclamation to be usefully repurposed for conservation.  In either case, the 117 
construction of secondary hard structures, such as permeable dams, breakwaters or groynes, or 118 
modification of the primary structure, such as adding crenulations, may be required to prevent 119 
erosion prior to consolidation of the placed sediment.  While successful examples exist of creating 120 
sediment habitats either intentionally or unintentionally (Sheridan 2004, Osland et al. 2012), the 121 
design of structures to use for sediment management remains non-trivial and careful consideration of 122 
local conditions remains vital for a successful restoration. 123 

In Section 2 we review the design considerations for the restoration or creation of intertidal mangrove 124 
and seagrass habitats, using natural or repurposed sediment to achieve a suitable substrate.  The 125 
section firstly discusses the requirements for placed or accreted sediments to not resuspend, and then 126 
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the physiological and ecological conditions that must be considered for ecosystems based on 127 
mangroves or seagrass to develop on the new sediment substrate.   The concepts are exemplified in 128 
Section 3 with reference to an industry-driven coastal rehabilitation project in a major industrial port. 129 

 130 

2 Key concepts for restoration of soft intertidal habitats  131 

2.1 Sediment control considerations 132 

The design of effective secondary control structures to manage coastal sediment requires an 133 
understanding of their dynamics.  The sediment composition of coastal habitats is in constant flux.  134 
Depending on the kinetic or turbulent energy of the flow, bottom sediment is continually being 135 
exchanged with the water column via suspension and deposition, sustained differences between these 136 
leading to net erosion or accretion of coastal sediments (Wolanski and Elliot, 2016).  These 137 
differences may be orders of magnitude less than the rates of suspension and deposition, and as such 138 
relatively small changes in hydrodynamic conditions, or in the suspended sediment load, can flip 139 
conditions between eroding and accreting (Winterwerp et al., 2018).  The suspension of settled 140 
particulate matter occurs when the upward component of the drag forces exerted upon the particle 141 
surface exceeds gravity.  As the strength of the drag forces depends on the flow speed and particle 142 
surface area, while gravity scales with particle volume, the flow required for suspension to occur 143 
tends to increase with particle size.  As such, for any given hydrodynamic conditions, only a part of 144 
the sediment size spectrum will be suspended (McCave, 1984), but this fraction of the sediment load 145 
entrained within the flow may be deposited far from the source, once the drag forces have lessened 146 
sufficiently. 147 

Clearly then the primary strategy for encouraging sedimentation is to maintain the bottom shear 148 
stresses exerted by the flow upon the sediment below the critical value that produces suspension for 149 
the local sediment size class.  While this simply involves sheltering the coast from sources of 150 
hydrodynamic energy, the way to achieve this is site dependent, and will depend upon the source of 151 
the energy.  In the coastal ocean the bottom flows effecting erosion are associated with waves or 152 
currents. The sediment control measures needed to produce a stable habitat depend upon the 153 
importance of each of these sources of coastal erosion. 154 

Ocean waves typically intersect the coast at an angle close to perpendicular.  As a result, when waves 155 
are the dominant source of hydrodynamic energy, barriers placed parallel to the coast that reflect or 156 
absorb the wave energy – such as breakwaters or sills - can be used to create sheltered conditions 157 
inshore that will be favorable to sedimentation.  By reducing incident energy and promoting 158 
sedimentation, breakwaters have been shown to stabilize intertidal sediments (Currin et al., 2010; 159 
Scyphers et al., 2011), improve mudflat stability, and encourage salt marsh (Chowdhury et al., 2019) 160 
and seagrass development (Sharma et al., 2016).  The artificial barriers themselves may be designed 161 
following WwN principles, such as artificial oyster breakwater reefs whose primary function remains   162 
coastal protection (Temmerman et al., 2013). 163 

Ocean currents, on the other hand, largely flow tangent to the coastline.  As a result, when currents 164 
are the predominant source of hydrodynamic energy, the construction of obstacles perpendicular to 165 
the shore is required to encourage sedimentation.  The rock groynes ubiquitous on urban sandy 166 
coastlines are designed to retain locally suspended sand and interrupt along-shore sediment transport 167 
(Kraus et al. 1994).   These littoral groynes are typically subject to persistent long-shore currents and 168 
produce strongly asymmetrical patterns of sedimentation.  However, as seen below, an array of 169 
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groynes subject to tidal flow can establish a relatively homogeneous zone of weak flow.  Groynes are 170 
commonly associated with negative ecosystem impacts, both locally on the substrate (Dafforn et al. 171 
2015) and far-field alterations to the sedimentation regime (Walker et al., 2008; Fanini et al 2009).  172 
Groynes have been little used in the context of intertidal habitat creation, but examples are more 173 
common for terrestrial soft habitats, where protection from alongshore erosion has involved the use 174 
of solid structures that eventually become buried within the sediment (Nordstrom, 2014).  The use of 175 
“resistant cores” of geotextiles, gabions or sand fences has been investigated for beach and dune 176 
stabilization (d’Angremond et al., 1992; Kraus and McDougal, 1996; Cooper and Lemckert, 2012).  177 
Once the solid defence structures become assimilated within the sediment matrix, many of the 178 
negative ecological consequences associated with introducing hard artificial substrates are removed 179 
(Nordstrom, 2014).  The significant, and often problematic, distortion of the natural coastal sediment 180 
pathways associated with coastal groyne arrays vanishes if these can be designed to become and/or 181 
remain buried. 182 

Permeable dams may combine both of these elements, being comprised of a network of parallel and 183 
perpendicular permeable barriers to flow, to create a series of partially enclosed “sedimentation 184 
basins” in which accretion is favoured.  A key characteristic of this technique is the barriers 185 
permeability, which acts to dissipate rather than reflect energy.  As discussed earlier, interaction of 186 
waves and currents with solid rock constructions may result in near-field erosion (Sumer and 187 
Fredsøe, 2002).  Permeable dams have proven to be a highly successful strategy to encourage natural 188 
sedimentation of eroded coastlines (Winterwerp et al., 2020).  While in low energy environments 189 
they can be implemented relatively quickly and cheaply from lightweight materials, more energetic 190 
conditions may mandate rock construction, at significantly greater cost. 191 

Finally, the hydrodynamic energy climate may be sufficiently benign to obviate additional structures, 192 
as has often been the case for the “living shoreline” approach (Bilkovic et al., 2016).  Sufficiently 193 
low levels of wind and tidal energy generally occur only in narrow, microtidal estuaries.  194 
Alternatively, on coastline subject to higher energy but where secondary hard structures would be 195 
undesirable, the lost sediment may simply be replaced periodically, at high cost, through “shore 196 
nourishment” (Hamm et al, 2002; Paul, 2018). 197 

While a consideration of the source and intensity of littoral bottom velocities guides the choice of 198 
sediment control structures, it should be borne in mind that the sediment dynamics contain significant 199 
uncertainty, and that this uncertainty should be incorporated within the project planning.  The critical 200 
velocity for suspension is not only a function of particle size, but also depends in a complex way 201 
upon its electrochemical properties, the level of consolidation, and biological processes such as 202 
bioturbation (Wolanski and Elliott 2016), and hence is best estimated empirically at the site.  As a 203 
result, beneficial placement of dredged materials in the intertidal zone is often preceded with small-204 
scale field trials (Bolam and Whomersley, 2003).  Complex interactions between flow, sediment and 205 
coastal geometry are also possible, and as such the effect of the barriers on the coastal circulation and 206 
sediment transport pathways should be assessed.  Groynes in the surf zone can enhance rip formation 207 
and the export of sand (Nielsen and Gordon, 2020), and create local seabed scouring (Winterwerp et 208 
al., 2013), while breakwaters for protection from wave energy may also induce erosional currents to 209 
form in their vicinity (Sumer and Fredsøe, 2002).  When natural sedimentation is to be encouraged, 210 
the subsequent interruption of the existing sediment pathways must be assessed to ensure that 211 
problems of excessive erosion are not simply exported downstream.  While such issues can be 212 
investigated numerically, monitoring and readiness to implement adjustments have been key 213 
characteristics of successful sediment control projects (Bilkovich et al., 2016).  214 
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 215 

2.2 Habitat choice considerations 216 

The decision on how, and even whether, to intervene in the coastal sedimentation regime is a 217 
consequence of the sought ecological, functional and legal outcomes.  The project goals should guide 218 
the choice of restoration species, and in turn, the need to alter the coastal elevation.  Keystone, habitat 219 
forming species are an obvious target for restoration or novel ecosystem creation, and as such are 220 
commonly employed in ecoengineering projects of shoreline stabilization.  These include reef-221 
forming invertebrates such as corals (Ferrario et al. 2014), oysters (Scyphers et al. 2011), mussels 222 
and worms (Moody 2012), intertidal vegetation such as mangroves and saltmarsh (Kumara et al. 223 
2010, Gittman et al. 2014) or subtidal vegetation, such as seagrass or kelp (Dubi & Tørum 1995, 224 
Ondiviela et al. 2014).  The choice is based on which species provide the desired ecosystem services, 225 
and on whether their critical physiological and ecological requirements can reasonably be met (e.g. 226 
Perkol-Finkel et al. 2018, Ferrario et al. 2016, Ng et al. 2015).  For the case of new intertidal 227 
sediment habitats of interest here, the target keystone species would typically be salt marsh, 228 
mangroves or seagrass.  The living shoreline approach provides extensive documentation of salt 229 
marsh habitat creation (Bilkovic et al., 2016).  In the following we concentrate instead on the key 230 
considerations for producing mangrove and seagrass habitats in the intertidal zone. 231 

2.2.1 Mangroves 232 
While sustained mangrove loss worldwide has contributed to shoreline erosion and the loss of 233 
ecosystem services (Duarte et al., 2020), mangroves have increasingly been used for enhancing 234 
coastal protection against numerous hazards, such as cyclones and tsunamis.  Hogarth (2015) reports 235 
that wind speeds can be reduced by more than half, ocean waves attenuated by up to 66%, and storm 236 
surges by 40–50 cm/km after passing through 100 m of mangrove forest.  By damping the flow, 237 
mangroves encourage sedimentation, contributing to reduced turbidity, erosion prevention and the 238 
excessive degradation of coastlines (Schaffelke et al., 2005).  There exist in excess of thirty published 239 
studies of mangrove rehabilitation projects, ten of which occurred within a coastal defence context 240 
(Morris et al., 2018).  Mangrove rehabilitation and restoration projects tend to vary in the effort 241 
placed into plantation techniques (Cheong et al. 2013, Lai et al. 2015, Mayer-Pinto et al. 2017; Chan 242 
1996, Matsui et al. 2012, Chow 2018) versus substrate preparation (Lewis 2005, Lee et al. 2019, 243 
Lewis III et al. 2019, Suman 2019).  The latter have achieved success by allowing recruitment to 244 
occur naturally, and simply ensuring that the habitat experiences natural tidal flushing and 245 
connectivity to a region with abundant propagule supply.  Natural recruitment on suitably 246 
conditioned substrates has shown greater success than planted monocultures (Djamaluddin 2008), 247 
and the multi-species, natural regeneration at Pasir Ris, has led to faster tree growth and biomass 248 
accumulation than at other mangrove rehabilitation sites in Singapore (Friess 2017). 249 

2.2.1.1 Mangrove habitat requirements 250 
The ability of mangroves to tolerate extremely stressful abiotic conditions is due, in part, to key 251 
adaptations - such as salt-excreting glands, aerial or prop roots, and pneumatophores - and to 252 
intraspecific positive feedbacks – such as neighbouring trees’ leaky roots oxygenating soils and 253 
buffering high sulfide concentrations (McKee et al., 1988).  Mangroves generally exhibit a 254 
remarkable tolerance to a wide range of salinities, with optimal physiological function and growth of 255 
seedlings being possible for salinities from 3 to 27 ppm.   For both congeneric (Ball and Pidsley 256 
1995) and sympatric (Cardona-Olarte et al., 2006) mangrove seedlings, growth rates are adversely 257 
affected beyond this range.  Increasing salt tolerance occurs at the expense of higher nutritional 258 



  Soft Intertidal Habitats Working with Nature 

 

 
7 

demands, and results in lower maximal growth rates than occurs at low salinities (Ball 1988, 2002).  259 
There is evidence that salinity fluctuations may provide a greater physiological stress for seedlings, 260 
than exposure to a higher, but constant, salinity level.   261 

Mangroves demonstrate the capacity to successfully recruit to a wide variety of soil classes, from 262 
coarse sands to fine cohesive sediments (Krauss et al. 2008). Mangrove establishment, however, can 263 
be limited by some aspects of soil chemistry.  High sediment sulfide concentrations may adversely 264 
affect both growth and survival of some mangrove seedlings at low light (Krauss et al. 2008).  Low 265 
reduction potential and high salinity have been implicated in examples of poor mangrove 266 
regeneration success (Samson and Rollon, 2008).  Partly, this is because most coastal wetland plants 267 
engineer the substrate to ameliorate harmful conditions, an effect that increases with wetland plant 268 
density (e.g. Howes et al. 1986; Gedan and Silliman 2009; Aquino-Thomas and Proffitt, 2014).  An 269 
important consequence of this from the restoration perspective is that seedlings are likely to exhibit 270 
positive, not negative, density dependence because of the facilitative effects of neighbours on 271 
ameliorating anoxic soil conditions. 272 

Structural aspects of the substrate can also condition propagule establishment.  Avicennia alba   273 
seedlings, for example, must be able to establish an initial root anchor during an inundation-free 274 
period that can withstand its own buoyancy and the drag forces experienced during the following 275 
tidal inundation (Balke et al. 2011).  As such, for similar tidal flows, germination on cohesive muddy 276 
sediments may enhance seedling success rates compared to loose sand.  More generally, substrate 277 
instability may impair the growth and natural succession of mangroves.  Excess sediment accretion 278 
may also cause die-off and smothering, while too little sediment input can deprive mangroves of 279 
sufficient material to build soils in which to grow, or to direct erosion of the roots (Woodroffe et al. 280 
2016).  281 

More than the composition of the substrate, elevation has proven to be the most critical factor 282 
determining the success of mangrove restoration efforts.  It is of primary importance that the tidal 283 
inundation time experienced by the mangrove seedlings lies within their physiological limits (Ellison 284 
2000, Lewis 2005).  The slow growth rate and high mortality of Rhizophora spp. seedlings observed 285 
in some mangrove restoration projects in the Philippines has been linked to their inappropriate 286 
placement in low intertidal mudflat and seagrass habitats (Primavera and Esteban, 2008).  287 

Historically, mangrove rehabilitation projects have involved the planting of seedlings or saplings as 288 
monocultures, and there now exists substantial empirical evidence on the optimal planting techniques 289 
(Chan 1996, Field 1999, Matsui et al. 2012, Chow 2018).  Firstly, there is evidence to suggest that 290 
replanted, naturally sprouted, seedlings have higher rates of success than those sourced from 291 
plantations (Kamali and Hashim, 2011).  Secondly, while seedlings have commonly been planted 292 
evenly spaced, based on the logic that this minimizes competition and maximizes yield, the 293 
underlying assumption of negative density dependence for juvenile mangroves – that they prefer to 294 
be spaced rather than clumped - may not be correct (Bakrin Sofawi et al., 2017).  A restoration 295 
project using Rhizophora mucronata in Puttalam Lagoon found no evidence that increasing plant 296 
density evoked a trade-off with growth and survival of the planted trees (Kumara et al., 2010). On the 297 
contrary, the bare ground between seedlings can, in fact, hamper restoration by lowering the soil 298 
redox potential (Mossman et al., 2012).  Denser clumping patterns, on the other hand, can promote 299 
sedimentation, share oxygen, reduce evaporation through shading, reduce predation, and promote 300 
colonization by other species (Kumara et al. 2010, Castellanos-Galindo et al. 2013), facilitating 301 
conspecifics as well as other associated species, and hence allowing for community development.  302 
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Clumping of foundation species, such as oysters, mussels, and mangroves, is more common in 303 
stressful environments, where survivorship of individuals is higher in groups than when found alone.  304 
For instance, oxygen stress in mudflats is often alleviated through positive interactions among 305 
clumped marsh plants and mangrove saplings.  Salt-marsh grasses and mangroves planted closely 306 
together benefit from oxygen leaking out of the roots of nearby plants (Howes et al. 1986, Gedan and 307 
Silliman 2009) and plants in clumps can grow two to three times faster. Similarly, mangroves can 308 
reduce sedimentation and salinity stress for other mangroves or other foundation species such as 309 
oysters (Aquino-Thomas and Proffitt 2014).  Oyster reefs can, in turn, provide new habitat for 310 
mangroves to colonize, and augment the settlement of mangrove propagules (McClenachan et 311 
al.,2021).  As such, by fostering beneficial interactions between neighbouring conspecifics, the dense 312 
restoration of these intertidal keystone species can provide improved restoration success. More 313 
generally, purposefully incorporating positive interactions into designs of restoration projects and 314 
ecosystem recovery experiments could therefore increase community recovery and stability by orders 315 
of magnitude. 316 

Another consideration is ensuring that the sediment is firm enough to minimize mixing and erosion 317 
in the surface layers (Balke et al. 2011).  The typically vigorous physical mixing of the upper 318 
sediment layer on mudflats can be reduced when sediments are consolidated and cohesive. 319 
Unconsolidated sediments can be easily dislodged and resuspended. Balke et al. (2011) note that 320 
cohesive muddy sediments may give more support to the roots of mangroves than the loose sand used 321 
in their experiments, and that therefore the threshold for shoot length would be lower, and 322 
establishment of the seedlings possible in a shorter inundation free window.  323 

Other factors influencing the establishment of mangroves includes the concentrations of sulfides in 324 
sediments which may adversely affect both growth and survival of mangrove seedlings at low light 325 
(Krauss et al. 2008).  As such, when a sediment substrate is to be created from repurposed sediment, 326 
such as dredged sediment, treatment, mixing or blending may be required to lower sulfide 327 
concentrations following processes that are well established in coastal engineering (Burt, 1996). 328 

2.2.2 Seagrass 329 
Seagrass meadows deliver a range of ecosystem services from the provisioning, regulating and 330 
cultural categories (Barbier et al. 2011, Nordlund et al. 2017). They function as important nursery 331 
and foraging habitat for fish, shellfish (Jackson et al. 2001, de la Torre-Castro et al. 2008, Warren et 332 
al. 2010) and grazers (Ganter 2000, Scott et al. 2020). They are also thought to oxygenate sediments, 333 
provide shoreline stabilisation and protect from erosion (Koch et al. 2009), and are natural hotspots 334 
for carbon sequestration and nutrient cycling (Kennedy et al. 2010).  Seagrasses are considered a 335 
foundation species, providing habitat and enhancing ecosystem biodiversity (Scott et al. 2020).  They 336 
are also an important sentinel of system health, due to their sensitivity to both water quality and 337 
physical disturbances. 338 

Whilst the conclusion from seagrass restoration efforts is that there is no “one solution fits all” 339 
approach, ecologically meaningful large-scale seagrass restoration is possible given enough 340 
scientific, community, and political support (Tan et al., 2020).  Key components of successful 341 
seagrass restoration include understanding levels of connectivity between restoration locations and 342 
neighboring meadows to promote natural recovery, ensuring the complete life-cycle can occur within 343 
the restoration site, and assessing the genetic diversity of restored meadows and material used for 344 
restoration (Statton et al., 2018).  How to ensure the return of ecological function (e.g., 345 
biogeochemical processes, trophic dynamics, nursery habitat) following seagrass restoration remains 346 
an outstanding research question. Emerging techniques showing high success rates include Buoy-347 



  Soft Intertidal Habitats Working with Nature 

 

 
9 

Deployed Seeding (BuDS) (Pickerell et al., 2005), Dispenser Injection Seeding (Govers, 2018) and 348 
the use of nurseries (Tanner and Parham, 2010). Aquaculture of seagrass seeds, seedlings and plants 349 
is a promising source of planting units in restoration. The chances of transplant unit survival may be 350 
increased by artificial anchoring devices (Wendländer et al., 2019), or through positive biological 351 
interactions, such as improved water quality associated with coincident oyster reef restoration 352 
(Sharma et al., 2016). 353 

2.2.2.1 Seagrass habitat requirements 354 
The suitable conditions for seagrass growth are generally well established and include light 355 
availability (Duarte 1991; Ralph et al. 2007), hydrodynamic environment (Fonseca and Kenworthy, 356 
1987; Schanz and Asmus, 2003), substratum (Erftemeijer and Middelburg, 1993; van Katwijk and 357 
Wijgergangs, 2004), or nutrient availability (Touchette and Burkholder, 2000).  Light for 358 
photosynthesis is a main requirement of seagrasses and therefore both water column transmissivity 359 
and depth will control the lower depth limit of seagrass (Dalla Via et al., 1998). Chartrand et al. 360 
(2016) arrived at a working light trigger value of 6 mol m-2.d-1 over a rolling two-week average for 361 
the management of seagrasses. Physical, biological and chemical parameters that alter light 362 
availability (depth, storm events, epiphyte biomass, dissolved inorganic nitrogen and phosphorous, 363 
suspended chlorophyll concentration) are commonly listed as habitat requirements for seagrass 364 
colonisation and growth. Such parameters have been used in predictive models of habitat suitability 365 
(Koch 2001, Bos et al. 2005). 366 

Whilst the lower depth limit for seagrass species tends to be determined by light availability – the 367 
ecological compensation depth – and predation (Schonbeck and Norton, 1980), it is the physiological 368 
tolerance to hydrodynamic and desiccation stresses that control the upper depth limit (Zaneveld, 369 
1969, Schonbeck and Norton, 1978). Resuspension of sediments by wave energy can also strongly 370 
influence the light climate of the water column (Koch 2001).  High wave and current exposure can 371 
also reduce vegetative (rhizome) spreading, inhibit seedling colonisation and decrease the 372 
accumulation of fine sediments and organic matter (Fonseca et al. 1983).  Seagrass beds therefore 373 
tend to be in sheltered locations with limited fetch, or areas where long gently sloping shorelines 374 
dampen wave energy (Moore 1963).  A spontaneous unplanned establishment of a small seagrass 375 
meadow near a reclaimed shoreline behind a breakwater has been linked to reduced wave exposure 376 
(Yaakub et al., 2014).   377 

While low flow does tend to improve light availability due to reduced self-shading and reduced water 378 
turbidity (Fonseca and Bell 1998), overly low velocities may increase sediment sulfide 379 
concentrations (Koch 1999), and sufficiently reduce the diffusive exchange of carbon and nutrients 380 
into the leaves of the plant as to limit photosynthesis (Jones et al. 1999).  Low current velocities do 381 
convey some advantages, such as a reduction in self shading (leaves of plant more erect) and reduced 382 
sediment re-suspension and erosion, each contributing to greater light availability (Fonseca and Bell 383 
1998).  384 

Seagrass growth may also be limited by the physical and geochemical processes associated with 385 
sediment type, and not by the grain size per se.  For example, Barko and Smart (1983) suggest that 386 
the growth of seagrass is limited to sediments containing less than 5% organic matter. Grain size, 387 
wave exposure and current velocities will all influence the mobility of the sediment at a particular 388 
location (Soulsby 1997).  In a study by Collins et al. (2010), the sediment in unvegetated areas linked 389 
to anchoring and mooring disturbance were less cohesive, contained less organic material and had a 390 
lower silt fraction than surrounding habitats where seagrass was present.  391 
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Whilst seagrasses can maintain a positive carbon balance across a wide range of salinities, they do 392 
not thrive equally well at all salinities. Studies have shown that survival, growth and reproduction are 393 
impaired by extreme salinities (Agustí et al. 1994). For example, Nejrup and Pedersen (2008) found 394 
that the optimum salinity for Z. marina was between 10 and 25 ppm, in terms of shoot mortality and 395 
elongation rates. There are also interactions between salinity and other environmental factors. In 396 
higher salinity environments, seagrass requires sediments which are more oxygenated (coarser) and 397 
in which sulfide levels can be reduced via higher porewater advection rates (Fine and Tchernov 398 
2007). 399 

Although debated, in general seagrasses growing in sandy or organic sediments are regarded as N-400 
limited, and those in carbonate sediments as P-limited (Touchette and Burkholder 2000). Kaldy 401 
(2009) identified that seagrass C:N:P was about 400:20:1, suggesting they are phosphorous limited, 402 
however carbonate dissolution from seagrass organic acids may meet seagrass phosphorous 403 
requirements (Berkenhagen and Ebeling 2010). 404 

3 Case study: “living seawall” options for an industrial port 405 

The proximity of the major multi-commodity Port of Gladstone, Australia, to the Great Barrier Reef 406 
World Heritage Area (Fig. 1) provides unique operational constraints, including the requirement for 407 
land disposal of all capital dredge material.  As is the case for most ports, Gladstone’s coast has been 408 
heavily modified from its natural state, including extensive reclamation of intertidal mud flats and 409 
clearing of mangrove-lined foreshores (Harris, 2009).  As such, the Gladstone Port Corporation have 410 
demonstrated interest in using WwN concepts to achieve better environmental, social and economic 411 
outcomes within their reclamation and dredging activities.  The possibility to use dredge material to 412 
create new habitat contiguous to the port’s Western Basin Reclamation Area (WBRA) is discussed 413 
here.  The WBRA is located in the northern portion of the harbour (Fig. 1), adjacent to the large 414 
intertidal mudflat of the Western Basin that contains sparse seagrass and mature multi-specific 415 
mangrove forest on its landward edge.  Options are considered for creating a “living seawall” of new 416 
soft intertidal habitat adjacent to the western bund wall of the WBRA. 417 

The oblate geometry of the Port of Gladstone provides substantial protection of the foreshore from 418 
waves.  The port is, however, macrotidal - dominantly semi-diurnal with a tidal range of 4.8 m - 419 
resulting in strong currents during flood and ebb exceeding 2 knots.  The strong tidal currents, intense 420 
ship activity and input of fine sediment of terrestrial origin maintain the port’s waters turbid year-421 
round (Conaghan, 1966).  The creation of the reclamation area itself has decreased the fetch for the 422 
western shoreline, and hence further reduced incident wave energy.  Increasing the distance for the 423 
tide to propagate into the southern portion of the Western Basin has, however, increased tidal 424 
currents, most significantly adjacent to the WBRA’s western bund wall.  As such, the dominant 425 
source of erosional bottom stress for a novel sediment habitat located adjacent to the inner bund wall 426 
is tidal flow.  427 

The risk of resuspension of placed sediment is greatest immediately following its placement.  Even 428 
when consolidated sediments are placed, as for this example, a number of inundation cycles may be 429 
required for the consolidation of fine sediments.  Over longer time-scales the vegetation itself will 430 
provide protection from erosion of the substrate.  As outlined in Section 2, various strategies exist for 431 
protecting the soft habitat from erosion during this initial phase.  Continual nourishment can be ruled 432 
out on the bases of the resulting disturbance upon the establishment of the target ecosystem, the fact 433 
that it would equate to exporting dredge material back the harbour, and the expense.  Given that wave 434 
energy upon this section of the bund wall is minimal, and that the tidal flow runs tangent to the bund 435 
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wall, breakwaters placed parallel to the shore would not provide any protection from erosion.  As 436 
such, an array of solid structures oriented perpendicular to the bund wall would be needed to create a 437 
low flow boundary layer that spans the width of the desired new habitat.  The endemism of 438 
mangroves and seagrass makes them obvious first candidates to consider as the focus of restoration, 439 
as this assures a supply of natural propagules and implies broad suitability of the local environmental 440 
conditions.  None-the-less, care is required to ensure that the physical and chemical conditions 441 
engineered of the novel sediment substrate are within the tolerances of the target species, as outlined 442 
in Section 2.  These are considered below.  Given that the project has a purely conservation goal, 443 
with no coastal protection requirement, the choice of target species may consider the ecosystem 444 
services to be expected in each case, in addition to the likelihood of achieving a successful 445 
restoration.   446 

Of the mangrove candidates for restoration, the highly successful colonizers Avicennia marina and 447 
Rhizophora stylosa are abundant within the Port of Gladstone, including the natural shore of the 448 
Western Basin (Saenger and Moverley, 1985; Houston et al., 2016).  Both species produce abundant 449 
viviparous seeds capable of long-distance pelagic dispersal and able to anchor rapidly upon finding a 450 
suitable substrate.  As a result, there is high likelihood that a suitably configured novel substrate 451 
could be rapidly colonized by A. marina and R. stylosa, without efforts in plantation or assisted 452 
recruitment.  In either case - seagrass or mangrove restoration - measures to reduce tidal flows 453 
adjacent to the reclamation area bund wall are required to prevent sediment resuspension and 454 
improve the success rate of seedlings.  The character of dredged sediments vary depending upon the 455 
source within the harbour, with capital dredge tending to be coarser, and maintenance spoils fine and 456 
cohesive (Wolanski and Elliott, 2016).  While growth rates of seagrass and mangrove demonstrate 457 
some dependence on edaphic conditions as outlined above, both are observed to inhabit substrates 458 
from coarse sands to fine clays within the Port of Gladstone, providing some freedom to source the 459 
sediment to be repurposed for habitat creation.  The larger grained sediment from capital dredge 460 
would be expected to show greater resistance to erosion, at the expense of possibly increased failure 461 
rate of seedlings due to dislodgement from the looser substrate.  Nonetheless, the dependence of 462 
recruitment success upon sediment source would best be addressed empirically prior to a final 463 
decision. 464 

The seagrass meadows in the Port of Gladstone and surroundings have been regularly mapped and 465 
monitored for over a decade (Thomas et al. 2010, Smith et al., 2021,). The mono and multi-specific 466 
meadows of the species Halophila spinulosa, Halophila ovalis, Halophila decipiens, Halodule 467 
uninervis and Zostera muelleri subsp. capricornii, span a range of environmental gradients (salinity, 468 
depth, wave and current exposure, turbidity) and vary in terms of configuration (patch size, species 469 
composition) and disturbance regime (including human pressures).  Maximum Entropy (MaxEnt) 470 
modelling (Phillips and Dudík 2008) has been used to infer the habitat dependencies of the local 471 
seagrass populations, and genetic techniques to infer population connectivity between local meadows 472 
(Jackson et al., 2020).  The fact that Z. muelleri is present historically within the Western Basin 473 
makes it a logical candidate as a keystone species for the created habitat.  474 

As such, more than the source of sediment, the elevation of the engineered substrate is the main 475 
factor that depends sensitively upon the choice of rehabilitation habitat.  The reported maximum 476 
inundation times for A. marina and R. stylosa are approximately 400 minutes per day (Duke 2006; 477 
Houston et al., 2016), which for Gladstone’s tidal regime provides a minimum elevation of the novel 478 
substrate of 70 cm above MSL.  Local examples of both species are found commonly at this 479 
elevation throughout the Port of Gladstone region, and occasionally on substrates as low as 50 cm 480 
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above sea level.  On the other hand, the optimal depth for the target intertidal seagrass Z. marina is 481 
set by light availability, desiccation and hydrodynamic stress.  Within the Port of Gladstone these 482 
conditions are generally met from depths of 80 cm above MSL.  The hydrodynamic stress is unlikely 483 
to be limiting, given that Zostera (though notably for Zostera marina) have been observed to 484 
withstand velocities up to 180 cm.s-1 (Koch, 2001), which is well above the level at which significant 485 
sediment resuspension would occur.  486 

For either target habitat, without secondary defences the sediment placed up to the required elevation 487 
adjacent to the seawall risks rapid resuspension by tidal stress.  The optimal geometry for the array of 488 
structures required to protect the placed sediments within this setting was investigated using 489 
numerical modelling, the technical details of which are provided as supplementary material.   490 
Designs were sought that prevent erosion across the area to be restored at all substrate heights and 491 
phases of the tide.  Such a constraint is necessary when natural sedimentation is desired, and in the 492 
case of placed sediments suggests that recovery should occur following events of erosion. Thus, 493 
despite the significant difference in substrate elevation required for mangrove and seagrass habitats, 494 
the choice between these two habitats does not influence the geometry of the network of secondary 495 
sediment control structures.  As peak tidal currents occur at mid-tide, the need to ensure that the flow 496 
control structures extend sufficiently above MSL to avoid being overtopped during periods of strong 497 
flow is a design constrain that is common to both habitat choices.  The solid structures are required to 498 
withstand not only the substantial hydraulic stresses exerted by the peak tidal flows, in particular at 499 
their seaward extent, but also unbalanced static loadings during the placement of sediments, 500 
suggesting the use of solid structural elements such as rock groynes.   501 

Groynes generally produce a region of reduced tangential flow for a distance downstream that 502 
exceeds their length (Kraus et al., 1994).  For regulatory reasons the maximum groyne extension 503 
from the seawall is limited to 20 m.  Given the desirability of minimizing the number and height of 504 
the groynes, the numerical modelling focused upon determining the minimum spacing and minimum 505 
height of 20 m long groynes required to establish a permanent continuous accreting boundary layer 506 
adjacent to the seawall when exposed to tidal flows.  In the absence of groynes, simulated peak tidal 507 
flows along the face of the bund wall exceeded 1.2 m.s-1 (Fig. 2).  By simulating the inclusion 508 
groynes of varying spacing and height, it was found that an inter-groyne spacing of 150 m, and a 509 
height of 70 cm above MSL, was sufficient to establish the desired low flow conditions (Fig. 2).  510 
With such a design for the groyne array, repurposed sediment added between the groynes would be 511 
expected to resist erosion by tidal currents, and hence allow the target species to establish, 512 
independently of the target substrate elevation.  In the case of mangrove habitat, the rock groynes 513 
would be completely assimilated within the placed sediment, and subsequent natural accretion would 514 
allow them to eventually be incorporated within the mangrove ecosystem.  For seagrass, however, 515 
the groynes of this height would extend 1.5 m above the habitat substrate.  This would not be 516 
expected to have a negative impact upon the seagrass, that have been reported to thrive in the lee of 517 
breakwaters (Yaakub et al., 2014), and the exposed groyne surface can be designed following well 518 
established ecological engineering principles, to encourage oyster recruitment (Scyphers et al. 2011). 519 

The numerical modelling considers the interaction of the tidal flow with the array of groynes, but not 520 
the non-linear interactions between flow and sediment.  Changes in the bottom depth due to 521 
accretion/erosion will, in turn, change the local patterns of flow.  In nature, this process leads to the 522 
formation of tidal channels that may be highly dynamic, and the formation of such a tidal channel 523 
abutting the groynes is likely to occur.  When the space between groynes is entirely filled with 524 
repurposed sediment, as would occur for mangrove habitat, erosion due to primary tidal flows is 525 
prevented, as inundation of the substrate occurs only during weak flows at high tide.  The formation 526 
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of erosional channels in the sediment driven by tidal percolation of the receding tide is, nonetheless, 527 
possible and may be intensified adjacent to the groynes.  While such processes can be simulated 528 
numerically with coupled sediment-hydrodynamic models, empirical studies and monitoring remain 529 
essential to address problems of excessive secondary erosion as they arise.     530 

4  Conclusion 531 

The rehabilitation or creation of coastal habitats through reuse or accretion of sediments is likely to 532 
continue apace, driven by mainstream recognition of the urgent need to recover the services provided 533 
by the coastal marine ecosystem.  Although land reclamation has been practiced for millennia with 534 
socio-economic aims (Winterwerp et al., 2020), over previous decades new strategies have been 535 
developed with an ecosystem focus.  Ecological engineering approaches for protection of eroded 536 
coastlines or coastal infrastructure commonly seek to facilitate the virtuous cycle between 537 
sedimentation and vegetation in the intertidal zone.  However, “soft” substrates may also be created 538 
by the placement of waste sediments, such as dredge spoils.  While the focus shifts from encouraging 539 
natural sedimentation to preventing erosion of the placed sediment, the sediment control techniques 540 
are common.  In all but protected coastlines, some matrix of hard structures may be required, at least 541 
transiently, to guarantee consolidation of the substrate and its ecosystem.   542 

The choice of which hard elements to use within a novel intertidal sediment habitat requires careful 543 
consideration of the source of erosional energy.  Where coastal erosion is associated with wave 544 
energy, correctly configured barriers placed parallel to the coast can ensure protected, accretion-545 
favorable conditions in their lee.  In sufficiently low energy conditions these barriers may be 546 
lightweight, and eventually assimilated completely within the new substrate. Otherwise, when solid 547 
constructions such as breakwaters are required, these can be designed to achieve other conservation 548 
outcomes, such as by encouraging oyster recruitment. 549 

But when the main source of incident energy is due to currents, such as may happen within 550 
macrotidal estuaries, elements perpendicular to the coast are typically needed to prevent coastal 551 
erosion during periods of inundation.  Groyne-type structures have been little used in the context of 552 
habitat creation, presumably due to the fact that wave action is more often the limiting factor for 553 
coastal sedimentation, but also due to the negative ecological consequences that have often derived 554 
from the introduction of hard, reflective structures in the coastal zone.  However, when successful 555 
restoration hinges on substrate stability, the use of groynes within the sediment matrix may be 556 
indicated.  557 

While these considerations should guide the geometry and construction of sediment control structures 558 
for novel soft habitats, the potential complexities of the interactions between sediment, flow, and 559 
coastline, counsel for prior empirical research and posterior monitoring and correction activities to be 560 
budgeted for.  For placed sediments, monitoring is especially necessary during the initial phase of 561 
sediment consolidation.  Structures placed to dissipate hydrodynamic energy may concentrate part of 562 
that energy into currents, creating localized erosion. The readjustment of currents and sediment loads 563 
due to the introduction of obstacles to the flow may also result in a non-beneficial change in the 564 
patterns of sediment transport.  Even when hard elements are buried immediately within placed 565 
sediment, erosional gullies may form at their interface with the sediment.  566 

The location and type of substrate are, of course, ultimately determined by the target restoration 567 
ecosystem. We have reviewed the key physiological and ecological considerations for two common 568 
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intertidal sediment biomes – mangroves and seagrass.  Project success hinges not simply upon 569 
correctly identifying the needed minimal environmental conditions for the chosen keystone species, 570 
but upon the ability to implement measures to ensure these.  The latter implies a significant effort in 571 
monitoring to ensure that the implemented strategy is proving the minimal requirements of the target 572 
species. 573 

In the case considered of the construction of a “living seawall” using dredge spoils to create 574 
mangrove and seagrass habitat adjacent to a bund wall within the Port of Gladstone, low wave energy 575 
and strong tidal flows argue for the use of rock groynes to ensure that placed recycled sediments 576 
resist erosion during inundation.  Even though the elevation of the novel substrate would vary by 1.5 577 
m depending on whether the target biome is seagrass or mangrove, the design of the sediment control 578 
structures would be largely the same in either case, involving groynes that extend to approximately 579 
70 cm above MSL to shield the novel substrate from peak tidal flows on both ebb and flows. 580 

This example also highlights the opportunity to engage industrial users of the coastal zone in 581 
conservation efforts.  By reconciling ecological goals with economic realities, WwN and related 582 
approaches are providing tools to achieve coastal rehabilitation at scale.  There is now sufficient 583 
practical experience to have confidence that the dredge material produced as an unavoidable 584 
consequence of modern port operation can be repurposed to achieve positive outcomes for ecosystem 585 
services in the intertidal, even without a coastal defence objective.  586 
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 1015 

 Mangroves Seagrass 

Ecosystem services Coastal erosion control, 
turbidity reduction, habitat 
provision 

Coastal erosion control, 
turbidity reduction, habitat 
provision, food source 

Key environmental constraints 
(secondary constraints) 

Immersion time, hydrodynamic 
stress, (soil chemistry, 
sediment composition)  

Light, desiccation, 
hydrodynamic stress (nutrient 
availability, sediment mobility) 

Substrate elevation Upper intertidal Mid intertidal to upper subtidal 

Substrate composition Increased recruitment 
probability on cohesive 
substrates. 

Requires sediment that does 
not mobilise under typical 
conditions.  

Substrate chemistry Sensitive to high sulfide 
concentrations, reduced growth 
at high salinity 

Sensitive to high salinities, 
sulfide concentration, low 
organic matter content 

Sediment control: wave 
dominated coast 

Solid or permeable barriers oriented parallel to shore 

Sediment control: current 
dominated coast 

Solid or permeable barriers oriented perpendicular to shore 

 1016 

Table 1 Summary of key considerations for creating new sediment substrates destined for mangrove 1017 
and seagrass habitats. 1018 
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 1020 

Figure 1. a) The location of the Port of Gladstone, indicated by the box, relative to the Coral Sea, at 1022 
the southern extent of the Great Barrier Reef World Heritage Area; b)) the location of the Western 1023 
Bason Reclamation Area, whose western limit is considered for the “living seawall”, is shown within 1024 
the Port of Gladstone. 1025 
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Figure 2. The maximum tidal speeds (in units of m.s-1) of the numerical simulations of tidal flow 1028 
adjacent to a section of the western bund wall of the Western Basin Reclamation Area are shown 1029 
without (left) and with (right) the inclusion of a series of subtidal groynes.  The series of groynes 1030 
reduce the maximum tidal bottom stresses sufficiently to guarantee that sediments placed for the 1031 
purpose of habitat creation are not resuspended, while still being sufficiently low that, in the case of a 1032 
mangrove habitat, the groynes would become assimilated within the sediment. 1033 
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