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Ensemble Classifier Composition: Impact on Feature Based Offline
Cursive Character Recognition

Ashfaqur Rahman and Brijesh Verma

Abstract— In this paper we propose different ensemble
classifier compositions and investigate their influence on offline
cursive character recognition. Cursive characters are difficult
to recognize due to different handwriting styles of different
writers. The recognition accuracy can be improved by training
an ensemble of classifiers on multiple feature sets focussing on
different aspects of character images. Given the feature sets
and base classifiers, we have developed multiple ensemble
classifier compositions using three architectures. Type-1
architecture is based on homogeneous base classifiers and
Type-2 architecture is composed of heterogeneous base
classifiers. Type-3 architecture is based on hierarchical fusion
of decisions. The experimental results demonstrate that the
presented method with best composition of classifiers and
feature sets performs better than existing methods for offline
cursive character recognition.

. INTRODUCTION

ff-line Cursive Character Recognition refers to the

process of transforming the image of a handwritten
character into a representation (e.g. character class, ASCII
code etc.) that is useful for different computer applications.
Character recognition is a part of handwriting recognition
process with a number of real world applications including
postal address recognition, document authentication, and
interpreting historical documents. The applications are of
significant interest in various financial institutions, postal
services, and law enforcement agencies.

Despite its potential applications, the recognition of
cursive handwritten characters has not been satisfactory in
comparison [1]-[7]. Diversity of handwriting styles is
identified to be the main reason for the unsatisfactory
recognition rate. This brings in a lot of research in recent
times [8]-[17] to investigate features for cursive character
recognition invariant to handwriting styles. A survey of
different feature extraction methods is available in [8]-[10].
We aim at identifying a suitable combination of features for
character recognition. We thus investigated a set of
complementary features that focus on different aspects of a
character image. The details on the features are presented at
Section 1l.

While the features focus on particular aspects of
characters, the accuracy can be further improved by
combining the decisions produced by different features [11]—
[12][14]. From classification point of view this is called an
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ensemble classifier [20]-[23]. An ensemble classifier
generates the base classifiers in a way so that they
complement each other and produce better accuracy than
their base counterparts. The accuracy depends to a lot of
extent on how the feature sets are combined in ensemble
architecture. In this paper we investigate a number of
ensemble architectures to combine the different feature sets
to obtain the best recognition accuracy. We have confined
our experiments to C—Cube data set [19] that is widely used
in the literature [12][17]-[18].

The research presented in the paper aims to investigate the
following: (i) explore different feature extraction methods
for cursive character recognition, (ii) explore different
ensemble architectures to combine the different feature sets
in order to improve accuracy, (iii) identification of classifier
and feature set combinations that perform best on C—Cube
handwriting data set, (iv) provide a comparison of the
presented work and other existing works on C—Cube data
set.

The paper is organized as follows. Section Il presents the
cursive character recognition features investigated in the
research. The ensemble architectures are presented in
Section Ill. The experimental platform is presented in
Section IV. The investigation results and comparisons
appear in Section V. Finally Section VI concludes the paper.

Il. HANDWRITING RECOGNITION FEATURES

The features used in the research are presented previously in
the literature. We have used a total of nine features as used
in [12]. The feature extraction algorithms are presented next.

A. Camastra Features

This feature set consists of local and global features that are
extracted from the binary image of a character [17]. The
character image is first divided into 4 x 4 sub—images/cells
arranged in a grid. In order to achieve shift invariance some
cells are allowed to overlap. The local features are computed
from the sub—images. The first feature computes the
percentage of foreground pixels in the cell with respect to
the total number of foreground pixels in the character image.
This is called grey feature. Let n; be the number of
foreground pixels in cell i and N be the total number of
foreground pixels in the character. The grey feature for cell i
issetton;/N.

The second feature is a directional feature. Two directions
are considered for feature extraction: 0° and 90° i.e. along
the horizontal and vertical axis. Let the width and height of



the cell be w; and h; pixels respectively. The process
identifies the number of black pixels along each row (0°
direction) and each column (90° direction) in the cell. The
directional feature in cell i is computed as:

di = %(1 + hinlzvl? Z;'l;lmlz B hi21Wi ﬁlmfz) @
where m; is the number of black pixels along row/column j.

The feature set also includes two global features that
provide information about the shape of the character and the
relative position of the character with respect to the baseline.
The overall shape information is represented by the
width/ratio of the character. The fraction of the character
bellow the baseline acts as the second global feature. A total
of 4 x 4 x 2 =32 local features and 2 global features are
computed for each pattern providing a 34 dimensional
feature set.

B. Concavities Measurement

Concavity features are computed from a character image in
this case [15]. The character image is first normalized to a
18 x 15 matrix. The image is then partitioned into six zones.
A search is conducted for each white pixel in a zone. The
search looks for black pixels in four freeman directions. The
outcome of the search for each white pixel is coded and
incrementally updates a vector of dimension 13 that is
initialized with zeros. The vector has two indices: upper and
lower index. The upper index represents the number of
directions where black pixels were reached and the lower
index represents the direction where black pixel was not
found. When the search finds black pixel in all four
directions an additional search is conducted in four auxiliary
directions to make sure that the pixel falls within a contour.
When the search for all the white pixels in every zone is
finished the vectors are concatenated to produce a feature
vector of length 6 x 13 = 78.

C. Image Projections

Image projection features are obtained by projecting the
image along a particular direction. In this case [14] two
types of projections are obtained: diagonal and radial. Image
is first normalized to a 32 x 32 matrix. Diagonal projections
are simply the projections of the image onto the two
diagonal lines: +45° and —45°. Radial projections are
computed by grouping foreground pixels that are at the same
radial distance from the centre of the image [14]. The radial
distance is measured in units of pixels and thus pixels that
are at the same radial distance from the centre lie on the
edge of a square. In order to achieve rotational invariance
the image is partitioned into four quadrants: top, bottom,
left, and right. A total of 32 + 32 = 64 diagonal projection
features and 4 x 16 = 64 radial projection features are
computed and concatenated to a 128 dimensional projection
feature vector.

D. MAT based Gradient Directional Features

The gradient components of a grayscale character image are
computed to build this feature set [16]. The binary character

image is converted to gray scale image using Medial Axial
Transformation (MAT) algorithm. The grayscale image is
then normalized within the range of [0,1]. Sobel operators
along horizontal and vertical axis is then applied on the
normalized image to obtain gradient character images along
x and y axis respectively. Gradient magnitude and phase is
then computed for each pixel in the gradient character
image. Image directions for each pixel with nonzero
magnitude are then quantized into one of eight directions at
/4 intervals. The image is divided into 4 X 4 = 16 equally
spaced sub—images and the number pixels in each direction
of each sub-image are considered as a feature. A total of
16 x 8 = 128 features are computed from the entire image.

E. Binary Gradient Directional Features

This feature extraction method for gradient directional
features is the same as that of MAT-based directional
features with the only exception that no MAT transform is
conducted. The gradient features are extracted directly from
the binary character image. A feature vector of length 128 is
computed from each character image.

F. Median Gradient Features

First few steps of the feature extraction algorithm in this
case are different from the MAT-based directional feature
computation process. As 2D median filter is first applied on
the normalized image. The Robert operators along horizontal
and vertical axis is then applied to the filter image to
compute gradients along x and y axis. The remaining steps
are same as before and 128 dimensional feature vector is
computed from a character image.

G. Structural Features

In this feature set, the structural properties of a handwritten
character are represented by histograms and profiles [13].
The binary character image is scaled to a 32 x 32 matrix.
The horizontal histogram, the vertical histogram, the radial
histogram, the in—out profile and the out—in profile is then
computed from the normalized matrix. Horizontal and
vertical histograms are computed by the number of
foreground pixels in each row (32 rows) and column (32
columns) of the normalized matrix respectively. The radial
histogram is computed along 72 directions at five degree
intervals by computing the number of foreground pixels. The
in—out profile computes the location of the first foreground
pixel from the centre along 72 directions at five degree
intervals. The out-in profile on the other hand computes the
location of the first foreground pixel from the edge along 72
directions at five degree intervals. A total of 32432+
72 + 72 + 72 = 280 features are computed for each pattern
providing a 280 dimensional feature set.

H. Multi-zone Features

This feature set is computed by dividing the character image
into a set of non-overlapping rectangular segments and
computing the ratio of foreground and background pixels in
each segment [12]. In order to achieve robustness different



division arrangements are considered. In each arrangement
the image is divided into R x C non—overlapping rectangular
segments. Following division arrangements are used in the
research:3x1,1x3,2%x3,3%x2,3%x3,1Xx4,4%1,4X%
4,6%x1,1x6,6x%x2,2x6 and 6x 6. A total of 3+ 3+
6+6+9+4+4+16+6+6+12+12+36 =123
features are computed from each pattern.

I. Edge Maps

Features are extracted in this case [12][14] by first obtaining
the edge map in different directions, dividing the modified
image into multiple zones and computing the proportion of
foreground pixels in each zone. The image thinning
operation is applied first and the resulting image is scaled to
25 x 25 matrix. The Sobel operator is then applied to extract
edge maps in four directions: horizontal, vertical, +45°
diagonal and —45° diagonal. The original image and the
edge maps are then divided into 25 sub—images of 5 x5
pixels. The percentage of foreground pixels in each sub-
image represents a feature. A total of 5 x 25 = 125 features
are computed from each pattern.

I1l. ENSEMBLE CLASSIFIER ARCHITECTURES

In order to investigate the influence of ensemble classifier
compositions we have developed three architectures with the
feature sets described above. Let pg, ..., uy be the M base
classifiers and f;, ..., fy be the N feature sets considered in
the ensemble classifier architecture. We assume that the M
base classifiers are heterogeneous in nature. A base classifier
p; trained on feature set f; is indexed by its training
parameters defined as Pusf; where 1<i<Mand1<j<

N. The three ensemble architectures we considered in the
research are presented in Figure 1, Figure 2, and Figure 3.

In the first architecture (Figure 1) all the feature sets
f1, -, fy are extracted from a pattern and a base classifier y;
then learns the feature sets separately. The training
parameter p of the base classifier varies with the feature set.
The decisions provided by the base classifiers are fused
using majority voting to produce the final classification
verdict. Same base classifier (with different training
parameters) is used with all the feature sets. This ensemble
architecture is suitable to identify the subset of feature sets
that is suitable for a particular type of base classifier.
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Figure 1: Type-1 ensemble classifier where decisions from a base classifier, trained on the feature sets, are fused using majority voting to the final

classification verdict.
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Figure 2: Type-2 ensemble classifier where the decisions from multiple heterogeneous base classifiers trained on the feature sets are fused using
majority voting to the final classification verdict.
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In the second architecture (Figure 2) a set of
heterogeneous base classifiers are trained on the feature sets
extracted from a pattern. The decisions produced by the
different base classifiers on the feature sets are fused using
majority voting to produce the final classification verdict.
This architecture is suitable to identify the subset of feature
sets that is suitable for a particular combination of base
classifiers of different types.

The third ensemble architecture (Figure 3) is based on
hierarchical fusion where decisions are fused at two levels.
A set of heterogeneous base classifiers are trained on each
feature set. A base classifier provides a decision on a pattern.
These decisions produced on a feature set are fused using
majority voting in the first level. The decisions produced on
all the feature sets in the first level are combined using
majority voting at the second level. This architecture is
helpful to identify the influence of hierarchical fusion over
flat fusion as used in Type—2 architecture.

While evaluating these architectures we used different
base classifiers and their combinations. We used different
subsets of classifier set {u,,...,uy} and the feature sets
{fi, ..., fu} to find the combination that performs best given
a data set.

IV. EXPERIMENTAL SETUP

We used C—Cube data set [19] to evaluate the presented
ensemble methods. The data set contains 57,293 character
images that include both upper case and lower case letters.
The division of the data set into training and test set is also
provided in [19]. The training set contains 38,160 character
images and the test set contains 19,133 character images.
There are a number of advantages of using this data set. As
the data set has a defined partitioning it becomes easier to
compare against other existing works conducted on identical
partitioning. The data set also provides some pre—computed
features obtained using the algorithm in [17]. There are
some global features readily available in the data set that can
be used along with other features and as reported in [12] the
addition of these global features contribute to 1%-2%
improvement in classification accuracy. We thus evaluated
the presented methods on the training and test sets of the C—
Cube data set.

We used three different base classifiers in the ensemble
architecture namely k—Nearest Neighbour (k-NN), Multi
Layer Perceptron (i.e. neural network NN) and Support
Vector Machine (SVM). We used k within the range of 1 to
9 with the k—NN classifier to obtain the best performing k.
The NN is trained in all cases with the following
configuration: (i) training algorithm: resilient
backpropagation, (ii) activation functions: log sigmoid, (iii)
learning rate: 0.001, (iv) momentum: 0.15, (v) epochs:
10000, (vi) goal: 0.0. The number of hidden units was varied
within the range of 50 to 500 to obtain the best
performances. The SVM was trained in all cases with radial
basis kernel. The parameter g was varied within the range of
0 to 10 for obtaining the best classification performance. All

the experiments were conducted on MATLAB.

As mentioned in Section Il we used nine feature sets. We
used the following feature sets as provided by the authors in
[12] in the experiments: Camastra, Binary Gradient,
Concavities, Projection, Mat Gradient, Median Gradient,
and Structural. We developed codes to generate the Multi
zone and Edge map feature sets to use in the experiments.

V. RESULTS AND DISCUSSION

We have conducted a number of experiments to evaluate the
presented methods and also to compare the performance
against the existing works. We have evaluated all possible
combinations of the classifiers and feature sets on the C—
Cube data set and in the section we present the best
performing combinations. The test set is evaluated under two
scenarios: (i) Upper and lower case letters considered as
separate classes i.e. 52 classes, and (ii) Upper and lower case
letters considered as a unique class i.e. 26 classes. We have
presented the classification accuracies for both cases in the
following sections. The diversity among the base classifiers
were obtained using KW-variance [24][24].

A. Single classifier Single Feature Evaluation

In this experiment we have trained each classifier separately
on each feature set. Table I represents the test accuracies
obtained for different feature sets with different classifiers.
In general SVM performs better than the other two
classifiers. Some of the feature sets namely Camastra,
Binary gradient, and Projection performs better than other
feature sets for all classifiers. The training parameters
namely k, HU (Hidden Units), and g corresponding to best
performing base classifiers is presented in Table Il. In
general higher values of k reveal better performance for the
k—-NN classifier. The hidden units were small for some
feature set (e.g. 50 for Concavities) and large for others (e.g.
500 for Camastra). The value of g also varied a lot with 0.1
for feature set like Structural and 6.2 for feature set like
MAT gradient.

B. Type-1 Ensemble Classifier with Multiple Feature Sets

We have evaluated Type—1 ensemble classifier by using the
k-NN, NN, and SVM classifiers separately on different
feature sets. All possible subsets of nine feature sets were
used with each classifier separately under ensemble
architecture Type 1. The cardinality of the sub sets are
varied from 3 to 9 and the best performing combinations for
each base classifier are presented in Table Ill. Ensemble
classifiers with k-NN, NN and SVM classifier performs best
with 8, 8 and 7 feature sets achieving 83.59%, 88.14% and
88.89% accuracies respectively. SVM ensemble performs
better than the other two ensembles. Note that diversity
always increases with increasing number of feature sets.

C. Type-2 Ensemble Classifier with Multiple Feature Sets

In this experiment we have evaluated Type-2 ensemble
classifier by using the k-NN & NN, k-NN & SVM, NN &
SVM, and k-NN & NN & SVM classifier combinations on



different feature sets. All possible subsets of the nine feature  of feature sets as well.
sets were used with each of these three classifier
combinations separately under ensemble architecture Type
2. The feature sub set length varies from 2 to 9 for dual
classifier combinations and varies within the range of 1 to 9 e :
for the three classifier combinations. The best performing ~ Purpose of majority voting and we thus used k-NN, NN and
combinations are presented in Table IV. Ensemble SVM. All possible subsets of nine feature sets were used
classifiers with k-NN & NN, k-NN & SVM, NN & SVM, with these classifier combinations. The decisions produced
and k-NN & NN & SVM classifier combinations perform by these three classifiers for each feature set were fused first
best with 6, 5, 6 and 6 feature sets achieving 87.90%, using majority voting. These first level decisions were fused
88.03%, 89.93% and 89.17% accuracies respectively. NN & 1N @ second level using majority voting. The best performing
SVM ensemble performs better than the other three ~COmbination is presented in Table V where a total of 8
ensembles. The diversity increases with increasing number ~ f€ature sets achieve 88.04% classification accuracy.

D. Type-3 Ensemble Classifier with Multiple Feature Sets

In this experiment we have evaluated Type-3 ensemble
classifier. At least three classifiers are required for the

Table I: Classification accuracy of individual classifiers

Feature Set k—=NN NN SVM
Up Low Separate  Up Low Joined Up Low Separate  Up Low Joined Up Low Separate  Up Low Joined

Binary Gradient 70.52 77.89 73.21 79.91 78.62 85.40
Camastra 72.44 79.68 75.00 81.95 79.37 85.91
Concavities 67.60 74.44 73.38 80.24 77.21 83.88
Projection 56.75 63.58 67.06 73.26 70.02 76.51
Mat gradient 64.15 71.26 73.03 79.89 73.29 79.90
Median Gradient 68.66 75.68 71.94 78.66 74.69 81.19
Structural 62.89 70.22 69.31 76.04 72.33 79.28
Multi zone 67.06 74.11 72.57 79.25 73.99 80.61
Edge map 61.82 68.82 65.90 71.98 70.85 77.21

Table II: Best performing parameters of individual classifiers

Feature Set k-NN NN SVM
Kk HU g
Binary Gradient 8 250 1.3
Camastra 8 500 2.1
Concavities 7 50 0.9
Projection 9 250 0.1
Mat gradient 8 300 6.2
Median Gradient 9 200 4.0
Structural 9 250 0.1
Multi zone 7 200 0.3
Edge map 9 250 0.3

Table 111: Best performing Type—1 ensemble classifiers
Classifier  No. of features Best performing feature set Accuracy Diversity
Up Low Separate Up Low Joined

k—NN 8 Camastra, Binary Gradient, Concavities, Mat Gradient,

Median Gradient, Structural, Multi zone, Edge map 76.16 83.59 0.1044
NN 8 Camastra, Binary Gradient, Concavities, Mat Gradient,

Median Gradient, Structural, Multi zone, Edge map 81.09 88.14 0.0962
SVM 7 Camastra, Binary Gradient, Concavities, Mat Gradient,

Median Gradient, Multi zone, Edge map 82.27 88.89 0.0783

Table 1V: Best performing Type—2 ensemble classifiers

Classifier No. of Best performing feature set Accuracy Diversity
features Up Low Separate Up Low Joined

k—NN & NN combo 6 Camastra, Binary Gradient, Concavities, Mat

Gradient, Median Gradient, Multi zone 80.67 87.90 0.1034
k-NN & SVM combo 5 Camastra, Binary Gradient, Concavities, Median

Gradient, Multi zone 81.21 88.03 0.0892
NN & SVM combo 6 Camastra, Binary Gradient, Concavities, Mat

Gradient, Median Gradient, Multi zone 83.03 89.93 0.0884
k-NN & NN & SVM 6 Camastra, Binary Gradient, Concavities, Mat
combo Gradient, Median Gradient, Multi zone 82.19 89.17 0.0991

Table V: Best performing Type—3 ensemble classifiers

Classifier No. of Best performing feature set Accuracy Diversity
features Up Low Separate Up Low Joined
k-NN & NN & SVM 8 Camastra, Binary Gradient, Concavities, Projection,

combo Mat Gradient, Median Gradient, Structural, Multi zone 81.05 88.04 0.0788




Table VI: Base classifier ranking in terms of average classification accuracy

k=NN NN SVM
Up Low Separate Up Low Joined Up Low Separate Up Low Joined Up Low Separate Up Low Joined
Average 65.77 72.85 71.27 77.91 74.49 81.10
Rank 3 2 1
Table VII: Base classifier ranking in terms of feature set
Feature Set Average Rank
Up Low Separate Up Low Joined

Binary Gradient 74.12 81.07 2

Camastra 75.60 82.51 1

Concavities 72.73 79.52 3

Projection 64.61 71.12 9

Mat gradient 70.16 77.02 6

Median Gradient 7176 78.51 4

Structural 68.18 75.18 7

Multi zone 71.21 77.99 5

Edge map 66.19 72.67 8

E. Performance Comparison

The best performing ensemble classifiers of Type-1, Type—
2, and Type-3 under different base classifier combinations
are presented in Table I1I, Table 1V, and Table V. Type-3
architecture performs worse than the two other architectures.
This is due to the fact that the first level fusion is conducted
only on three decisions and there were little diversity among
the base classifiers.

NN & SVM combination under Type-2 ensemble
architecture performs better than any other ensemble
classifier. It can be observed that the best accuracy do not
correspond to best diversity. The best performance of the
NN & SVM combination over the others can be explained
from the rankings (1 being the best) of base classifiers and
feature sets in Table VI and Table VII. The NN & SVM
combination is composed of best six feature sets. Out of the
three base classifiers k-NN performs the 6.94% and 11.32%
worse than NN and SVM respectively. Inclusion of k—NN
thus influences the reduction of accuracy. This is why the
ensemble classifiers including k-NN & NN combination, k—
NN & SVM combination, and k-NN & NN & SVM
combination performs inferior to NN & SVM combination.
Edge map is the second worst performing feature set as
evidenced from Table VII. Edge map feature set is involved
in best performing k-NN combo, NN combo and SVM
combo. This leads to inferior performance of these ensemble
classifiers against NN & SVM combo.

The best performance of the presented ensemble classifier
is compared against that of some published works on C-
Cube data set and presented in Table VIII. Note that the
presented method performs better than others. The
performance of the presented ensemble classifier is better
than that in [12] because of a number of reasons. Only NN
classifiers are used in [12] and as per the performance
analysis in, NN combo performs inferior to NN & SVM
combo. All the nine feature sets are used in [12]. Inclusion
of Edge map, Projection and Structural feature sets reduces
classification accuracy of the ensemble. The presented

ensemble outperforms all the other pervious works. This is
because these previous works are based on either NN or
SVM only. The presented ensemble uses combination of NN
and SVM and as evidenced empirically they are better than
other combinations.

VI.

In this paper we have investigated different ensemble
classifier architectures with a combination of a number of
feature sets for cursive character recognition. We can draw a
number of conclusions from the discussions presented above
about the C-Cube data set: (i) Based on the average
classification performance Camastra feature set performs
best (82.51%) and Projection feature set performs worst
(71.12%); (ii) The NN & SVM classifier combination with
Camastra, Binary Gradient, Concavities, Mat Gradient,
Median Gradient, Multi zone achieves 89.93% classification
accuracy that is better than any other base classifier and
feature set combination. The inferior performance of other
combinations is due to the inclusion of either k—NN
classifier (Rank: 3, lowest) or Edge map (Rank: 8, second
lowest) feature set in them. (iii) The presented method
performs better than currently available methods in the
literature. Use of only one type (NN/SVM) of base classifier
and use of all the features independent of their rank can be
attributed to the inferior performance of the existing
methods. In future we would like to incorporate the
presented method with cursive word recognition to improve
accuracy.

CONCLUSION

Table VIII: Performance comparison of presented and existing methods

Method Accuracy
34D-SVM + Neural GAS [17] 86.20
34D-MLP [17] 71.42
MLP Ensemble [12] 89.34
SVM-26 class [18] 89.61
This paper 89.93




(1]
[2]

(3]

(4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

S. N. Srihari, “Automatic handwriting recognition”, Encyclopedia of
Language & Linguistics, Elsevier, 2006.

B. Gatos, I. Pratikakis, A.L. Kesidis, S.J. Perantonis, “Efficient off-
line cursive handwriting word recognition”, Tenth International
Workshop on Frontiers in Handwriting Recognition, 2006.

A. L. Koerich, A. S. Britto, L. E. S. de Oliveira and R. Sabourin,
“Fusing high- and low-level features for handwritten word
recognition”, Tenth International Workshop on Frontiers in
Handwriting Recognition, 2006.

N. R. Howe, T. M. Rath and R. Manmatha, “Boosted decision trees
for word recognition in handwritten document retrieval”, The 28th
SIGIR Conference on Research & Development in Information
Retrieval, pp. 377-383, 2005.

J. Sadri, C. Suen, and T. D. Bui, A genetic framework using
contextual knowledge for segmentation and recognition of
handwritten numeral strings, Pattern Recognition, vol. 40, pp. 898 —
919, 2007.

H. Lee and B. Verma, “Binary Segmentation with Neural Validation
for Cursive Handwriting Recognition,” IEEE International Joint
Conference on Neural Networks, pp. 1730-1735, 2009.

H. Lee and B. Verma, “Over-segmentation and Neural Binary
Validation for cursive handwriting recognition,” IEEE International
Joint Conference on Neural Networks, pp. 1-5, 2010.

N. Arica and F.T. Yarman-Vural, “An overview of character
recognition focused on off-line handwriting,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, vol. 31, May. 2001, pp. 216-233.

H. Fujisawa, “Forty years of research in character and document
recognition--an industrial perspective,” Pattern Recognition, vol. 41,
Aug. 2008, pp. 2435-2446.

N. Arica and F.T. Yarman-Vural, “Optical Character Recognition for
Cursive Handwriting,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
24, Jun. 2002, pp. 801-813.

B. Verma, P. Gader, and W. Chen, “Fusion of multiple handwritten
word recognition techniques,” Pattern Recognition Letters, vol. 22,
Jul. 2001, pp. 991-998.

R. M. O. Cruz, G. D. C. Cavalcanti, and T. I. Ren, “An ensemble
classifier for offline cursive character recognition using multiple
feature extraction techniques,” International Joint Conference on
Neural Networks (IJCNN), pp. 744-751, Barcelona, Spain, 2010.

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

E. Kavallieratou, K. Sgarbas, N. Fakotakis, and G. Kokkinakis,
“Handwritten word recognition based on structural characteristics and
lexical support,” International Conference on Document Analysis and
Recognition, pp. 562-567, 2003.

Y. —C. Chim, A. A. Kassim, and Y. Ibrahim, “Dual classifier system
for handprinted alphanumeric character recognition,” Pattern Analysis
and Applications, vol. 4, no. 1, pp. 155-162, 1998.

L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic
recognition of handwritten numerical strings: a recognition and
verification strategy,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, vol. 24, no. 11, pp. 1438-1454, 2002.

P. Zhang, “Reliable recognition of handwritten digits using a cascade
ensemble classifier system and hybrid features,” Ph. D. Thesis,
Concordia University, Montreal, P. Q., Canada, 2006.

F. Camastra, “A svm-based cursive character recognizer,” Pattern
Recognition, vol. 40, no. 12, pp. 3721-3727, 2007.

F. Camastra, M. Spinetti, and A. Vinciarelli, “Offline Cursive
Character Challenge: a New Benchmark for Machine Learning and
Pattern Recognition Algorithms,” International Conference on Pattern
Recognition (ICPR), pp. 913-916, 2005.

C—Cube, http://www.idiap.ch/project/ccc/, Last accessed January,
2011.

A. Rahman and B. Verma, “A Novel Ensemble Classifier Approach
using Weak Classifier Learning on Overlapping Clusters,” IEEE
International Joint Conference on Neural Networks (IJCNN), pp. 1-5,
2010.

R. Polikar, “Ensemble based systems in decision making,” IEEE
Circuits and Systems Magazine, vol. 6, no. 3, pp. 21-45, 2006.

L. Chen and M. S. Kamel, “A generalized adaptive ensemble
generation and aggregation approach for multiple classifiers systems,”
Pattern Recognition, vol. 42, pp. 629-644, 2009.

A. Rahman and B. Verma, “A novel ensemble classifier approach
using weak classifier learning on overlapping clusters,” The
International Joint Conference on Neural Networks (ICNN), pp. 1-7,
2010.

L. I. Kuncheva and C. J. Whitaker, “Measures of Diversity in
Classifier Ensembles and Their Relationship with the Ensemble
Accuracy,” Machine Learning, vol. 51, no.2, pp. 181-207, 2003.

R. Kohavi and D. H. Wolpert, “Bias plus variance decomposition for
zero-one loss functions,” Proc. Int. Conf. on Machine Learning, pp.
275-283, Bari, ltaly.



