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Abstract

As the artificial defences often required for urban and industrial development, such as seawalls,
breakwaters, and bund walls, directly replace natural habitats, they may produce population
fragmentation and a disruption of ecological connectivity, compromising the delivery of ecosystem
services. Such problems have increasingly been addressed through “Working with Nature” (WwN)
techniques, wherein natural features such as species and habitats are included as additional functional
components within the design of built infrastructure. There now exists a convincing body of
empirical evidence that WwN techniques can enhance the structural integrity of coastal works, and at
the same time promote biodiversity and ecosystem services. While these benefits have often been
achieved through modification of the hard surfaces of the coastal defence structures themselves, the
desired ecological and engineering goals may often demand the creation of new soft substrates from
sediment. Here we discuss the design considerations for creating new sediment habitats in the
intertidal zone within new coastal infrastructure works. We focus on the sediment control structures
required to satisfy the physiological and ecological requirements of seagrass and mangroves - two
keystone intertidal species that are common candidates for restoration - and illustrate the concepts by
discussing the case study of soft habitat creation within a major multi-commodity port.

1 Introduction

It is broadly recognised that the degree of degradation of coastal ecosystems is such that protection
alone is no longer sufficient to guarantee the ongoing provision of their essential services (Abelson et
al., 2016; Ounanian et al. 2018). It has been argued that restoring or creating novel complex benthic
ecosystems, and the services they provide, by increasing the abundance of keystone habitat-forming
species, will be essential for meeting future human demographic challenges (Duarte et al., 2020). As
such, so-called “Working with Nature” (WwN) techniques have gained traction over recent decades
as fundamental tools in conservation, and significant progress has been made to seat the efforts to
create novel or restored ecosystems within broader ecological theory (Palmer et al, 2016; Statton et
al, 2018). For example, the modification of otherwise flat concrete surfaces of seawalls, greatly
increasing the availability of ecological niches and substrate, has been used to encourage the
settlement of native marine flora and fauna and increase biodiversity on seawalls (Perkol-Finkel et al
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2018, Strain et al 2018, Strain et al 2020). WwN approaches have also been used to control so-called
“soft” or sediment habitats, such as the use of melaleuca fences to reduce wave energy and increase
sediment accretion for mangrove restoration attempts (Van Coung et al, 2015). Related concepts to
WwN, often used somewhat interchangeably in the literature for purposeful efforts to restore or
rehabilitate natural ecosystems, include building with nature, ecological engineering, ecoengineering,
and reconciliation ecology. In addition, many of the techniques applied in WwN projects of coastal
ecosystem restoration have been used as components for achieving other end goals, such as for
increasing natural capital (Cziesielski et al., 2021), building green infrastructure (Ruckelshaus et al.,
2016; Silva et al., 2017), and for promoting Ecosystem Based Adaptation (Hale et al., 2009; Sierra-
Correa and Kintz, 2015).

While many habitat restoration and rehabilitation projects have been implemented at both
experimental and large scale with ecosystem function as the primary focus, the opportunity to
achieve ecological goals may also appear within the context of works of coastal engineering. In these
cases, natural or restored habitats are incorporated as functional elements within the design of the
structure, commonly to augment coastal defenses (Sutton-Grier et al., 2018). Indeed, these natural
elements can prove more cost effective than traditional construction techniques, even before
quantifying the ecosystem services (Narayan et al., 2016). The possibility to leverage positive
ecological outcomes within coastal development projects represents a promising opportunity for
coastal ecosystem conservation, and there is a growing body of empirical evidence that the
implementation of WwN approaches within coastal works can provide both ecological and
operational benefits. The habitat restoration techniques developed with protection as the primary
function, however, may also be highly relevant for projects in industrial settings whose goal is
conservation alone. Several marine examples now exist that demonstrate how biodiversity and
ecosystem services may be maintained within urban and engineered habitats (Hobbs et al. 2013,
Perring et al. 2013, Mitsch & Jergensen 2004, Firth et al. 2016b). Coastal restoration initiatives
involving oysters, seagrass, saltmarsh and mangroves have already demonstrated quantifiable
improvements in water quality, carbon uptake and coastline stability (Das and Vincent 2009,
Taillardat et al 2018, Lotze et al 2006).

The design of WwN projects must commence from a clear identification of the sought ecological and
functional outcomes, and how these two independent variables interact. For example, which of the
physical functions that the eco-engineered habitat will provide are essential (e.g. coastal defense,
conservation of an endangered species), and which are just desirable (e.g. improved water quality,
recreational use)? Is the ecological goal “restoration” - recovery of the native ecosystem (Gann et al.,
2019) - or “rehabilitation” - recovery only of some ecosystem services (Miller and Bestelmeyer,
2016; Zimmer, 2018)? The choice of WwN strategy should then be determined with reference to this
possibly complex metric. While ecoengineering projects have commonly been driven from the
conservation perspective (Dafforn et al., 2015; Mayer Pinto et al., 2017), there is now sufficient
evidence that such techniques can achieve both conservation and construction benefits when
employed in civil/industrial projects in the coastal zone, such as coastal defence (protection of
infrastructure on erosive coastlines), but also bunded walls for containing reclaimed land or
stormwater, wharves and marinas. and hence represent viable alternatives to traditional construction
techniques (Gittman et al., 2014; Smith et al., 2017; Smallegan et al., 2016; Vuik et al., 2016;
Narayan et al., 2016; Morris et al., 2018). The reasons for the documented ecoengineering failures
commonly stem from an incomplete appreciation of the physiological constraints and ecological
traits of the target species (e.g. Samson and Rollon, 2008).
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While a successfully restored ecosystem may, eventually, provide equivalent services to a conserved
one, the practical challenges for implementing rehabilitation and conservation are divergent.
Fundamentally, rehabilitation involves a purposeful change in the actual ecological function of a site,
necessarily confronting the moral dilemma of ranking species importance. This choice is often
relatively straight-forward - as in the case of highly degraded ecosystems - but not always. In
practice, the task of engineering complex, functional ecosystems, potentially from a highly degraded
state, begets both a sophisticated and broad understanding of the ecosystem ecology, and the
resources necessary to implement, and monitor, the determined solutions.

The introduction of new hard structures in the coastal zone has commonly been associated with
negative impacts on habitat quality that reach beyond the project’s immediate footprint, by altering
the near field patterns of sedimentation/erosion, providing a beachhead for invasive species, and
interrupting connectivity of the native populations (Chapman 2003; Chapman and Bulleri, 2003;
Browne and Chapman, 2014). The new artificial habitats created are likely to give rise to
depauperate ecosystems characterised by low biodiversity and dominated by invasive species (Bulleri
and Airoldi, 2005; Glasby et al., 2007; Dafforn et al., 2015; O’Shaughnessy et al., 2019). The
prevalence of non-native taxa on hard coastal defences in urban areas may be related to their
proximity to known invasion hubs such as marinas and shipping facilities (Seebens et al., 2013), to
high rates of disturbance (Bulleri and Airoldi, 2005), and/or to relatively low levels of predation by
mobile consumers (Simkanin, 2013). The resulting degradation of ecosystem services brings
quantifiable knock-on costs for society, and as a result, a significant degree of the research focus has
been placed upon the hard surface itself — how the substrate may best be modified to sustain a native
ecosystem (e.g. Perkol-Finkel et al., 2018).

The sought operational or ecological goals may, however, involve modification of the landscape
adjacent to the hard surface. In particular, habitat restoration that involves manipulating the coastal
bathymetry has often been used to arrest coastal recession. This has been referred to as, among other
names, “soft ecological engineering” (Temmerman et al., 2013, Narayan et al., 2016) and is
embodied in the “living shoreline” approach developed in the 1960s (Garbisch and Garbisch 1994),
where careful terraforming of degraded shores allowed colonization by saltmarsh, and the subsequent
development of resilient dunes. Rehabilitated mangrove, seagrass, coral and oyster habitats have
been demonstrated to provide coastal protection that is as effective as traditional techniques (Narayan
etal., 2016). As these species are highly immersion sensitive, significant terraforming may be
required to ensure that the substrate lies at a suitable elevation. In the case of sediment substrate, this
may be achieved by modifying the hydrodynamic conditions to encourage natural sedimentation (e.g.
Winterwerp et al., 2020), or by the deliberate placing of sediments from another source (Yozzo et al.,
2004; Baptist et al., 2019). In particular, the potential exists for dredged material that is presently
destined to land reclamation to be usefully repurposed for conservation. In either case, the
construction of secondary hard structures, such as permeable dams, breakwaters or groynes, or
modification of the primary structure, such as adding crenulations, may be required to prevent
erosion prior to consolidation of the placed sediment. While successful examples exist of creating
sediment habitats either intentionally or unintentionally (Sheridan 2004, Osland et al. 2012), the
design of structures to use for sediment management remains non-trivial and careful consideration of
local conditions remains vital for a successful restoration.

In Section 2 we review the design considerations for the restoration or creation of intertidal mangrove
and seagrass habitats, using natural or repurposed sediment to achieve a suitable substrate. The
section firstly discusses the requirements for placed or accreted sediments to not resuspend, and then
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the physiological and ecological conditions that must be considered for ecosystems based on
mangroves or seagrass to develop on the new sediment substrate. The concepts are exemplified in
Section 3 with reference to an industry-driven coastal rehabilitation project in a major industrial port.

2 Key concepts for restoration of soft intertidal habitats

2.1 Sediment control considerations

The design of effective secondary control structures to manage coastal sediment requires an
understanding of their dynamics. The sediment composition of coastal habitats is in constant flux.
Depending on the kinetic or turbulent energy of the flow, bottom sediment is continually being
exchanged with the water column via suspension and deposition, sustained differences between these
leading to net erosion or accretion of coastal sediments (Wolanski and Elliot, 2016). These
differences may be orders of magnitude less than the rates of suspension and deposition, and as such
relatively small changes in hydrodynamic conditions, or in the suspended sediment load, can flip
conditions between eroding and accreting (Winterwerp et al., 2018). The suspension of settled
particulate matter occurs when the upward component of the drag forces exerted upon the particle
surface exceeds gravity. As the strength of the drag forces depends on the flow speed and particle
surface area, while gravity scales with particle volume, the flow required for suspension to occur
tends to increase with particle size. As such, for any given hydrodynamic conditions, only a part of
the sediment size spectrum will be suspended (McCave, 1984), but this fraction of the sediment load
entrained within the flow may be deposited far from the source, once the drag forces have lessened
sufficiently.

Clearly then the primary strategy for encouraging sedimentation is to maintain the bottom shear
stresses exerted by the flow upon the sediment below the critical value that produces suspension for
the local sediment size class. While this simply involves sheltering the coast from sources of
hydrodynamic energy, the way to achieve this is site dependent, and will depend upon the source of
the energy. In the coastal ocean the bottom flows effecting erosion are associated with waves or
currents. The sediment control measures needed to produce a stable habitat depend upon the
importance of each of these sources of coastal erosion.

Ocean waves typically intersect the coast at an angle close to perpendicular. As a result, when waves
are the dominant source of hydrodynamic energy, barriers placed parallel to the coast that reflect or
absorb the wave energy — such as breakwaters or sills - can be used to create sheltered conditions
inshore that will be favorable to sedimentation. By reducing incident energy and promoting
sedimentation, breakwaters have been shown to stabilize intertidal sediments (Currin et al., 2010;
Scyphers et al., 2011), improve mudflat stability, and encourage salt marsh (Chowdhury et al., 2019)
and seagrass development (Sharma et al., 2016). The artificial barriers themselves may be designed
following WwN principles, such as artificial oyster breakwater reefs whose primary function remains
coastal protection (Temmerman et al., 2013).

Ocean currents, on the other hand, largely flow tangent to the coastline. As a result, when currents
are the predominant source of hydrodynamic energy, the construction of obstacles perpendicular to
the shore is required to encourage sedimentation. The rock groynes ubiquitous on urban sandy
coastlines are designed to retain locally suspended sand and interrupt along-shore sediment transport
(Kraus et al. 1994). These littoral groynes are typically subject to persistent long-shore currents and
produce strongly asymmetrical patterns of sedimentation. However, as seen below, an array of
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groynes subject to tidal flow can establish a relatively homogeneous zone of weak flow. Groynes are
commonly associated with negative ecosystem impacts, both locally on the substrate (Dafforn et al.
2015) and far-field alterations to the sedimentation regime (Walker et al., 2008; Fanini et al 2009).
Groynes have been little used in the context of intertidal habitat creation, but examples are more
common for terrestrial soft habitats, where protection from alongshore erosion has involved the use
of solid structures that eventually become buried within the sediment (Nordstrom, 2014). The use of
“resistant cores” of geotextiles, gabions or sand fences has been investigated for beach and dune
stabilization (d’Angremond et al., 1992; Kraus and McDougal, 1996; Cooper and Lemckert, 2012).
Once the solid defence structures become assimilated within the sediment matrix, many of the
negative ecological consequences associated with introducing hard artificial substrates are removed
(Nordstrom, 2014). The significant, and often problematic, distortion of the natural coastal sediment
pathways associated with coastal groyne arrays vanishes if these can be designed to become and/or
remain buried.

Permeable dams may combine both of these elements, being comprised of a network of parallel and
perpendicular permeable barriers to flow, to create a series of partially enclosed “sedimentation
basins” in which accretion is favoured. A key characteristic of this technique is the barriers
permeability, which acts to dissipate rather than reflect energy. As discussed earlier, interaction of
waves and currents with solid rock constructions may result in near-field erosion (Sumer and
Fredsee, 2002). Permeable dams have proven to be a highly successful strategy to encourage natural
sedimentation of eroded coastlines (Winterwerp et al., 2020). While in low energy environments
they can be implemented relatively quickly and cheaply from lightweight materials, more energetic
conditions may mandate rock construction, at significantly greater cost.

Finally, the hydrodynamic energy climate may be sufficiently benign to obviate additional structures,
as has often been the case for the “living shoreline” approach (Bilkovic et al., 2016). Sufficiently
low levels of wind and tidal energy generally occur only in narrow, microtidal estuaries.
Alternatively, on coastline subject to higher energy but where secondary hard structures would be
undesirable, the lost sediment may simply be replaced periodically, at high cost, through “shore
nourishment” (Hamm et al, 2002; Paul, 2018).

While a consideration of the source and intensity of littoral bottom velocities guides the choice of
sediment control structures, it should be borne in mind that the sediment dynamics contain significant
uncertainty, and that this uncertainty should be incorporated within the project planning. The critical
velocity for suspension is not only a function of particle size, but also depends in a complex way
upon its electrochemical properties, the level of consolidation, and biological processes such as
bioturbation (Wolanski and Elliott 2016), and hence is best estimated empirically at the site. As a
result, beneficial placement of dredged materials in the intertidal zone is often preceded with small-
scale field trials (Bolam and Whomersley, 2003). Complex interactions between flow, sediment and
coastal geometry are also possible, and as such the effect of the barriers on the coastal circulation and
sediment transport pathways should be assessed. Groynes in the surf zone can enhance rip formation
and the export of sand (Nielsen and Gordon, 2020), and create local seabed scouring (Winterwerp et
al., 2013), while breakwaters for protection from wave energy may also induce erosional currents to
form in their vicinity (Sumer and Fredsee, 2002). When natural sedimentation is to be encouraged,
the subsequent interruption of the existing sediment pathways must be assessed to ensure that
problems of excessive erosion are not simply exported downstream. While such issues can be
investigated numerically, monitoring and readiness to implement adjustments have been key
characteristics of successful sediment control projects (Bilkovich et al., 2016).
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2.2 Habitat choice considerations

The decision on how, and even whether, to intervene in the coastal sedimentation regime is a
consequence of the sought ecological, functional and legal outcomes. The project goals should guide
the choice of restoration species, and in turn, the need to alter the coastal elevation. Keystone, habitat
forming species are an obvious target for restoration or novel ecosystem creation, and as such are
commonly employed in ecoengineering projects of shoreline stabilization. These include reef-
forming invertebrates such as corals (Ferrario et al. 2014), oysters (Scyphers et al. 2011), mussels
and worms (Moody 2012), intertidal vegetation such as mangroves and saltmarsh (Kumara et al.
2010, Gittman et al. 2014) or subtidal vegetation, such as seagrass or kelp (Dubi & Terum 1995,
Ondiviela et al. 2014). The choice is based on which species provide the desired ecosystem services,
and on whether their critical physiological and ecological requirements can reasonably be met (e.g.
Perkol-Finkel et al. 2018, Ferrario et al. 2016, Ng et al. 2015). For the case of new intertidal
sediment habitats of interest here, the target keystone species would typically be salt marsh,
mangroves or seagrass. The living shoreline approach provides extensive documentation of salt
marsh habitat creation (Bilkovic et al., 2016). In the following we concentrate instead on the key
considerations for producing mangrove and seagrass habitats in the intertidal zone.

2.2.1 Mangroves

While sustained mangrove loss worldwide has contributed to shoreline erosion and the loss of
ecosystem services (Duarte et al., 2020), mangroves have increasingly been used for enhancing
coastal protection against numerous hazards, such as cyclones and tsunamis. Hogarth (2015) reports
that wind speeds can be reduced by more than half, ocean waves attenuated by up to 66%, and storm
surges by 40—50 cm/km after passing through 100 m of mangrove forest. By damping the flow,
mangroves encourage sedimentation, contributing to reduced turbidity, erosion prevention and the
excessive degradation of coastlines (Schaffelke et al., 2005). There exist in excess of thirty published
studies of mangrove rehabilitation projects, ten of which occurred within a coastal defence context
(Morris et al., 2018). Mangrove rehabilitation and restoration projects tend to vary in the effort
placed into plantation techniques (Cheong et al. 2013, Lai et al. 2015, Mayer-Pinto et al. 2017; Chan
1996, Matsui et al. 2012, Chow 2018) versus substrate preparation (Lewis 2005, Lee et al. 2019,
Lewis III et al. 2019, Suman 2019). The latter have achieved success by allowing recruitment to
occur naturally, and simply ensuring that the habitat experiences natural tidal flushing and
connectivity to a region with abundant propagule supply. Natural recruitment on suitably
conditioned substrates has shown greater success than planted monocultures (Djamaluddin 2008),
and the multi-species, natural regeneration at Pasir Ris, has led to faster tree growth and biomass
accumulation than at other mangrove rehabilitation sites in Singapore (Friess 2017).

2.2.1.1 Mangrove habitat requirements

The ability of mangroves to tolerate extremely stressful abiotic conditions is due, in part, to key
adaptations - such as salt-excreting glands, aerial or prop roots, and pneumatophores - and to
intraspecific positive feedbacks — such as neighbouring trees’ leaky roots oxygenating soils and
buffering high sulfide concentrations (McKee et al., 1988). Mangroves generally exhibit a
remarkable tolerance to a wide range of salinities, with optimal physiological function and growth of
seedlings being possible for salinities from 3 to 27 ppm. For both congeneric (Ball and Pidsley
1995) and sympatric (Cardona-Olarte et al., 2006) mangrove seedlings, growth rates are adversely
affected beyond this range. Increasing salt tolerance occurs at the expense of higher nutritional
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demands, and results in lower maximal growth rates than occurs at low salinities (Ball 1988, 2002).
There is evidence that salinity fluctuations may provide a greater physiological stress for seedlings,
than exposure to a higher, but constant, salinity level.

Mangroves demonstrate the capacity to successfully recruit to a wide variety of soil classes, from
coarse sands to fine cohesive sediments (Krauss et al. 2008). Mangrove establishment, however, can
be limited by some aspects of soil chemistry. High sediment sulfide concentrations may adversely
affect both growth and survival of some mangrove seedlings at low light (Krauss et al. 2008). Low
reduction potential and high salinity have been implicated in examples of poor mangrove
regeneration success (Samson and Rollon, 2008). Partly, this is because most coastal wetland plants
engineer the substrate to ameliorate harmful conditions, an effect that increases with wetland plant
density (e.g. Howes et al. 1986; Gedan and Silliman 2009; Aquino-Thomas and Proffitt, 2014). An
important consequence of this from the restoration perspective is that seedlings are likely to exhibit
positive, not negative, density dependence because of the facilitative effects of neighbours on
ameliorating anoxic soil conditions.

Structural aspects of the substrate can also condition propagule establishment. Avicennia alba
seedlings, for example, must be able to establish an initial root anchor during an inundation-free
period that can withstand its own buoyancy and the drag forces experienced during the following
tidal inundation (Balke et al. 2011). As such, for similar tidal flows, germination on cohesive muddy
sediments may enhance seedling success rates compared to loose sand. More generally, substrate
instability may impair the growth and natural succession of mangroves. Excess sediment accretion
may also cause die-off and smothering, while too little sediment input can deprive mangroves of
sufficient material to build soils in which to grow, or to direct erosion of the roots (Woodroffe et al.
2016).

More than the composition of the substrate, elevation has proven to be the most critical factor
determining the success of mangrove restoration efforts. It is of primary importance that the tidal
inundation time experienced by the mangrove seedlings lies within their physiological limits (Ellison
2000, Lewis 2005). The slow growth rate and high mortality of Rhizophora spp. seedlings observed
in some mangrove restoration projects in the Philippines has been linked to their inappropriate
placement in low intertidal mudflat and seagrass habitats (Primavera and Esteban, 2008).

Historically, mangrove rehabilitation projects have involved the planting of seedlings or saplings as
monocultures, and there now exists substantial empirical evidence on the optimal planting techniques
(Chan 1996, Field 1999, Matsui et al. 2012, Chow 2018). Firstly, there is evidence to suggest that
replanted, naturally sprouted, seedlings have higher rates of success than those sourced from
plantations (Kamali and Hashim, 2011). Secondly, while seedlings have commonly been planted
evenly spaced, based on the logic that this minimizes competition and maximizes yield, the
underlying assumption of negative density dependence for juvenile mangroves — that they prefer to
be spaced rather than clumped - may not be correct (Bakrin Sofawi et al., 2017). A restoration
project using Rhizophora mucronata in Puttalam Lagoon found no evidence that increasing plant
density evoked a trade-off with growth and survival of the planted trees (Kumara et al., 2010). On the
contrary, the bare ground between seedlings can, in fact, hamper restoration by lowering the soil
redox potential (Mossman et al., 2012). Denser clumping patterns, on the other hand, can promote
sedimentation, share oxygen, reduce evaporation through shading, reduce predation, and promote
colonization by other species (Kumara et al. 2010, Castellanos-Galindo et al. 2013), facilitating
conspecifics as well as other associated species, and hence allowing for community development.
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Clumping of foundation species, such as oysters, mussels, and mangroves, is more common in
stressful environments, where survivorship of individuals is higher in groups than when found alone.
For instance, oxygen stress in mudflats is often alleviated through positive interactions among
clumped marsh plants and mangrove saplings. Salt-marsh grasses and mangroves planted closely
together benefit from oxygen leaking out of the roots of nearby plants (Howes et al. 1986, Gedan and
Silliman 2009) and plants in clumps can grow two to three times faster. Similarly, mangroves can
reduce sedimentation and salinity stress for other mangroves or other foundation species such as
oysters (Aquino-Thomas and Proffitt 2014). Oyster reefs can, in turn, provide new habitat for
mangroves to colonize, and augment the settlement of mangrove propagules (McClenachan et
al.,2021). As such, by fostering beneficial interactions between neighbouring conspecifics, the dense
restoration of these intertidal keystone species can provide improved restoration success. More
generally, purposefully incorporating positive interactions into designs of restoration projects and
ecosystem recovery experiments could therefore increase community recovery and stability by orders
of magnitude.

Another consideration is ensuring that the sediment is firm enough to minimize mixing and erosion
in the surface layers (Balke et al. 2011). The typically vigorous physical mixing of the upper
sediment layer on mudflats can be reduced when sediments are consolidated and cohesive.
Unconsolidated sediments can be easily dislodged and resuspended. Balke et al. (2011) note that
cohesive muddy sediments may give more support to the roots of mangroves than the loose sand used
in their experiments, and that therefore the threshold for shoot length would be lower, and
establishment of the seedlings possible in a shorter inundation free window.

Other factors influencing the establishment of mangroves includes the concentrations of sulfides in
sediments which may adversely affect both growth and survival of mangrove seedlings at low light
(Krauss et al. 2008). As such, when a sediment substrate is to be created from repurposed sediment,
such as dredged sediment, treatment, mixing or blending may be required to lower sulfide
concentrations following processes that are well established in coastal engineering (Burt, 1996).

2.2.2 Seagrass

Seagrass meadows deliver a range of ecosystem services from the provisioning, regulating and
cultural categories (Barbier et al. 2011, Nordlund et al. 2017). They function as important nursery
and foraging habitat for fish, shellfish (Jackson et al. 2001, de la Torre-Castro et al. 2008, Warren et
al. 2010) and grazers (Ganter 2000, Scott et al. 2020). They are also thought to oxygenate sediments,
provide shoreline stabilisation and protect from erosion (Koch et al. 2009), and are natural hotspots
for carbon sequestration and nutrient cycling (Kennedy et al. 2010). Seagrasses are considered a
foundation species, providing habitat and enhancing ecosystem biodiversity (Scott et al. 2020). They
are also an important sentinel of system health, due to their sensitivity to both water quality and
physical disturbances.

Whilst the conclusion from seagrass restoration efforts is that there is no “one solution fits all”
approach, ecologically meaningful large-scale seagrass restoration is possible given enough
scientific, community, and political support (Tan et al., 2020). Key components of successful
seagrass restoration include understanding levels of connectivity between restoration locations and
neighboring meadows to promote natural recovery, ensuring the complete life-cycle can occur within
the restoration site, and assessing the genetic diversity of restored meadows and material used for
restoration (Statton et al., 2018). How to ensure the return of ecological function (e.g.,
biogeochemical processes, trophic dynamics, nursery habitat) following seagrass restoration remains
an outstanding research question. Emerging techniques showing high success rates include Buoy-
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Deployed Seeding (BuDS) (Pickerell et al., 2005), Dispenser Injection Seeding (Govers, 2018) and
the use of nurseries (Tanner and Parham, 2010). Aquaculture of seagrass seeds, seedlings and plants
is a promising source of planting units in restoration. The chances of transplant unit survival may be
increased by artificial anchoring devices (Wendlédnder et al., 2019), or through positive biological

interactions, such as improved water quality associated with coincident oyster reef restoration
(Sharma et al., 2016).

2.2.2.1 Seagrass habitat requirements

The suitable conditions for seagrass growth are generally well established and include light
availability (Duarte 1991; Ralph et al. 2007), hydrodynamic environment (Fonseca and Kenworthy,
1987; Schanz and Asmus, 2003), substratum (Erftemeijer and Middelburg, 1993; van Katwijk and
Wijgergangs, 2004), or nutrient availability (Touchette and Burkholder, 2000). Light for
photosynthesis is a main requirement of seagrasses and therefore both water column transmissivity
and depth will control the lower depth limit of seagrass (Dalla Via et al., 1998). Chartrand et al.
(2016) arrived at a working light trigger value of 6 mol m2.d! over a rolling two-week average for
the management of seagrasses. Physical, biological and chemical parameters that alter light
availability (depth, storm events, epiphyte biomass, dissolved inorganic nitrogen and phosphorous,
suspended chlorophyll concentration) are commonly listed as habitat requirements for seagrass
colonisation and growth. Such parameters have been used in predictive models of habitat suitability
(Koch 2001, Bos et al. 2005).

Whilst the lower depth limit for seagrass species tends to be determined by light availability — the
ecological compensation depth — and predation (Schonbeck and Norton, 1980), it is the physiological
tolerance to hydrodynamic and desiccation stresses that control the upper depth limit (Zaneveld,
1969, Schonbeck and Norton, 1978). Resuspension of sediments by wave energy can also strongly
influence the light climate of the water column (Koch 2001). High wave and current exposure can
also reduce vegetative (rhizome) spreading, inhibit seedling colonisation and decrease the
accumulation of fine sediments and organic matter (Fonseca et al. 1983). Seagrass beds therefore
tend to be in sheltered locations with limited fetch, or areas where long gently sloping shorelines
dampen wave energy (Moore 1963). A spontaneous unplanned establishment of a small seagrass
meadow near a reclaimed shoreline behind a breakwater has been linked to reduced wave exposure
(Yaakub et al., 2014).

While low flow does tend to improve light availability due to reduced self-shading and reduced water
turbidity (Fonseca and Bell 1998), overly low velocities may increase sediment sulfide
concentrations (Koch 1999), and sufficiently reduce the diffusive exchange of carbon and nutrients
into the leaves of the plant as to limit photosynthesis (Jones et al. 1999). Low current velocities do
convey some advantages, such as a reduction in self shading (leaves of plant more erect) and reduced
sediment re-suspension and erosion, each contributing to greater light availability (Fonseca and Bell
1998).

Seagrass growth may also be limited by the physical and geochemical processes associated with
sediment type, and not by the grain size per se. For example, Barko and Smart (1983) suggest that
the growth of seagrass is limited to sediments containing less than 5% organic matter. Grain size,
wave exposure and current velocities will all influence the mobility of the sediment at a particular
location (Soulsby 1997). In a study by Collins et al. (2010), the sediment in unvegetated areas linked
to anchoring and mooring disturbance were less cohesive, contained less organic material and had a
lower silt fraction than surrounding habitats where seagrass was present.
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Whilst seagrasses can maintain a positive carbon balance across a wide range of salinities, they do
not thrive equally well at all salinities. Studies have shown that survival, growth and reproduction are
impaired by extreme salinities (Agusti et al. 1994). For example, Nejrup and Pedersen (2008) found
that the optimum salinity for Z. marina was between 10 and 25 ppm, in terms of shoot mortality and
elongation rates. There are also interactions between salinity and other environmental factors. In
higher salinity environments, seagrass requires sediments which are more oxygenated (coarser) and
in which sulfide levels can be reduced via higher porewater advection rates (Fine and Tchernov
2007).

Although debated, in general seagrasses growing in sandy or organic sediments are regarded as N-
limited, and those in carbonate sediments as P-limited (Touchette and Burkholder 2000). Kaldy
(2009) identified that seagrass C:N:P was about 400:20:1, suggesting they are phosphorous limited,
however carbonate dissolution from seagrass organic acids may meet seagrass phosphorous
requirements (Berkenhagen and Ebeling 2010).

3 Case study: “living seawall” options for an industrial port

The proximity of the major multi-commodity Port of Gladstone, Australia, to the Great Barrier Reef
World Heritage Area (Fig. 1) provides unique operational constraints, including the requirement for
land disposal of all capital dredge material. As is the case for most ports, Gladstone’s coast has been
heavily modified from its natural state, including extensive reclamation of intertidal mud flats and
clearing of mangrove-lined foreshores (Harris, 2009). As such, the Gladstone Port Corporation have
demonstrated interest in using WwN concepts to achieve better environmental, social and economic
outcomes within their reclamation and dredging activities. The possibility to use dredge material to
create new habitat contiguous to the port’s Western Basin Reclamation Area (WBRA) is discussed
here. The WBRA is located in the northern portion of the harbour (Fig. 1), adjacent to the large
intertidal mudflat of the Western Basin that contains sparse seagrass and mature multi-specific
mangrove forest on its landward edge. Options are considered for creating a “living seawall” of new
soft intertidal habitat adjacent to the western bund wall of the WBRA.

The oblate geometry of the Port of Gladstone provides substantial protection of the foreshore from
waves. The port is, however, macrotidal - dominantly semi-diurnal with a tidal range of 4.8 m -
resulting in strong currents during flood and ebb exceeding 2 knots. The strong tidal currents, intense
ship activity and input of fine sediment of terrestrial origin maintain the port’s waters turbid year-
round (Conaghan, 1966). The creation of the reclamation area itself has decreased the fetch for the
western shoreline, and hence further reduced incident wave energy. Increasing the distance for the
tide to propagate into the southern portion of the Western Basin has, however, increased tidal
currents, most significantly adjacent to the WBRA’s western bund wall. As such, the dominant
source of erosional bottom stress for a novel sediment habitat located adjacent to the inner bund wall
is tidal flow.

The risk of resuspension of placed sediment is greatest immediately following its placement. Even
when consolidated sediments are placed, as for this example, a number of inundation cycles may be
required for the consolidation of fine sediments. Over longer time-scales the vegetation itself will
provide protection from erosion of the substrate. As outlined in Section 2, various strategies exist for
protecting the soft habitat from erosion during this initial phase. Continual nourishment can be ruled
out on the bases of the resulting disturbance upon the establishment of the target ecosystem, the fact
that it would equate to exporting dredge material back the harbour, and the expense. Given that wave
energy upon this section of the bund wall is minimal, and that the tidal flow runs tangent to the bund
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wall, breakwaters placed parallel to the shore would not provide any protection from erosion. As
such, an array of solid structures oriented perpendicular to the bund wall would be needed to create a
low flow boundary layer that spans the width of the desired new habitat. The endemism of
mangroves and seagrass makes them obvious first candidates to consider as the focus of restoration,
as this assures a supply of natural propagules and implies broad suitability of the local environmental
conditions. None-the-less, care is required to ensure that the physical and chemical conditions
engineered of the novel sediment substrate are within the tolerances of the target species, as outlined
in Section 2. These are considered below. Given that the project has a purely conservation goal,
with no coastal protection requirement, the choice of target species may consider the ecosystem
services to be expected in each case, in addition to the likelihood of achieving a successful
restoration.

Of the mangrove candidates for restoration, the highly successful colonizers Avicennia marina and
Rhizophora stylosa are abundant within the Port of Gladstone, including the natural shore of the
Western Basin (Saenger and Moverley, 1985; Houston et al., 2016). Both species produce abundant
viviparous seeds capable of long-distance pelagic dispersal and able to anchor rapidly upon finding a
suitable substrate. As a result, there is high likelihood that a suitably configured novel substrate
could be rapidly colonized by 4. marina and R. stylosa, without efforts in plantation or assisted
recruitment. In either case - seagrass or mangrove restoration - measures to reduce tidal flows
adjacent to the reclamation area bund wall are required to prevent sediment resuspension and
improve the success rate of seedlings. The character of dredged sediments vary depending upon the
source within the harbour, with capital dredge tending to be coarser, and maintenance spoils fine and
cohesive (Wolanski and Elliott, 2016). While growth rates of seagrass and mangrove demonstrate
some dependence on edaphic conditions as outlined above, both are observed to inhabit substrates
from coarse sands to fine clays within the Port of Gladstone, providing some freedom to source the
sediment to be repurposed for habitat creation. The larger grained sediment from capital dredge
would be expected to show greater resistance to erosion, at the expense of possibly increased failure
rate of seedlings due to dislodgement from the looser substrate. Nonetheless, the dependence of
recruitment success upon sediment source would best be addressed empirically prior to a final
decision.

The seagrass meadows in the Port of Gladstone and surroundings have been regularly mapped and
monitored for over a decade (Thomas et al. 2010, Smith et al., 2021,). The mono and multi-specific
meadows of the species Halophila spinulosa, Halophila ovalis, Halophila decipiens, Halodule
uninervis and Zostera muelleri subsp. capricornii, span a range of environmental gradients (salinity,
depth, wave and current exposure, turbidity) and vary in terms of configuration (patch size, species
composition) and disturbance regime (including human pressures). Maximum Entropy (MaxEnt)
modelling (Phillips and Dudik 2008) has been used to infer the habitat dependencies of the local
seagrass populations, and genetic techniques to infer population connectivity between local meadows
(Jackson et al., 2020). The fact that Z. muelleri is present historically within the Western Basin
makes it a logical candidate as a keystone species for the created habitat.

As such, more than the source of sediment, the elevation of the engineered substrate is the main
factor that depends sensitively upon the choice of rehabilitation habitat. The reported maximum
inundation times for 4. marina and R. stylosa are approximately 400 minutes per day (Duke 2006;
Houston et al., 2016), which for Gladstone’s tidal regime provides a minimum elevation of the novel
substrate of 70 cm above MSL. Local examples of both species are found commonly at this
elevation throughout the Port of Gladstone region, and occasionally on substrates as low as 50 cm

11
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above sea level. On the other hand, the optimal depth for the target intertidal seagrass Z. marina is
set by light availability, desiccation and hydrodynamic stress. Within the Port of Gladstone these
conditions are generally met from depths of 80 cm above MSL. The hydrodynamic stress is unlikely
to be limiting, given that Zostera (though notably for Zostera marina) have been observed to
withstand velocities up to 180 cm.s™' (Koch, 2001), which is well above the level at which significant
sediment resuspension would occur.

For either target habitat, without secondary defences the sediment placed up to the required elevation
adjacent to the seawall risks rapid resuspension by tidal stress. The optimal geometry for the array of
structures required to protect the placed sediments within this setting was investigated using
numerical modelling, the technical details of which are provided as supplementary material.

Designs were sought that prevent erosion across the area to be restored at all substrate heights and
phases of the tide. Such a constraint is necessary when natural sedimentation is desired, and in the
case of placed sediments suggests that recovery should occur following events of erosion. Thus,
despite the significant difference in substrate elevation required for mangrove and seagrass habitats,
the choice between these two habitats does not influence the geometry of the network of secondary
sediment control structures. As peak tidal currents occur at mid-tide, the need to ensure that the flow
control structures extend sufficiently above MSL to avoid being overtopped during periods of strong
flow is a design constrain that is common to both habitat choices. The solid structures are required to
withstand not only the substantial hydraulic stresses exerted by the peak tidal flows, in particular at
their seaward extent, but also unbalanced static loadings during the placement of sediments,
suggesting the use of solid structural elements such as rock groynes.

Groynes generally produce a region of reduced tangential flow for a distance downstream that
exceeds their length (Kraus et al., 1994). For regulatory reasons the maximum groyne extension
from the seawall is limited to 20 m. Given the desirability of minimizing the number and height of
the groynes, the numerical modelling focused upon determining the minimum spacing and minimum
height of 20 m long groynes required to establish a permanent continuous accreting boundary layer
adjacent to the seawall when exposed to tidal flows. In the absence of groynes, simulated peak tidal
flows along the face of the bund wall exceeded 1.2 m.s™ (Fig. 2). By simulating the inclusion
groynes of varying spacing and height, it was found that an inter-groyne spacing of 150 m, and a
height of 70 cm above MSL, was sufficient to establish the desired low flow conditions (Fig. 2).
With such a design for the groyne array, repurposed sediment added between the groynes would be
expected to resist erosion by tidal currents, and hence allow the target species to establish,
independently of the target substrate elevation. In the case of mangrove habitat, the rock groynes
would be completely assimilated within the placed sediment, and subsequent natural accretion would
allow them to eventually be incorporated within the mangrove ecosystem. For seagrass, however,
the groynes of this height would extend 1.5 m above the habitat substrate. This would not be
expected to have a negative impact upon the seagrass, that have been reported to thrive in the lee of
breakwaters (Yaakub et al., 2014), and the exposed groyne surface can be designed following well
established ecological engineering principles, to encourage oyster recruitment (Scyphers et al. 2011).

The numerical modelling considers the interaction of the tidal flow with the array of groynes, but not
the non-linear interactions between flow and sediment. Changes in the bottom depth due to
accretion/erosion will, in turn, change the local patterns of flow. In nature, this process leads to the
formation of tidal channels that may be highly dynamic, and the formation of such a tidal channel
abutting the groynes is likely to occur. When the space between groynes is entirely filled with
repurposed sediment, as would occur for mangrove habitat, erosion due to primary tidal flows is
prevented, as inundation of the substrate occurs only during weak flows at high tide. The formation
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of erosional channels in the sediment driven by tidal percolation of the receding tide is, nonetheless,
possible and may be intensified adjacent to the groynes. While such processes can be simulated
numerically with coupled sediment-hydrodynamic models, empirical studies and monitoring remain
essential to address problems of excessive secondary erosion as they arise.

4 Conclusion

The rehabilitation or creation of coastal habitats through reuse or accretion of sediments is likely to
continue apace, driven by mainstream recognition of the urgent need to recover the services provided
by the coastal marine ecosystem. Although land reclamation has been practiced for millennia with
socio-economic aims (Winterwerp et al., 2020), over previous decades new strategies have been
developed with an ecosystem focus. Ecological engineering approaches for protection of eroded
coastlines or coastal infrastructure commonly seek to facilitate the virtuous cycle between
sedimentation and vegetation in the intertidal zone. However, “soft” substrates may also be created
by the placement of waste sediments, such as dredge spoils. While the focus shifts from encouraging
natural sedimentation to preventing erosion of the placed sediment, the sediment control techniques
are common. In all but protected coastlines, some matrix of hard structures may be required, at least
transiently, to guarantee consolidation of the substrate and its ecosystem.

The choice of which hard elements to use within a novel intertidal sediment habitat requires careful
consideration of the source of erosional energy. Where coastal erosion is associated with wave
energy, correctly configured barriers placed parallel to the coast can ensure protected, accretion-
favorable conditions in their lee. In sufficiently low energy conditions these barriers may be
lightweight, and eventually assimilated completely within the new substrate. Otherwise, when solid
constructions such as breakwaters are required, these can be designed to achieve other conservation
outcomes, such as by encouraging oyster recruitment.

But when the main source of incident energy is due to currents, such as may happen within
macrotidal estuaries, elements perpendicular to the coast are typically needed to prevent coastal
erosion during periods of inundation. Groyne-type structures have been little used in the context of
habitat creation, presumably due to the fact that wave action is more often the limiting factor for
coastal sedimentation, but also due to the negative ecological consequences that have often derived
from the introduction of hard, reflective structures in the coastal zone. However, when successful
restoration hinges on substrate stability, the use of groynes within the sediment matrix may be
indicated.

While these considerations should guide the geometry and construction of sediment control structures
for novel soft habitats, the potential complexities of the interactions between sediment, flow, and
coastline, counsel for prior empirical research and posterior monitoring and correction activities to be
budgeted for. For placed sediments, monitoring is especially necessary during the initial phase of
sediment consolidation. Structures placed to dissipate hydrodynamic energy may concentrate part of
that energy into currents, creating localized erosion. The readjustment of currents and sediment loads
due to the introduction of obstacles to the flow may also result in a non-beneficial change in the
patterns of sediment transport. Even when hard elements are buried immediately within placed
sediment, erosional gullies may form at their interface with the sediment.

The location and type of substrate are, of course, ultimately determined by the target restoration
ecosystem. We have reviewed the key physiological and ecological considerations for two common
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intertidal sediment biomes — mangroves and seagrass. Project success hinges not simply upon
correctly identifying the needed minimal environmental conditions for the chosen keystone species,
but upon the ability to implement measures to ensure these. The latter implies a significant effort in
monitoring to ensure that the implemented strategy is proving the minimal requirements of the target
species.

In the case considered of the construction of a “living seawall” using dredge spoils to create
mangrove and seagrass habitat adjacent to a bund wall within the Port of Gladstone, low wave energy
and strong tidal flows argue for the use of rock groynes to ensure that placed recycled sediments
resist erosion during inundation. Even though the elevation of the novel substrate would vary by 1.5
m depending on whether the target biome is seagrass or mangrove, the design of the sediment control
structures would be largely the same in either case, involving groynes that extend to approximately
70 cm above MSL to shield the novel substrate from peak tidal flows on both ebb and flows.

This example also highlights the opportunity to engage industrial users of the coastal zone in
conservation efforts. By reconciling ecological goals with economic realities, WwN and related
approaches are providing tools to achieve coastal rehabilitation at scale. There is now sufficient
practical experience to have confidence that the dredge material produced as an unavoidable
consequence of modern port operation can be repurposed to achieve positive outcomes for ecosystem
services in the intertidal, even without a coastal defence objective.
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Mangroves

Seagrass

Ecosystem services

Key environmental constraints
(secondary constraints)

Substrate elevation

Substrate composition

Substrate chemistry

Sediment control: wave
dominated coast

Sediment control: current
dominated coast

Coastal erosion control,
turbidity reduction, habitat
provision

Immersion time, hydrodynamic
stress, (soil chemistry,
sediment composition)

Upper intertidal

Increased recruitment
probability on cohesive
substrates.

Sensitive to high sulfide
concentrations, reduced growth
at high salinity

Coastal erosion control,
turbidity reduction, habitat
provision, food source

Light, desiccation,
hydrodynamic stress (nutrient
availability, sediment mobility)

Mid intertidal to upper subtidal

Requires sediment that does
not mobilise under typical
conditions.

Sensitive to high salinities,
sulfide concentration, low
organic matter content

Solid or permeable barriers oriented parallel to shore

Solid or permeable barriers oriented perpendicular to shore

Table 1 Summary of key considerations for creating new sediment substrates destined for mangrove

and seagrass habitats.
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Figure 1. a) The location of the Port of Gladstone, indicated by the box, relative to the Coral Sea, at
the southern extent of the Great Barrier Reef World Heritage Area; b)) the location of the Western
Bason Reclamation Area, whose western limit is considered for the “living seawall”, is shown within
the Port of Gladstone.
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Figure 2. The maximum tidal speeds (in units of m.s') of the numerical simulations of tidal flow
adjacent to a section of the western bund wall of the Western Basin Reclamation Area are shown
without (left) and with (right) the inclusion of a series of subtidal groynes. The series of groynes
reduce the maximum tidal bottom stresses sufficiently to guarantee that sediments placed for the
purpose of habitat creation are not resuspended, while still being sufficiently low that, in the case of a
mangrove habitat, the groynes would become assimilated within the sediment.
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