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 

Abstract— In this paper we propose different ensemble 

classifier compositions and investigate their influence on offline 

cursive character recognition. Cursive characters are difficult 

to recognize due to different handwriting styles of different 

writers. The recognition accuracy can be improved by training 

an ensemble of classifiers on multiple feature sets focussing on 

different aspects of character images. Given the feature sets 

and base classifiers, we have developed multiple ensemble 

classifier compositions using three architectures. Type–1 

architecture is based on homogeneous base classifiers and 

Type–2 architecture is composed of heterogeneous base 

classifiers. Type–3 architecture is based on hierarchical fusion 

of decisions. The experimental results demonstrate that the 

presented method with best composition of classifiers and 

feature sets performs better than existing methods for offline 

cursive character recognition. 

I. INTRODUCTION 

ff-line Cursive Character Recognition refers to the 

process of transforming the image of a handwritten 

character into a representation (e.g. character class, ASCII 

code etc.) that is useful for different computer applications. 

Character recognition is a part of handwriting recognition 

process with a number of real world applications including 

postal address recognition, document authentication, and 

interpreting historical documents. The applications are of 

significant interest in various financial institutions, postal 

services, and law enforcement agencies. 

Despite its potential applications, the recognition of 

cursive handwritten characters has not been satisfactory in 

comparison [1]–[7]. Diversity of handwriting styles is 

identified to be the main reason for the unsatisfactory 

recognition rate. This brings in a lot of research in recent 

times [8]–[17] to investigate features for cursive character 

recognition invariant to handwriting styles. A survey of 

different feature extraction methods is available in [8]–[10]. 

We aim at identifying a suitable combination of features for 

character recognition. We thus investigated a set of 

complementary features that focus on different aspects of a 

character image. The details on the features are presented at 

Section II. 

While the features focus on particular aspects of 

characters, the accuracy can be further improved by 

combining the decisions produced by different features [11]–

[12][14]. From classification point of view this is called an 
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ensemble classifier [20]–[23]. An ensemble classifier 

generates the base classifiers in a way so that they 

complement each other and produce better accuracy than 

their base counterparts. The accuracy depends to a lot of 

extent on how the feature sets are combined in ensemble 

architecture. In this paper we investigate a number of 

ensemble architectures to combine the different feature sets 

to obtain the best recognition accuracy. We have confined 

our experiments to C–Cube data set [19] that is widely used 

in the literature [12][17]–[18].  

The research presented in the paper aims to investigate the 

following: (i) explore different feature extraction methods 

for cursive character recognition, (ii) explore different 

ensemble architectures to combine the different feature sets 

in order to improve accuracy, (iii) identification of classifier 

and feature set combinations that perform best on C–Cube 

handwriting data set, (iv) provide a comparison of the 

presented work and other existing works on C–Cube data 

set. 

The paper is organized as follows. Section II presents the 

cursive character recognition features investigated in the 

research. The ensemble architectures are presented in 

Section III. The experimental platform is presented in 

Section IV. The investigation results and comparisons 

appear in Section V. Finally Section VI concludes the paper. 

II. HANDWRITING RECOGNITION FEATURES 

The features used in the research are presented previously in 

the literature. We have used a total of nine features as used 

in [12]. The feature extraction algorithms are presented next. 

A. Camastra Features 

This feature set consists of local and global features that are 

extracted from the binary image of a character [17]. The 

character image is first divided into     sub–images/cells 

arranged in a grid. In order to achieve shift invariance some 

cells are allowed to overlap. The local features are computed 

from the sub–images. The first feature computes the 

percentage of foreground pixels in the cell with respect to 

the total number of foreground pixels in the character image. 

This is called grey feature. Let    be the number of 

foreground pixels in cell   and   be the total number of 

foreground pixels in the character. The grey feature for cell   
is set to    ⁄ . 

The second feature is a directional feature. Two directions 

are considered for feature extraction:    and      i.e. along 

the horizontal and vertical axis. Let the width and height of 
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the cell be    and    pixels respectively. The process 

identifies the number of black pixels along each row (   
direction) and each column (    direction) in the cell. The 

directional feature in cell   is computed as: 
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where    is the number of black pixels along row/column  . 

The feature set also includes two global features that 

provide information about the shape of the character and the 

relative position of the character with respect to the baseline. 

The overall shape information is represented by the 

width/ratio of the character. The fraction of the character 

bellow the baseline acts as the second global feature. A total 

of          local features and 2 global features are 

computed for each pattern providing a 34 dimensional 

feature set. 

B. Concavities Measurement 

Concavity features are computed from a character image in 

this case [15]. The character image is first normalized to a 

      matrix. The image is then partitioned into six zones. 

A search is conducted for each white pixel in a zone. The 

search looks for black pixels in four freeman directions. The 

outcome of the search for each white pixel is coded and 

incrementally updates a vector of dimension 13 that is 

initialized with zeros. The vector has two indices: upper and 

lower index. The upper index represents the number of 

directions where black pixels were reached and the lower 

index represents the direction where black pixel was not 

found. When the search finds black pixel in all four 

directions an additional search is conducted in four auxiliary 

directions to make sure that the pixel falls within a contour. 

When the search for all the white pixels in every zone is 

finished the vectors are concatenated to produce a feature 

vector of length        . 

C. Image Projections 

Image projection features are obtained by projecting the 

image along a particular direction. In this case [14] two 

types of projections are obtained: diagonal and radial. Image 

is first normalized to a       matrix. Diagonal projections 

are simply the projections of the image onto the two 

diagonal lines:      and     . Radial projections are 

computed by grouping foreground pixels that are at the same 

radial distance from the centre of the image [14]. The radial 

distance is measured in units of pixels and thus pixels that 

are at the same radial distance from the centre lie on the 

edge of a square. In order to achieve rotational invariance 

the image is partitioned into four quadrants: top, bottom, 

left, and right. A total of          diagonal projection 

features and         radial projection features are 

computed and concatenated to a 128 dimensional projection 

feature vector. 

D. MAT based Gradient Directional Features 

The gradient components of a grayscale character image are 

computed to build this feature set [16]. The binary character 

image is converted to gray scale image using Medial Axial 

Transformation (MAT) algorithm. The grayscale image is 

then normalized within the range of      . Sobel operators 

along horizontal and vertical axis is then applied on the 

normalized image to obtain gradient character images along 

x and y axis respectively. Gradient magnitude and phase is 

then computed for each pixel in the gradient character 

image. Image directions for each pixel with nonzero 

magnitude are then quantized into one of eight directions at 

    intervals. The image is divided into        equally 

spaced sub–images and the number pixels in each direction 

of each sub-image are considered as a feature. A total of 

         features are computed from the entire image. 

E. Binary Gradient Directional Features 

This feature extraction method for gradient directional 

features is the same as that of MAT-based directional 

features with the only exception that no MAT transform is 

conducted. The gradient features are extracted directly from 

the binary character image. A feature vector of length 128 is 

computed from each character image. 

F. Median Gradient Features 

First few steps of the feature extraction algorithm in this 

case are different from the MAT-based directional feature 

computation process. As 2D median filter is first applied on 

the normalized image. The Robert operators along horizontal 

and vertical axis is then applied to the filter image to 

compute gradients along x and y axis. The remaining steps 

are same as before and 128 dimensional feature vector is 

computed from a character image. 

G. Structural Features 

In this feature set, the structural properties of a handwritten 

character are represented by histograms and profiles [13]. 

The binary character image is scaled to a       matrix. 

The horizontal histogram, the vertical histogram, the radial 

histogram, the in–out profile and the out–in profile is then 

computed from the normalized matrix. Horizontal and 

vertical histograms are computed by the number of 

foreground pixels in each row (32 rows) and column (32 

columns) of the normalized matrix respectively. The radial 

histogram is computed along 72 directions at five degree 

intervals by computing the number of foreground pixels. The 

in–out profile computes the location of the first foreground 

pixel from the centre along 72 directions at five degree 

intervals. The out–in profile on the other hand computes the 

location of the first foreground pixel from the edge along 72 

directions at five degree intervals. A total of       
             features are computed for each pattern 

providing a 280 dimensional feature set. 

H. Multi–zone Features 

This feature set is computed by dividing the character image 

into a set of non–overlapping rectangular segments and 

computing the ratio of foreground and background pixels in 

each segment [12]. In order to achieve robustness different 



division arrangements are considered. In each arrangement 

the image is divided into     non–overlapping rectangular 

segments. Following division arrangements are used in the 

research:   ,    ,    ,    ,    ,    ,    ,   
 ,    ,    ,    , 2   and 6  . A total of      

                              

features are computed from each pattern. 

I. Edge Maps 

Features are extracted in this case [12][14] by first obtaining 

the edge map in different directions, dividing the modified 

image into multiple zones and computing the proportion of 

foreground pixels in each zone. The image thinning 

operation is applied first and the resulting image is scaled to 

      matrix. The Sobel operator is then applied to extract 

edge maps in four directions: horizontal, vertical,      
diagonal and      diagonal. The original image and the 

edge maps are then divided into 25 sub–images of     

pixels. The percentage of foreground pixels in each sub–

image represents a feature. A total of          features 

are computed from each pattern. 

III. ENSEMBLE CLASSIFIER ARCHITECTURES 

In order to investigate the influence of ensemble classifier 

compositions we have developed three architectures with the 

feature sets described above. Let         be the   base 

classifiers and         be the   feature sets considered in 

the ensemble classifier architecture. We assume that the   

base classifiers are heterogeneous in nature. A base classifier 

   trained on feature set    is indexed by its training 

parameters defined as       
 where       and     

 . The three ensemble architectures we considered in the 

research are presented in Figure 1, Figure 2, and Figure 3. 

In the first architecture (Figure 1) all the feature sets 

        are extracted from a pattern and a base classifier    

then learns the feature sets separately. The training 

parameter   of the base classifier varies with the feature set. 

The decisions provided by the base classifiers are fused 

using majority voting to produce the final classification 

verdict. Same base classifier (with different training 

parameters) is used with all the feature sets. This ensemble 

architecture is suitable to identify the subset of feature sets 

that is suitable for a particular type of base classifier. 

 

 
Figure 1: Type–1 ensemble classifier where decisions from a base classifier, trained on the feature sets, are fused using majority voting to the final 

classification verdict. 
 

 

 

 

 

 

 

 

 
Figure 2: Type–2 ensemble classifier where the decisions from multiple heterogeneous base classifiers trained on the feature sets are fused using 

majority voting to the final classification verdict. 
 

 

 

 

 

 

 

 

 
Figure 3: Type–3 ensemble classifier where the decisions from multiple heterogeneous base classifiers trained on the feature sets are fused in two levels 

using majority voting to the final classification verdict. 
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In the second architecture (Figure 2) a set of 

heterogeneous base classifiers are trained on the feature sets 

extracted from a pattern. The decisions produced by the 

different base classifiers on the feature sets are fused using 

majority voting to produce the final classification verdict. 

This architecture is suitable to identify the subset of feature 

sets that is suitable for a particular combination of base 

classifiers of different types. 

The third ensemble architecture (Figure 3) is based on 

hierarchical fusion where decisions are fused at two levels. 

A set of heterogeneous base classifiers are trained on each 

feature set. A base classifier provides a decision on a pattern. 

These decisions produced on a feature set are fused using 

majority voting in the first level. The decisions produced on 

all the feature sets in the first level are combined using 

majority voting at the second level. This architecture is 

helpful to identify the influence of hierarchical fusion over 

flat fusion as used in Type–2 architecture. 

While evaluating these architectures we used different 

base classifiers and their combinations. We used different 

subsets of classifier set {         and the feature sets 

{         to find the combination that performs best given 

a data set. 

IV. EXPERIMENTAL SETUP 

We used C–Cube data set [19] to evaluate the presented 

ensemble methods. The data set contains 57,293 character 

images that include both upper case and lower case letters. 

The division of the data set into training and test set is also 

provided in [19]. The training set contains 38,160 character 

images and the test set contains 19,133 character images. 

There are a number of advantages of using this data set. As 

the data set has a defined partitioning it becomes easier to 

compare against other existing works conducted on identical 

partitioning. The data set also provides some pre–computed 

features obtained using the algorithm in [17]. There are 

some global features readily available in the data set that can 

be used along with other features and as reported in [12] the 

addition of these global features contribute to 1%–2% 

improvement in classification accuracy. We thus evaluated 

the presented methods on the training and test sets of the C–

Cube data set. 

We used three different base classifiers in the ensemble 

architecture namely k–Nearest Neighbour (k–NN), Multi 

Layer Perceptron (i.e. neural network NN) and Support 

Vector Machine (SVM). We used k within the range of 1 to 

9 with the k–NN classifier to obtain the best performing k. 

The NN is trained in all cases with the following 

configuration: (i) training algorithm: resilient 

backpropagation, (ii) activation functions: log sigmoid, (iii) 

learning rate: 0.001, (iv) momentum: 0.15, (v) epochs: 

10000, (vi) goal: 0.0. The number of hidden units was varied 

within the range of 50 to 500 to obtain the best 

performances. The SVM was trained in all cases with radial 

basis kernel. The parameter g was varied within the range of 

0 to 10 for obtaining the best classification performance. All 

the experiments were conducted on MATLAB. 

As mentioned in Section II we used nine feature sets. We 

used the following feature sets as provided by the authors in 

[12] in the experiments: Camastra, Binary Gradient, 

Concavities, Projection, Mat Gradient, Median Gradient, 

and Structural. We developed codes to generate the Multi 

zone and Edge map feature sets to use in the experiments. 

V. RESULTS AND DISCUSSION 

We have conducted a number of experiments to evaluate the 

presented methods and also to compare the performance 

against the existing works. We have evaluated all possible 

combinations of the classifiers and feature sets on the C–

Cube data set and in the section we present the best 

performing combinations. The test set is evaluated under two 

scenarios: (i) Upper and lower case letters considered as 

separate classes i.e. 52 classes, and (ii) Upper and lower case 

letters considered as a unique class i.e. 26 classes. We have 

presented the classification accuracies for both cases in the 

following sections. The diversity among the base classifiers 

were obtained using KW–variance [24][24]. 

A. Single classifier Single Feature Evaluation 

In this experiment we have trained each classifier separately 

on each feature set. Table I represents the test accuracies 

obtained for different feature sets with different classifiers. 

In general SVM performs better than the other two 

classifiers. Some of the feature sets namely Camastra, 

Binary gradient, and Projection performs better than other 

feature sets for all classifiers. The training parameters 

namely k, HU (Hidden Units), and g corresponding to best 

performing base classifiers is presented in Table II. In 

general higher values of k reveal better performance for the 

k–NN classifier. The hidden units were small for some 

feature set (e.g. 50 for Concavities) and large for others (e.g. 

500 for Camastra). The value of g also varied a lot with 0.1 

for feature set like Structural and 6.2 for feature set like 

MAT gradient. 

B. Type-1 Ensemble Classifier with Multiple Feature Sets 

We have evaluated Type–1 ensemble classifier by using the 

k–NN, NN, and SVM classifiers separately on different 

feature sets. All possible subsets of nine feature sets were 

used with each classifier separately under ensemble 

architecture Type 1. The cardinality of the sub sets are 

varied from 3 to 9 and the best performing combinations for 

each base classifier are presented in Table III. Ensemble 

classifiers with k–NN, NN and SVM classifier performs best 

with 8, 8 and 7 feature sets achieving 83.59%, 88.14% and 

88.89% accuracies respectively. SVM ensemble performs 

better than the other two ensembles. Note that diversity 

always increases with increasing number of feature sets. 

C. Type-2 Ensemble Classifier with Multiple Feature Sets 

In this experiment we have evaluated Type–2 ensemble 

classifier by using the k–NN & NN, k–NN & SVM, NN & 

SVM, and k–NN & NN & SVM classifier combinations on 



different feature sets. All possible subsets of the nine feature 

sets were used with each of these three classifier 

combinations separately under ensemble architecture Type 

2. The feature sub set length varies from 2 to 9 for dual 

classifier combinations and varies within the range of 1 to 9 

for the three classifier combinations. The best performing 

combinations are presented in Table IV. Ensemble 

classifiers with k–NN & NN, k–NN & SVM, NN & SVM, 

and k–NN & NN & SVM classifier combinations perform 

best with 6, 5, 6 and 6 feature sets achieving 87.90%, 

88.03%, 89.93% and 89.17% accuracies respectively. NN & 

SVM ensemble performs better than the other three 

ensembles. The diversity increases with increasing number 

of feature sets as well. 

D. Type-3 Ensemble Classifier with Multiple Feature Sets 

In this experiment we have evaluated Type–3 ensemble 

classifier. At least three classifiers are required for the 

purpose of majority voting and we thus used k–NN, NN and 

SVM. All possible subsets of nine feature sets were used 

with these classifier combinations. The decisions produced 

by these three classifiers for each feature set were fused first 

using majority voting. These first level decisions were fused 

in a second level using majority voting. The best performing 

combination is presented in Table V where a total of 8 

feature sets achieve 88.04% classification accuracy. 
 

Table I: Classification accuracy of individual classifiers 

Feature Set k–NN NN SVM 

 Up Low Separate Up Low Joined Up Low Separate Up Low Joined Up Low Separate Up Low Joined 

Binary Gradient 70.52 77.89 73.21 79.91 78.62 85.40 

Camastra 72.44 79.68 75.00 81.95 79.37 85.91 

Concavities 67.60 74.44 73.38 80.24 77.21 83.88 
Projection 56.75 63.58 67.06 73.26 70.02 76.51 

Mat gradient 64.15 71.26 73.03 79.89 73.29 79.90 

Median Gradient 68.66 75.68 71.94 78.66 74.69 81.19 
Structural 62.89 70.22 69.31 76.04 72.33 79.28 

Multi zone 67.06 74.11 72.57 79.25 73.99 80.61 

Edge map 61.82 68.82 65.90 71.98 70.85 77.21 

 
Table II: Best performing parameters of individual classifiers  

Feature Set k–NN NN  SVM 

 k HU g 

Binary Gradient 8 250 1.3 
Camastra 8 500 2.1 

Concavities 7 50 0.9 

Projection 9 250 0.1 
Mat gradient 8 300 6.2 

Median Gradient 9 200 4.0 

Structural 9 250 0.1 
Multi zone 7 200 0.3 

Edge map 9 250 0.3 

 
Table III: Best performing Type–1 ensemble classifiers 

Classifier No. of features Best performing feature set Accuracy Diversity 

   Up Low Separate Up Low Joined  

k–NN  8 Camastra, Binary Gradient, Concavities, Mat Gradient, 
Median Gradient, Structural, Multi zone, Edge map 76.16 83.59 0.1044 

NN 8 Camastra, Binary Gradient, Concavities, Mat Gradient, 

Median Gradient, Structural, Multi zone, Edge map 81.09 88.14 0.0962 
SVM 7 Camastra, Binary Gradient, Concavities, Mat Gradient, 

Median Gradient, Multi zone, Edge map 82.27 88.89 0.0783 

 
Table IV: Best performing Type–2 ensemble classifiers 

Classifier No. of 

features 

Best performing feature set Accuracy Diversity 

Up Low Separate Up Low Joined  

k–NN & NN combo 6 Camastra, Binary Gradient, Concavities, Mat 
Gradient, Median Gradient, Multi zone 80.67 87.90 0.1034 

k–NN & SVM combo 5 Camastra, Binary Gradient, Concavities, Median 

Gradient, Multi zone 81.21 88.03 0.0892 
NN & SVM combo 6 Camastra, Binary Gradient, Concavities, Mat 

Gradient, Median Gradient, Multi zone 83.03 89.93 0.0884 

k–NN & NN & SVM 
combo 

6 Camastra, Binary Gradient, Concavities, Mat 
Gradient, Median Gradient, Multi zone 82.19 89.17 0.0991 

 
Table V: Best performing Type–3 ensemble classifiers 

Classifier No. of 

features 

Best performing feature set Accuracy Diversity 

Up Low Separate Up Low Joined  

k–NN & NN & SVM 

combo 

8 Camastra, Binary Gradient, Concavities, Projection, 

Mat Gradient, Median Gradient, Structural, Multi zone 81.05 88.04 0.0788 



 
Table VI: Base classifier ranking in terms of average classification accuracy 

 k–NN NN SVM 

Up Low Separate Up Low Joined Up Low Separate Up Low Joined Up Low Separate Up Low Joined 

Average 65.77 72.85 71.27 77.91 74.49 81.10 

Rank 3 2 1 

 

 
Table VII: Base classifier ranking in terms of feature set 

Feature Set Average Rank 

Up Low Separate Up Low Joined 

Binary Gradient 74.12 81.07 2 
Camastra 75.60 82.51 1 

Concavities 72.73 79.52 3 

Projection 64.61 71.12 9 
Mat gradient 70.16 77.02 6 

Median Gradient 71.76 78.51 4 

Structural 68.18 75.18 7 
Multi zone 71.21 77.99 5 

Edge map 66.19 72.67 8 

 

E. Performance Comparison 

The best performing ensemble classifiers of Type–1, Type–

2, and Type–3 under different base classifier combinations 

are presented in Table III, Table IV, and Table V. Type–3 

architecture performs worse than the two other architectures. 

This is due to the fact that the first level fusion is conducted 

only on three decisions and there were little diversity among 

the base classifiers. 

NN & SVM combination under Type–2 ensemble 

architecture performs better than any other ensemble 

classifier. It can be observed that the best accuracy do not 

correspond to best diversity. The best performance of the 

NN & SVM combination over the others can be explained 

from the rankings (1 being the best) of base classifiers and 

feature sets in Table VI and Table VII. The NN & SVM 

combination is composed of best six feature sets. Out of the 

three base classifiers k–NN performs the 6.94% and 11.32% 

worse than NN and SVM respectively. Inclusion of k–NN 

thus influences the reduction of accuracy. This is why the 

ensemble classifiers including k–NN & NN combination, k–

NN & SVM combination, and k–NN & NN & SVM 

combination performs inferior to NN & SVM combination. 

Edge map is the second worst performing feature set as 

evidenced from Table VII. Edge map feature set is involved 

in best performing k–NN combo, NN combo and SVM 

combo. This leads to inferior performance of these ensemble 

classifiers against NN & SVM combo. 

The best performance of the presented ensemble classifier 

is compared against that of some published works on C–

Cube data set and presented in Table VIII. Note that the 

presented method performs better than others. The 

performance of the presented ensemble classifier is better 

than that in [12] because of a number of reasons. Only NN 

classifiers are used in [12] and as per the performance 

analysis in, NN combo performs inferior to NN & SVM 

combo. All the nine feature sets are used in [12]. Inclusion 

of Edge map, Projection and Structural feature sets reduces 

classification accuracy of the ensemble. The presented 

ensemble outperforms all the other pervious works. This is 

because these previous works are based on either NN or 

SVM only. The presented ensemble uses combination of NN 

and SVM and as evidenced empirically they are better than 

other combinations. 

VI. CONCLUSION 

In this paper we have investigated different ensemble 

classifier architectures with a combination of a number of 

feature sets for cursive character recognition. We can draw a 

number of conclusions from the discussions presented above 

about the C–Cube data set: (i) Based on the average 

classification performance Camastra feature set performs 

best (82.51%) and Projection feature set performs worst 

(71.12%); (ii) The NN & SVM classifier combination with 

Camastra, Binary Gradient, Concavities, Mat Gradient, 

Median Gradient, Multi zone achieves 89.93% classification 

accuracy that is better than any other base classifier and 

feature set combination. The inferior performance of other 

combinations is due to the inclusion of either k–NN 

classifier (Rank: 3, lowest) or Edge map (Rank: 8, second 

lowest) feature set in them. (iii) The presented method 

performs better than currently available methods in the 

literature. Use of only one type (NN/SVM) of base classifier 

and use of all the features independent of their rank can be 

attributed to the inferior performance of the existing 

methods. In future we would like to incorporate the 

presented method with cursive word recognition to improve 

accuracy. 

 
Table VIII: Performance comparison of presented and existing methods 

Method Accuracy 

34D–SVM + Neural GAS [17] 86.20 

34D–MLP [17] 71.42 

MLP Ensemble [12] 89.34 
SVM–26 class [18] 89.61 

This paper 89.93 
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