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Abstract 

Video analysis plays a significant role in a number of real-world applications, such as object tracking, 

scene analysis, and motion detection. Recently, roadside video analysis is becoming more important 

for fire risk management, infrastructure planning, tree trimming, and vegetation control. However, 

manual analysis of the huge volume of video data makes it unsuitable for many applications. Hence, 

automatic video analysis is becoming a very popular research area in image processing and machine 

learning fields.  

One of the key components for video analysis is the extraction of appropriate features from the video 

frame/images. Extracting features from the selected regions in video frames and matching the 

extracted features with similar regions can solve many object detection and recognition problems. 

There is no specific feature that can be applicable in any domain. This is the reason that researchers 

look for a good feature representation based on specific applications. Features that are perceptually 

meaningful, have special analytical ability, are identifiable on different images and are scale invariants 

can be defined as good features. 

In recent years, many applications have used video processing and remote sensing techniques for 

vegetation area identification either from aerial images or from satellite images. Some other 

applications used different types of vehicles and various types of sensors for specific applications such 

as weed and crop identification. However, getting high accuracy using existing methods is still a great 

challenge on the detection of target objects. Moreover, finding the fire-prone regions by analysing 

roadside video data is still an open challenge for researchers. Finding all the dense regions using a 

manual monitoring method is expensive, labour-intensive and time-consuming. To mitigate the above-

mentioned problems, there have been increasing demands for automating the system to monitor the 

dense regions from the video data using image processing and machine learning techniques. 

The research in this thesis focused on developing an automatic video analysis approach for roadside 

object detection and classification. It investigated the problem of detecting roadside objects in 

unstructured environments. The major problem during the detection of roadside objects is the 

extraction of appropriate features. Successful classification of objects heavily depends on good feature 

representation. Learning algorithms produce low accuracy if the feature representation is poor. Hence, 

the main objective of this research is to develop novel feature extraction and classification techniques 

which can perform an accurate detection that is fast enough for real-time application.  

This thesis presents a number of novel techniques. The first technique described is the identification of 

vegetation areas from roadside images using the combination of novel feature extraction and 
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ensemble classifier technique. This technique achieved comparable performance for grass and non-

grass area separation. The second technique is an extension of the first technique in respect to 

features. The third technique introduces bit quantisation and sequence features for object 

classification from roadside images. The fourth technique is based on a directional connectivity 

algorithm for grass density estimation. The fifth and final technique presented here is a perceptual 

feature extraction technique which can be applied to identify any objects on the roadside data frames.   

The proposed techniques are applied to identify the roadside regions and objects on local roadside 

video data and on several popular benchmark datasets including Stanford, MSRC, and SIFT Flow. The 

results showing the effectiveness of the proposed techniques and detailed analysis are presented in 

this thesis. The need for future research is also highlighted, including the automation of sending 

alarms and the investigation of handling the shadow problem.   
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Chapter 1 Introduction 

This chapter presents the background, research aims and research questions related to roadside 

vegetation classification and propose a reliable and cost-effective solution using image processing and 

machine learning techniques. Section 1.1 provides the introductory background and Section 1.2 

describes the significance of the study. Section 1.3 defines the research aims and Section 1.4 then 

presents the research questions. Contributions of the study are highlighted in Section 1.5. Finally, 

Section 1.6 provides an overview of the remaining chapters of the thesis. 

 

1.1 Background 

Roadside objects analysis [1] is an important and challenging research area in the field of computer 

vision. Classification of objects such as trees, shrubs, crops, weeds, fruits, road signs and vegetables 

have numerous applications in the field of agricultural systems as well as in daily applications. The aim 

of this research is classification of vegetation which will be used for fire-prone regions identification. 

The output of this research will be fruitful if it can be successfully implemented. This will be helpful in 

preventing roadside fires and, as a consequence, it can save property and lives. Every year, in 

Australia, bushfires cause huge losses. We can define fire-prone region is as an area of land where fire 

can occur due to the type and length of grass. Moreover coverage of grass region and biomass creates a 

big impact on defining the fire-risk location. The fire usually occurs in the dry season and becomes a 

frequent event. Ongoing researches mainly focus on satellite images for fire-prone regions 

identification. This research focuses on roadside fire risk instead of satellite image. Hence, this thesis 

provides new concepts for fire risk region identification. The video is recorded using vehicle where 

video cameras are fitted on four directions. Cameras are mounted in such a way that, it can take clear 

view of roadside object closure to road. An efficient roadside vegetation management system can save 

a huge amount of cost. Knowledge on different vegetation types is a prerequisite for successful 

implementation of this research. In rural areas, grasses are the primary visible component along the 

roadside. There are some other components like trees, shrubs, and weeds also visible on the roadside. 

Depending on the density and height, grasses are categorised into various types: e.g. dense grass, 

moderate grass, and sparse grass. Based on the types of grass, fire risk can be determined. Sparse 

grasses are less sensitive to fire while dense grasses are more sensitive to produce fire. Especially in 

the dry seasons, the risk of fire is high. When dense grasses are growing and come closer to the road 

they can result in fire and lead to the closure of road. A short-term solution is to inspect the area and 

manually cut the risk region around the roadside. The task is difficult to inspect in rural areas where 

the growth of grass is high. Usually, calendar-based grass trimming is performed on such areas. But 

the process is not only time-consuming, but also expensive, and needs enormous manpower. The 
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required viewing information about those roads cannot be obtained from satellite images. Hence, the 

use of image processing and machine learning techniques have great potential in assisting roadside 

vegetation management from video data. 

Image processing is the art of understanding the world by using images to produce numerical or 

symbolic information. Image processing [2] is a key enabling research discipline for many applications, 

including process control, visual surveillance, automatic inspection, medical image analysis, indexing 

databases of images and image sequences, computational photography, data mining, autonomous 

vehicle or mobile robot control, etc. Besides these above-mentioned applications on image processing, 

it is closely related to event detection, object recognition, scene reconstruction, video tracking, image 

restoration, etc. In spite of these numerous specific applications, the basic goal of utilising computer 

vision is common. The underlying theme of this research field has been dedicated to developing an 

automated machine vision system with a view to duplicating the abilities of human vision by 

extracting abstract information from images for understanding what is happening in the scene. Hence, 

saving the man-hours and avoiding the manual and boring activities are the main focus of automatic 

vision-based approaches. In order to achieve this goal, it is necessary to train and teach the machine 

using a discriminant dataset with reliable information. In recent years, machine learning has become a 

fast growing research area due to the variety of applications such as engineering, scientific, image 

processing, and remote sensing etc. However, roadside vegetation analysis and differentiating grass 

regions is still in its infancy within the pattern-recognition based approaches. Due to the increase in 

roadside fire episodes, the specific application has grown in interest and also opens the area of various 

environment-related issues. During dry seasons in Australia, bushfires emanating from roadsides are a 

major ecological issue and have been identified as a risk. Probabilities of spreading bushfire heavily 

depend on roadside vegetation. Concerns about taking precautionary measures have become an 

important consideration for policy makers and developing a fire-risk mapping tool has therefore 

become an important research area. Policymakers have introduced some methods and taken some 

steps towards developing a tool for automatic identification of fire risk regions. However, no 

techniques have been developed to solve the ongoing issues and it is still an active research area. The 

aim of this research is not only to develop a tool for fire-risk identification, but also develop novel 

feature extraction techniques which can be applied to many other object identification issues. 

Moreover, the task is currently quite challenging and it is very hard to differentiate one object from 

another using existing feature extraction techniques. Figure 1.1 shows example images taken from the 

study area clearly shows what types of challenges need to be faced. Some challenges that can mention 

from this viewpoint include vegetation articulation, lighting variations, intra-class variations, multiple 

viewpoints, soil region identification, and varied appearance. Preliminary research is needed to 

explore the vegetation classification area. Initially, it is necessary to focus on identifying the different 

types of grasses using pattern recognition methods. In the agricultural research sector, differentiating 
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weeds from crops and categorising types of weeds (broad or narrow weed) is an active research area. 

This research will also be helpful in automatic weed identification strategies. 

This research focuses on developing individual modules, where each one can produce different 

primitives. Then, classifiers will be developed to operate as a black-box to work on sets of training data 

that are labelled with ground truth, and will finally be used for test set classification. The individual 

modules interact with each other, and if one fails to provide a better solution, the whole process will 

be affected. Initially, this research will focus on region segmentation and object identification, and will 

explore the area for application. In order to improve the accuracy in detecting objects, this study might 

use the data on surrounding image regions. After potential identification of all the primitives from a 

scene, a more-refined categorisation can make the decision for scene content understanding.  

 

 

Figure 1.1 Images Extracted from Roadside Video 

1.2 Problems and Motivation 

Image classification is a common research problem in the field of pattern recognition. Many image 

classification algorithms have already been developed for specific applications. For roadside 

vegetation classification several classification algorithm already applied for object classification. 

Moreover, a single classifier is not suitable for many applications. Rather than this, combinations of 
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classifiers are also creating great impact due to their accuracy. Hence, automatic image classification 

algorithms have become an important research field. To solve the classification problem several 

techniques have been developed such as K-Nearest Neighbour (K-NN), Adaptive boosting (AdaBoost), 

Support Vector Machine (SVM), Artificial Neural Network (ANN), and Wavelet based techniques. 

Rather than using a single classifier, fusions of classifiers create a big difference in classification 

problems and have received much attention in recent years.  

Extracting meaningful and important information from an image is one of the great challenges. This 

information is useful to represent a pattern of objects. A better representation of features not only 

helps with recognition of objects but also reduces the computational cost. A lot of feature extraction 

techniques exist and play an important role to improve classification effectiveness and computational 

efficiency. At present, several strategies exist for feature extraction such as Local Binary Pattern (LBP), 

Local Ternary Pattern (LTP), Local Directional Pattern (LDP), Scale Invariant Feature Transform 

(SIFT), Gray-Level Co-occurrence Matrix (GLCM), Fast Fourier Transform (FFT), Gabor Wavelet (GW), 

Histogram of Gradient (HOG) and so on. Based on the strategy of extracting features, they are divided 

into two groups – high-level and low-level features. Low-level features directly extract information 

from images whereas high-level features are calculated based on low-level features.  

Based on the characteristics of features, they can be grouped into general or domain specific 

features. Pixel-level, global and local features are considered as general features. From each pixel, it is 

possible to extract colour information, intensity, and first/second order derivative information which 

are considered as pixel-level features. This information has been successfully used in many machine 

vision applications. Rather than extracting features from a single pixel, but instead consider a patch or 

a region of interest and extract spatial information, these can be called as local features. This 

representation is powerful as it is ideally invariant to illumination, scale changes, rotation, and 

occlusion. Examples of local features include blobs, shapes, edge pixels and corners.  

Global features describe the overall information from an image. These features include histogram, 

moment, energy, mean, and standard deviation of the whole image. Global feature descriptors are not 

very robust as, if there is a change on a part of the image; the whole resulting descriptor will change. If 

features are extracted from the image for any particular application, these features are known as 

domain-specific features. Depending on the application, features can be used individually or they can 

be grouped one after another for better differentiation between objects. As our application is domain 

specific, proposed techniques will use cascade features. 

Existing feature extraction techniques have difficulty in recognising different roadside objects such 

as grasses, trees, roads, etc. from video data. The situation also becomes complex if the objects have 

different sizes, shapes, and colours. Hence, the main objective of this thesis is to propose new feature 

extraction and classification approaches for analysing roadside video data. 
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According to existing literature, to the best of our knowledge, there is no similar research on 

vegetation classification presented where the primary focus was on roadside video data. The 

application area is novel and adds new value in vegetation research. Furthermore, all existing features 

primarily focus on specific shape, colour, and structure, whereas the research focuses on developing 

novel features. Proposing a fusion of classifiers for vegetation classification is also a new contribution 

to this research. 

In the existing literature, rather than remote sensing and satellite images, detection of roadside 

vegetation from vehicle mounted video cameras have been presented, where aerial images have been 

used. As there is a drastic difference between the viewpoint of aerial images and ground vehicle 

images, an effective method is essential for accurate classification. Although the existing methods can 

detect green vegetation, they may not identify all types of grasses and they cannot measure the grass 

height. The research will help to analyse roadside videos for a better decision-making in roadside 

vegetation management. It also seeks to identify the pros and cons related to roadside vegetation 

research and practices.   

This thesis extends to multi-class object classification by expanding the object class. Scene labelling 

plays an important role in image understanding. However, the task is quite challenging as it faces some 

common issues like differentiating visually similar objects and differentiating vertical and horizontal 

objects. Thus, designing appropriate features for a particular object is still an open challenge for 

computer vision researchers. During scene labelling, some parts of various objects in real world 

images look very similar to each other, so it is very difficult and challenging to correctly label the 

image. For example, in roadside images, some portions of road and water are confusing and difficult to 

differentiate. Using existing features it is difficult to assign a class label for each pixel. The situation is 

more challenging when objects are similar in all aspects except in respect to the plane. For example, 

differentiating grass and tree objects from small superpixels is often very difficult as they may have 

different plane orientations. To address the above-mentioned problems, it is proposed to use multi-

scale perceptual features which can solve these problems and improve accuracy.  

1.3 Research Aims 

There is no known method that can efficiently identify roadside objects like trees, high grasses, low 

grasses, medium grasses and shrubs, from the roadside video data and eventually identify the high-

risk regions that could help taking precautionary measures to avoid fire risks on the roadside. 

The main aim of this research is to develop new feature extraction and classification techniques to 

improve the classification accuracy of different roadside objects. The specific aims of the research 

presented in this thesis are as follows: 

 Review the existing segmentation, feature extraction, and classification techniques relevant to 

object detection and classification from the roadside as well as from scene data. 
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 Propose novel feature extraction techniques for classification of roadside objects from the 

video data. 

 Investigate different classifiers including ensemble classifiers and parameters for classification 

of roadside objects from the video data. 

 Evaluate the proposed techniques on benchmark datasets and a local dataset collected from 

different parts of Queensland roads. 

 

1.4 Research Questions 

The main questions of this research are:  

 What is the best way to separate the Region of Interest (ROI) or roadside objects from the 

video data?  

 Why are existing feature extraction techniques not suitable to identify vegetation regions from 

roadside video data? 

 What is the most suitable feature extraction technique or combination of techniques that can 

identify roadside objects like trees, grasses, shrubs, or any other objects on the roadside? 

 What are the most suitable parameters for a classifier that can effectively classify the objects 

from video data in terms of efficiency and accuracy? 

 How can the risk location be identified from the video? 

 

1.5 Original Research Contributions 

This research is a comprehensive study of developing feature extraction and classification techniques 

for analysing roadside video data. The major focus of the thesis is on inventing suitable feature 

extraction and classification techniques. The major contributions in terms of new techniques are 

highlighted in this section. The first is the use of multiple texture features. Introducing a new 

directional connectivity feature is highlighted as the second major contribution. The third contribution 

is the development of a perceptual feature extraction technique for object classification from the road 

scene. This novel approach has the potential of using the perceptual features on different types of data 

and different applications. Several journals and conference articles have been published based on 

original contributions presented in this thesis.  

The specific original research contributions of this thesis are described below: 

 A comprehensive literature review 

Reviews of existing techniques including segmentation, feature extraction and classification for 

object detection and classification have been conducted. 
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 Novel feature extraction techniques 

 Co-occurrence of Binary Pattern (CBP) based Feature Extraction Technique: a novel texture 

feature extraction technique with multiple classifiers is introduced and applied to roadside 

vegetation classification.  

 Distance and Cross-correlation (DCC) based Extraction Technique: a novel distance and cross-

correlation based feature extraction was introduced to enhance the classification accuracy 

with cropped regions.  

 Quantisation Feature and Neural Network (QFNN) based Feature Extraction Technique: a 

combined most significant bit and sequence of colour channel based technique was introduced. 

This new technique helps to distinguish different roadside objects. 

 Directional Connectivity Feature Extraction Technique: the directional connectivity feature 

was introduced which helps to identify grass density estimation for a further decision about 

the grass depth and height.  

 Multiscale Perceptual Feature Extraction Technique: the introduction of the multiscale 

perceptual feature is another original contribution of the thesis. It helps to identify roadside 

objects from the scene.  

 A comparative evaluation of the proposed techniques on local and benchmark datasets: a 

comparative analysis using the classification accuracies obtained on a local roadside dataset and 

three benchmark datasets (Stanford, MSRC, SIFT Flow) have been conducted and presented. 

 

1.6 Thesis Structure 

Chapter 1 provides an overview of the background, motivation, research objectives and 

contributions of this research. 

Chapter 2 reviews the segmentation, feature extraction and classification techniques relevant to 

roadside object classification. It begins by examining the current challenges in vegetation classification 

as well as object identification, and explains why it is so difficult to achieve with existing features. It 

then defines the advantages and disadvantages of existing techniques in detail and explores why new 

feature extraction techniques are important.     

Chapter 3 presents the concepts of three different feature extraction techniques. The techniques 

are co-occurrence of binary pattern (CBP), direction and cross-correlation (DCC) and quantisation 

feature and neural network (QFNN). The chapter initially describes each technique, and then presents 

the experimental results and analysis of the results. 
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Chapter 4 presents and discusses the concept of directional connectivity feature (DCF) for grass 

density estimation and its application on roadside video data to distinguish dense, sparse and 

moderate grasses in complex outdoor environments. It also covers how to use the DCF feature for fire 

risk region identification. 

Chapter 5 discusses multi scale perceptual feature (MSP) and deep learning technique in scene 

labelling tasks. To evaluate the effectiveness of the proposed technique, a series of experiments and a 

comparison of the results are also presented in this chapter.   

Chapter 6 concludes the thesis by summarising the contributions and findings. Finally, an outline 

for future research directions to extend the research is presented.  
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Chapter 2 Review of Related Work 

This chapter presents and explores background information and prior research relevant to image 

segmentation, feature extraction and classification techniques for object identification from images. 

These literature reviews particularly focus on roadside object detection and benefits associated with 

the information relevant to roadside vegetation classification. Additional research into the 

methodology involved in this thesis includes the use of segmentation, feature extraction and 

classification techniques to classify objects from complex scenes. In Section 2.1, a comprehensive 

literature review on segmentation techniques along with their advantages and disadvantages has been 

presented. Sections 2.2 focuses on feature extraction techniques with their relative advantages and 

disadvantages. Lastly, Section 2.3 emphasises on the classification techniques. 

 

2.1 Image Segmentation Techniques 

In object-based image analysis, one of the most important and critical steps is the ability to partition or 

extract a region of interest (ROI) from the image. Therefore, image segmentation is one of the 

fundamental problems in the area of image analysis and has been studied extensively during the last 

40 years [3]. Like a human being, it is really difficult for a machine to segment the whole universe of 

existing objects from an image. It is an ongoing field of research and a lot of work still needs to be done 

to develop a complete solution. Being a well-studied problem, reviewing all of the literature is 

completely out of the scope. This research mainly focuses on roadside image segmentation. In this 

research, objects of special interest are trees, shrubs, grasses and road signs etc. Therefore, successful 

detection and segmentation of those objects from images are the most recurrent prerequisites of this 

research. According to [4], segmentation of an image is the partitioning of the image into a set of 

connected regions, where each region is uniform according to given features such as shape, grey level, 

colour, intensity or texture. The result of a segmentation method is usually a list of equivalence classes 

where each class represents an object or the background. Indeed, the classification and its underlying 

motivation depend on the author and sometimes on a specific goal. A wide range of segmentation 

algorithms has been developed to derive the information from remotely sensed images. As explained 

by [5], image segmentation techniques can be classified into four major categories: 

1. Thresholding technique 

2. Boundary-based technique 

3. Region-based technique 

4. Superpixel based technique 
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2.1.1 Thresholding Technique 

The main principle behind thresholding is that image pixels are partitioned depending on their 

intensity values [6]. Given a threshold value T, a pixel gray value greater than the threshold is 

classified to category 1, while, a pixel gray value less than the threshold is classified to category 2. A 

thresholding function can be formally defined using Equation 2.1: 

𝑔(𝑥, 𝑦) =  {
1, 𝑓(𝑥, 𝑦) > 𝑇

0, 𝑓(𝑥, 𝑦) ≤ 𝑇
  (2.1) 

In many cases, defining the threshold value varies depending on the images and the task is done by 

manually seeing which one works best in identifying the specific objects. The threshold can be defined 

using single intensity values or the combination of several intensity ranges. In order to represent a 

binary image, two-pixel intensity values 0 (black) and 1 (white) respectively will be used. 

Extraction of the object from images is a complex problem in the area of image processing. The 

situation is more difficult if the objects are related to vegetation. To deal with such a complex problem, 

some researchers have used thresholding based methods for vegetation classification. In [7], Xie et al. 

described a method for oasis vegetation extraction based on a thresholding method. According to their 

observation, the Otsu method, and an iterative based threshold segmentation method show poorer 

performance than edge-based detection. The technique used the Roberts operator. The limitation of 

their work was that it cannot extract a variety of objects at the same time, and thus they proposed 

extending the work using multi-threshold determination. Montalvo et al. [8] proposed a framework for 

weed/crops identification from maize fields. They argued that their proposed system could identify 

plants (weeds and crops) where plants were contaminated with materials due to artificial irrigation or 

natural rainfall. Their system used the Otsu method [9] for thresholding with a combination of 

vegetation indices. Another similar work [10], instead of using automatic thresholding (such as Otsu), 

used a statistical mean value of the transformed image. 

From the above discussion, it is clear that all vegetation classification techniques that mainly focus 

on weed identification from crops using vegetation indices and specific thresholds. Therefore, it 

cannot extract a variety of objects at the same time.     

2.1.2 Boundary Based Technique 

Boundary based image segmentation focus on edges which form a boundary between two regions with 

distinct properties of the image that might be considered an ROI. According to this technique when the 

difference between dark and light pixels is easily visible, a digital edge will be formed. Siddiqi et al. 

[11] developed an edge-based weed classification and recognition method based on morphological 

operation and edge linking algorithm.  The limitation of their work lies in the fact that it cannot classify 

mixed weeds.  
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From the literature cited above, it is clear that, as fields of mixed vegetation have no structure, it is 

inappropriate to choose edge based techniques for general vegetation extraction.  

2.1.3 Region Based Technique 

Region-based segmentation is also known as the seeded region growing method, as it selects a set of 

seeds to partition an image into regions. The selection of the seeds can be operated manually or using 

automatic procedures based on appropriate criteria. According to [5], region splitting, merging and 

region growing are the two types of region-based segmentation. Region splitting and merging 

techniques subdivide the homogenous regions in an iterative process of division into arbitrary regions 

(splitting) and then join or further split these regions (merging) until some predefined conditions are 

fulfilled. The region growing technique aggregates neighbouring pixels into regions based on a 

homogeneity criterion that must take regard of the particular application involved. 

The Watershed algorithm [12] has been proven a fast and powerful region merging image 

segmentation method [13] and effectively used in many kinds of literature for vegetation classification. 

[14]. Li et al. [15] adopted the idea of watershed algorithm for individual tree crown segmentation. An 

alternative method for tree species classification based on a watershed algorithm using a gradient of 

brightness is presented in [16]. In their study, they used high-resolution forest imagery taken from a 

helicopter and used for tree species classification named as a broad-leaved and needle-leaved tree.  

In addition to the above-mentioned approaches, various segmentation techniques have been 

employed for vegetation classification by different researchers. Mean-shift based segmentation is 

widely discussed in different literature [17] [18] [19]. A hybrid segmentation algorithm based on Mean 

Shift (MS) with the Fisher Linear Discriminant (FLD) known as MMS-FLD is presented in [18] for crop 

image segmentation. The accuracy achieved using the method exceeds 97% which is higher than 

index-based methods. A serious drawback of this method is that it failed in multi-class cases and 

datasets used in this literature were too few. Zheng et al. [19] proposed an algorithm using multiple 

features for green and non-green vegetation segmentation using mean-shift. Although the proposed 

method outperformed than index-based method, but computation cost was too high and it cannot be 

used in real time. Many vegetation indices such as Normalised Difference Vegetation Index (NDVI), VI 

(Vegetation Index), and SVI (Soil-vegetation Index), have been widely used for segmentation of 

vegetation cover from different data sources. Zhang and Feng presented an approach based on NDVI 

and VI for vegetation and non-vegetation region segmentation [20]. More precisely, from vegetation 

images, it can also classify grasses and trees. The result of an accuracy assessment showed that the 

proposed method produced 97% accuracy over distributed vegetation. A combination of normalised 

cut and mean-shift based automated segmentation of vegetation has been presented in [21] and 

showed outstanding performance in the urban area. Similar kind of applications have been found from 

satellite image where using remote sensing techniques urban environments [22] have been segmented 

into different objects to avoid general obstacles. In the proposed method they used KITTI benchmark 



 

12 

object detection dataset for result comparison. Proposed system consists of four steps. Initially, a 

disparity map was created and in the next step using the disparity value, a graph has been created. 

Later, probability of each pixel that belongs to that object was calculated. In the final step, clustering 

was applied to find the object. Extensive object based image analysis from remote sensing images have 

been done in [23]. In [23] detailed study shows the use of spectral and contextual information in an 

integrated way. In recent years, Object Based Image Analysis (OBIA) become more popular rather than 

pixel-based image analysis [24]. OBIA approach comprising of two steps: segmentation and 

classification. During segmentation entire image region is segmented into image objects based on the 

homogenous spectral value of pixels. Knowledge-based or supervised training are conducted to 

classify the segmented objects. Minho Kim et al. [24] proposed an approach which achieved overall 

accuracy of 76.6 % and a Kappa of 0.57 at a scale of 48 using OBIA. Tree species maintenance shows 

great importance for policy maker in terms of urban planning, disaster management and environment 

protection. Hence, research on tree species separation from remote sensing image becomes an 

important research field in the area of computer vision. Corina et al. [25] proposed a system which can 

extract, segment and classify vegetation from high-resolution color infrared digital images. Vegetation 

was extracted using supervised classification model based on Support Vector Machine (SVM) and later 

to separate tree from the lawn Digital Surface Model (DSM) were used.   

2.1.4 Super Pixel Based Technique 

The super pixel based image segmentation [26] technique has gained popularity due to its accuracy 

and computational efficiency. It has proved increasingly useful for applications such as 3D 

reconstruction [27], object localisation [28], image parsing [29], and depth estimation [27]. Usually, 

the super pixel technique groups the pixels into small patches so that object boundaries become 

perceptually meaningful [30]. To make the super pixels useful, they must be computationally and 

representationally efficient, perceptually consistent and produce high-quality segmentations without 

overlapping [31]. Successful segmentation can give a better support for feature extraction and extract 

spatial information which will be helpful for the machine to learn and distinguishing objects.  

For generating super pixels from images, many existing approaches have been developed. Every 

method has some advantages as well as some drawbacks and each may be better suited to a particular 

application [32] [33] [34]. Based on the existing super pixel generating algorithms, they can be broadly 

categorised as follows: 

1. Graph-Based Algorithm 

2. Gradient-Ascent-Based Algorithm 

3. Simple Linear Iterative Clustering (SLIC) Algorithm 
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2.1.4.1 Graph-Based Algorithm 

In the graph-based approach, each pixel is treated as a node in a graph and superpixels are created 

based on the minimised cost function defined over the graph. Among these normalised cut [35] [36], 

graph cut [33] and bipartite graph [37] based methods are popular. In the normalised cut [35] based 

method, contour and texture cues were used to partition all pixels from a graph. One limitation of this 

method is that it seems slower than any other method for large images [34]. Another graph based 

approach proposed by Huttenlocher et al. [33] is where clustering for pixels is done based on the 

minimum spanning tree of the raw pixels. Although compared to normalised cut it is faster but it 

produces superpixels with irregular shape, which was not useful for feature extraction. Moreover, 

there was no option for controlling the number of superpixels in an image. In order to generate 

superpixels, Moore et al. [38] proposed a method by finding optimal paths to form the grid from the 

graph. The method is not computationally efficient as it is similar to the graph cut method. Another 

superpixel generating method proposed by Veksler et al. [39] is where overlapping image patches 

were stitched together to generate the superpixels.  

2.1.4.2 Gradient-Ascent Based Algorithm 

In the gradient ascent based method, superpixels are generated initially by clustering the pixels 

randomly and the clusters are then refined iteratively based on some convergence criteria. For 

example in [32], superpixels were generated based on colour and intensity features. The performance 

of this method is relatively slow and it produced irregular shaped superpixels. Furthermore, the 

method does not have any control over the number of superpixels. Vincent et al. proposed a 

watershed-based [40] approach where local minima are used to produce superpixels. Resulting 

superpixels do not produce good boundary adherence. Although Vedaldi et al. [41] proposed a quick 

shift based approach that produced good boundary adherence, it is quite slow and does not allow 

control over the superpixel size. The Turbo pixel method [34] used local image gradients to generate 

the superpixels. Like other methods, it also has no control over the size and produced poor boundary 

coherence.  

2.1.4.3 Simple Linear Iterative Clustering (SLIC) Algorithm 

To generate the superpixels using the SLIC segmentation algorithm [30], colour similarity and 

proximity was used. For clustering the pixels, five dimensional (5D) [labxy] colour space was used. 

Here [lab] is the CIELAB colour space and [xy] is the pixel position. One of the advantages of the SLIC 

method is that it produces equal cluster size and it has been done by the grid interval  𝑆 =  √
𝑁

𝑘
 . Here N 

is the number of pixels and q is the number of superpixels it is desired to generate. To calculate the 

cluster in 5D space, a new distance measurement technique was applied as simple Euclidean distance 
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was not applicable without normalising the spatial distances. The distance measure can be defined as 

follows: 

𝑑𝑖𝑠𝑡𝐿𝐴𝐵 = √(𝑡𝑞 − 𝑡𝑖)
2
+ (𝑥𝑞 − 𝑥𝑖)

2
+ (𝑦𝑞 − 𝑦𝑖)

2
  (2.2) 

𝑑𝑖𝑠𝑡𝑥𝑦 = √(𝑎𝑞 − 𝑎𝑖)
2
+ (𝑏𝑞 − 𝑏𝑖)

2
  (2.3) 

𝐷𝑖𝑠𝑡𝑞 = 𝑑𝑖𝑠𝑡𝐿𝐴𝐵 + 
𝑚

𝑞
 𝑑𝑖𝑠𝑡𝑥𝑦 , m = 10   (2.4) 

The overall procedure for simple linear iterative clustering is moving the cluster centres based on the 

lowest gradient in a 3 X 3 neighbourhood.  The image gradient is computed as follows:  

𝐺𝑟𝑎𝑑(𝑎, 𝑏) = ‖𝐼(𝑎 + 1, 𝑏) − 𝐼(𝑎 − 1, 𝑏)‖2 + ‖ 𝐼(𝑎, 𝑏 + 1) − 𝐼(𝑎 , 𝑏 − 1)‖2   (2.5) 

Here, I (a, b) is the pixel value for lab colour at position (a, b) and ‖. ‖  is the L2 norm. Based on the 

average labxy vector, an initial cluster centre was selected and the process is iteratively repeated until 

all the associating pixels are moved. The method is computationally efficient and there is an option for 

setting the number of superpixels for a given image.  An example of the SLIC image segmentation 

process is shown in Figure 2.1. 

 

Figure 2.1 Image Segmentation using SLIC 
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Table 2.1 provides a summary of the literature reviewed above in relation to existing image 

segmentation techniques for vegetation classification.  

Table 2.1 Summary of Image Segmentation for Vegetation Classification 

Year Author Segmentation Technique ROI extracted 

2016 Zhang et al. [42] SLIC Grass, tree, road, sky etc. 

2013 Montalvo et al. [8] Otsu, VI Weed, crop 

2013 Ponti et al. [17] Mean-shift Green coverage, gaps and degraded areas 

2011 Guijarro et al. [10] Statistical mean Weed, crop 

2011 Li et al. [14] Watershed Tree 

2010 Zheng et al. [18] Mean-shift Crop 

2010 Xie et al. [7] Otsu Weed 

2009 Zheng et al. [19] Mean-shift Green and non-green vegetation 

2009 Siddiqi et al. [11] Edge based technique Broadleaf and wide leaf 

2008 Omerevi et al. [21] Novel segmentation method Vegetation 

2005 Zhang and Feng. [20] NDVI, VI Tree, grass 

2004 Kanda et al. [16] Watershed Broad-leaved, needle-leaved 

 

2.1.5 Summary 

Segmentation of vegetation for the automated detection of the trees, grasses, shrubs and other objects 

can be typically performed using a variety of approaches as discussed in Section 2.1. From the 

literature reviewed in Section 2.1, this section identifies the most suitable segmentation technique for 

the purpose of vegetation segmentation. The SLIC superpixel segmentation algorithm is a good choice 

for the purpose of vegetation segmentation and roadside object segmentation.  
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2.2 Feature Extraction Techniques 

Intensive research has been done on feature extraction as it is a most important part of proper 

classification of objects. This section covers an extensive literature survey of existing feature 

extraction techniques related to vegetation and object classification. Although many techniques have 

been available for decades, this section only presents the most recent and successful approaches. Basic 

feature extraction techniques include colour, texture, and edge.   

In order to find the meaningful information from images, texture [43] plays an important role in image 

processing. In terms of vegetation classification, several textural analysis techniques comprising only 

most recent and successful approaches are described in the literature review. The texture-based 

approaches are: 

1. Gray-level Co-occurrence Matrix (GLCM) 

2. Gabor Filter 

3. Local Binary Pattern (LBP) 

4. Histogram of Gradient (HOG) 

5. Scale Invariant Feature (SIFT) 

2.2.1 Gray-level Co-occurrence Matrix  

In vegetation management, the popular and widely used texture feature is based on the Gray-Level Co-

occurrence Matrix (GLCM). In 2004, tree species classification technique from high-resolution forest 

imagery was developed by Kanda et al. [16] where they used GLCM as the texture feature. Although 

many features can be generated from GLCM according to the literature, they selected homogeneity as 

their feature vector. Yu et al. [44] studied the Digital Airborne Imaging System (DAIS) with high spatial 

resolution imagery and conducted vegetation classification using 52 features including nine GLCMs 

features. In 2007, Ghazali et al. [45] introduced a 2 Dimensional Discrete Wavelet Transform (2D-

DWT) based feature extraction technique to investigate the characteristic of narrow and broad weeds. 

According to [46], GLCM and FFT have been used to recognise types of weeds as either narrow or 

broad. Recognition results showed that, using the FFT-based technique, narrow and broad weed 

recognition achieved 89.2% and 91% classification accuracy. On the other hand, the GLCM based 

approach achieved 81% and 81.5% classification accuracy. Hence, for real-time application, FFT has 

been chosen. Moreover, Ghazali et al. [47] studied an oil palm plantation using the combination of 

statistical gray-level co-occurrence matrix (GLCM), scale-invariant feature transform (SIFT) and Fast 

Fourier Transform (FFT) features and obtained above 80% accuracy in the real-time weeds control 

system. Apart from this, Wu and Wen [48] utilised GLCM and histogram statistics-based texture 

features extracted from four spatial orientations corresponding to 0°, 45°, 90° and 135° respectively 

for weed and corn seedling recognition with a SVM classifier. The authors of Li et al. [49] investigated 

state-of-art texture descriptors such as Local Binary Pattern (LBP) and Gray-Level Co-Occurrence 
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Matrix (GLCM) for object-based vegetation species classification and evaluated their performance. In 

this work, accuracy was calculated using SVM on 10 spectral and texture feature descriptors. In 

contrast, 3 texture features (GLCM, Gabor Wavelet (GW), Uniform LBP (ULBP)) were used in [50] to 

classify vegetation species. The evaluation results suggest the need for selecting appropriate feature 

and classification algorithm for different categories. At a glance, accuracies obtained using existing 

texture features with classifiers were not as good as expected. The reason lies in the fact that the 

appearance of trees varied from season to season as well as with changing health status. 

2.2.2 Gabor Filter 

In 2003, to classify vegetation into different categories Tang et al. [51] performed texture based weed 

classification. In their proposed method to classify vegetation into broadleaf and grass categories, they 

used low-level Gabor wavelets features. For their research purpose, three different types of broadleaf 

weeds namely cocklebur, velvetleaf and ivy leaf and two different kinds of grass namely foxtail and 

crabgrass were used. The performance of the proposed method was promising but sample images 

used for this research were very low, which is one of the limitations of the proposed method. Another 

limitation of the proposed method was the size of the image dataset where 20 images were taken from 

each class, and for the two classes (weeds and grass) total images were forty (40). Moreover, their 

proposed method used a filter bank with four frequency levels to classify the images and, for that 

reason, the computational cost of the proposed method was high. Overcoming those limitations, 

Mustapha and Mustafa [52] achieved 88.17% accuracy for broad and narrow leaf categorisation using 

texture features based on Gabor Wavelet. 

Later Ishak et al. [53] later proposed a new feature vector extraction process combining Gabor 

Wavelet (GW) and Gradient Field of Distribution (GFD). Their proposed method used Artificial Neural 

Network (ANN) as a classifier. Their dataset consisted of 400 images of 200 grasses and 200 broadleaf 

weeds with different lighting conditions were used. Results were promising and accuracy obtained 

using proposed method is the highest accuracy (93.75%) achieved for grass and weed classification. 

2.2.3 Local Binary Pattern 

Local Binary Pattern (LBP) is a promising technique for texture analysis. The automated weed 

classification method presented by Ahmed et al. [54] is based on a LBP operator which shows 

promising performance in terms of accuracy and computational efficiency. However, the proposed 

method was not used on mixed types of weeds. Most recently, Ahmed et al. [55] proposed an efficient 

weed classification method using local texture descriptors with different parameter settings. For their 

study, they used three different types of local patterns, namely Local Binary Pattern (LBP), Local 

Directional Pattern (LDP) and Local Ternary Pattern (LTP). The dataset used for this purpose was 400 

images and showed robust performance in classifying the dominant category of broadleaf weeds or 

grass. The following briefly reviews previous work done in the area of vegetation extraction using 
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GLCM, Gabor, and LBP. Rather than this approach, many other approaches exist for vegetation feature 

extraction.  

For object-based vegetation classification, spectral moment features have been presented in [14]. 

The proposed method was compared with state-of-the-art texture features such as Gabor filters, local 

binary patterns and gray-level co-occurrence matrix. Another approach described by Li et al. [56] is 

vegetation spectral feature extraction for classifying vegetation based on a decision tree algorithm. 

Søgaard et al. [57] investigated a Danish agricultural field for weed classification and introduce an 

active shape model from nineteen (19) most important weed species and obtained accuracy that 

ranged from 65% to 90%. Later, Rumpf et al. [58] showed promising results for weed classification 

using SVM based decision-making.  

A morphological operation and binarisation based approach was introduced in [59] to detect a 

special kind of weed known as avena sterilis where SVM was used as a classifier for categorisation 

purposes. Compared to existing methods, the proposed method showed promising performance in 

terms of memory and computational power. In [60], the authors introduced a similar concept for weed 

recognition. Their proposed method used erosion and dilation based segmentation algorithm. The 

proposed algorithm used 240 images for evaluation to differentiate between broad and narrow grass 

images and obtained 89% accuracy. The performance of the proposed classifier was degraded by 

varying illumination conditions and other natural environment parameters. Ishak et al. extended the 

work in this area by introducing various types of feature extraction and classification techniques [61-

63]. 

More recently, an automated machine vision system using SVM is presented to distinguish crops and 

weeds in [64]. To find out the different characterisation of weeds and crops, their proposed approach 

analysed 14 features to determine the optimal combination of features and achieved more than 97% 

accuracy. For evaluation, the methods used a set of 224 test images were used. Another author 

proposed a new statistical based weed classifier in [65]. The proposed method determined the sample 

variance of each image and proposed a new threshold value by processing 140 images (70 of each 

category). The category was selected according to a threshold value and achieved 97% classification 

accuracy for the broad and narrow weeds.  

Weed detection from lawn areas has not been studied extensively. In [66], weed detection in a lawn 

is presented using a morphological operation and a Bayesian-based approach. The proposed method 

achieved accuracies between 77.71-91.11%. Using Dempster-Shafer’s theory and Ant Colony 

Optimisation algorithm Li et al. [67, 68] presented a multi-feature and shape features fusion based 

approach. Rather than applying a learning-based approach, the authors of [8] proposed a new 

automatic method based on several sequential stages for weeds/crops identification in images from 

maize fields. Results obtained using their method showed that it works favourably.   
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2.2.4 Histogram of Gradient 

The Histogram of Gradient Feature (HOG) is one of the widely used feature extraction techniques for 

object classification. HOG has achieved great success on sign detection [69], vehicle detection [70] and 

pedestrian detection [71]. The method was first proposed by Dalal et al. for pedestrian detection [71] 

and later successfully applied to other object detection and localisation [72] work. In recent years, it 

has been successfully applied to vegetation classification [73] from remote sensing images. The idea is 

quite simple but has a high impact on object detection. A good feature makes the classification job 

much easier. Calculation of the HOG feature can be summarised as follows. Initially, the image gradient 

for each pixel in a 𝐷𝑥  𝑋 𝐷𝑦 detection window is calculated as follows:  

For x direction:  𝐷𝑥 (𝑟, 𝑐) = 𝐷(𝑟, 𝑐 + 1) − 𝐷(𝑟, 𝑐 − 1)  (2.6) 

For y direction:        𝐷𝑦 (𝑟, 𝑐) = 𝐷(𝑟 − 1, 𝑐) − 𝐷(𝑟 + 1, 𝑐)  (2.7) 

Gradients are transformed to polar coordinates of angle and magnitude and the angle is constrained 

to be between zero and 180 degrees as follows:  

𝑀(𝑥, 𝑦) =  √𝐷𝑥
2 + 𝐷𝑦

2    (2.8) 

𝜃 =  
180

𝜋
 (tan

2
−1 𝑇𝑦

𝑇𝑥
   𝑚𝑜𝑑 𝜋) (2.9) 

where tan2
-1 is the four-quadrant inverse tangent, thus yielding values between π and –π. 

The next step is to accumulate the pixels whose orientation is close to the bin boundary over non-

overlapping cells of size C×C pixels (C = 9), then normalise the block feature using its Euclidean norm 

as follows:  

L1 norm: 𝑐 ←  
𝑐

(‖𝑐𝑘‖+ 𝜖)
  (2.10) 

L2 norm: 𝑐 ←  
𝑐

√(‖𝑐𝑘‖
2+ 𝜖)

  (2.11) 

where 𝜖  is a small positive constant that prevents division by zero is gradient-less blocks. 

Finally, to construct the final HOG feature h, all normalised block features are concatenated as 

follows:  

ℎ ←  
ℎ

√(‖ℎ‖2+ 𝜖)
    (2.12) 

Using only the HOG feature may not give state of the art results, so some researchers propose a 

combination of features such as HOG-LBP [74]  or HOG-SIFT based features for object detection.  
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2.2.5 Scale Invariant Feature Transform 

To detect and describe the local features in an image, Lowe et al. [75] established an algorithm which 

is invariant to scaling, rotation, and translation and is popularly known as the Scale Invariant Feature 

Transform (SIFT) algorithm. In recent years, SIFT has been successfully used in many applications 

which include scene modelling [76], object recognition [77], robot localisation [78], and object 

tracking [79]. Scene classification [80] [81] using SIFT descriptors has shown its effectiveness and 

achieved competent accuracy in object recognition. Quelhas et al. [82] proposed an approach to 

integrate the SIFT descriptor and probabilistic latent space [83] model. Using local feature descriptors, 

they achieved good accuracy for scene classification. The probabilistic model gives a good low-level 

scene representation which can capture meaningful scene aspects. SIFT feature was also used to 

construct the Bag-of-Visual-Words (BOVWs) model [84] which has been successfully used in remote 

sensing based scene classification. Although the BOVWs method narrows the gap between high-level 

and low-level features, it does not consider spatial information from images. To overcome that 

limitation of the existing BOVWs method, some researchers incorporate spatial information. However, 

the process is time-consuming and complex. Research also shows that a combination of features (SIFT, 

LBP, and colour) [85] generated from multiple local descriptors does better than single descriptors. To 

define different types of terrain SIFT descriptors have been used and compare the performances 

compared with Local Ternary Patterns (LTP)  descriptor [86], and the Local Adaptive Ternary Patterns 

(LATP) descriptor [87]. According to Bosch et al. [81], using a hybrid generative/discriminative 

approach for scene classification achieved superior performance. From the above-mentioned 

applications, it is obvious that SIFT can be used as a powerful local descriptors and detectors. To 

detect the interesting points on the object, the first step is scale-space extreme detection which can be 

defined by the function:  

𝑊(𝑥, 𝑦, 𝜎)  =  𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦, 𝜎)  ∗  𝐼(𝑥, 𝑦)  (2.13) 

Here, the convolution operator is defined by (*) and the input image is defined as I(x, y). 

𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦, 𝜎)  denotes the Gaussian kernel and is described as follows:  

𝐺𝑎𝑢𝑠𝑠(𝑥, 𝑦, 𝜎 ) =  
1

√2 𝜋 𝜎2
exp [− 

𝑥2+ 𝑦2

2 𝜎2
]  (2.14) 

where 𝜎 denotes the standard deviation. 

Difference of Gaussians (DOG) can be calculated by taking the difference between the Laplacian 

operators and is given by:  

𝐷𝑂𝐺 (𝑥, 𝑦, 𝜎) = 𝑊(𝑥, 𝑦, 𝑘 + 𝜎) −𝑊(𝑥, 𝑦, 𝜎)  (2.15) 

To detect the extreme all the points need to be checked and if they either minimum or maximum 

those points can be treated as extreme and the location of extreme z given by: 
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𝑧 =  − 
𝛿2𝐷−1

𝛿 𝑥2
 
𝛿 𝐷

𝛿 𝑥
  (2.16) 

Based on the local image properties, key points can be described as follows.  

From the Gaussian smooth image, compute the gradient magnitude, m given by: 

𝑚(𝑥, 𝑦) =  √(𝑊(𝑥 + 1, 𝑦) −𝑊(𝑥 − 1, 𝑦))2 + (𝑊(𝑥, 𝑦 + 1) −𝑊(𝑥, 𝑦 − 1))2  (2.17) 

And compute orientation 𝜃 𝑎𝑠 

𝜇 (𝑥, 𝑦) =  tan−1(
𝑊(𝑥+1,𝑦)−𝑊(𝑥−1,𝑦)

𝑊(𝑥,𝑦+1)−𝑊(𝑥,𝑦−1)
)  (2.18) 

To create the key point, take the highest local peak within the orientation. 

A scenario for feature extraction using SIFT is shown in Figure 2.2. The scenario represents a 

vegetation area comprising grass, tree, soil, and sky.  

    

Figure 2.2 SIFT Feature Extraction from Input Image 
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Table 2.2 provides a summary of the literature reviewed above in relation to existing image feature 

extraction techniques for vegetation classification. 

Table 2.2 Summary of Feature Extraction Technique for Vegetation Classification 

Year Author Feature Extraction Technique ROI  

2016 Zhang et al. [42] SIFT Grass and non-grass 

2014 Ahmed et al. [55] LBP, LTP, LDP Broadleaf and grass 

2011 Ahmed et al. [54] LBP Broadleaf and grass 

2010 Li et al. [49] Spectral Texture Feature 

Vegetation species (Eucalyptus 

tereticornis, Eucalyptus 

melanophloia, and Corymbia 

tesselaris) 

2010 Li et al. [50]  GLCM, GW, ULBP Vegetation species 

2009 Ishak et al. [53] Gabor and GFD Broadleaf and grass 

2009 Wu et al. [48] GLCM, Histogram Weed and corn 

2008 Ghazali et al. [47] GLCM, FFT, SIFT  Narrow and broad weed 

2007 Mustafa et al. [46] GLCM, FFT Narrow and broad weed 

2006 Yu et al.  [44] GLCM 
Forest, shrub, herb, and non-

vegetation 

2005 Mustapha et al. [52]  Gabor Broad and narrow leaf 

2004 Kanda et al. [16] GLCM 
Broad-leaved and needle-leaved 

trees 

2003 Tang et al. [51] Gabor Broadleaf and grass weeds 

 

2.2.6 Summary 

In computer vision, the development of feature extraction techniques plays an important role for 

successful identification of roadside objects. The most popular techniques for pattern recognition are 

texture features and statistical features. Commonly used texture-based feature extraction techniques 

include: GLCMs, LBPs, and HOG. The thesis proposed novel feature extraction techniques which were 

efficiently employed in the dataset and accuracy is proved using validation technique. 
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2.3 Classification Techniques 

Many automated classification techniques have been investigated for the classification of vegetation 

regions during the last decade. These techniques include: Support Vector Machines (SVMs) ( Wu et al. 

(2009) [48]) (Li et al. [49]), Artificial Neural Networks (ANNs) (Tang et al. [51]), Pulse-Coupled Neural 

Networks (PCNNs), k-Nearest Neighbour (k-NN) (Yu et al. [44]), Maximum Likelihood Classifier (MLC) 

(Kanda et al. (2004)[16]) (Yu et al. (2006) [44]), Decision Tree Forest (DTF). Other techniques include 

statistical methods based on the use of statistical models.  

2.3.1 Artificial Neural Network 

In 2003, the authors of Tang et al. [51] used feed forward back propagation ANN classifier to classify 

weeds into broadleaf and grass classes. A similar type of NN-based approach was also presented by 

Mustapha et al. [52] to classify broad and narrow leaf weeds. The authors of Kanda et al. [16] used the 

supervised classification using Maximum Likelihood (ML) decision rules for the detection of the broad-

leaved tree and needle-leaved tree.  

2.3.2 K-Nearest Neighbour 

Yu et al. [44] proposed a method for distinction of the forest, shrub, herb, and non-vegetation using k-

Nearest Neighbour (k-NN) classifier and pixel based Maximum Likelihood Classifier (MLC) was used as 

a benchmark to evaluate their performance. The authors of Mustafa et al. [46] proposed a Line 

Measuring Technique (LMT) approach based on Fast Fourier Transform (FFT) for classification 

between narrow and broad weed in both offline images and recorded video. A comparison between 

GLCM based approach also presented on this research and illustrate the logic for choosing FFT based 

technique. The authors of Ghazali et al. [47] applied a Continuity Measure (CM) technique. To 

determine the best threshold equation a combination of linear classification tool was proposed. In 

their proposed method, for narrow and broad weed classification the best result with a correct 

classification rate of 86.1% and 88.4% respectively obtained with the angle of 45° and scale 3. Studies 

on weed/corn classification proposed by Wu et al. [48] have shown the superiority of SVMs over Back 

Propagation Neural Network (BPNN), suggesting that the SVM shows promising results to identify in-

field weed/corn images. The authors of Li et al. [49] used SVM to detect Vegetation species (Eucalyptus 

tereticornis, Eucalyptus melanophloia, and Corymbia tesselaris) based on incorporating spectral 

moment features. A empirical comparison of seven machine learning algorithms namely K-Means 

Clustering (KM), Multilayer Perceptron Neural Networks (MLPNN), Support Vector Machines (SVM), 

Radial Basis Function Networks (RBFN), Single Decision Tree (SDT), Linear Discriminant Analysis 

(LDA), and Decision Tree Forest (DTF) with 3 texture features (GLCM, Gabor and ULBP) by means of 

classifying vegetation species in a power line corridor using high resolution aerial imagery has been 

presented in Li et al. [50]. According to the the study, classification performance varied based on 
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performance matrix, characteristics of datasets and the feature(s) used for classification. Ishak et al. 

[53] have implemented the weed image classification system utilising the combination of Gradient 

Field Distribution (GFD) and Gabor Wavelet (GW) techniques with a Single Layer Perceptron (SLP) 

model.  

2.3.3 Support Vector Machine 

Recently an automated detection of broadleaf and grass have been developed by Ahmed et al. [54] 

based on LBP feature and results is evaluated using template matching and SVM classifier. Analysis on 

results showed that SVM yields better classification rate than template matching. The work is 

extended by the same authors and gets highest classification accuracy using Local Directional Pattern 

(LDP). SVM also used for vegetation extraction using the Texture Measures (TM) [25]. Texture 

measures composed of different feature vector which includes Mean, Contrast, Angular Second 

Moment, Entropy, Inverse Different Moment, Correlation, Range and Standard Deviation. Four color 

spaces (RGB, XYZ, Lab and HSV) were considered separately to compute the feature vector.  

2.3.4 Markov Random Field 

Markov Random Field (MRF) model have been successfully applied in the field of image processing 

and computer vision [88] from early 90’s [89] and recently been applied for classification of vegetation 

from remote sensing images [90]. In such applications, spatial-contextual information was 

incorporated with MRF [91]. MRFs have the ability to solve many problems in remote sensing 

applications, e.g. segmentation, sub-pixel analysis, change detection and classification. Usually it 

examines the global and local properties by quantifying spatial autocorrelation among pixels [92]. 

Recent studies show that MRF based image classification can achieve better results compared to 

conventional classification technique [90]. In some applications computational cost is so high for MRF 

based land cover classification [92].  

2.3.5 Neighbourhood-constrained k-means (NC-k-means) classification 

NC-k-means classification algorithm comprises of four steps [93]. Initially traditional k-means 

algorithm was performed according to a distance criterion. In the next step, depending on the 

neighbourhood size pure neighbourhood index (PNI) and non-overlapping pure neighbourhoods (𝛿𝑘) 

was calculated. Depending on the pre-defined value either neighbourhood based k-means clustering or 

pixel-based k-means clustering was performed. In final stage, depending on the objective function, 

iteration will be stopped.  

2.3.6   Fuzzy Classification Technique 

To extract the forest and grassland, Chengfan li et al. [94] proposed a fuzzy classification technique 

based on multi-thresholds method using high resolution remote sensing image. 
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   Table 2.3 provides a summary of the literature reviewed above in relation to existing image 

classification techniques for vegetation classification. 

Table 2.3 Summary of Classification Technique used for Vegetation Classification 

Year Author 
Classification Technique 

used 
Classified Objects Accuracy 

2014 Ahmed et al. [55] Template Matching and SVM Broadleaf and grass LDP (98.5%) 

2011 Ahmed et al. [54] Template Matching and SVM Broadleaf and grass 

Template Matching 

(88.3%), 

SVM (98.5%) 

2010 Li et al. [49] SVM 

Vegetation species (Eucalyptus 

tereticornis, Eucalyptus 

melanophloia, and Corymbia 

tesselaris) 

95% 

2010 Li et al. [50] 
KM, LDA, RBFN, MLPNN, 

SVM, SDT, DTF 
Vegetation Species DTF (71.07%) 

2009 Ishak et al. [53] SLP Broadleaf and grass 94% 

2009 Wu  et al. [48] SVM Weed and corn 92.31 - 100% 

2008 Ghazali et al. [47] CM Narrow and Broad weed 

Narrow (86.1%) 

Broad (88.4%) 

2007 Mustafa et al. [46] LMT Narrow and Broad weed 

Offline: 

Narrow (89.2%) 

Broad (91%) 

Playback Recorded 

Video: 

Narrow (80.6%) 

Broad (81.1%) 

2006 Yu et al.  [44] k-NN 
Forest, shrub, herb, and non-

vegetation 
51 - 58% 

2005 
Mustapha et al. 

[52] 
ANN Broad and narrow leaf 88.17% 

2004 Kanda et al. [16] ML 
Broad-leaved and needle-

leaved tree 
80 - 90% 

2003 Tang et al. [51] ANN 

Broadleaf (velvetleaf and 

ivyleaf)  and grasses (giant 

foxtail and crabgrass) 

95% 
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2.3.7 Summary 

Classification accuracy mostly depends on suitable classifier selection and tuning of appropriate 

parameters. Sometimes using only one classifier will not produce good accuracy. Hence fusion of 

classifiers is necessary to achieve good classification accuracy.  
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Chapter 3 Multiple Texture Features 

Extraction Techniques  

This chapter presents multiple texture feature extraction techniques for dense and sparse vegetation 

region identification from roadside images. Three different types of texture feature extraction 

techniques are proposed to solve roadside object classification issues. Initially, from whole images, a 

small portion of grass regions was cropped and differentiated based on the density of grasses. Later, 

all objects from the entire images are classified. The focus of this chapter is on feature extraction 

techniques and how they are applied to the target images using machine learning. The overall feature 

extraction strategies can be divided into three types: 

1. Co-occurrence of Binary Pattern (CBP) and ensemble based technique  

2. Distance and Cross Correlation (DCC) based technique 

3. Quantisation Feature and Neural Network (QFNN) based technique 

This chapter is organised into the following sections. In Section 3.2, provides the details of the Co-

occurrence of Binary Pattern (CBP) and ensemble based technique along with the experimental 

results. Section 3.3 presents the Distance and Cross Correlation (DCC) based technique with 

experimental setup and performance evaluations. In Section 3.4, a novel Quantisation Feature and 

Neural Network (QFNN) based technique is presented and tested on an annotated dataset collected 

from various parts of the roadside.  

3.1 Introduction 

The aim of feature extraction is to identify an object within an image or differentiate one object from 

another using their properties. To fulfil this aim, three goals are set: it is first necessary to manually 

crop images of dense and sparse regions and create a database. Hence, start finding an appropriate 

property which can differentiate between both regions. Later, to increase the performance, several 

different properties were tested and new feature extraction strategies are proposed. Finally, all objects 

from the image were segmented only the particular segmented region will process for further decision 

will process. Figure 3.1 shows an example of the sample images collected during the survey. In the 

same figure, dense and sparse target regions are also shown. Figures 3.2 and 3.3 show some dense and 

sparse regions collected from different parts of the roadside. Although it is sometimes easier for the 

differentiation to be undertaken by humans, but such continuous monitoring for long periods is not 

feasible. For this reason, it is essential to develop an intelligent system to avoid the boredom of this 

task and make the system more efficient and reliable. The initial focus is on dense and sparse region 

differentiation using appropriate features. It is then necessary to segment the grass, road, soil, sky and 
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tree regions from the images. As the target area is grass, the focus is on locating the grass regions. 

Once the grass regions are identified correctly, it is necessary to decide whether the identified grass 

regions are dense or sparse.   

  

Figure 3.1 Dense and Sparse Area Detection: Top Image is an Example Roadside Image collected during the survey; Bottom 
Image shows Dense and Sparse Regions bounded in green 

Identifying the dense and the sparse regions is really crucial as the level of fires risk will be highly 

dependent on the accuracy of this process. Hence, appropriate feature representation plays a vital role 

in differentiating those regions.  

 

Figure 3.2 Dense Regions Cropped from various parts of the Roadside 
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Figure 3.3 Sparse Regions Cropped from various parts of the Roadside 

Figure 3.4 shows a sample image with its corresponding ground truth. Common objects like grass, 

trees, roads, soil and sky are seen in roadside images. Hence the primary aim of this research is finding 

appropriate features for those objects. The technique can then be generalised so that it will work on 

any objects. As the primary target region is grass, the initial focus is on accurate classification of grass 

regions.     

 

Figure 3.4 Roadside Object Detection: Left Image shows a Sample Roadside Image and the Right Image shows the Annotated 
Area with identifying colours 
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3.2 Co-occurrence of Binary Pattern (CBP) and Ensemble Based Feature 

Extraction Technique  

This section presents a novel texture feature and ensemble classifier technique for dense and sparse 

grass region classification [95]. Fire-risk region identification mostly depends on it. The technique was 

evaluated with survey data collected from various parts of Queensland. To evaluate the overall 

performance using both quantitive and qualitative methods, CBP technique applied to recognise 

certain types of grass regions. The overall framework consists of five steps. In step one, proposed 

technique applied some pre-processing which includes median filtering, RGB to grayscale conversion 

and image resizing. In step two, features were extract using the proposed technique and named as Co-

occurrence of Binary Pattern (CBP) as it is based on Gray-Level Co-occurrence Matrix (GLCM) and 

Local Binary Pattern (LBP). Training of feature vector using multiple classifiers has been done in step 

three. Classification results are described in step four. In step five, validation and statistical analysis 

are described. To fuse the decision and make the ensemble method three different classifiers both for 

training and testing were used. A majority voting was applied to take the final decision from the 

classifiers. The classifiers are Support Vector Machine (SVM), Feed Forward Back-Propagation Neural 

Network (FF-BPNN) and k-Nearest Neighbour (k-NN). Incorporation of three classifiers increases the 

diversity and improves the classification accuracy. Results were evaluated using five-fold cross-

validation and obtained accuracies were listed. The accuracy was promising and to prove its 

significance, an ANOVA (Analysis of Variance) test was also conducted.    

3.2.1 Introduction 

In computer vision, multiple object detection from images is increasing in interest due to its numerous 

applications. Roadside image analysis and the capability of identifying every object from roadside 

would have a great impact on real world applications. Hence, lots of research opportunities related to 

roadside object analysis have been studied extensively. However, there is no existing method which 

can classify all objects from roadside images. All existing methods focus on a particular application and 

each method is developed based on the target object. Appropriate feature extraction is the key 

challenge for classifying those objects. As the main focus here is on fire risk identification, identifying 

grass from the images is the key concern of this research. Although there is no known method related 

to grass region identification, similar kinds of research have been done in the areas of tree 

identification, weed identification, crop identification etc. A comprehensive review of those 

applications helped to identify the related advantages and disadvantages of existing methods [96]. 

Moreover, it provided a clear idea about the existing feature extraction and classification techniques 

for successful vegetation identification [97].    
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Gabor Wavelet (GW) based feature extraction was proposed by Burks et al. [98] to classify between 

broadleaf and grass. There were two limitations with their proposed method. The first was that the 

number of sample images used for training and testing was very low (40 images where 20 from each 

class) and the second limitation was the processing time. A similar approach based on Gabor Wavelet 

was proposed by Mustafa et al. [52] to categorise broad and narrow leaf weeds and achieved an 

accuracy of 88.17%. Søgaard et al. [57] proposed an active shape models that could classify 19 

different weeds from the images with an accuracy of 65% to 90%. Due to low processing speed, it 

cannot apply on real time weed control applications. Ghazali et al.’s [47] proposed a method that 

achieved 80% accuracy for narrow and broad weed differentiation using a combination of features. 

The features used in the proposed method were: Fast Fourier Transform (FFT), Gray-Level Co-

occurrence Matrix (GLCM), and Scale Invariant Feature Transform (SIFT). The proposed method was 

mostly rule-based - which cannot apply to general classifications. Rumpf et al. [58] proposed a 

sequential classification based approach that showed promising results and achieved an overall 

classification accuracy of 97.7%. For simplification, their proposed approach divided the work into 

two phases. In the first phase, weed areas were identified and the later phase classified the weeds into 

species based on shape. Data was trained based on some specific shapes and, as the species grow, the 

method fails to recognise them.     

To extract a new set of the feature vector for weed classification, Ishak et al. [53] proposed a 

combination of a Gradient Field of Distribution (GFD) and Gabor Wavelet (GW). In their approach, the 

dataset was quite large and more than 400 images were used for training and testing. For training and 

classification, Artificial Neural Network (ANN) was applied and listed the accuracy was 93.75%. Some 

misclassifications occurred between broadleaf and weeds. Some highly dense weed regions were 

classified as broadleaf due to overlapping and, due to stems on broadleaf, some were misclassified as 

grass. Further developments were required to overcome that situation. Ishak et al. extensively studied 

weed classification and introduced several feature extraction techniques for broad and narrow weed 

classification which have been listed in [61-63]. One approach used a combination of Gradient Field 

Distribution (GFD) and Gray-Level Co-occurrence Matrix (GLCM) and used Neural Network as a 

classifier, while another approach used a Gabor Filter and Fast Fourier Transform (FFT) combination 

with Support Vector Machine (SVM) as a classifier. The third approach used a curve detection method 

to identify the region of interest. The proposed curve detection method was based on the quadratic 

equation and two degrees of freedom were considered. For learning and classification of data, the 

proposed approach used a single layer perceptron (SLP) classifier. Edge link based weed classification 

has been introduced in [11] to identify the region of interest. Some previous works [59] [60] used 

morphological operation based weed classification. Compared to the previous approach, Tellaeche et 

al. [59] proposed an approach that showed promising performance in terms of memory and 

computational power. In their proposed approach, binarisation, morphological opening and closing 

along with a SVM classifier were used for segmentation. On the other hand, Siddiqi et al. [60] proposed 
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an approach for broad and narrow weed classification and achieved over 89% accuracy. Their 

proposed method was designed based on erosion and dilation segmentation algorithm. The 

performance of the proposed classifier was degraded due to variations in illumination conditions, 

wind and other natural environment parameters. Moreover, the dataset used by the proposed system 

was very low. 

More recently, in order to classify crops and weeds from digital images, a new method has been 

presented in [64]. To form the feature vector, a combination of size and rotation invariant shape, 

colour, and moment features were considered. Among them, nine features were chosen using a 

forward selection and backward elimination feature selection method. Using Support Vector Machine 

(SVM) as a classifier, their proposed approach achieved around 97% accuracy over a set of 224 test 

images. These nine features were: Solidity, Mean value of ‘r’, Mean value of ‘b’, Standard deviation of ‘r’, 

Standard deviation of ‘b’, second-order moment invariants (ln(∅1) of area, ln(∅2) of area), third-order 

moment invariants (ln(∅3) of area, and ln(∅4) of area) [64]. The proposed method fails and produced 

segmentation errors when backgrounds were noisy and holes. But it performed better while 

segmenting from soil backgrounds. Therefore, in real-time implementation prior to feature extraction 

more effective and efficient image enhancement techniques should be introduced. 

In order to recognise the presence of weeds and to differentiate between weeds with broad leaves 

and narrow leaves, Ahmad et al. [65] proposed a statistically based weed classifier approach. Their 

proposed approach used some threshold to determine the narrow and broad category grasses and 140 

sample images were used to evaluate the classification performance. Due to a lower number of 

samples classification performance and accuracy is so high. Ahmad et al. [54] proposed an approach 

for weed classification based on Local Binary Pattern (LBP) and Support Vector Machine (SVM). In 

terms of accuracy and computational efficiency, their proposed method shows promising 

performance. But the method shows poor performance for mixed weed images. 

Moreover, vision-based approaches have been applied in crop field for crop row area identification. 

Many researchers have proposed different strategies, but no method is workable in all cases. Among 

them Guerrero et al. [99] proposed an approach for crop row identification. Intrinsic and extrinsic 

parameters along with their perspective projections were used to determine the crop lines. As the 

decisions are based on the horizontal lines, it fails in a complex scenario. To identify the greenness, 

Romeo et al. [100] proposed an approach based on fuzzy clustering. Dynamic threshold adjusting is 

the main finding of their research. Although their method performs well when grass is green, it fails in 

any other case and in real scenarios grasses are not always green. Various kinds of grass with various 

shapes and colours are found in a real scenario. Other researchers proposed [101] a multi-region of 

interest based approach which shows superior performance than the Hough transform based 

approach. The method is not robust as they assume that grass will be green.  
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To achieve an appropriate discrimination between weeds, crops, and soil and make the system 

robust, the main challenge is making the system workable under varying conditions of lighting within 

the less processing time. To address those issues, Burgos et al. [102] proposed a system which 

consisting of two independent subsystems. Their proposed system is the combination of Fast Image 

Processing (FIP) and Robust Crop Row Detection (RCRD). The first subsystem is used to classify the 

weeds and crops more quickly and deliver the results while the second subsystem is a slower process 

and used to correct the first subsystem’s mistakes. Using the system, they achieved 95% accuracy on 

weeds and 80% accuracy on crops. But the key robustness of the proposed system is the segmentation 

method which shows better performance under varying lighting conditions. The colour indices (r = − 

0.884, g = 1.262, b = − 0.311) used in the proposed system can create a gray image which can be easily 

transformed into a binary image by a simple image thresholding adjustment method.  

Detection of roadside vegetation based on the visible spectrum has been used successfully. Colour 

and texture features based approaches were proposed by Harbas et al. [103] to detect the vegetation. 

One limitation of the proposed method was speed. Moreover, if the vegetation becomes green, their 

proposed method cannot correctly detect the vegetation area. The authors extended their method by 

adding a new texture feature and considering the distance from the camera and has been discussed in 

[104] and [105]. In their new extended method, a two-dimensional continuous wavelet transform with 

oriented wavelets was used instead of using an entropy feature. However, in terms of computational 

cost, it requires significant computational resources.   

In recent years, calculating per-pixel accuracy on crop/weed discrimination from hyperspectral 

data has been demonstrated with accuracies of over 80%. However, the vast majority of methods used 

supervised methods using different sensors including monochrome, colour, multispectral and 

hyperspectral cameras. Wendel et al. [106] proposed an unsupervised method which allowing the 

classifier to continually update weed appearance models as conditions changed. Their proposed 

method did not compare the results with static training data. Therefore, further investigation is 

needed to improve the classification performance and refine the training data.  

According to existing literature, there are no existing methods which can segment vegetation data 

from roadside video. Moreover, compared to existing research the method of data collection and 

application area also a key issue of our research. Existing research on weed and crop identification, 

either from satellites or from aircraft and ground mounted cameras, uses a single classifier. Our 

proposed method uses a novel texture feature along with an ensemble classifier to classify roadside 

vegetation and eventually identify fire risk areas.   
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3.2.2 Proposed CBP Technique 

The proposed method aims to distinguish between dense and sparse regions by the fusion of texture 

features and use of an ensemble classifier. The overall process is described below. Dense and sparse 

regions were initially selected by cropping from roadside images and creating the associated database. 

The next step involves some pre-processing of the images for further decision making. Then features 

are extracted using the proposed feature extraction model. Those extracted features are then trained 

using three base classifiers. Finally, the test images are classified using majority voting for a final 

decision. The overall scenario has been presented in Figure 3.5.  

 

Figure 3.5 Proposed CBP Technique 

3.2.3 Feature Extraction  

Extracting appropriate feature from target images is one of the crucial steps for vegetation 

classification. To extract appropriate features, it is necessary to analyse the many features which will 

be suited with the target objects. Texture feature is the best choice for vegetation classification. From 

existing literature research shows that no single technique has appropriate features which can 

optimally determine the difference between two objects. Hence, a combination of features were used 

which serve our specific purpose. The proposed technique is based on Local Binary Pattern (LBP) and 
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Gray-Level Co-occurrence Matrix (GLCM) and named as Co-occurrence of Binary Pattern feature 

extraction. 

The basic idea for developing the LBP feature extractor was transforming a gray scale image into an 

array or image of integer labels which will be rotation invariant. Two complementary measures can be 

described using two-dimensional surface textures. Local spatial patterns and grayscale contrast are 

the two features developed through the LBP feature descriptor. Formation of the LBP feature 

descriptor is very simple. From a patch of 3 X 3 pixels, the LBP operator forms labels of image pixels by 

thresholding the 3X3 neighbourhood of each pixel with the centre value. The obtained value will form 

a binary number which will concatenate binomially in a clockwise direction. The centre pixel is then 

assigned with the resultant binary value.  

The formation of the LBP code of a pixel (𝑥𝑐 , 𝑦𝑐) is given by:   

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑐 , 𝑦𝑐) =  ∑ 𝑠(𝑖𝑝 − 𝑖𝑐)2
𝑝𝑃−1

𝑃=0   (3.1) 

𝑠(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

        (3.2) 

Here, ic represents the gray value of the centre pixel (xc, yc), ip is the gray value of its neighbours, P is 

number of neighbours and R is the radius of the neighbourhood. If it becomes difficult to determine 

the location of neighbouring pixels, their position is estimated using bilinear interpolation. For each 

pixel, the LBP values are computed for the entire image along with the histogram to describe the 

texture of the image. The basic formation of the LBP operator against its neighbouring pixels is 

illustrated in Figure 3.6.  

 

Figure 3.6 Formation of Basic LBP Operator against its Neighbouring Pixels and Result Interpretation as a Binary Number 

For example, for an input image I with width and height of M x N pixels, the LBP value is computed 

for each pixel (x, y) an encoded image representation is obtained. A histogram H is then obtained from 

the encoded image using: 
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𝐻(𝑏) = ∑ ∑ 𝑓(𝐿𝐵𝑃𝑃,𝑅
𝑁
𝑦=1

𝑀
𝑥=1 (𝑥, 𝑦), 𝑏),           𝑓(𝑎, 𝑏) = {

1, 𝑎 = 𝑏 
0, 𝑎 ≠ 𝑏

         (3.3) 

Here, b is the LBP code value. The texture information of the image is described using the resulting 

histogram H. The feature vector is used as an input matrix to compute the GLCM value. If the image 

patches have different sizes and we need to compare between those images patches, it will be better to 

make them normalise them for a coherent description using:  

𝑁𝑖 = 
𝐻𝑖

∑ 𝐻𝑗
𝑛−1
𝑗=0

          (3.4) 

In the next phase, on the extracted LBP feature descriptor the co-occurrence of pattern was 

calculated. To calculate the Co-occurrence of LBP pattern the concepts of GLCM are used. The 

calculation of the distribution of co-occurring of values forms a new matrix and known as the co-

occurrence matrix. Mathematically, for a given offset (∆𝑥, ∆𝑦) over an image I with a width n, and 

height m, a new co-occurrence matrix C will be formed using: 

𝐶∆𝑥 ∆𝑦  (𝑖, 𝑗) =  ∑ ∑ {
1,   𝑖𝑓 𝐼(𝑝, 𝑞) = 𝑖 𝑎𝑛𝑑 𝐼(𝑝 + ∆𝑥, 𝑞 + ∆𝑦) = 𝑗 

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑚

𝑞=1
𝑛
𝑝=1          (3.5) 

In the given image, image intensity values are denoted by i and j and spatial positions are denoted 

by p and q. Depending on the direction 𝜃 offset (∆𝑥, ∆𝑦) value will be determined. As the co-occurrence 

matrix is sensitive to the offset (∆𝑥, ∆𝑦) parameter, one offset vector is chosen to make the generated 

matrix rotationally invariant. From the above matrix, the spatial structure of the local texture of a 

given image can be extracted. The information of adjacency between two pixels can be determined 

using gray-level co-occurrence matrices. GLCM indicates the frequency of pixels horizontally adjacent 

with each other in terms of gray-level (gray intensity) value. Within a given window, with distance d 

and orientation θ are used to calculate the number of co-occurrence for all pixel pairs. Using the above 

technique, a gray-level co-occurrence matrix for each LBP code is generated from the entire image. To 

specify the number of gray levels, number levels were used to define the segment level of the matrices. 

The proposed technique used segment size hundred (100), and the distance between a pixel and its 

neighbour. Finally, to construct the co-occurrence matrix, the proposed method used the numbers of 

instances of all possible neighbourhoods. In Figure 3.7 demonstrates an example of gray-level co-

occurrence matrix generation from a sample image. In the given figure the last column has no 

neighbours to the right side. So the number of pixel pairs that need to be computed can be calculated 

as follows:  

Ny X (Nx – 1) = 5 * (5 - 1) = 20         (3.6) 

The co-occurrence matrix is calculated based on the probability. In a horizontal combination, for a 

specific pattern number of times the outcome occurs divided by the possibility of total outcomes over 

the image. Mathematically, it can be described by Equation 3.7:  

𝑃𝑖,𝑗 = 
𝑉𝑖,𝑗

∑ 𝑉𝑖,𝑗
𝑁−1
𝑖,𝑗=0

           (3.7) 
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Here i and j denote the row and column number and V denotes the pattern.  

 

Figure 3.7 Gray-level Co-occurrence Matrix Formulation for Texture Feature Extraction  

The idea of the CBP technique is combining the local binary pattern and the gray-level co-

occurrence matrix for texture feature extraction. Initially, the local texture feature is extracted using 

the LBP code and the gray-level co-occurrence matrix concept is then applied on the extracted LBP 

code to generate the final feature vector. This feature vector was used for training the model and then 

for classification purposes.  

 

3.2.4 Experiments and Results 

3.2.4.1 Dataset 

To test the efficiency of the proposed feature extraction model, images were collected from real 

environments, mostly from roadsides in the Central Queensland region. Initially, a small set of images 

were collected which comprised 110 (one hundred and ten) images where 60 (sixty) images were 

chosen from dense regions and (50) fifty images were chosen from sparse regions. All the images were 

collected during daylight and all were colour images.    

During dataset collection, various types of grasses were cropped from various locations. This will 

increase the diversity. All the cropped images were stored in JPEG format with an equal width x height 
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size of 900 X 500 pixels. The proposed technique was used to classify dense and sparse regions based 

on their properties. Table 3.1 shows the total images used for evaluation. 

Table 3.1 Data for Training and Testing 

 

 

 
Figure 3.8 Sample Image Data for Dense Grass Regions 

 

Figure 3.9 Sample Image Data for Sparse Grass Regions 

From Table 3.1, it is clear that for experiment fifty a total of hundred ten (110) images were used 

where sixty (60) images from dense and fifty (50) from sparse grass were cropped. For training, 

among the sixty (60) images, forty (40) images were used from the dense region and from the fifty 

(50) sparse regions forty (40) images were used. For testing the proposed technique a new set of 

images were used which consists of ten (10) different images from each category. For statistical 
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analysis and accuracy calculation, fivefold cross-validation was used on the whole dataset. Some 

sample images that were used in the proposed technique are shown in Figures 3.8 and 3.9. 

3.2.4.2 Image Pre-processing 

Image pre-processing can significantly increase the reliability of feature extraction. Hence, filtering, 

scale conversion and resizing were undertaken before feature extraction. Steps are described below. 

3.2.4.2.1 Median Filtering 

To make the images smooth and noise free median filtering was applied which removes the noise from 

the images. Median filtering is an effective smoothing technique as it preserves the edges.    

3.2.4.2.2 RGB to GRAY Conversion 

All original images need to be converted into gray-scale images as the proposed feature extraction 

technique mostly depends on the grayscale image. The proposed method converted the images into 

grayscale before the training and feature extraction phase.  

3.2.4.2.3 Image Scaling 

In order to process the image patches on a standard platform, all the images were normalised and 

rescaled into a specific size. The initial size of the images was 900 X 500 pixels. The images were 

normalised into 200 X 200 to reduce the computational time. 

3.2.4.3 Ensemble Model 

Three classifiers were chosen for investigation to form the ensemble model and the decision was 

optimised based on majority voting for a final decision. These classifiers were Neural Network (NN), 

Support Vector Machine (SVM), and k- Nearest Neighbour (k-NN). 

3.2.4.3.1 Train and Classify with Support Vector Machine 

The SVM classifier is the first choice of classifier for the model to be used to process the separation 

between the two classes. Some notations are modified here for simplification and different labelling is 

also used to denote the two classes; instead of using 𝑦𝑖 ∈ {0,1} as appears elsewhere, 𝑦𝑖 ∈ {1,2} is used 

to denote the class labels for training. Here two different labelling was used to denote two classes. 

Dense grass belongs to class “1” and sparse grass belongs to class “2”. Other parameters w, b with the 

vector 𝜃 will be used for the classifier. In this process, let S ={(𝑥𝑖, 𝑦𝑖) |𝑥𝑖 ∈ 𝑅
𝑛}  𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑤𝑖𝑡ℎ  𝑦𝑖 ∈

{1,2}. To map the training data into kernel space, the kernel function “svmtrain” was used. To choose 

the best kernel that will fit with the problem, linear, polynomial and radial basis functions are 

investigated. After several analyses with training and test accuracy, the linear kernel function was 

chosen for training and classification purposes. The linear function can be defined using Equation 3.8:  
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𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏  (3.8) 

Here, f(x) = 1 if (𝑤𝑇𝑥 + 𝑏)≥ 0, and f(x) = 2 otherwise. For training, Matlab's “svmtrain” was used, 

and the “SVM classify” function was used for classification.  

3.2.4.3.2 Train and Classify with Neural Network 

Feed forward neural network is the second choice proposed for the ensemble model. Generally, the 

network consists of three layers which are: an input layer, a hidden layer, and an output layer. The 

input layer consists of the feature vector and the output layer consists of target label. Here, u= 

[𝑢1,𝑢2,𝑢3,…𝑢𝑝 ]
𝑇 constitutes the input layer with the extracted feature while y= [𝑦1,𝑦2,𝑦3,…𝑦𝑚 ]

𝑇 is the 

label that denotes the output vector. Here, p and m denotes the number of elements and number of 

classes respectively. For this implementation awe used p value of 110, and m =2 were used. For proper 

training and achieving the best classification accuracy, various numbers of hidden neurons, and 

different numbers of iterations were used and finally best combination was finally chosen. The 

network repeatedly trained until it reached the root mean square or reached to the total number of 

epochs. For training purposes, the proposed technique used back propagation. For training proposed 

technique used one hundred ten images as input matrix. For target matrix generation, the first sixty 

images treated were from as dense class and were denoted as one (‘1’); and rest of the images treated 

as sparse grass and were denoted as (‘2’). Different parameter for hidden neurons and epochs were 

used for training and finally best parameter was selected for testing. For validation, the whole dataset 

was divided into five fold and each time 88 images were used for training and the remaining 22 images 

were used for testing, and finally the average was taken to calculate the overall accuracy.  

3.2.4.3.3  Train and Classify with k-Nearest Neighbour 

The k-Nearest Neighbour (k-NN) classifier was chosen as the final classifier for the proposed ensemble 

model. It shows promising performance in general pattern recognition tasks. In k-NN, objects are 

classified based on the closeness to the feature space. k and distance metric are the only parameters 

needed to be tuned for k-NN implementation. Success depends mostly on the selection of k values. The 

basic principle of selecting the k value is that it should be an odd number which will be helpful to avoid 

draw voting. The best value of k will be determined by the classification performance. For analysis 

purposes, different k values e.g. k = 5, 7 and 9 were used. The same k values were used for both 

training and testing phases. Furthermore, in the proposed system both the Standard Euclidean 

distance metric and City Block distance metric were used to calculate the distance. It was observed 

that, in both cases, results slightly varied. 

The major limitation of k-NN is the number of samples required for training. If one class dominates in 

the training phase, there is more possibility of misclassifications occurring in the test phase. To avoid 

this problem in the proposed method tried to make the sample numbers equal in each class.  
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3.2.4.3.4 Combine the Classifiers  

To achieve the best overall accuracy from the three classifiers, weighted majority voting [107] [108] 

was introduced. The basic idea of majority voting is very simple; a majority decision will win the 

competition. If two classifiers produce the same class, we assign that label for the corresponding test 

image.  

3.2.4.3.5 Calculate Accuracy 

The formula used for the accuracy calculation for the proposed ensemble technique and individual 

classifiers can be described as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 
∗ 100   (3.9) 

3.2.5 Result Analysis 

The efficiency of the proposed method relies on two steps. In the first step, best parameters from each 

classifier were chosen. In the second step, best parameters were chosen and results were integrated 

for final classification results. For robustness of the system, fivefold cross-validation was applied. As it 

is a binary classification, output from the classifier will have only two values. If the dense region is 

identified, it will return “1”; otherwise, it will return “2” for a sparse region. There were some 

misclassifications with dense regions misclassified as “2” and vice versa with sparse regions 

misclassified as “1”. In the fivefold cross-validation, four-fold data were used as training and the data 

from the other fold were used as testing. The overall classification accuracy was calculated by taking 

the average. In this section, classification accuracy was analysed. The dataset used for this experiment 

is described in the experimental setup portion (Section 3.2.4). The classification results obtained from 

individual classifiers and from using the hybrid technique are shown in with statistical results in tables 

and graphical comparisons in figures.  

Results obtained using different kernel functions for the SVM classifier are presented in Figure 3.10. 

Both train and test accuracies are listed and showing the reason for choosing the best kernel function 

for the ensemble model. From the Figure 3.10, it is seen that the linear kernel function surprisingly 

shows much better performance than both radial basis and polynomial function. 

 

Figure 3.10 Results using SVM 
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Using the linear kernel function achieved 90% accuracy for training and 85% for testing. While test 

accuracy for the other kernel functions was almost equal, there was a variation on training accuracy 

for both kernels. Proposed method achieved 85% accuracy for training and 80% for testing using the 

polynomial function. On the other hand, proposed method achieved 80% accuracy for both sets using 

the radial basis function. Based on these results, it was decided to use the linear kernel function for the 

SVM classifier and its fivefold cross-validation accuracy calculation outcome is shown in Figure 3.11. 

Here accuracy for six observations was listed where the first three shows each fold accuracy and the 

last one is for the hybrid classifier. 

 

Figure 3.11 Fivefold Cross Validation Accuracy for Each Classifier 

The results using the neural network with different parameters are shown in Table 3.2. Initially, 

started with a random parameter for hidden units, number of iterations, and root mean square and 

proceed based on accuracy. There are various options for changing parameters so we fixed hidden 

neurons and changed the number of iterations and RMS error and listed the training and testing 

accuracy. A larger number of iterations generally increase accuracy, but it also depends on hidden 

neurons. After several observations we get the best classification performance with number of hidden 

units=12, learning rate=0.01, epochs=3500, momentum=0.15 and Root Mean Square error=0.0001. 

We got 90% accuracy for training accuracy and 85% for testing accuracy. From the results, we 

observed that, if the proper parameter is chosen for the neural network, we achieved similar accuracy 

as for SVM. Figure 3.11 shows the individual fold accuracy along with the ensemble classification 

accuracy. 
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Table 3.2 Results using Neural Network 

 

Results obtained using k-NN is shown in Figure 3.12. Different k values were chosen to check the 

performance and based on the accuracy best parameters were chosen. We conducted three analyses 

for three different k values and results are shown in Figure 3.12. From the figure, it is clear that we 

obtained the highest accuracy 85% for train and 80% for a test when k value equal 7. Compared to 

other classifiers k-NN shows lower accuracy. In respect to other classifier the rate is acceptable. We 

achieved 85% for training and 80% for testing.  
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Figure 3.12 Results using k-NN 

After analysing the individual classifier performance we combined the best parameters selected 

from individual classifiers and the results of the resulting hybrid ensemble model are summarised in 

Table 3.3. From the table, it is clear that, for various combinations, we observe lots of variation in 

accuracy. We achieved the optimum accuracy outcome by choosing the linear kernel function for SVM, 

a k value of 7 for k-NN, and setting the number of the hidden units as 12 and epochs as 3500 for Neural 

Network.  

Figure 3.13 shows the performance comparison chart of the proposed hybrid technique along with 

the individual classifiers. The hybrid technique achieves 92.72% accuracy which is significantly higher 

than any individual classifier.  

Although good accuracy was achieved with the best parameters, some misclassifications still 

occurred as shown in Figures 3.14 and 3.15. Table 3.4 shows the number of misclassified images in 

respect to total images for the proposed hybrid technique and the individual classifiers and the 

resulting success rate percentages. 
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Table 3.3 Results using Proposed Hybrid Technique 

 

 

Figure 3.13 Performance Analysis of Individual Classifiers and Hybrid Technique 
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Figure 3.14 Sparse Grass Misclassified as Dense Grass 

 

Figure 3.15 Dense Grass Misclassified as Sparse Grass 

The reason for misclassification is showing high texture for the sparse region. If the grass region is 

very low, but if the density high, it creates high texture and the possibility of misclassification arises. 

Table 3.4 shows the comparison results for different classifiers versus hybrid classifier. 

Table 3.4 Comparisons Chart for Classification Performance for Different Classifiers 

 

 

To prove the effectiveness of the proposed system as being statistically significant, an ANOVA 

(Analysis of Variance) was also conducted.  Tables 3.5 and 3.6 show the statistical summaries using the 

ANOVA analysis. 
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Table 3.5 Single Factor ANOVA Summaries 

 

We set a hypothesis to compare the performance of the proposed ensemble technique with the NN, 

SVM, and k-NN classifiers in terms of classification accuracy (H1). We set the null hypothesis as 

follows:  

There is no significant difference between individual classifier accuracy in respect to hybrid technique 

classification accuracy (H0). 

Table 3.6 ANOVA Analysis Details 

 

The alternative hypothesis will be proven if it can be shown that there is a significant difference 

between the classification accuracies H0 and H1. From the ANOVA analysis we need to determine the p-

value which will show whether or not there is strong evidence that there is a significant difference 

between the classification accuracies. 

From Table 3.6, we can analyse the statistical significance between the proposed hybrid technique 

accuracy and individual classifier accuracy. It is clear that the p-value obtained is greater than the 

critical value which proves the significance of the batch effect. So we can reject the null hypothesis and 

confirm that the classification accuracy obtained using the proposed hybrid technique is statistically 

significant. 
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3.2.6 Summary 

This technique shows an approach for classifying dense and sparse grasses. A new texture feature 

extraction technique is proposed which shows a significant improvement over existing techniques. 

Initially, the original image was converted into a grayscale image and a binary pattern was obtained 

using histogram equalisation against its neighbouring pixels which interprets the result as a decimal 

number. To calculate the co-occurrence of binary pattern, the GLCM technique was applied and a 

texture feature was generated. Finally, performance was evaluated using a hybrid classification 

technique with respect to the individual classifiers.  

For experimental purposes, a real dataset was used where all the images were collected from 

Central Queensland region. Resulting analysis shows that using the proposed technique can achieve 

92% accuracy. All classification performances conducted were validated using fivefold cross-

validation. The proposed method was also statistically significant as proven using the ANOVA test. 

There are some limitations of the proposed method. It considers only part of the image, not the 

whole image. Sometimes it is difficult to judge as, if it works on a small scenario, it may still fail in the 

larger scenario. Moreover, the method will not work on any other images, e.g. satellite images. While 

doing the experiments we did not consider any adverse weather conditions and ignored shadows and 

rainy conditions. In the real world, so many other situations will arise and the currently proposed 

model cannot handle all those situations.  

The proposed technique cannot classify all objects from the roadside scene. It can only differentiate 

cropped dense and sparse regions. This can be usable as a part of identifying the fire-prone regions. 

Now we need to focus more on object identification from the scene and we need to separate the grass 

regions from those identified objects. Once the separated grass regions are obtained, we can apply the 

CBP technique to identify dense and sparse regions. In the real roadside scenario, rather than just 

grass, several complex objects will be found. Using only a small portion of data will not give enough 

evidence and adequate performance when experiments need to be conducted on a large dataset. 

Furthermore, thorough analysis is required to add more texture features to make the system 

sufficiently robust. The application area can be extended and can be used in other environment 

sensing technology. Moreover, we can apply the technique on satellite images and compare the 

performance.  
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3.3 Distance and Cross Correlation (DCC) Based Feature Extraction Technique 

This section presents another feature extraction technique [109] which is an extension of previous 

work. We add two new proposed features and improve the overall accuracy. From the previous 

analysis, we identified that the major problems are in differentiating regions of grasses due to the 

similar spectral signature.  A simple example of the new proposed method is shown in Figure 3.16. To 

evaluate the performance of the new proposed feature we used the same dataset collected as set out in 

the image acquisition part. For this new feature extraction, work was undertaken on several colour 

channels and good performance was obtained using the YCbCr model. Before moving to the feature 

extraction phase, all images are rescaled to 384 X 384 pixels. After feature extraction, an effective 

classifier is required to discriminate between the types of grass. This study helps to identify suitable 

features for vegetation classification which will be helpful in most agricultural research fields. In the 

future, the proposed technique can be applied for an automatic weeding strategy. 

 

 

Figure 3.16 Vegetation Classification Flow Chart 

3.3.1 Introduction 

The ultimate goal of the automatic machine vision based approach is to minimise the man-hours of 

human involvement. If people are doing the same repetitive job for a long period of time, they will feel 

bored and there will be a high possibility of making mistakes. In a machine vision based approach it is 

usually necessary to train a dataset based on some features and to later classify test sets efficiently. At 

the present time, machine vision based intelligent systems have gained popularity for numerous 

applications on various engineering and scientific applications. However, success depends on 

appropriate feature extraction. Although we have seen the success in digital and face recognition, still 

some application areas remain relatively unexplored. One such application area is the vegetation 

classification sector. The area is become an ongoing research area due to its sensitive application. 

Roadside bushfires become a frequent issue during the dry season in Australia. Policy makers desire 
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an optimal solution which can automatically identify fire-prone regions with minimal effort and cost-

effectively. Although we have seen some applications from satellite image tries to find out the fire-

prone regions but still cannot give an exact location and appropriate information. This research will 

help to identify various objects from roadside images. The task is not easy as outdoor scenes are 

sensitive to various environmental issues. Some of these scenarios are presented in Figures 3.8 and 

3.9. Vegetation articulation, multiple viewing points, difficult lighting, intra-class variations, soil region 

identification, and varying seasonal appearance are common issues we need to consider during 

vegetation classification.  

3.3.2 Proposed DCC Technique 

The whole process for feature vector generation is presented in Figure 3.17. Here the main focus is on 

creating two new feature vectors which are distance and cross-correlation feature. To generate those 

feature vectors we need to do some pre-processing steps which are shown in the figure. These feature 

vectors, along with previously studied feature vectors, will jointly be used for training the classifier 

and later applied on test images for further classification.  

 

Figure 3.17 Feature Extraction Technique 

 

3.3.2.1 RGB to YCbCr Conversion 

The world currently uses several kinds of image colour channel such as RGB, YIQ, HIS, YCbCr, L*a*b*. 

Feature extraction and classification greatly depends on the appropriate colour space. Working with 

only the RGB image will not provide appropriate information about the context of grass images. As 

grasses in the real environment do not have any specific colour so using only RGB colour images will 



 

51 

not be effective. Moreover, using grayscale images will also fail in providing adequate decisions in 

foreground and background (soil region) separation. To differentiate grass and the non-grass regions 

as well as the gap between the pixels, YCbCr colour space has been chosen as it will help with 

extracting the intensity or brightness (luminance) and colour difference (chrominance) information of 

the image. The conversion used to change the colour space is shown using Equation 3.10:  

[𝑌 𝐶𝑏 𝐶𝑟] = [𝑅 𝐺 𝐵] [
0.299 −0.169 0.4998
0.587 −0.332 −0.419
0.114 −0.501 −0.081

]    (3.10) 

3.3.2.2 Extract Channel Information 

As there are three different channels in YCbCr colour space we need to extract luminance (Y) and 

chrominance (Cb and Cr) colour values as columns. Each row represents corresponding colour value 

for RGB colour space where a range of each channel is different where Y is in the range [16 235], and 

Cb and Cr are in the range [16 240]. To extract the appropriate image information it is necessary to 

enhance the contrasts of each channel.     

3.3.2.3 Histogram Equalisation 

Figure 3.18 shows the importance of enhancing the contrast of an image using histogram equalisation. 

Different objects with visual similarity will be presented by different highlighted colour which will be 

easily differentiable from the YCbCr enhanced image. The equation used for histogram equalisation is 

as follows: 

𝑔𝑖,𝑗 = 𝑓𝑙𝑜𝑜𝑟 ((𝐿 − 1)∑ 𝑃𝑛
𝑓𝑖,𝑗
𝑛=0 )    (3.11) 

where 𝑃𝑛 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 
 𝑛 =  0, 1, . . . , 𝐿 −  1. 

 

Here, f is the candidate image and g represents the histogram equalised image. 

 

Figure 3.18 a) YCbCr Image b) YCbCr Image after Histogram Equalisation 

a b 
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3.3.2.4 K-means Clustering 

After enhancing the image to separate the different colour channels, we use k-means clustering where 

three different clusters represent the presence of three different types of objects. We consider the 

dominating pixels as grass region pixels and non-dominating pixels as non-grass region pixels. 

 

Figure 3.19 K-means Clustering 

Figure 3.19 shows the example result of k-means clustering. To compute the clusters among 

different distance parameter techniques, squared Euclidean distance was used. 

3.3.2.5 Differentiate Regions 

In order to differentiate between dominating and non-dominating pixel regions, we need to consider 

pixel value colour information. We need to choose some colour range from chromaticity colour 

information. For convenience and after thorough analysis, we set some ranges as shown in Table 3.7. 

While choosing the range of colour, we tried to choose those pixel colours which will remain the same 

in any image. This makes the calculations easier during further processing and producing the binary 

image for feature extraction. 

Table 3.7 Pixel Value Assign 

 

3.3.2.6 Image Binarisation 

To create the binarised image we have not followed any existing technique. We developed a new 

approach based on the combination which is shown in Table 3.8. The table shows, from among the 64 

combinations, only for those combinations to which was assigned the value zero (0). All other 

combinations were set to one (1). Using the above-mentioned procedure we obtained the binary 

image which will help to extract a further feature from the image. 
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Table 3.8 Dense and Non-dense Separations  

 

3.3.2.7 Colour Assignment 

To check the efficiency of the regions separation, we tried to assign a different colour to different 

regions and compare the performance visually in respect to the original RGB image. We tried to colour 

the grass regions using red colour with all other regions remaining in their original RGB colour. From 

the pictorial analysis, we achieved better performance. Hence, technique is applied for further 

processing of feature extraction. 

3.3.2.8 Blocking 

The next step was block size selection for feature extraction from each block. To capture useful texture 

information selection of block size plays a vital role in differentiating dense and sparse grass. 

However, if the block size becomes too small it will not provide useful information: on the other hand, 

if the block size is too big it will be overlapped with other information. By considering these facts, we 

choose a block size for the whole image of 12 X 12. Each block contains 32 X 32 pixel values and 

contains useful information about the image. 

3.3.2.9 Block Filling 

In order to finalise the block value, we checked the dominating pixel values. The final value will be one 

(1) if the total number of non-zero pixels is greater than zero pixels and vice versa. 

3.3.2.10 Block Minimisation 

To determine the final block value among the 32X 32-pixel values we considered the dominating pixel 

values and assign one (1) if all are ones and assign zero (0) if all are zeros. From the 384 X 384 pixel 

values we minimised these into 12X12 pixels. The generated matrix using the proposed block 

minimisation technique contains the texture information for the whole image. 



 

54 

3.3.3 Feature Extraction 

To distinguish between different object categories, extracting the appropriate feature plays a vital role. 

In the previous approach, we used pixel-based features; here we introduce the patch-based feature. 

The combination of both features forms a new foundation of robustness. The colour is one of the 

widest features for pixel-level image segmentation and classification, but choosing a suitable colour 

space is still a challenging task. One principle is that the colour space should be (approximately) 

uniform to human colour perception (i.e. equal distances in the colour space correspond to equal 

colour differences perceived by humans). This is because humans are very adept at distinguishing 

different types of objects with no difficulty using solely colour information, and thus the segmented 

results should be consistent with the understanding of humans. Therefore, we choose the CIE Lab 

colour space, which has been proved as having high consistency with human vision perception and 

successfully applied in many studies. In addition, we also include the R, G, B colour channels to 

compensate for the possible information lost in the Lab space. For a pixel at the coordinates in an 

image, its corresponding 6-dimension pixel-based features are: 

𝐹1 𝑥,𝑦
𝐼 = [𝑅, 𝐺, 𝐵, 𝐿 , 𝑎, 𝑏, 𝑌, 𝐶𝑏, 𝐶𝑟] 

 Patch based features are extracted by taking information from neighbouring pixels. It is 

increasingly agreed that spatial texture information in neighbouring pixels plays an essential role in 

object recognition, particularly for real-world applications. We extract patch-based features based on 

Local Binary Pattern and Gray Label Co-occurrence, which are capable of encoding both shape and 

colour information, being scaling and rotation invariant, and having high robustness against changing 

lighting conditions. Moreover, we included two new features extracted using the new proposed 

technique.  

𝐹2𝑥,𝑦
𝐼 = [𝐶𝐵𝑃,𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝐴𝑟𝑒𝑎, 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦, 𝐶𝑟𝑜𝑠𝑠𝑐𝑜𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒] 

The final feature vector will be the combination of both features which can be presented as: 

𝐹 = [𝐹1 𝑥,𝑦
𝐼 , 𝐹2 𝑥,𝑦

𝐼 ] 

Calculation of distance feature and cross-correlation feature are described below: 
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3.3.3.1 Distance Feature 

From the 12 X 12 block, distance can be calculated by summing the distance of each block value from 

the whole patch. Initially, we proceed with a 2-by-2 block and consider its neighbourhood and 

calculate the distance. Different types were considered and corresponding distance values are listed:  

 

1. If zero for all neighbourhood pixels, assign value for distance = 0 

2. If the block contains one-pixel value “1”, assign value for distance = 1/4 

3. If the block contains two adjacent pixels value “1”, assign value for distance = 1/2 

4. If the block contains two diagonal pixels values “1”, assign value for distance = 3/4 

5. If the block contains with three-pixel values “1”, assign value for distance = 7/8 

6. If the block contains with all four-pixel values “1”, assign value for distance = 1 

3.3.3.2 Cross-Correlation Score 

Figure 3.20 shows a cross-correlation score calculation from a patch. The overall procedure is very 

simple. Initially, we check column-wise block value: for each column we will assign either ‘D’ to 

represent dense or ‘S’ to represent sparse. If within a column the block value contains more than 30% 

zero values, we consider as sparse and assign ‘S’ for that particular column. Otherwise, we will assign 

‘D’ to represent dense. The similar procedure follows for the rest of the columns and then applied on 

each row. The final cross-correlation score will be determined by summing the individual score. 

 

Figure 3.20 Cross-Correlation Score Calculation 
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3.3.4 Experiments and Results 

After feature extraction, the most crucial part is appropriate classifier selection and proper training. 

We tested with the different classifiers and got good performance using Support Vector Machine 

(SVM). SVM is as a good classifier as it can construct a hyper plane between two classes and make the 

classes separable. This hyper plane can be used as a decision maker to discriminate between the two 

classes. Let A= {(xi, yi), i=1, 2,  . . m} be the set of training samples, where xi € Rp. The labelling for the 

dataset can be defined as yi € {1, 2}. For classification of the test set data, x can be defined as: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏
𝑚
𝑖=1 )  (3.12) 

    Among the kernels for the classification, we choose the Radial Basis Function (RBF) kernel. The 

kernel function K can be expressed as: 

𝐾(𝑥𝑖, 𝑥) = exp (−
‖𝑥𝑖−𝑥‖2

2𝜎2
) (3.13) 

Here 𝜎 is a kernel parameter and distance can be calculated using Euclidean distance algorithm and 

can be calculated using ||xi-x||2. For training we use the Matlab built in function “svmtrain”, and for 

classification we use ‘svmclassify’. During training we put both feature vectors together for all one 

hundred and ten images. For better understanding, we use numeric values ‘1’ and ‘2’ for the training 

levels. 

3.3.5 Result Analysis 

In order to validate the performance of the above algorithm, an experiment using the same dataset 

described in Section 3.2.4.1 is conducted. Table 3.9 shows the result comparison between the two 

methods. Figure 3.21 shows the experimental output for the proposed technique. Initially, the original 

image was converted into an YCbCr image. The latter image was enhanced using histogram 

equalisation. Based on the proposed range, the enhanced image was binarised to obtain the target 

image. 

Table 3.9 Result Comparison 

Serial No Approach Pixel-wise Accuracy (%) 

1 Hybrid Classifier [95] 92.72 % 

2 Proposed DCC Technique [109] 93.00 % 

 

 



 

57 

  

Figure 3.21 Overview of the Proposed Technique: (a) Original Image (b) Converted YCbCr Image (c) Enhanced Image (d) 
Binary Image 

From the binary image, we found isolated pixels which can distinguish different pixel regions. Then 

we convert the image into the blocks and determine the block values. Figure 3.22 shows a sample 

example of dense and sparse region separation and the dense and sparse regions are clearly visible 

from the captured area. Finally, feature vectors were extracted from the block. Figure 3.23 shows some 

more experimental results from different images. From the figure, we can assume that the recognition 

rate improves due to adding the new features within the feature vector. 

 

(a) Original Image (b) YCbCr Image 

(c) Enhanced Image 

(d) Binary Image 
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Figure 3:22 Feature Vector Extraction from the Block 

 

Figure 3.23 Block Value Calculation 

3.3.6 Summary 

The task of grass classification is challenging as grass has no specific shape, colour and sometimes 

exhibits overlaps in images. To overcome these difficulties, a new feature extraction technique for 

grass classification has been presented which is helpful to solve the complex problem. Evaluation on 

the test dataset shows that the proposed feature extraction technique, along with an SVM classifier, 

shows promising performance. Further investigation is required towards making the technique more 

robust against illumination variability. 

(a) Distance Feature 

(b) Cross-correlation Feature 
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3.4 Quantisation Feature and Neural Network (QFNN) Based Feature 

Extraction Technique  

This section presents the new feature extraction technique for roadside object classification. Initially, 

existing features were investigated and performance was recorded. Further investigation on the 

misclassified objects helped to propose new features which can overcome the challenges. Two new 

techniques with an effective classifier were introduced. 

3.4.1 Introduction 

Relevant works on roadside object detection [110] [111] [112] were reviewed and existing problems 

were identified. In [113], the authors mentioned the procedure of classifying vegetation and non-

vegetation from the structured environment. The idea was extended by another author and 

incorporates the idea of the fusion of multiple features. This idea was described in [114] and, for their 

fusion process they used colour, texture, and 3D distribution information. Although the idea is 

promising, it is not practically suitable due to its high processing time. Moreover, environments and 

sensors affect the overall performance of the proposed feature vector [110]. Recently, vegetation 

classification shows promising performance on navigation. Due to its high performance, it can also be 

used in vegetation management. In [115] and [116], the authors proposed a method for grass 

detection from video data using a combination of texture and colour features. Both papers used 

different types of strategies in order to detect the grass regions. The authors of [115] used a multi-

scale texture analysis based adaptive colour and positioning model while the authors of [116] used a 

probability-based colour and texture feature model. The similarity between the two papers is the use 

of YUV colour space in their proposed colour model. The image was enhanced by changing the 

brightness of the colour.   

A recent improvement on vegetation classification is the use of features in the visible spectrum. One 

limitation of the visible spectrum is that it cannot differentiate between two different objects with 

similar colour. For example, it fails to differentiate between a green car and tree leaves under various 

lighting conditions. Use of the invisible spectrum can solve the above-mentioned problem. The 

invisible spectrum has been used in remote sensing techniques for vegetation area identification. One 

such invisible spectrum is the NDVI (Normalised Difference Vegetation Index) [114] [117]. The 

invisible spectrum was used to identify the presence of chlorophyll within the vegetation. Visible 

spectral reflectance (VIS) and near-infrared regions (NIR) were used for NDVI calculation. According 

to published vegetation research, vegetation areas will be dense and healthy if their NIR value is high 

and VIS value is low. If the NIR value is low and VIS value is high, the vegetation will be sparse.  Nguyen 

et al. [114] used the concept of NDVI for vegetation detection. In their proposed method they used the 

combination of vegetation indices along with colour and texture features. To collect more information 

from the images, LiDAR and 3D scanner data was also used. Bradley et al. [118] indicated that the data 
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collected from satellites is different from ground image data. Shadow, shininess and underexposure 

effects are common problems in the ground images, while satellite images are free from those effects. 

To overcome that above-mentioned problem, Nguyen et al. proposed a modified vegetation index 

MNDVI [119] which considers NIR intensity and colour information as a feature by adaptive learning. 

From the above discussion, we can summarise the situation as follows. Appropriate feature selection 

[120] is the key factor for successful vegetation classification. The idea of using probabilistic 

superpixels and Markov random field [121] helps with segmenting crops from the field under natural 

illumination conditions. The concept of the proposed method was based on the assumption that colour 

starts changing from the highlighted area to the non-highlighted area. This information will be useful 

on extracting crop regions from shadow regions. The method proposed in this thesis will be helpful for 

scene labeling and scene recognition [122] applications. The proposed method can also be applied on 

intelligence transport systems [123] as well as in weed identification [59] [124]. Furthermore, it can 

apply for change detection in remote sensing images [125].     

3.4.2 Proposed QFNN Based Technique 

The proposed quantisation and neural network (QFNN) based technique involves two new ideas. 

Incorporating the idea of new feature vector generation is one of the new concepts which are 

described in Section 3.4.3. And the idea of introducing the radial basis function in the hidden layer also 

adds a new dimension in vegetation classification which is described in Section 3.4.5.2. These two new 

concepts make the task easier for efficient vegetation classification from roadside video images. 

Finally, to improve the overall accuracy, a post-filtering technique was introduced which is also a new 

idea. It helps the proposed method to detect incorrect predictions and restore the correct prediction. 

As we are dealing with each pixel during training and classification, there is always a possibility for the 

wrong prediction of one pixel. This post filtering technique helps to remove those false predictions. 

Eight-bit colour information from both RGB and HSB channels were used to build the new feature 

vector. Not only the individual pixel information but also their pixel differences were considered. The 

original contribution of this research is introducing the idea of Most Significant Bit (MSB) quantisation 

with colour channel sequence into the feature vector. The proposed feature vector was tested on a 

roadside vegetation dataset collected from different parts of Queensland and the experimental results 

show that the new feature vector and a radial basis activation function in the neural network helped to 

achieve state-of-the-art performance. We also do some comparison with some proposed method and it 

shows an improvement in results over the benchmark dataset.   
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3.4.3 Feature Extraction  

The new feature vector is an extension of the previous pixel characteristic based feature extraction 

technique published by the thesis author and others in [126]. To increase the overall accuracy and 

make the system compatible, the new feature has been introduced along with an existing feature 

which will help to improve the overall accuracy. For a particular cropped region I, the feature vector 

for a pixel p from image I can be calculated as follows:  

 𝛼𝑝 = [𝑅, 𝐺, 𝐵, |𝑅 − 𝐺|, |𝑅 − 𝐵|, |𝐺 − 𝐵|,
1

3
 (𝑅 + 𝐺 + 𝐵), 𝑀𝑆𝐵 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐻, 𝑆, 𝑉

 
] 

The complete feature vector can be expressed as:  

𝐹 = 𝛼𝑝 

If a feature can be extracted from a class and identified as a pattern which will be the same and 

followed for all similar classes, then that feature is termed compatible. The proposed method uses 

both RGB and HSV colour images for finding the pattern among the classes. At the very beginning, we 

extract the colour information in exactly the same way as for the previous technique. It carries the R, G, 

and B colour information from each pixel p, hence the initial feature vector can be expressed 

as 𝛼𝑝{𝑝 ∈ {𝑅, 𝐺, 𝐵}}. The feature vector can then be enriched by adding the absolute difference 

between each colour channel which later helps to decide the corresponding class K for a new pixel. 

The gray scale information can also be used by converting the colour channel using a simple 

calculation of  
 1

 3
 (𝑅 + 𝐺 + 𝐵). Figure 3.24 shows the feature extraction generation technique 

pictorially. 

 

Figure 3.24 Most Significant Bit (MSB) Pattern Generation Technique 

The novelty of the new feature vector generation technique is the introduction of the Most 

Significant Bits (MSB) quantisation and colour sequence generation. This will be useful for generating 



 

62 

a common bit pattern for a similar class. To do that it is necessary to initially convert all the decimal 

values of R, G, and B into a binary value using 8-bit code (128, 64, 32, 16, 8, 4, 2, 1, 0). Here each colour 

channel is represented by 8-bit code using the following order C ∈ {C7 ….. C0} where C ∈ {𝑅, 𝐺, 𝐵}. The 

most significant bit is defined by C7 to C4 notation and the lowest significant bit is defined by C3 to C0 

notation. Now each binary value for each colour channel is converted into a hexadecimal value by 

considering only the most significant bit values. The overall calculation can be mathematically 

expressed as follows: 

∑ 𝐶𝑘 ∗ 𝑖

𝑖=8,4,2,1,   𝑘=7,6,5,4

  𝑀𝑆𝐵𝑅, ∑ 𝐶𝑘 ∗ 𝑖

𝑖=8,4,2,1,   𝑘=7,6,5,4

  𝑀𝑆𝐵𝐺 , ∑ 𝐶𝑘 ∗ 𝑖

𝑖=8,4,2,1,   𝑘=7,6,5,4

 𝑀𝑆𝐵𝐵  

The next contribution of the proposed feature vector is the inclusion of colour channel sequence. 

This research on cropped image regions has shown that, in some image regions, pixel difference is 

showing same as we are taking the absolute difference. Moreover, from the observations, it is clear 

that colour channel sequence is varied among different image regions. This is one of the key issues for 

showing the visual dissimilarity between different image regions. Usually, the similar colour sequence 

will be found between similar types of objects. For the proposed method a code was designed to 

represent the colour channel sequence. As three colour channel information is being used, there will 

be six different combinations within the sequence. For the RGB colour channel, to represent R we used 

the value 1, for G we used the value 2 and for B we used the value 3. Hence, for a colour sequence that 

followed {R>G>B}, according to proposed method the generated code will be 123. To construct the 

code, it is necessary to initially sort the R, G and B values with its index using a sorting algorithm. We 

achieved the sorted value like this [𝑠𝑜𝑟𝑡𝑒𝑑𝑣𝑎𝑙𝑢𝑒 , 𝑖𝑛𝑑𝑒𝑥] = {𝑠𝑜𝑟𝑡(𝐴), ℎ𝑒𝑟𝑒 𝐴 ∈  𝑅, 𝐺 and 𝐵}. The HSV 

colour information is also included. The reason for adding the HSV colour information is to minimise 

the error against illumination condition. Common equations that were used for this conversion 

process can be described as follows:   

R' = R/255, G' = G/255, B' = B/255; 

Tmax = max(R', G', B') 

Tmin = min(R', G', B') 

Δ = Tmax - Tmin 

Hue calculation: 

𝐻𝑢𝑒 =  

{
  
 

  
 

0°                                        ∆ = 0

60° × (
𝐺´ − 𝐵´

∆
 𝑚𝑜𝑑6) , Tmax = R′  

60° × (
𝐵´ − 𝑅´

∆
+ 2) , Tmax = G′

60° × (
𝑅´ − 𝐺´

∆
+ 4) , Tmax = B′
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Saturation calculation: 

Saturation = {
0 , Tmax = 0
∆

Cmax
 , Tmax ≠ 0

 

Value calculation: 

Value = Cmax 

The feature vector was constructed using the pixel information from the HSV colour information 

with the following equation set:  

H' = H*255, S' = S*255, V' = V*255. 

 

Figure 3.25 shows the procedure of feature vector generation pictorially.  

 

Figure 3.25 Feature Vector Extraction Technique 

 

3.4.4 Post-Processing Technique 

For the proposed method of dealing with pixel-wise classification, there is a possibility of 

misclassification of one pixel around the surrounding pixels. This will degrade the overall performance 

and classification accuracy. The reason is that, by considering only individual pixels, some of the pixels 

seem the same with different objects e.g. tree stumps with the road, green grass with leaf etc. Two 

strategies are used to solve this issue. The first strategy is to use the concept of location of a pixel and 

the second strategy considers the probability of neighbourhood pixels. It is obvious and natural that 

sky pixels cannot be located on the bottom of an image and road and soil pixels cannot be located at 

the top of the image. This strategy will remove some confusion. An example of post processing is 

presented in Figure 3.26. 
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Figure 3.26 Post Processing of Pixels 

The first strategy helps to overcome some common mistakes and overall accuracy is improved. The 

misclassification issues were further investigated and another interesting concept was introduced 

which helps to achieve a state of the art performance. The new filtering idea of neighbourhood pixel 

localisation can be described as follows. 

 

Figure 3.27 Post Processing of Neighbourhood Pixels 

 

The concept of the superpixel was used to extract neighbourhood pixel information. Both the 

classified image and the original image with superpixel are available. Now from the original image, we 

proceed with each superpixel and determined the classification value from the classified image. It was 

expected that within a superpixel, all values should be classified as the same class. So we start checking 

the corresponding class within each superpixel and, if a variation was found among the class 

information, majority voting was applied. The idea is shown in Figure 3.27. Here within a block, if the 

majority says it belongs to class 2 it should be class 2, and any other class will be replaced by the 

dominating class value.    

3.4.5 Experiments and Results 

3.4.5.1 Data Collection 

The data used for the experiment was taken from the locally created dataset [127]. The data was 

collected by the industry partner and it was collected from the real field. The strategy of data 

collection was not new as many existing methods used cameras mounted over a vehicle for data 

collection [128]. But the ways of cameras are set up and their position selection was varied depending 
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on the applications. The local technique used four different cameras in four different positions. The 

vehicle was driven all over rural areas of Queensland to collect data. For data collection, they put the 

camera in all four directions. The front camera was used to capture the front view and it indicates the 

overall scenario of the road. A left facing camera indicates the actual situations of grass, trees, road and 

soil positions and roadside vegetation risk can be determined from the left camera information. The 

right facing camera indicates conditions on the opposite side of the road and gives an overall 

impression about the road. The rear camera gives a similar view to that of the front camera. As the 

main concern is with vegetation classification, the left camera information was of most interest. 

Collected data was video data and, for analysis purposes, these were converted into the frames. There 

are lots of variation among the collected data and location-wise vegetation information also varied. 

The entire collection of frames has the same resolution (1632x1238) and fifty (50) regions were 

cropped for each class from 10,000 images. 

3.4.5.2 Training and Classification of Feature Vector 

Neural networks have been successfully used in pattern recognition problems for many years. A set of 

the feature vector is needed along with the target class to build the overall neural network [129] 

architecture. The first layer contains the input feature vector, and in second layer, we need to 

determine the hidden layer which may vary depending on the the specific problem being examined as 

well as particular choiches made by the user. The last layer contains the target class. In most cases, 

classification accuracy depends on the number of hidden neurons and the number of iterations needed 

to train the model properly. Selection of training algorithm and activation function also has a great 

impact on classification accuracy. As the problem here is a multiclass classification problem, it is 

necessary to design an output matrix according to the number of classes. Eleven different features wre 

extracted which will be used for the input matrix and six classes as output matrix. Many neural 

networks currently exist and show promising performance in different applications. In all cases, based 

on the problem complexity, researchers have proposed different types of activation function [130].  

To solve the vegetation classification problem the radial basis activation function was used which 

would solve the problem. The strategy of the radial basis function is that it computes the similarity 

between the test set input and a prototype vector. This prototype vector will be taken from the 

training set. The output value will be high if the similarity is high and returns a value close to one (1). 

The Gaussian function was used to measure the similarity. The radial basis activation function can be 

expressed as: 

𝜑(𝑋) =  𝑒−𝛽||𝑥−𝜇||
2
  (3.14) 

Here 𝜇 is the prototype vector which is at the centre of the curve. 

 Figure 3.28 shows the overview of the neural network architecture that consists of the input layer, 

hidden layer, and an output layer. It also shows the activation function in different layers. The 



 

66 

activation functions in both layers are different. The hidden layer used the radial basis activation 

function while the output layer used the softmax activation function. The softmax function can be 

described using the following equation:  

𝜎 (𝑋) =  
𝑒𝑋

∑ 𝑒𝑋𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, . . . 𝐾  (3.15) 

To train the overall network a two layer feed forward neural network was used. To reach the target 

and get a compatible accuracy we needed to change the number of epochs and the RMS error value in 

an iterative fashion. 

 

Figure 3.28 Architecture of Neural Network  

 

 

Figure 3.29 Feature Vector Formation Technique 

 

  Figure 3.29 shows the overall feature vector formation technique. Later 50 regions were cropped 

from each class and the proposed technique had L = {l1, l2 ….l50} cropped regions. Later, for each 

cropped region, the feature vector was extracted which can be denoted by F. For each cropped region 

there should be a corresponding class and denoted by K = {K1, K2 … K6}. Let T be the total dataset 

which consists of all the training cropped images. The overall training procedure is described in 

Algorithm 1. Appropriate functions were used along with different parameters to train the network. 

 

 

  

 

Input Image 
Low level 

Feature Vector 
Low level 

Feature Vector with  

MSB Quantisation  

and Colour Sequence 
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Algorithm 1 Training Feature Vector 

Inputs: Dataset of low-level feature with MSB quantisation and colour sequence features 

 𝛼𝑝 = [𝑅, 𝐺, 𝐵, |𝑅 − 𝐺|, |𝑅 − 𝐵|, |𝐺 − 𝐵|,
1

3
 (𝑅 + 𝐺 + 𝐵), 𝑀𝑆𝐵 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐻, 𝑆, 𝑉

 
] 

  for i=1…T 

          image(i) = database(i); 

         levelling(i) = GroundTruth(i); 

       for each pixel p(i ,j ) do 

            extract feature vector αp 

            extract ground truth 

           if GroundTruth(i ,j)==k          

                 Feature_Vector(k) [Feature_Vector(k);  αp]; 

         end if  

      end for 

end for 

train_feature_vector(F_V,label) 

    network = patternnet(50);       

    network.trainParam.showCommandLine = true; 

     network.divideFcn 'dividerand'; 

     network.trainParam.mc   0.15; 

 network.performFcn  'mse'; 

network.trainParam.goal  0.001; 

network.trainParam.lr   0.10; 

      network.trainParam.epochs  1000; 

      network.trainFcn   'traingdm'; 

     network.layers{1}.transferFcn   'radbas'; 

     network.layers{2}.transferFcn   softmax; 

[neuralnetwork t,tr]   train(network,double(input),double(target)); 

save('neural_nn.mat', neuralnetwork); 

end 
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3.4.5.3 Results 

To validate the performance of the proposed technique, the dataset was trained using the cropped 

region and tested on scene images collected during data collection. The strategy of training and testing 

is different compared to existing methods. The dataset has been uploaded in Google drive and made 

public so that anyone can use the dataset and compare the performance using their proposed method. 

During training of the feature vector, the performance of overall training was observed and the final 

performance curve is shown in Figure 3.30. Figure 3.31 shows the training confusion matrix after final 

epochs. The overall accuracy is 89% which is good enough for a trained network. The class-wise 

accuracy achieved more than 90% accuracy for some classes. Two classes show almost 80% accuracy 

and one class shows 70% accuracy. The accuracy dropped due to the similarity between green grass 

pixel information and tree leaf information as they have the same property of pixel colour.  

As soon as training finished we applied the trained network on the test image and the overall 

performance was recorded and is shown in Table 3.9. From the table, we can conclude that the 

proposed novel quantisation feature and neural network based technique (QFNN) shows promising 

performance on overall object classification. Figures 3.32 and 3.33 show some experimental results 

with respect to ground truth images. From the visual representation, it is obvious that the proposed 

feature extraction technique performs satisfactorily. 

 

Figure 3.30 Performance Curve during Training Phase 

 

Figure 3.31 Confusion Matrix after Training of Each Class 
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Two video frames are shown in Figure 3.32 to present the classification result pictorially. For a 

better understanding of the different classes, we used a different colour code for each object. Although 

the classification results give outputs as numerical values, different colour codes have been assigned 

here for different numerical values. Figure 3.32 shows the colour codes for four of the classes. Six 

different classes were used in the experiment and six different colours for each class. Tree leaf and tree 

stump are represented with blue colour, while brown and green grass used yellow and green colour 

respectively. The sky region is displayed with white colour and the road with red colour. Cyan was 

used for soil colour. 

Table 3.10 Performances (%) on the Annotated Dataset 

Type Overall Sky 
Tree (Leafs and 

Tree Stump) 

Grass (Brown 

and Green) 
Road Soil 

Pixel-wise 78.01 93.29 80.5 67.84 73.09 75.32 

 

Although 7 different cropped regions were extracted for a better understanding of the objects, the 

final accuracy calculation only used six different classes. Brown and green grasses are merged and 

make up the grass class, and tree stump and tree leafs are merged into the tree class. Some 

experimental outputs along with annotated dataset and predicted output are shown in Figure 3.32 for 

visualisation. 

 

Figure 3.32 Overview of Scene Labelling on the Original Frame 

In Figure 3.32, the left column shows the original images which need to be classified. The middle 

column with the label “Annotated Frame” represents the corresponding ground truth which is done 

manually before testing the proposed system. The right column with the label “Labelled Frame” shows 

the corresponding outputs from the proposed system. Manual annotation takes a long time as the 

image size is bigger than any existing dataset. This is why a small test dataset was used for validation. 
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But performance of the test set shows that the proposed method can classify any image from the 

collected video within seconds.  

Some misclassifications occurred due to intra-class variations. Further investigation is needed to 

improve the overall accuracy. Figure 3.33 shows some more experimental results along with the 

corresponding ground truths and final outputs. Some misclassifications between soil and road can also 

be seen within the images. 

 

Figure 3.33 Experimental Results 

 

3.4.6 Result Analysis 

Table 3.10 shows the overall confusion matrix between the classes. For accuracy calculation within the 

class, the ratio of correctly classified pixels versus total pixels was used and can be expressed using the 

following Equation 3.16:  

𝐴𝑐 =
∑ 𝐴𝑟𝑟𝑖,𝑗𝑗

∑ ∑ 𝐴𝑟𝑟𝑗,𝑘𝑘𝑗

                (3.16)          

 

Table 3.11 Confusion Matrix within the Class 
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3.4.6.1 Comparative Analysis 

Table 3.11 shows the comparison results of the proposed technique with existing techniques.    

 

Table 3.12 Result Comparison 

Serial No Approach 
Pixel-wise 

Accuracy (%) 

1 Colour Feature [109] 70.47  

2 Texture Feature [131] 73.30  

3 Colour Texture Feature [131] 74.50 

4 Colour Feature with Proposed Neural Network 72.36  

5 Proposed Feature with Feed Forward Neural Network 74.34 

6 
Proposed Quantisation Feature and Neural Network (QFNN) 

based approach 
78.01 

 

Some techniques to check the performance in respect to the proposed technique were also developed. 

For example, experiments using standard colour and texture features with a feed forward neural 

network and a feed forward neural network with radial basis activation function on the same dataset 

were conducted to validate the results. 

3.4.7 Summary 

This section has presented the overall scenario of the proposed QFNN based technique. Two new 

feature vectors were introduced along with an existing feature vector to improve the overall 

vegetation classification performance. The ideas of the Most Significant Bit Sequence and colour 

channel sequence were included to give a good pattern for individual class differentiation. The idea of 

a post processing technique also improved the overall accuracy and was able to reduce the 

misclassifications of class. Moreover, comparison analysis with existing methods shows the 

improvement of the overall classification accuracy of the proposed technique. One limitation of the 

proposed technique is that experiments were conducted on a small dataset and considered only a few 

classes from the roadside. Further investigation is also needed to test whether the proposed method 

works robustly under certain environmental conditions. All the images that were used for training and 

validation were taken under natural daytime light and with good lighting conditions. 
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Chapter 4 Directional Connectivity Feature 

Extraction Technique  

This chapter presents a novel and effective approach to solve the problem of grass density estimation 

in categories of dense, sparse, and moderate from video data collected using 2D car-mounted video 

cameras. The approach can easily be scaled to datasets with thousands of frames from a video and can 

assign a category for each frame. First, colour feature sets are extracted from training images that are 

mostly similar to the query images. Second, a network is trained using that colour feature set.  Pixel 

labelling is then performed on the query images using the trained network and the segmented grass 

region is divided into window regions. Finally, the proposed contextual feature (i.e. grass pixel vertical 

directional connectivity) is extracted and the appropriate grass density category is determined. The 

novel contributions of this process are: 1) directional connectivity feature extraction technique to 

estimate grass density; and 2) machine learning based classification technique to improve grass 

segmentation accuracy. The proposed approach has been evaluated on images with ground truths 

collected from a field survey and images from Transport and Main Roads video data. The experimental 

results show satisfactory performance with higher accuracy than human observation and promising 

performance on a real-life video dataset. 

4.1 Introduction 

A directional change in image intensity/colour can be calculated by gradient calculation. To illustrate 

this, Let’s consider a pixel I(a, b) with 3 X 3 neighbourhood pixels (as shown by the diagram below), 

individual grass pixels are defined by I = { 𝐼1:𝑛
𝑠  }s € S  for the set of pixel observations, , the direction  in 

which  the intensity values are changing is defined by K={𝑘𝑠 } s € S and ϴ represents the model of 

appearance along the vertical direction.  

The first order derivative in the horizontal x direction can be computed as:  

𝜕𝐼 (𝑎,𝑏)

𝜕𝑎
= (

1

2
 (𝐼((𝑎, 𝑏 + 1) − 𝐼(𝑎, 𝑏)) + (𝐼(𝑎 + 1, 𝑏 + 1) − 𝐼(𝑎 + 1, 𝑏)))     (4.1) 
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Similarly, the first order derivative in the vertical y direction can be computed as: 

𝜕𝐼 (𝑎,𝑏)

𝜕𝑏
=(

1

2
 (𝐼((𝑎 + 1, 𝑏) − 𝐼(𝑎, 𝑏)) + (𝐼(𝑎 + 1, 𝑏 + 1) − 𝐼(𝑎, 𝑏 + 1)))       (4.2) 

The direction in which way the pixel intensity is changing can be calculated by following:  

ϴ =tan−1(
𝜕𝐼 (𝑎,𝑏)

𝜕𝑏

𝜕𝐼 (𝑎,𝑏)

𝜕𝑎
⁄ )      (4.3) 

        

Figure 4.1 Edges found by Horizontal Gradient Detection 

The edges produced by the model of horizontal edge collection are shown in Figure 4.1. These edges 

were detected by using a thresholding operation. The strongest and our targeted horizontal line was 

found by setting the threshold of T=5 for the model. 

4.2 Proposed Directional Connectivity Feature Extraction Technique 

The examples of roadside images in Figure 4.2 depict the target grass regions more precisely while 

Figure 4.3 shows the proposed workflow framework for frame categorisation from video. If we 

analyse the intended target more deeply, it is clear that only identifying areas of grass coverage cannot 

fulfil the requirements. It is necessary to calculate the density or grass pixel direction from the input 

images. This is one of the great challenges of this type of complex image processing. The main aim is to 

find the grass pixel direction accurately, thus solving the problem of grass density estimation. In order 

to perform this task, a huge dataset was retrieved from videos and sample images collected during the 

initial field survey to create the database for feature set extraction. Then those features were trained 

using several machine learning algorithms from which the best feature was chosen. A local window 

was then applied on the segmented frame for making the decision about the frame. The concept for 

considering a window area comes from a survey. During the survey, all of the grass in areas of one 

metre square was trimmed and collected; the biomass was calculated from these samples and these 

grass regions were categorised based on the levels of biomass. For doing this we need to extract the 

grass pixel direction and grass coverage. Finally, based on the ground truth we calculate the results 

and compare human versus machine accuracy. The process is described as follows. 
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Figure 4.2 Grass Density Estimation: (a) Dense (b) Moderate (c) Sparse 

It is clear from Figure 4.2 that the grass coverage areas in the images will be the same in most cases. 

Almost 75% grass coverage will be found from all the images, but all grasses do not grow in the same 

way. Considering the problem in terms of grass biomass, it will be different in all three images. This 

happens due to the different grass density. In the dense grass (Figure 4.2(a)), both grass coverage and 

the grass height are high. On the other hand, the scenarios are different for the moderate (Figure 

4.2(b) and sparse grasses (Figure 4.2(c)). Finding the proper grass height is a vital issue for density 

estimation. Hence, we need to focus not only on proper identification of grass coverage, but also need 

to ensure proper estimation for grass height measurement to achieve proper grass density estimation. 

To serve the specific purpose, a new feature extraction strategy is proposed which can solve the 

problem. 

(a) Dense (b) Moderate (c) Sparse 
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Figure 4.3 System Workflows for Frame Categorisation from Video  
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4.3 Feature Extraction  

In the last decade, tree stem height estimation has been extensively investigated [132] [133] [134] 

[135] [136]. Among them, Paris and Bruzzone [121] proposed a method for the reconstruction of tree-

top height by fusing low-density LiDAR data and high-resolution orthophotos. Their proposed method 

cannot measure tree height from normal images taken straight using cameras or taken a frame from 

video data. A similar approach has been presented by Chen et al. [136] to retrieve canopy height from 

large-footprint satellite LiDAR waveforms over mountainous areas.   

After selection of windows, the major contribution of this research is calculating the grass pixel 

directional connectivity features. Finally, we use the features for categorising grass density. For grass 

density estimation, we calculate the features in each window.  

 

 

Figure 4.4 Workflow for Grass Height Measurement 

 

Figure 4.4 shows a basic workflow for grass vertical directional connectivity measurement from the 

window region. Initially, we start from the left side top corner of our window. As soon as the window 

region is selected we take the sub-image of that window from the segmented region. This sub-image 

contains only grass and non-grass regions. Here the grass region is shown with the original colour of 

the grass and the non-grass region is highlighted with black colour. To make the window region more 

clearly defined, we apply adaptive thresholding in the local region for smoothing of the image. The 

effect of this smoothing can be seen in Figure 4.4. The grass part is now more visible and can be easily 

differentiable for further calculations. In order to calculate the grass part, we need to recognise the 
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grass part. The Canny edge detection technique can be applied but it comes with many noises and fails 

to work in fulfilling our target. So we proceed with pixel direction and magnitude and try to determine 

the connectivity and relationship within similar grass and non-grass pixels. This final strategy helps to 

achieve the desired goal with good accuracy of grass height calculation, giving a high value where the 

grass region is high and a low value where the grass region is low. After deep analysis, it is seen that 

the structure of grass height is not always straight. For our purpose, we only consider the 90° 

orientation of the grass region.      

To measure the grass pixel directional connectivity it is necessary to initially extract gradients in 

both x and y directions. The formula for image gradient calculation is:     

∇𝑓 =  
𝜕𝑓

𝜕𝑎
𝑎̂ + 

𝜕𝑓

𝜕𝑏
 𝑏̂ (4.4) 

where: 

 
𝜕𝑓

𝜕𝑎
      is the gradient in the x direction 

𝜕𝑓

𝜕𝑏
     is the gradient in the y direction. 

 

Gradient direction can be defined as follows: 

𝜃 =  tan−1 (
𝜕𝑓

𝜕𝑏

 
𝜕𝑓

𝜕𝑎

)      (4.5) 

 

 

Figure 4.5 High Connectivity for Dense Grass Region 

 

Figure 4.5 shows an example of high connectivity for a dense grass region. Finally, to calculate the 

grass height we consider only the 90° orientation and this can be explained as follows. 
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Algorithm 1: Pseudo-code of Directional Connectivity Feature Extraction Technique for Roadside 

Grass Density Estimation in all basic windows 

Algorithm : Directional Connectivity Calculation 

Input: Let w1, w2 ……w15 are the fifteen windows. We have to calculate 
directional connectivity for each window.    

1: procedure MyProcedure 
2: input: Classified picture P € 𝐶𝑀 𝑋 𝑁 
2: Initialisation  
                  C1, winccp  zeros(15,1,'single');  
                  maxVerCon  zeros(winWidth,1,'uint16'); 
3: begin 
4:         for all the window w € |1,M| do 
5:                smoothing the classified window 
6:               calculate the vertical direction of each pixel 

7:                  for each F(a ,by) calculate  ∇𝑓 =  
𝜕𝑓

𝜕𝑎
𝑎̂ +  

𝜕𝑓

𝜕𝑏
 𝑏̂ 

8:                 for  each F(a , b) ϴ  ((atan2(
𝜕𝑓

𝜕𝑏
 𝑏̂, 

𝜕𝑓

𝜕𝑎
𝑎̂)+pi)*180)/pi; 

9:               output image: image with direction and magnitude 

10:              𝑇𝑟𝑜𝑤,𝑐𝑜𝑙
𝑅,𝐶 ← { };                                          

10:                     for all row 1: Width 
11:                          for all column 1: Height 
12:                                 check for 90 °vertical orientation 

13:                                           𝑇𝑟𝑜𝑤,𝑐𝑜𝑙
𝑅,𝐶 ← 255;              %%  save the 

direction  
14:                         end for 
15:                     end for 
16:           𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑙  0 ; 𝐶𝑐𝑜𝑙

𝐶 ← { };                                          
16:            for all col 1: Width 
17:                for all row 1: Height 
18:                            if     𝑇𝑐𝑜𝑙,𝑟𝑜𝑤 ← 255; 

19:                                     𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑙  𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑙 + 1; 
20:                                      𝒊𝒇    𝑇𝑐𝑜𝑙,𝑟𝑜𝑤 ← 0; 

21:                                        if consecutive 5 zeros in a column  
                                            save the previous length 
                                            Check whether this length is higher than old 

length 
                                           Update the length 
22:                                 end if 
23:                         end if 
24:                         save the highest length for each column 

                                        𝐶𝑐𝑜𝑙
𝐶 ← 𝑚𝑎𝑥 𝐶𝑟𝑜𝑤

𝑘,𝑖 {𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑜𝑙};  
25:                end for 
26:          end for 
27:     Get the mean value of all column 𝑀𝑤𝑘elements in 𝐶𝑐𝑜𝑙

𝑐 : 

                 𝑤𝑖𝑛𝑐𝑐𝑝𝑊𝑘
=

1

𝑀𝑤𝑘
∑ 𝐶𝑐𝑜𝑙

𝑐𝑀𝑤𝑘
𝑖=1

; 

                              
 

Output: Vertical Connectivity Value for each Window 

⟨𝒘𝒊𝒏𝒄𝒄𝒑 (𝟏…𝟏𝟓)⟩ =  
1

𝑀𝑤𝑘
∑ 𝐶𝑐𝑜𝑙

𝑐
𝑀𝑤𝑘

𝑖=1
;   
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From Figures 4.6 and 4.7, it is obvious that a sparse region gives a lower value compared to a dense 

region. A moderate grass region lies between the sparse and dense regions. In a real scenario, it is hard 

to differentiate these moderate regions. But very little confusion arises between sparse and dense 

region separation. If we can successfully differentiate these two regions, it would be a great success. If 

we can also minimise misclassifications between dense and sparse regions, our effort would be 

generally successful. 

 

Figure 4.6 Low Connectivity for Sparse Grass Region 

      

Figure 4.7 Medium Connectivity for Moderate Grass Region 

4.4 Experiments and Results 

An accurate data collection process is critical to prove the effectiveness of the proposed method. The 

next sections explain the data collection procedure and the study area.. 

4.4.1 Data Collection and Setup 

Data collection for this study included gathering roadside video data as well as collecting biomass 

samples from specific locations. A field survey was also conducted to evaluate the accuracy of the 

vegetation classification process. A large amount of roadside images were taken and, among them, 61 

sites were selected as locations from which to take biomass samples. The study area mostly covered 

the Central Queensland region as shown in Figure 4.8 which includes Rockhampton, Baralaba, 

Blackwater, Emerald, Springsure, Biloela, Dingo, Duaringa, Gladstone, and Yeppoon. In the first phase, 

a series of data were collected and ground truths were set according to human observation. In the 

second phase, the collected samples were dried at 70° Celsius for more than 72 hours and biomasses 

in tonnes/ha have been calculated. According to the biomass samples, ground truth was refined. In the 
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final phase, collected samples were organised and processed with the developed technique to measure 

the performance in respect to human observation. From the collected samples, thresholds were 

chosen from the biomass sample results to indicate high, medium and low risk regions.         

 

Figure 4.8 Study Area 

4.4.2 Retrieval of Feature Set 

For successful classification of objects [137], the most important step is to find the feature sets which 

can be retrieved from a set of training images. This helps to differentiate one object from another as 

well as improve the computational efficiency. A good retrieval set will contain images from all sets 

depending on the target. For this purpose, our target is the separation of grass and non-grass regions. 

So the feature set covers grass regions mostly found on the roadside, and non-grass regions like soil, 

sky, tree, road signs, etc. Different types of global features have been analysed to capture the types of 

similarity among grass and non-grass regions: colour space, entropy, and colour histogram. Finally, the 

RGB colour features along with thresholds are used for feature sets. Some cropped regions for the 

retrieval set are shown in Figure 4.9. These regions are cropped manually from the video data taken 

using a 2D car-mounted video camera. During cropping, we were careful enough so that non-grass 

region comes within the cropped region and a similar strategy is followed for non-grass regions also. 

There are 356 cropped grass regions and 295 cropped non-grass regions taken from different 

locations from video data as well as from survey images. Figure 4.9 represents the grass regions and 

Figure 4.10 represents non-grass regions.  
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Figure 4.9 Cropped Grass Regions   

Initially, we create the feature set with colour features. The colour feature vector corresponding to a 

pixel at coordinates (x, y) is extracted from the cropped region I as follows: 

𝐹1 (𝑥, 𝑦) = [𝑅, 𝐺, 𝐵, |𝑅 − 𝐺|, |𝑅 − 𝐵|, |𝐺 − 𝐵|,
1

3
 (𝑅 + 𝐺 + 𝐵)] 

The complete feature vector can be defined using the following notation:  

𝐹 = [𝐹1] 

 

 

Figure 4.10 Cropped Non-Grass Regions 
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4.4.3 Training Feature Set 

In order to label the feature sets based on the content of the retrieval set, labels are assigned for each 

region. Here we use the colour feature for retrieval of feature sets. Two types of colour features are 

shown in Figure 4.11 and Figure 4.12. Figure 4.11 presents the colour feature for grass regions 

whereas Figure 4.12 presents the corresponding detail for the road as an example of non-grass 

regions. From the two images, we can easily differentiate grass and non-grass regions. So this is a 

better feature for applying in machine learning for training the feature sets. To achieve better 

accuracy, three machine learning techniques were applied - Support Vector Machine, Neural Network 

and AdaBoost. The best accuracy was achieved using AdaBoost for the interclass classification.  

As our target object is grass, from the image dataset we crop data from grass and non-grass regions 

and thus we divide into two classes grass and non-grass and the problem becomes a binary 

classification. We define our dataset as follows {(a1, b1)  , . . . . . (an, bn)} where bn € {1,2} represents the 

true class label for each feature set. For training, we need to set a weight function which is updated to 

minimise the error. Here w is used for weight observations and expressed as in. We also need also an 

error function which is defined by E. 

The error function is the exponential loss of each data point and is given as: 

 

E (f (a), b, n) = ∑𝑒−𝑏𝑛𝑓(𝑎𝑛)         (4.6)                            

 

Let 𝑤𝑖
(1)
= 1 𝑎𝑛𝑑 𝑤𝑖

(𝑛)
=  𝑒−𝑏𝑛𝑓(𝑎𝑛) 𝑓𝑜𝑟 𝑛 > 1. 𝑇ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 

 

𝐸 = ∑ 𝑤𝑛𝑒
−𝑏𝑛𝑓(𝑎𝑛)𝑁

𝑛=1            (4.7)                                   

Here 𝑓(𝑎𝑛) is the predicted classification score and the computation of prediction for data uses: 

 

𝑓(𝑎) =  ∑ 𝛼𝑡ℎ𝑡(𝑎)
𝑇
𝑡 = 1            (4.8)               

Where 

  

𝛼𝑡 = 
1

2
log

1−𝜖𝑡

𝜖𝑡
   (4.9)    

and          

h: a  [1, 2] 

  

Updating of weights for all t in 1 ……. T uses: 

  

𝑤 𝑖,   𝑡+1 = 𝑤𝑖,𝑡 𝑒
−𝑏𝑛𝛼𝑡ℎ𝑡(𝑎)                     (4.10)   
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Table 4.1 describes details regarding the ground truth. The accuracy of trained data is listed in Table 

4.2, whereas Table 4.3 represents the accuracy of test data. We calculated the accuracy in two ways. 

First, we applied the trained network on the trained data and listed the accuracy. Then, in order to test 

whether it worked on non-trained images, we created a test set with 57 cropped regions which are 

totally different from the training cropped region and list the accuracy. For further analysis of whether 

grass and non-grass can be differentiable from real frames, we applied the trained network on real 

frames and observed the classification accuracy.    

 

Figure 4.11 Features for Grass Region  

 

Figure 4.12 Features for Road as Non-grass Region  

Table 4.2 shows that we have samples from various grass regions and the number of cropped 

regions for representing grass is 356. Looking at Figure 4.4 for grass regions, we see that the grass is 

not limited to one type. It may be deep green, light green, deep brown, light brown and mixed with 

brown and green. Within green and brown lots of variation can also be found in real scenarios. Again, 

choosing the objects for creating the feature property for non-grass regions is also a difficult task. Non-

grass objects can be anything on the roadside. Here we consider road, sky, soil, tree leaf and tree 

stump. Although in a real scenario there can be more objects, it is necessary to determine the common 

items on the roadside and cover as many items as possible. From the figure, it is clear that there are 

lots of variations on road data within the road region. The same scenario is found for soil regions, tree 

leaf regions, tree stump and sky regions. 



 

84 

4.4.4 Grass and Non-Grass Region Separation 

To test our trained classifier we take some query frames from both survey data and video data. For the 

convenience of understanding, we assign 255 frames for grass regions and 0 for the non-grass regions. 

In order for proper verification, we retrieve the original images with only segmented pixels. Some 

examples of the results are shown in Figures 4.13, 4.14 and 4.15.  

 

Figure 4.13 Output for Sample #30 taken during Survey 

The first image is taken from sample F030. Sample numbers were given during survey data 

collection and are detailed in Table 4.1. Here the original frame contains brown grass, tree, and sky. 

There is no soil and the grass density is near to moderate. The second figure, called the labelled frame, 

is the output frame after being classified by the proposed classifier. Here the output is for two options - 

grass and non-grass. For convenience, we define these options as 1 for grass and 2 for non-grass. To 

generate the image for grass we assign R ⟨x,y⟩ equals 255, G ⟨x,y⟩ equals 255 and B ⟨x, y⟩ equals 255 

and for non-grass we assign R⟨x,y⟩ equals 0, G ⟨x,y⟩ equals 0 and B ⟨x,y⟩ equals 0. This is so that we can 

represent the images using two dimensional figures. Here the labelled frame shows that, by using the 

proposed classifier, we are able to differentiate grass and non-grass regions near to accurate. This 

means our network is trained well and gives satisfactory performance. Here we observe some 

misclassifications on differentiating between grass and non-grass due to shadows. This can be 

properly investigated from a third image called the segmented frame. Here we reconstruct the original 

image from the classified pixels and observe the difference. As colour is one of the important factors 

for human perception, we applied original colour on the labelled frame. When trying to find the 

coordinates which represents a grass region, it is necessary to specifically look for R ⟨x, y⟩, G ⟨x, y⟩ and 

B ⟨x, y⟩ equals 255.  

⟨𝑁𝑟𝑜𝑤𝑠, 𝑁𝑐𝑜𝑙𝑠⟩ = find (R⟨𝑥, 𝑦⟩ ==255 & G⟨𝑥, 𝑦⟩ ==255 & B⟨𝑥, 𝑦⟩==255) 
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Assigning original colours can be done by following  

segmented image ⟨𝑝, 𝑞 , 𝑖⟩ = original image ⟨𝑝, 𝑞 , 1⟩ 

Here {p∈ 𝑅 , q∈ 𝐶} and i ∈ {1, 2, 3} are image channel numbers. R represents Row and C represents 

Column.   

The mathematics behind the class prediction is as follows: 

The class prediction depends on the probability function. In our scenario, we are given a set of training 

data {(a1, b1) . . . (an, bn)} where input is feature vector  𝑎 € 𝑅𝑝 and output is assumes value bn € {1, 2} 

which represents the true class label for each feature set. The trained network is loaded and the 

prediction class is calculated as follows: 

𝑦 ̂ =  𝑎𝑟𝑔𝑦=1…𝐾 𝑚𝑖𝑛∑ 𝑃(𝑘|𝑎)  𝐶(𝑏|𝑘)𝐾
𝑘=1      (4.11)                                

Here 

𝑦 ̂is the predicted class 𝑦 ̂ ∈ {1, 2} 

K is the number of classes here we have two classes (grass, non-grass) 

𝑃(𝑘|𝑎) 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑎 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑝 

𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑘 

       𝑇ℎ𝑖𝑠 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 

 𝑃(𝑘|𝑎) =  
𝑃(𝑎|𝑘) 𝑃 (𝑘)

𝑃(𝑎)
  (4.12) 

   

Where 

                                      𝑃(𝑎|𝑘) is the prior probability which can be calculated by 

                         𝑃 (𝑎|𝑘) =  
1

(2𝜋 | ∑ |)𝑘

1
2

exp(−
1

2
(𝑥 − 𝜇𝑘)

𝑇  ∑ (𝑥 − 𝜇𝑘)
−1
𝑘 )  (4.13) 

whereas |Σk| is the determinant of Σk, and Σ-1
k is the inverse matrix.  

 C(𝑏|𝑘)is the cost of classifying an observation as y when its true class is k. 

 

http://au.mathworks.com/help/stats/discriminant-analysis.html#bs31mt5


 

86 

 

Figure 4.14 Output for Sample #26 Taken During Survey 

 

 

Figure 4.15 Output for Sample #54 Taken During Survey 

4.4.5 Window Selection from the Segmented Area 

Recently, estimating and preserving the aboveground biomass from satellite data using remote 

sensing techniques has been proposed [138]. In their proposed approach, the authors added two 

parameters: canopy height and leaf area index. However, our proposed approach needs to incorporate 

the relationship of biomass and directional connectivity value. Biomass was collected during the 

survey and used as ground truth for our experiments. Here we tried to calculate the grass pixel 

direction and grass area coverage for a specific area and match them with the biomass and thus we 

developed a method for calculating biomass from real world images.    



 

87 

To obtain acceptable accuracy of our method, we need to select local windows from the segmented 

image region. Initially, we proceeded by selecting the highest grass height from the segmented region 

and drew the first window from the bottom of the grass height with a width and height of 300 and 400 

respectively. Then, we drew the second and third windows on the left and right sides respectively by 

making a pixel distance of around 100 on both sides. If the first window reached either the left or right 

side border, we took the 2nd and 3rd windows on the other side. Figure 4.16 shows the window 

selection from an original image. Here the tall grass is in the middle and this should therefore be the 

first window which is selected automatically from the whole frame. The only challenge for this type of 

window is selecting the first window. The second and third windows are just added using some 

constant values in x and y directions. For a better understanding, and to keep consistency with the 

biomass collection, we keep the window width and height at a ratio of 300 (W) X 400 (H).  

 

Figure 4.16 Window Selections from Frame  

The reason behind the scene is that, during the survey we randomly selected an area, cut the grass, 

calculated the biomass, and categorised the area into dense, moderate and sparse according to the 

biomass. For better decision making, we divided the whole area into 15 windows which are shown in 

Figure 4.17 for samples F026, F030 and F054 respectively. During the window selection, we tried to 

avoid both the upper and lower parts of the image. This was on the basis that the upper part mostly 

contained sky region and some far distant grass regions which are not our concern. The reason for 

avoiding the lower part is that we found by analysis that most of the lower part of the frames 

contained road which is also not our concern. Then the main challenge was selecting an appropriate 

window size. After a thorough analysis, we decided that a window size with a width of 300 and height 

of 400 would serve our purposes for decision making. If the size was too small it would decrease the 

accuracy, and if too big, decisions may not be correct. Figure 4.18 shows not only the selected window 

from the segmented frame but also the grass pixel direction value for each window. The procedure to 

ascertain the value calculation has been described under directional connectivity feature extraction 

(Section 4.2). Here the entire window is overlapping. We do not want to miss any grass region during 

decision making.            .             
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Figure 4.17 Overview of Window Selection from Samples #26, #30 and #54  

 

To prove the accuracy of the proposed method, a dataset with a hundred images was created and 

the ground truths for each window were drawn and the results finally compared with the automated 

outputs. Figure 4.18 shows a sample image with ground truths set by a human. It is a mixture of dense, 

moderate and sparse regions. 

 

Figure 4.18 Ground Truths on 15 Windows 

4.4.6 Ground Reference Data 

Table 4.1 shows ground truth for sample images collected during survey. Here we collected samples 

sequentially and marked as F001, F002 and so on. Based on the characteristic of the grass and finally 

after calculating biomass in lab, we categorize the collected samples into three categories which is 

depicted in Table 4.1. We also took picture for each sample, so that we can analyze the image using our 

proposed technique and can verify the ground truth with biomass. Categories of grass mostly depend 

on grass height and biomass.  

Table 4.1 Ground Truth for Survey Data 

Grasses Sample Numbers 

Sparse Grass 
F007, F008, F014, F017, F019, F022, F026, F030, F033, F034, F035, 

F038, F039, F043, F048, F050, F051, F056, F058, F060 

Moderate Grass 
F002, F004, F006, F011, F013, F018, F020, F024, F027, F029, F032, 

F036, F040, F041, F042, F045, F047, F049, F052, F055, F061 

Dense Grass 
F001, F005, F009, F012, F015, F016, F021, F025, F028, F031, F037, 

F044, F046, F053, F054, F057, F059 
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We tested the effectiveness of the grass density estimation technique in our created image database 

with manually annotated images. Figure 4.19 provides some visual examples of the obtained results. 

The first column presents the input images with original image colour; the detected grass region is 

shown in the second column where black represents the non-grass region and the grass region is 

shown with original colour. The third column presents the results of the segmented region as a binary 

image associated with each input image of the first column. In Figure 4.20, more experimental outputs 

are shown not only with the segmented region, but also with directional connectivity values.  

             

Figure 4.19 Experimental Results with Segmented Output  

 

Figure 4.20 Experimental Results with Directional Connectivity Output 

4.5 Result Analysis 

To fairly assess of the proposed classification system's performance, classification accuracy was 

evaluated using not only the pixel-wise classification frequency, but also the density estimation over 

all classes.  

Figure 4.21 shows the connectivity value variations for those images categorised as dense grass 

regions. It is obvious from the figure that the connectivity is around 28 for dense grass. 

Misclassifications sometimes occurred and this has reduced the performance. From the figure we see a 

value as low as 15 and some others are below 25. This occurs due to shadow and illumination 

Dense Region 

(a) Original Image (b) Connectivity Value 

Sparse Region 

(a) Original Image (b)Connectivity Value 
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conditions. At this stage, we did not focus on removal of that type of scenario during segmentation. 

This resulted in some inaccurate values and dropped the classification performance. 

Table 4.2 Accuracy on Trained Data 

Sequence Classifier No of images 

Grass + Non-Grass 

Accuracy (%) 

1 Support Vector Machine  356 + 295 = 651 90 

2 Neural Network 356 + 295 = 651 92  

3 AdaBoost 356 + 295 = 651 95  

Table 4.3 Accuracy on Test Data 

Sequence Classifier No of Grass Images 

 

Accuracy (%) 

1 Support Vector Machine 57 70 

2 Neural Network 57 73  

3 AdaBoost 57 77  

 

 

Figure 4.21 Dense Grass taken from Video Data 

 

Figure 4.22 Dense Grass Classifications 

Figure 4.22 shows some ground truth annotated manually for testing and the corresponding 

machine output for the selected image. Results show that most of the ground truth was successfully 

retrieved. Some misclassification occurred for window 10 and window 14. Although ground truth from 

Figure 4.22(a) showed that the grass region should be dense (4) for window 10 it was categorised as 
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sparse (2) and a similar scenario occurred for window 14 where the ground truth represented the 

grass as moderate and the machine recognised it as dense. 

Similar kinds of surveys were done for sparse regions and the results recorded are shown in Figure 

4.23 from which it is clear that the threshold for sparse grass was around 26.5 and below. Some 

misclassification results occurred for some images and gave high values of about 36. Figure 4.24 

shows the results of ground truth versus classified output. The output shows that it fulfilled all of the 

ground truth requirements which constituted one of our major concerns for this research.  

 

Figure 4.23 Sparse Grass taken from Video Data 

Here, although grass coverage is high, the grass density is low; while this should be differentiable, it 

was found to be difficult to differentiate from a 2D image. A major success of this research was 

incorporating a new feature to make this differentiable. Overall performance shows that good 

accuracy has been achieved by the machine in the overall scenario from the real-time environment. 

 

 

Figure 4.24 Sparse Grass Classifications 

We also analysed the performance for moderate grass regions. To set any rules for moderate grass 

regions in a real scenario is complicated. In most of these cases, confusion was seen when 

differentiating moderate grass. Sometimes the same grass was categorises as moderate by one person, 

whereas it seemed dense for someone else. Similar things occurred in differentiating between sparse 
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and moderate regions. Figure 4.25 shows the variation in threshold with the moderate grass regions 

where the value is generally greater than 26.5 and less than 28. 

 

Figure 4.25 Moderate Grass taken from Video Data 

An overall comparison between the thresholds is shown in Figure 4.26. Where dense occurs in all 

windows, we get a higher value - which is greater than the threshold for dense as expected. Similar 

scenarios were also obtained for moderate and sparse grass regions. From observation, it was clear 

that first figure looked like dense grass, the second figure looked like moderate grass and the third one 

was obviously sparse grass. These classifications were also differentiable by the values provided by 

automated output. So we can say that the machine exhibits satisfactory performance compared with 

human observation.  .   

 

 

Figure 4.26 Differences between the Thresholds for three types of Grass 
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4.5.1 Accuracy of Human versus Automated Survey 

This section presents a detailed evaluation of classification accuracy of our system. The evaluation was 

conducted on both human annotated data and machine annotated data. The results were recorded 

and, for better understanding, we drew a linear regression as shown in Figure 4.27. According to this 

figure, it is clear that the accuracy of the machine was higher than human observation.  

 

Figure 4.27 Performance Evaluation   

Here the blue dot points represent ground truth for a human which was collected during survey 

data analysis. Actually, the ground truth was set according to biomasses which were calculated in a lab 

environment. Then it was converted into a similar scale to make it comparable to automated data. 

Here, the red triangle points were obtained as a result of machine learning technique. Then, using 

regression analysis, we tried to figure out the similarity and measure the performance. The straight 

line shows that the automated output almost overlaps the ground truth. Hence, we can say that the 

automated technique performs almost the same as a human. Moreover, the accuracy depends on R2. If 

the value of R2 is almost equal, we can say that the machine performs well and if it exceeds it is 

performing better than a human. Here in our scenario, the R2 value exceeds human observation, so it 

is obvious that the machine performs better than a human. In reality, a human cannot perform 

consistently with such types of data. When watching the same types of scenario over and over, humans 

usually lose concentration and focus and thus they make mistakes. If we can employ a machine in such 

scenarios, it could save time as well as process the data more precisely. 
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4.5.2 Comparative Analysis 

Although some literature was found for object height measurement from the man-made environment 

using a vanishing point [139], there is no established method for grass height calculation. That’s why 

we were motivated to compare our results by creating our own ground truth. The obtained result 

shows outstanding performance in terms of running time and accuracy. Though the proposed 

technique works well in some scenarios, it sometimes fails to classify properly. The threshold for grass 

density estimation can be defined using: 

 

𝐷(𝑊𝑖) = {

𝑠𝑝𝑎𝑟𝑠𝑒,             𝑉𝑊𝑖
≤ 26.5

𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 26.5 < 𝑉𝑊𝑖
< 28,

𝑑𝑒𝑛𝑠𝑒,              𝑉𝑊𝑖
≥ 28

 (4.14) 

Table 4.4 Ground Truth for 100 images (939 windows) 

533 0 0 

0 20 0 

0 0 386 

 

Table 4.5 Confusion Matrix for 100 images (939 windows) using Proposed Technique 

 

 

 

 

 

Table 4.6 Accuracy for 100 images (939 windows) using Proposed Technique 

81.80% 0 0 

0 65 % 0 

0 0 78.24% 

 

Table 4.4 shows the ground truth for 100 images where 939 windows were chosen without 

confusion among the grass categories. Table 4.5 shows the confusion matrix which is generated from 

the proposed technique and Table 4.6 shows the overall accuracy for the three classes. Tables 4.7 and 

4.8 show the accuracy achieved using the Gabor-based grass density estimation technique. It is 

obvious that Gabor shows poor performance in the overall scenario. While it shows higher 

performance than our proposed technique in terms of sparse grass region identification, it shows very 

poor performance in terms of dense and moderate grass region identification. It only can identify 193 

436 73 24 

4 13 3 

40 44 302 
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from 386 windows which is a very poor result. But, most importantly, most of the dense grass is 

identified as sparse - which is a significant misclassification. If it goes for moderate, we can assume 

that it’s confused with moderate. On the other hand, our proposed technique performs better than the 

Gabor-based technique, which can identify 302 among 386 windows which is promising. Only 40 

window regions were misclassified as sparse which is also a good sign for claiming the effectiveness of 

our proposed method. 

Table 4.7 Confusion Matrix for 100 images (939 windows) using Gabor-based Technique 

 
 

 

 

 

 

Table 4.8 Accuracy for 100 images (939 windows) using Gabor-based Technique 

82.18% 0 0 

0 55 % 0 

0 0 50.00% 

 

Accuracy Comparison in terms of running time is recorded in Table 4.9. The proposed method is 

more efficient than the Gabor-based technique in terms of running time.     

Table 4.9 Time Comparison Chart 

Method Running Time 

Proposed Method 445.47 s 

Gabor-Based Technique 709.80 s 

 

4.6 Summary  

This chapter described a novel directional connectivity feature extraction technique for grass 

density estimation and showed how to apply it to images taken from real-world video data. The 

proposed technique segments video streams into the grass and non-grass regions and detects grass 

density. Furthermore, the proposed method helps to identify grass density from a complex roadside 

scenario. The development of this new technique along with its satisfactory results can save time and 

produce better accuracy than humans. The proposed system also has the potential of differentiating 

between grass and non-grass areas in each frame. At the same time, it reduces the dependency on 

438 59 36 

4 11 5 

117 76 193 
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human observation. Visual as well as experimental results show the effectiveness of the proposed 

method and its application in automation on roadside fire-risk monitoring.  

The presented method is useful in computing the height of the grass. Future study should further 

investigate the generalisation of object height measurement and evaluate the proposed technique in 

field tests.  
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Chapter 5 Multi-Scale Perceptual Features 

Extraction Technique 

This chapter presents a novel and effective approach for object feature extraction using multi-scale 

feature levels [140]. Learning of image features plays an important role in computer vision. 

Representation-based features have recently gained substantial attention due to their potential real-

world applications. One such application is scene labelling where one of the key challenges is to 

distinguish objects with visual similarities. To address the challenges with visual similarities, this 

section proposes new Multi-Scale Perceptual (MSP) features and a deep learning architecture. The 

MSP features are designed specifically to distinguish visually similar objects and improve the overall 

object identification performance. The MSP features have two main advantages: (1) they can 

differentiate the objects with the same histogram of gradients: and (2) they can differentiate 

horizontal and vertical objects. The first advantage is achieved by introducing Position with Gradient 

of Histogram named (PosGH) and the second advantage is achieved by introducing a Plane 

Consistency Estimation named (PCE). The proposed approach with a deep architecture and MSP 

features achieves better performance than the existing scene labelling methods on three real-world 

benchmark datasets - Stanford, MSRC, and SIFT flow. 

 

5.1 Introduction 

Learning discriminative features  plays a central role for almost all recognition tasks [141]. Due to the 

rapid development of computer vision technology, a wide variety of applications use the advantages of 

both features and learning algorithms [142] to solve real world problems [143]. Recently, a lot of 

works have focused on learning discriminative features. One such application is scene labelling whose 

primary objective is to detect objects in the scene and recognise the corresponding class for each 

object i.e. labelling each pixel to one object [144] [145]. Scene labelling plays an important role in 

image understanding. However, the task is quite challenging as it faces some common issues like 

differentiating visually similar objects and differentiating vertical and horizontal objects. Thus, 

designing appropriate features for a particular object is still an open challenge for computer vision 

researchers. Although many research methodologies have been proposed in the last decade to solve 

feature extraction challenges, there are two key factors affecting the overall performance [146]. The 

first and most important challenge is appropriate feature representation [147] [148] of objects which 

can effectively differentiate visually similar objects. For example, distinguishing grass from a tree, road 

from water, and buildings from others structures and so on. The other challenge is to improve the 

global label accuracy based on object spatial relationships, e.g. the possibility of grasses and trees 
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being located near to each other and a road having foreground objects. Researchers have focused on 

finding a good representation of features for objects and we see the emergence of many feature 

extraction techniques, such as SIFT [149], HOG [71], GIST [150] and so on. Although those techniques 

show promising results their performance varies from domain to domain and shows low performance 

in some real-world applications.   

Recently, deep learning  [151] [152] has emerged as a competitive method for classifying objects by 

simulating the human brain. The deep learning architecture tries to learn feature representations from 

input data and progressively learn more complex features in higher layers. Two successful deep 

learning models [153] are Convolutional Neural Networks (CNN) and Deep Belief Networks (DBN). 

The aim of the deep learning architecture is learning raw features during the training phase. In this 

section, a new deep learning architecture is presented to learn multi-scale perceptual features to 

improve the overall pixel label accuracy in scene labelling and achieve high performance compared to 

existing methods. The main objective of this architecture is to encode new powerful feature 

descriptors such as PosGH and PCE in the architecture. The proposed architecture is different from 

existing deep learning architectures as it constructs deep features from extracted multi-scale features, 

while other deep networks learn feature representations [154] from raw pixels.  

The key concepts in this section are based on the following observations. During scene labelling, 

some parts of various objects in real world images look very similar to each other so it is very difficult 

and challenging to correctly label the image. For example, some portions of road and water in roadside 

images are confusing and difficult to differentiate. Using existing features, it is difficult to assign a class 

label for each pixel. The situation is more challenging when objects are similar in all aspects except in 

respect to the plane. For example, differentiating grass and tree objects from small superpixels is often 

very difficult although they have different plane orientations.  

To address the above-mentioned problems, we propose multi-scale perceptual features which can 

solve problems and improve accuracy. The novel contributions of this section are as follows. The first 

contribution is the introduction of deep architecture for generation and learning of Multi-Scale 

Perceptual (MSP) features. The second contribution is the development of the new Position-based 

Gradient Histogram (PosGH) feature. The proposed position-based histogram of gradient solves the 

problem of intra-class variations. The third and final contribution is the development of the new Plane 

Consistency Estimation (PCE) feature. The proposed plane consistency estimation solves horizontal 

and vertical object differentiation problems.  
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5.2 Multi-Scale Deep Learning Feature Extraction Technique 

In this section, a deep feature learning model is proposed. The model learns MSP features based on 

visual features extracted from superpixels, and it is trained using images where each superpixel is 

labelled with ground truth classes. The core idea is to learn more useful high-level features from 

superpixel features. The proposed deep learning architecture design is shown in Figure 5.1.  

 
 

  Figure 5.1 Multi-scale Deep Feature Learning Model  

 

Suppose there are n sample images and for each image, there are P superpixels with L labels. Here 

𝑃 =  {𝑝1, 𝑝2, …  𝑃𝑛} and 𝐿 =  {𝑙1, 𝑙2,…  𝑙𝑛}, where p denotes the number of superpixels and li ∈ 

{−1, 0,1,2,… 𝑙𝑛} which defines the number of classes in the dataset. Here 𝑙𝑖 =  −1 𝑜𝑟 0 means an 

unknown object for this particular superpixel, and is ignored during the calculation of pixel-wise 

accuracy. For each superpixel, we have a set of low–level features 𝑋 = {𝑥1, 𝑥2, 𝑥3 …  𝑥𝑛} and their 

known class labels which are fed into neural networks for training. Before passing low-level features 

to the learning stage as shown in Figure 5.1, we learn deep features through multiple coding stages. 
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The dimension of features for each layer is reduced using auto encoders leading to deep features. The 

auto encoder performs unsupervised learning by reducing the cost function. Adopting the same 

notation as in [155], the encoding and decoding processes for producing MSP features are calculated 

as  shown in Equation 5.1.  

𝑓 =  ℎ2(𝑊2𝑓 + 𝑏2)                (5.1)    
 

where, 𝑓, W and b represent the output matrix, weight matrix and bias vector respectively, and the 

superscript represents the layer number in the proposed architecture. W is the connecting weight 

matrix and represents local pixel information. The cost function is shown in Equation 5.2 and is 

calculated by measuring the difference between input features f and the new reconstructed feature 𝑓.   

𝐸 =  
1

𝑁
 ∑ ∑ (𝑓𝑘𝑛 − 𝑓𝑘𝑛)

2
+  𝛼 ∗ 𝜑𝑤𝑒𝑖𝑔ℎ𝑡𝑠 +  𝛽 ∗ 𝜑𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦

𝐾
𝑘=1

𝑁
𝑛=1               (5.2) 

 
where, 𝛼 and 𝛽 represent coefficients. In the proposed model,  𝛼 = 0.001 𝑎𝑛𝑑 𝛽 = 4. By default the 

coefficient for the sparsity regularisation term is set as 1, but we choose a higher value to indicate that 

the value is not close and very sparse and differentiable. The other two notations  

𝜑𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑎𝑛𝑑 𝜑𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 represent L2 regularisation and sparsity regularisation and can be computed 

as: 

 

𝜑𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = ∑ 𝜌 log (
𝜌

𝜌̂𝑖
) + (1 − 𝜌) log(

1− 𝜌

1− 𝜌̂𝑖
)

𝜌(1)

𝑖=1           (5.3) 

 
 

𝜑𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 
1

2
∑ ∑ ∑ (𝑊𝑗𝑖

1)
2𝑘

𝑖
𝑛
𝑗

2
𝑙              (5.4) 

 
 
Here, 𝜌 is the desired value and 𝜌̂𝑖 is the average activation value which can be expressed as:  
 

𝜌̂𝑖 = 
1

𝑛
 ∑ ℎ(𝑊𝑖

(1) 𝑇 𝑥𝑗 + 𝑏𝑖
(1)
)𝑛

𝑗=1       (5.5)        

 
 
For training in the encoder we use a logistic sigmoid function and, in the decoder, we use a linear 

transfer function as shown in the equations below.  

The encoder transfer function is defined as:   

 

𝑓(𝑧) =  
1

1+ 𝑒−𝑧
                  (5.6) 

 
 
The decoder transfer function is defined as:  

 
𝑓(𝑧) = 𝑧                 (5.7)  

 

Now we get the deep MSP features for training the whole network by applying a softmax function.  
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To calculate the loss function we use the cross-entropy Equation 5.8:  

 

𝐸 =  
1

𝑛
∑ ∑ 𝑡𝑖𝑗

𝑘
𝑖=1

𝑛
𝑗=1 ln 𝑦𝑖𝑗 + (1 − 𝑡𝑖𝑗) ln(1 − 𝑦𝑖𝑗)          (5.8) 

 

For an input vector 𝑓, 𝑦𝑖𝑗  is the output vector for position i. k and n are the number of classes and 

training samples respectively.  

For each superpixel in test images, we extract the MSP features in the same way as we extract from 

the training data. For each feature, we predict the class based on the maximum value of class 

probabilities. 

5.3 Proposed Multi-Scale Perceptual Features 

An overview of the proposed feature model is presented in Figure 5.2. One of the original 

contributions to this model is multi-scale perceptual features which are highlighted with the red box in 

the figure. In the proposed model, as in many other existing approaches, we use superpixels [156] 

rather than pixels as the basic units for visual feature extraction. Here every pixel in an image I with 

width and height 𝑊 𝑋 𝐻 is assigned a discrete label L. The output image is denoted by 𝐴 ∈  𝐿 (𝑊𝑋 𝐻). 

Initially, we decompose the raw image I into multi-scale superpixels using simple linear iterative 

clustering [157] 𝐴: 𝐴 =  𝑓 (𝐼, 𝛳) with an appropriate parameter ϴ, where ϴ represents the ratio and 

number of superpixels that are used for decomposition. Here 𝐴 =  [𝑎1, 𝑎2, 𝑎3 …  𝑎𝑛], 𝑛 = 70. From 

those superpixels, we extract superpixel features and proposed multi-scale perceptual features. 

 

 
Figure 5.2 Proposed Multi-scale Perceptual Features  

 

Existing feature extraction techniques for scene labelling have some limitations which we address 

here. One of the most popular methods for feature extraction is HOG, which has been successfully used 

in a wide variety of applications. One drawback of the HOG feature extraction technique is that the 

positions of pixel gradients are lost as it counts the sum of the magnitudes for different directions. As a 
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result, two superpixels with different gradient directions may have very similar histograms. The idea 

is illustrated in Figure 5.4, from which it is obvious that the gradient orientation is different in both 

cells, but the number of components is the same. While they have the same number of components, 

nevertheless the objects belong to different classes. This is the reason that the gradient direction plays 

a vital role in distinguishing between similar types of gradient histograms. Another vital feature is the 

similarity between two objects. Although they have the same position of HOG, they are differentiable 

with respect to their planes of orientation, which is achieved by introducing a plane consistency 

estimation concept in this section.  

5.3.1 Position Gradient Histogram (PosGH) 

Edge intensity orientations for local regions or patches are calculated based on the orientation of the 

gradients. For an image patch 𝑎1 , its magnitude m and orientation  𝜃 are calculated using Equations 

5.9 and 5.10.  

 
22 ))1,()1,(()),1(),1((),(  yxIyxIyxIyxIyxm         (5.9) 
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The inter-bin distance and the number of orientation bins used in the proposed model are as 

follows.  

22





             (5.11) 
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Figure 5.3 Example of Orientation Bins used in the Proposed Model  

 

Figure 5.3 shows an example of bins using visualisation to understand the scene more specifically. 

Equation 5.13 shows how the normalisation is performed by moving one cell to the entire region.  

𝜃 (n) =
𝜃 (n)

√∑ 𝜃 (n)2+13∗3∗9
𝑘=1

     (5.13) 

𝑤ℎ𝑒𝑟𝑒 𝜃 (n) is the magnitude of each direction 
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As shown in Figure 5.4, a positioning technique is applied at the next stage, with edge intensity 

information to avoid the visually similar object identification and hence improve the classification 

accuracy. Figure 5.4 shows an example highlighting the problem we face with currently extracted 

information.  

Assume that for a specific superpixel 𝑎1 we have (𝑤1 𝑋 ℎ1) pixels. As we are dealing with each block 

individually within each superpixel, we have 9 small sub-blocks within each superpixel. Let B be one of 

the blocks with N pixels. As we are adding one of the additional features, so let 𝜃(𝑥, 𝑦, 𝑖) be the 

orientation on position (x, y) from the N pixels. We divide the orientation using the range shown in 

Equations 5.14 and 5.15. For eight orientations, we update the range each time with the interval 

shown in Equation 5.16.   

 
𝐿𝑜𝑤𝑒𝑟 𝑟𝑎𝑛𝑔𝑒 =  −𝑝𝑖 + 2 ∗ 𝑝𝑖/9     (5.14) 

 
𝑈𝑝𝑝𝑒𝑟 𝑅𝑎𝑛𝑔𝑒 =  −𝑝𝑖 + 2 ∗ 𝑝𝑖/9 +  2 ∗ 𝑝𝑖/9     (5.15) 

 
        𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  2 ∗ 𝑝𝑖/9    (5.16) 

 
Now we find the pixels within the range and the equations for finding the position are given by 

Equations 5.17 and 5.18. 
  

𝑃𝑥,𝑦
𝑟 =  𝑅 || 𝜃(𝑥, 𝑦, 𝑖) == 𝑍(𝑥, 𝑦, 𝑖) (5.17)   

  
𝑃𝑥,𝑦
𝑐 =   𝐶|| 𝜃(𝑥, 𝑦, 𝑖) == 𝑍(𝑥, 𝑦, 𝑖)   (5.18)    

 

This new position with a gradient of histogram features is added as a new feature. Let 𝑍(𝑥, 𝑦, 𝑖) be 

the range for finding position whereas 𝑍(𝑥, 𝑦, 𝑖) is a member of 𝜃(𝑥, 𝑦, 𝑖). The value of 𝑍(𝑥, 𝑦, 𝑖) is 

calculated from the lower range and upper range. Now for each row we get the positions 𝑃𝑥,𝑦
𝑟  from the 

specific orientation 𝑍(𝑥, 𝑦, 𝑖). Similar things are done for column position 𝑃𝑥,𝑦
𝑐 . To calculate the feature 

value we multiply the row position with the number of items in that row position and finally sum the 

values for the whole block to get the feature value 𝐹𝑥,𝑦
𝑅 . This is also done for column position and we 

get the feature value  𝐹𝑥,𝑦
𝐶   and finally both values are added within the histogram of gradient values. 

Although the gradient of the histogram for the two charts is the same e.g. for 45° rotation the value is 6 

in both cases. But they are varied position-wise and there is a significant change in value according to 

Equations 5.19 and 5.20 For example, in Figure 5.4, for the left histogram the row and column values 

are 15 and 15 respectively, but for the right histogram they are 14 and 16 respectively. Hence 

introducing the position creates a feature vector more powerful for differentiating similar objects. 

𝐹𝑥,𝑦
𝑅 =  ∑ ∑ 𝐶 +  𝑥 ∗  𝑃𝑥,𝑦

𝑟𝑅𝑦
𝑦=1

𝑅𝑥
𝑥=1    (5.19) 

 

𝐹𝑥,𝑦
𝐶 =  ∑ ∑ 𝐶 +  𝑦 ∗  𝑃𝑥,𝑦

𝑐𝐶𝑦
𝑦=1

𝐶𝑥
𝑥=1    (5.20) 
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𝐹𝑥,𝑦
𝑅 (𝑙𝑒𝑓𝑡 ℎ𝑖𝑠𝑡) = 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 2 + 4 ∗ 1 = 15 

 
𝐹𝑥,𝑦
𝐶  (𝑙𝑒𝑓𝑡 ℎ𝑖𝑠𝑡) = 1 ∗ 2 + 2 ∗ 1 + 3 ∗ 1 + 4 ∗ 2 + 5 ∗ 0 = 15 

 
𝐹𝑥,𝑦
𝑅 (𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑠𝑡) = 1 ∗ +2 ∗ 3 + 3 ∗ 1 + 4 ∗ 1 = 14 

 
𝐹𝑥,𝑦
𝐶 (𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑠𝑡) = 1 ∗ 2 + 2 ∗ 1 + 3 ∗ 1 + 4 ∗ 1 + 5 ∗ 1 = 16 

 
 

While we process the block, we move one cell to another cell as shown in Figure 5.4. 
 

 
 

 
    
 

 
      
 
 

 
 

Figure 5.4 Illustration of using the Gradient Histogram to Distinguish Superpixels with Similar Visual Appearance 
 

5.3.2 Plane Consistency Estimation (PCE) 

The PCE technique is introduced to differentiate between vertical and horizontal objects. This helps to 

distinguish between numerous confusing objects like trees, grasses, roads and buildings that have a 

similar visual appearance but different directions. If we look at the superpixels for both tree and grass, 

in most cases they are identical.  There is a similar problem in differentiating between roads and 

buildings. To solve the problem and separate confusing objects, we developed the PCE technique. The 

reasoning lies in the fact that tree orientation is always vertical while grass is on the same plane as the 

ground. This difference is also true for buildings and roads as well as some other objects. For an input 

image I, the outputs for vertical and horizontal objects are shown in Figure 5.5.    

 

Left Hist Right Hist 
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Figure 5.5 (a) Original Image (b) Entropy Image (c) Intensity Image (d) Binary Image after Opening Operations (e) Binary 
Image after Closing Operation (f) Label Probability Image (g) The Vertical Area Covered with Cyan Colour and Horizontal 

with Original Colour 
 

Figure 5.5 shows all images after each operation. Figure 5.5(a) shows the original image. Figure 

5.5(b) shows the image after applying an entropy function on the input image I. Here, we use output 

pixels to calculate entropy value for each input pixel p(x, y) by considering a 9-by-9 neighbourhood 

around the pixel of interest in the input image I and assigning the values for each pixel. Equation 5.21 

illustrates the calculation process for entropy.  

𝐸 =  ∑𝑃(𝑥𝑖)𝐼(𝑥𝑖

𝑛

𝑖=1

)  =  − ∑𝑃(𝑥𝑖). 𝑙𝑜𝑔2𝑃(𝑥𝑖)       (5.21)

𝑛

𝑖=1

 

 
Here 𝐸 is the entropy value for an image 𝐼 and 𝑃 which contains the histogram counts for the image. 

Later the entropy image is converted into an intensity image where each value represents 

intensities within the range between the minimum entropy value and maximum entropy value. The 

width and height of a pixel are determined as follows.  

 

𝑥 =  
𝑥(𝑗) − 𝑥(𝑖)

𝑠𝑖𝑧𝑒(𝐶, 2) − 1
;  j = 2, i = 1                  (5.22) 

 

𝑦 =  
𝑦(𝑗) − 𝑦(𝑖)

𝑠𝑖𝑧𝑒(𝐶, 1) − 1
;  j = 2, i = 1                   (5.23) 

 

𝑙𝑖𝑚𝑖𝑡𝑠 = [𝑚𝑖𝑛(𝐸(: ))    𝑚𝑎𝑥(𝐸(: ))]              5. (24)  

 

𝑑𝑒𝑙𝑡𝑎 =
1 

𝑙𝑖𝑚𝑖𝑡𝑠(2)  −   𝑙𝑖𝑚𝑖𝑡𝑠(1)
        (5.25) 

 
𝐺 = 𝑥 ∗ 𝑑𝑒𝑙𝑡𝑎 + 𝑦 ∗ 𝐸 − 𝑙𝑖𝑚𝑖𝑡(1) ∗ 𝑑𝑒𝑙𝑡𝑎 (5.26) 

 

Figure 5.5(c) shows the intensity image, ranging from 0 (black) to 1 (white or full intensity).  
 



 

106 

{
𝐵𝑊 = 1 ; 𝑖𝑓 𝑝 > 𝑇
𝐵𝑊 = 0; 𝑖𝑓 𝑝 < 𝑇

             (5.27) 

 

Figure 5.5(d) shows the binary image after applying threshold operations on the intensity image. 

The threshold selection is an iterative process. The output image replaces all pixels in the input image 

with 0 or 1. If the input value is greater than 0.9 we replace it with the value 1 (white) and replace all 

other pixels with the value 0 (black). This is done by using the Equation 5.27. We apply opening and 

closing operations to determine the actual vertical and horizontal regions in the target image which 

are shown in Figures 5.5(e) and 5.5(f) respectively. Finally, for the best visualisation, we show the 

overall region in Figure 5.5(g) with 2 different colours. The vertical region is covered using the blue 

colour and the horizontal region with its original image colour. This gives an overall scenario for 

vertical and horizontal objects in an entire scene. 
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Algorithm 1 Plane Consistency Estimation Calculation 

Input:  
I: Raw Image 
T: Threshold for binary conversion 
C: Connected component value 
hood: Neighbouring Value  
 

1. for total number of image do 
2.        calculate the size of image 
3.    repeat 
a.           E calculate entropy using equation 5.21 
4.    until image size 
5.        𝐸𝑖𝑚 converts matrix E to Intensity Image using  

                     equations 5.22,5.23 and 5.24 

6.     if upper and lower limits are same 
7.               𝐸𝑖𝑚 E; 

8.     else 
9.             compute delta using equation 5.25 
10.             compute  G using equation 5.26 with linear  

             combination 
11.      repeat for each pixel in G 
12.            calculate binary image using equation 5.27 
13.            for each pixel binary image do 
14.                      calculate connected component 
15.                     calculate area 
16.                     idx  CC.PixelIdxList(area >= C); 
17.                     idx  vertcat(idx{:}); 
18.                     BWao  0; 
19.                    BWao(idx) 1; 
20.             end for 
21.      until  G1 < size(G)  
22.            nhood  true(9); 
23.        for each BWao do 
24.                calculate dilated image 
                      new BWao  apply erosion on the dilated  

                                                   image  
25.        end for 
26.         output pixel 1 with a vertical orientation and 0 with   

        horizontal orientation 
27.         for each superpixel do 
28.                    c1 count no of ones 
29.                    c2 count no of zeros 
30.                    if c1>c2 
31.                         vertical1; 
32.         end for 
33. end for 

Output:  
           Y: Label probability after applying PCE 
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5.3.3 Other Features 

It is often inadequate to use the superpixel area to describe the characteristic of individual objects. 

So, for a semantic representation of each superpixel, we incorporate two measurements: 1) perceptual 

features to differentiate visually similar objects; 2) global and local texture features for each 

superpixel which include the following. 

1) SIFT features which reflect the invariant property for the superpixel (128 dimensions).   

2) Multiple appearance features (colour, histogram), geometric features (area, eccentricity), 

texture features (LBP, energy), and location features. 

3) RGB colour features for each channel having a total of three dimensions. 

4) The Modified position of gradient histogram features (225 dimensions). 

5) Local Binary Pattern features (59 dimensions). 

6) Pixel height and centreline calculation in which the position feature is used having two 

dimensions. 

7) PCE feature representation for the image. 

8) Location feature which takes the location of each super-pixel in the whole image [158]. For this 

purpose, we separate the whole image into 6 X 6 blocks as shown in Figure 5.6 and determine 

the corresponding location of each superpixel and thus immediately know the position of each 

class within the image. The overall algorithm for extracting location features is shown in 

algorithm 2. 

 

1 2 3 4 5 6 

.. ..  .  .. 

     .. 

     .. 

 .. .. ..  
3

6 

      

 

Figure 5.6 Superpixel Location Information 
 
 

To do this, we need to know the x and y positions of the superpixel and based on the pixel locations, 

we determine the position within 36 blocks and assign a block value for each superpixel. Some points 

may overlap in 36 blocks but we take the majority pixels location within the block. 

Suppose that one candidate image size is 240 X 320 pixels. As we divide the image into 6 X 6 blocks, 

so each block contains 40 X 53 pixels. For example, if the candidate superpixels x location is 165 and y 
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location is 201, then the location is 4. In Figure 5.6, we show two superpixels in different locations. 

One corresponds to location 9 and other belongs to 21. If we look at the second superpixel it overlaps 

on some other blocks, but as majority of the pixels fall within block 21, we assign the superpixel to 

location 21. 

Algorithm 2 Proposed Location Feature Calculation 
 
Input: Original Image and a superpixel block 
 

1. Initialisation: nblockcolumn = 6; nblockrow = 6; 

2. for each super pixel from an image do 
3.      initialise row, column minimum and maximum value 
4.      calculate size of image 

5.     update   dcol  𝑓𝑖𝑥(
𝑐𝑜𝑙𝑢𝑚𝑛 𝑛𝑜

𝑛𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙𝑢𝑚𝑛
) 

 

                 drow  𝑓𝑖𝑥(
𝑟𝑜𝑤 𝑛𝑜

𝑛𝑏𝑙𝑜𝑐𝑘𝑟𝑜𝑤
) 

6.    repeat 
7.         [rr,cc] = ind2sub([nblockrow,nblockcolumn],index ); 

𝑏𝑙𝑜𝑐𝑘𝑟𝑜𝑤min(𝑖𝑛𝑑𝑒𝑥) = (𝑟𝑟 − 1) ∗ 𝑑𝑟𝑜𝑤 + 1                     

𝑏𝑙𝑜𝑐𝑘_𝑟𝑜𝑤_𝑚𝑎𝑥(𝑖𝑛𝑑𝑒𝑥)  =  𝑟𝑟 ∗ 𝑑𝑟𝑜𝑤 ; 
𝑏𝑙𝑜𝑐𝑘𝑐𝑜𝑙min(𝑖𝑛𝑑𝑒𝑥) = (𝑐𝑐 − 1) ∗ 𝑑𝑐𝑜𝑙 + 1 

𝑏𝑙𝑜𝑐𝑘_𝑐𝑜𝑙_𝑚𝑎𝑥(𝑖𝑛𝑑𝑒𝑥)  =  𝑐𝑐 ∗ 𝑑𝑐𝑜𝑙 ; 
8.     until nblockrow* nblockcolumn 
9.           V = zeros(Rs,Cs); 
10.           Connected Component  Binary connected  component of BW; 

                  numPixels  from pixel list; 
                  Calculate the maximum value from the pixel list; 
                   Assign V1; 

11.  Calculate centroid for the area; 
                   xc = stat(1).Centroid(2);   
                   yc = stat(1).Centroid(1); 

12.            actual_x = r_min + xc; actual_y = c_min + yc; 
     repeat 

13.  if((block_row_min(loc)<=uint8(actual_x)&block_row_max (loc)>=uint8(actual_x))&& 
    (block_col_min(loc)<=uint8(actual_y) && block_col_max(loc)>=uint8(actual_y))) 

                  location(k) = loc; 
                  location_feature = loc; 

14.   until (loc<36) 
15. end for  
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5.4 Experiments and Results 

The effectiveness of the proposed approach is evaluated on three benchmark datasets and compared 

with existing approaches in this section. 

5.4.1 Datasets 

We conducted experiments on three benchmark datasets [1] to evaluate the performance of the 

proposed approach. The datasets are Stanford Background [147], MSRC Dataset [144], SIFT Flow 

[159] and vegetation dataset [131].  

The Stanford dataset [147] contains 715 images of outdoor scenes composed of 8 classes: sky, tree, 

grass, road, water, building, mountain and foreground. The size of each image on the dataset is 

320×240 pixels. Some examples of the Stanford dataset along with ground truth and output from the 

system are discussed and illustrated in Section 5.5.2.   

The MSRC dataset [144] is a another popular benchmark dataset for scene labelling, which consists 

of 591 images including 23 classes: “building”, “grass”, “tree”, “cow”, “horse”, “sheep”, “sky”, 

“mountain”, “aeroplane”, “water”, “face”, “car”, “bicycle”, “flower”, “sign”, “bird”, “book”, “chair”, “road”, 

“cat”, ”dog”, ”body” and “boat”. During the training and testing for direct comparison, the pixels with 

labelled “void” are not considered. 

The SIFT flow 33-class dataset [159] is composed of 2688 images, that have been labelled 33 

different number and colours. There are 33 semantic categories of objects, including: “sky”, “building”, 

“mountain”, “tree”, “road”, “sea”, “field”, “grass”, “river”, “plant”, “car”, “sand”, “rock”, “sidewalk”, 

“window”, “desert”, “door”, “bridge”, “person”, “fence”, “balcony”, “crosswalk”, “staircase”, “awning”, 

“sign”, “streetlight”, “boat”, “pole”, “sun”, “bus”, “bird”, “moon” and “cow”. The annotated dataset 

mostly contains outdoor scenes. There is also an “unlabelled” class which is impossible to determine 

from the scene and was not considered during the training and testing.  

The vegetation dataset contains six classes and consists of 50 annotated images collected from 

various parts of Queensland. The classes included in this datasets are grass (brown and green grass), 

road, soil, tree, and sky. There are also some unlabeled pixels and put black colour is placed for those 

unknown regions.  
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5.4.2 Evaluation Criteria 

We evaluate our approach with respect to pixel-wise accuracy for each class. The pixel-wise accuracy 

is calculated as follows:  

𝑃𝐴 = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
     (5.28) 

Here TP means true positive, which is the number of correct pixels in both reference image and 

ground truth image. TN means true negative which denotes the number of pixels correctly detected as 

an unchanged area in both reference image and ground truth image. FP means false positive which 

incorrectly identified the unchanged pixels as changed pixels, on the other hand, and FN means false 

negative which incorrectly rejected the changed pixels that were undetected.    

5.4.3 Results 

In order to train the neural network for scene labelling, there are two types of approaches  reported in 

the literature [145] [160]. These approaches are patch-wise and image–wise. In patch-wise 

approaches, patches are cropped randomly from a sample image whose labels are determined from 

the central pixels. In image-wise approaches, the whole image is taken as an input and the output.  

Research shows that image-wise training suffers seriously from an over-fitting [161] problem. The 

problem occurs due to the strong correlation between the pixels in an image. Hence in our 

experiments we use the patch-wise approach with two modifications. In the proposed model, the first 

modification is that instead of choosing the patch randomly we use superpixels to determine the patch. 

Another modification made in the proposed model is that instead of choosing the central pixel as a 

label for the corresponding patch, we take the dominating label within the patch. This means the 

maximum label within a patch determines the label for the corresponding patch.  

Experiments are performed using 5-fold cross-validation [147]. For the Stanford background 

dataset, 572 images were used for training and the remaining 143 were used for testing. For the MSRC 

dataset, among 591 images, 473 images were used for training and 118 images were used for testing. 

For the SIFT flow dataset the evaluation procedure is different. We followed the procedure introduced 

in [145]. From 2688 images, 2488 images were used for training data and the remaining 200 images 

used for testing data. In all of the datasets, the image sizes are different. In the Stanford dataset, most 

of the images have a size of 320 X 240 pixels, whereas in the MSRC dataset most of the images have the 

size 320 X 213 pixels. In the SIFT flow dataset all images have an equal size of 256 X 256 pixels. All of 

our training and testing processes are run on a PC with dual core i5 with 2.66 GHz CPU and 8 GB RAM. 
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5.5 Result Analysis 

5.5.1 Result on Stanford Background Dataset 

The result obtained on the Stanford background dataset using the proposed deep learning model is 

shown in Figure 5.7.  

 
Figure 5.7 Accuracy on Stanford Background Dataset 

 

From Figure 5.7, it is clear that we obtained high accuracy for visually similar objects using the 

proposed model, e.g. tree and grass, road, and water as well as building and road. For tree and grass, 

we achieved more than 80 percent accuracy in both scenarios and the confusion matrix in Figure 5.7 

shows that less confusion occurred during the classification of the two objects. From Figure 5.7, it is 

obvious that less misclassifications occurred for each object so we achieved an overall accuracy of 

82.64 percent where the fivefold accuracies are 80.70 (fold 1), 83.21 (fold 2), 83.03 (fold 3), 82.37 

(fold 4) and 83.90 (fold 5) respectively. Figure 5.8 shows the parameter selection for both training and 

testing phases using the MSP features. We chose 20, 70 and 150 for the number of hidden neurons. For 

epochs, we set 200, 300 and 500 respectively. The learning rate was set as 0.1 and the target RMS 

error was 0.001. We tested with a number of 70 and 120 superpixels. We achieved the best accuracy 

using 20 hidden neurons with 300 epochs and 70 superpixels. The scenario is described in Figure 5.8 

using observation 8.         

 
 

Figure 5.8 Parameter Observations for Neural Network on Stanford Background Dataset 
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Figure 5.9 shows sample output on the Stanford dataset using the proposed model. The figure visually 

depicts that the proposed model provides good classified output for individual objects. From the pixel-

wise class label accuracy, it is depicted that the proposed approach shows promising performance in 

respect to ground truths and we obtained more than 80 percent accuracy for trees, roads, grasses, 

buildings, and sky.  

In addition to the good results described above, Figure 5.10 also presents some bad labelling 

outputs produced by the proposed model. The analysis of results showed that water and mountain 

were misclassified as road and tree. This problem occurred because of the small patch size because it 

is difficult to detect and recognise objects from small patches if the illumination varies and no such 

sample patches are used in training data.  

In addition to the good results described above, we also present some bad labelling outputs in 

Figure 5.10 produced by the proposed model. The analysis of results showed that water and mountain 

were misclassified as road and tree. This problem occurred because of the small patch size it is difficult 

to detect and recognise objects from small patches if the illumination varies and no such sample 

patches are used in training data.  

5.5.2 Comparative Analysis on the Stanford Background Dataset 

We also made comparisons with the overall accuracy of existing methods as shown in Table 5.1 and 

which indicates our proposed approach outperforms other existing methods.  

  

Table 5.1 Performance Comparision on Stanford Dataset 

Method           Accuracy 

Gould et al., 2009 [147] 76.4% 

Tighe et al., 2010 [162] 77.5% 

Munoz et al., 2010 [150] 76.9% 

Kumar et al., 2010 [163] 79.4% 

Socher et al., 2012 [164] 78.1% 

Lempitsky et al., 2011 [165] 81.9% 

Farabet et al., 2013 [145] 78.8% 

Pinheiro et al. 2013 [166] 80.2% 

Byeon et al., 2015 [167] 78.56% 

Proposed Method 82.64% 
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Figure 5.9 Labelling result on Stanford Background Dataset 

 

                                                 

Figure 5.10 Example of Bad Labelling on Stanford Background Dataset 

5.5.3 Result on MSRC Dataset 

Figure 5.11 demonstrates the overall pixel-wise accuracy for each object on the MSRC dataset. Our 

main focus was on building, grass, tree and water. We obtained promising results compared to other 

existing methods. Figure 5.12 shows some labelling outputs for the MSRC dataset.   

 
 

Figure 5.11 Class-wise Accuracy on MSRC Dataset 
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A remarkable fact of the proposed method is it outperformed than other existing methods. This 

superior performance was achieved because our new MSP features have helped in solving some of the 

existing misclassification issues such as tree misclassified as grass, road misclassified as building, 

water misclassified as road and so on.  

 
Figure 5.12 Labelling Results on MSRC Dataset 

5.5.4 Comparative Analysis on MSRC Dataset 

Table 5.2 shows the detailed comparison with existing methods on the MSRC dataset. 

 

Table 5.2 Performance Comparison on MSRC Dataset 

 

Method           Accuracy 

Gould et al., 2008 [168]  64.3% 

Lempitsky et al., 2011 [165] 78.2% 

Krähenbühl et al. 2012 [169]  78.3% 

Zhou et al., 2013 [170] 76.4% 

Zhu et al., 2012 [171] 74.1% 

Farabet et al., 2013 [145]  74.6% 

Sharma et al., 2015 [172] 77.6% 

Long et al., 2015 [173] 77.9% 

Zhou et al., 2016 [1] 79.4% 

Proposed Method 83.00% 
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5.5.5 Result on SIFT Flow Dataset 

Finally, we applied our method to the SIFT flow dataset and the overall accuracy and performance 

comparisons are listed in Table 5.3. Eigen and Fergus also achieved comparable accuracy with our 

proposed approach. The dataset is more challenging as it has 33 different objects, so we need to 

expand our proposed approach by analysing confused objects and adding more deep features. 

Selected examples of labelling results from the SIFT flow dataset are shown in Figure 5.13.  
 

 
Figure 5.13 Labelling Results on SIFT Flow Dataset 
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5.5.6 Comparative Analysis on the SIFT Flow Dataset 

Table 5.3 Performance Comparison on SIFT Flow Dataset 

Method           Accuracy 

Liu et al., 2009 [159]   74.75% 

Tighe  et al., 2010 [162] 76.90% 

Eigen et al., 2012 [174] 77.10% 

Pinheiro et al., 2013 [166] 76.20% 

Proposed Method   77.43% 

5.5.7 Result on Vegetation Dataset 

Results from the vegetation dataset have been listed to prove the effectiveness of the proposed 

multiscale perceptual model. Figure 5.14 shows some experimental output using the proposed model. 

Figure 5.15 shows the class-wise accuracy. 

 

Figure 5.14 Labelling Results on Vegetation Dataset 
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From the experimental results and class-wise accuracy chart, it is clear that we achieved compatible 

accuracy compared to the previous approach. Adding the proposed multiscale perceptual feature 

improved overall accuracy from 78% to 82%. Table 5.4 shows the comparison chart with the existing 

methods.    

 

Figure 5.15 Class-wise Accuracy on Vegetation Dataset   

5.5.8 Comparative Analysis on Vegetation Dataset 

 

Table 5.4 Performance Comparison on Vegetation Dataset 

Serial No Approach 
Pixel-wise 

Accuracy 

1 Colour Feature [109] 70.47 % 

2 Texture Feature [131] 73.3 % 

3 Colour Texture Feature [131] 74.5 % 

4 
Novel Quantisation Feature and Neural 

Network (QFNN) based approach 
78.01 % 

5 Proposed MSP Method 82.00% 
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5.6 Summary 

A new deep learning model to generate multi-scale perceptual features for scene labelling has been 

presented. The main contribution of this work is the introduction of new deep multi-scale perceptual 

features which take into account both Position Gradient Histogram and Plane Consistency Estimation 

for scene labelling.  

It has been shown that multi-scale perceptual features based on position gradient histogram and 

plane consistency concepts can produce a powerful representation of visually similar objects. The 

proposed model was trained on superpixels with fully labelled training images in a supervised manner 

to learn appropriate features. The proposed model has been evaluated on three well-known 

benchmark datasets and compared with existing approaches. The experimental results demonstrate 

that the proposed model consistently achieved higher accuracy on all three datasets, confirming that 

the proposed deep learning model is promising for scene labelling tasks.   

Although the proposed model achieved better performance than other approaches, there are still some 

drawbacks. The possible reasons for those drawbacks are shadows and different illumination 

conditions. Future work should extend this research by further investigating misclassified cases to find 

appropriate solutions. One possible way to find a solution is the use of shadow removal techniques. 

The other possible extension of this research work is the optimisation of the number of layers and 

network parameters in a deep learning architecture. 
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Chapter 6 Conclusion 

This thesis investigated feature extraction and classification techniques for roadside object 

classification and scene labelling. The integration of features and classifiers was used to analyse the 

roadside video data and provide results for object detection and classification. Both designed and 

learnt features were intensively studied and successfully applied to the roadside video data analysis 

application. This chapter presents the contributions and findings of the thesis and proposes future 

research directions. 

 

6.1 Contributions and Findings 

This thesis proposed and investigated various feature extraction and classification techniques and 

evaluated their performances on data collected from various parts of Queensland. The proposed 

feature extraction techniques were also evaluated on three benchmark datasets (e.g. Stanford dataset, 

MSRC dataset and SIFT flow dataset) and one local dataset (Vegetation dataset). The proposed 

techniques achieved better performance than existing techniques. Different types of feature extraction 

techniques were proposed and applied to vegetation area classification. The results from a series of 

experiments prove its effectiveness and demonstrate the importance of using the proposed 

techniques. The contribution of the automated strategy was combining geometry, appearance and 

spatial texture information rather than using traditional features. Furthermore, spatial image 

descriptors were extracted using a new mathematical model based on the image properties. Multiple 

features were extracted and combined to form the final feature descriptors and used for object 

detection. The evaluations were performed using the real dataset.  

 

The major contributions and findings of this thesis are summarised below: 

 

 CBP based Feature Extraction Technique  

Initially, a co-occurrence of binary pattern based feature extraction was proposed to determine the 

dense and sparse regions from a cropped vegetation dataset. Several feature extraction techniques, 

namely local binary pattern, gray-level co-occurrence, and Fast Fourier Transform based individual 

feature extraction were applied individually and performances were recorded. Later, an ensemble 

model combining the local binary pattern and gray-level co-occurrence based approach was developed 

and it showed better performance than the existing methods. The best accuracy obtained using that 

proposed CBP technique was 92.72%. Another investigation undertaken was a classifier selection 
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process which compared the performances of individual classifiers and recorded the accuracy. Then 

an ensemble classifier was proposed which showed better performance than any individual classifier. 

Using Support Vector Machine and Artificial Neural Network, accuracy was 91.72% whereas k-Nearest 

Neighbour (k-NN) gave accuracy of 90.00%. But the CBP ensemble model gives a higher accuracy of 

92.72% [84].     

 

 DCC based Feature Extraction Technique 

In our previous method, a very small dataset was used to evaluate the proposed feature extraction 

technique. To validate performance and check robustness, the dataset was increased by adding 

different illumination condition based cropped data. While trying to validate the performance on the 

enhanced dataset, overall accuracy found to have dropped. It is of great importance when developing a 

new feature to address the concern of how to improve the performance. Hence, different colour 

channel based feature extraction techniques were investigated. HIS, HSV, and YCbCr based colour 

channels were tested with the cropped region and the best performance was achieved using the YCbCr 

colour model. Two new feature extraction techniques were developed using the YCbCr colour model. 

The distance feature gives the information about the present pixel condition within a block whereas 

the cross-correlation feature gives the relationship between different blocks. Both features help to 

identify sparseness within one cropped region. After introducing these new features, overall accuracy 

improved to 93% for the enriched dataset [98].  

 

 QFNN based Feature Extraction Technique 

In the next phase of feature extraction, the entire image was considered instead of just the cropped 

region and the number of object classes was increased. Instead of grass regions, other objects such as 

trees, roads, soil and sky regions were also considered for feature extraction. Individual pixel values 

from different regions were considered and new feature extraction techniques were introduced. 

Initially, existing features with R, G, B colour channels and their combination were extracted and 

tested with the created dataset [115]. The performance was very low and lots of misclassifications 

occurred. The reason for misclassifications was investigated and a quantisation based feature 

extraction was introduced. Instead of using the individual colour channels, the proposed method 

identifies the colour channel sequences and applies most significant bit quantisation and colour 

channel sequence which help to overcome the challenges with existing methods. The proposed 

method achieves 78.01% accuracy for overall region identification. The results were compared with 

existing feature extraction techniques and performances were measured. A comparative performance 

analysis proves the effectiveness of the proposed technique. 
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 DCF based Feature Extraction Technique 

Identification of grass regions was not sufficient to find the fire risk regions as the risk depends on the 

depth and length of grasses. The quantisation feature was extended by introducing the new 

Directional Connectivity Feature to estimate the grass density. A new dataset was created and 

experiments were performed for evaluation. The approach differs from the previous approach as it 

also considers the orientation and calculates the connectivity on the vertical direction. The proposed 

techniques achieve better accuracy for all types of grasses and the results were compared with the 

Gabor-based feature extraction technique. Accuracy for dense grass was 81.80%, whereas for 

moderate and sparse grass, they were 65% and 78.24% respectively. The overall accuracy was 

75.01% where the Gabor-based technique achieved only 62%. The performance was evaluated in 

terms of computational time. The proposed technique showed competitive performance. 

 

 MSP Feature Extraction Technique 

Multi-scale perceptual feature fusion plays an important role in increasing the reliability of the 

extracted information for robust operational performance and decision making in object classification. 

The use of superpixel features and perceptual features collectively has strong links with human 

perception. The multi-scale perceptual feature was investigated and effectively applied to the standard 

dataset and the experimental results demonstrated improvement over the superpixel features. Using 

the proposed MSP feature obtained 82.64% accuracy on the Stanford dataset and 83.00% and 77.43% 

for MSRC and SIFT flow datasets respectively. The results were also compared on the vegetation 

dataset and achieved 82.00%. The proposed technique showed better performance than many existing 

methods [129]. 

     

The findings of this research have provided answers to the research questions in this thesis. The 

relevant research questions and findings are presented as follows:: 

 What is the best way to separate the Region of Interest (ROI) or roadside objects from 

the video data?  

This thesis has investigated a number of ways to segment the objects from the video data. The 

techniques were thresholding based technique, graph-based technique, pixel-based technique, 

and superpixel-based technique. Preliminary research started with the thresholding based 

technique and achieved 70% accuracy for the region of interest separation. Later, the graph-

based technique was introduced and accuracy improved to 75%. Due to misclassifications on 

pixel labels, the pixel-based segmentation technique was introduced and achieved an accuracy 

of 78%. Pixel based processing was too slow; hence superpixel-based segmentation was 

introduced and gave compatible performance for both vegetation and benchmark dataset. The 
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accuracy with this technique increased to 82%. Hence, the best way to separate the region of 

interest is the superpixel-based technique. The derived findings provided further 

understanding of region of interest separation.  

 

 Why are existing feature extraction techniques not suitable to identify vegetation 

regions from roadside video data? 

The thesis investigated existing feature extraction techniques and found the problem with 

existing features. For example, a combination of GLCM, FFT, SIFT feature can differentiate 

narrow and broad weed but failed to differentiate different grass regions because of their 

irregular shape and distribution in the field. Moreover, Histogram of gradient feature was 

useful for differentiating different objects but failed when intra-class variation became small. 

Some recent vegetation classification techniques use LiDAR data for grass and non-grass 

region identification. As proposed research used only RGB information these features were not 

suitable to identify vegetation regions from the roadside video data. 

 

 What is the most suitable feature extraction technique or combination of techniques 

that can identify roadside objects like trees, grasses, shrubs, or any other objects on the 

roadside? 

The thesis investigated a number of feature extraction techniques related to object 

classification and vegetation classification. These included Local Binary Pattern, Gray-Level Co-

Occurrence, Colour Feature, Entropy, Location, Scale Invariant Feature Transform, Histogram 

of Gradient etc. The proposed CBP used the combination of local binary pattern and gray-level 

co-occurrence and achieved 92% accuracy. In addition, DCC used distance and cross-

correlation feature along with CBP feature and achieved 93% accuracy. Moreover, the QFNN 

based technique used several features which included 𝑅, 𝐺, 𝐵, |𝑅 − 𝐺|, |𝑅 − 𝐵|, |𝐺 − 𝐵|, 1
3
 (𝑅 + 𝐺 +

𝐵),𝑀𝑆𝐵 𝑝𝑎𝑡𝑡𝑒𝑟𝑛, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐻, 𝑆, 𝑉 and achieved 78.01% accuracy for grass, tree, soil, road, and sky 

region identification. The accuracy obtained was promising, but it failed to differentiate dense 

and sparse region. The sparseness and denseness depend on the grass height and depth. 

Hence, a new technique for density estimation was introduced. Directional connectivity feature 

for depth calculation helps to differentiate between dense and sparse region on complex 

environments. The accuracy for dense, moderate and sparse grass region identification was 

75.01% which is comparatively higher than the Gabor based technique and helps to identify 

risk location from roadside video images. Finally, the multiscale perceptual feature for overall 

object classification from scene images was introduced and effectively applied on vegetation 

classification. To improve the overall classification accuracy the proposed technique also used 

some existing features. During the selection process from existing features, several 

combinations were used and the best features were incorporated. Those features were SIFT 
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(128 dimensions), multiple appearance features (colour, histogram), geometric features (area, 

eccentricity), texture features (LBP, energy), location features, and RGB colour features for 

each channel which in total of three dimensions. Moreover, modified position of gradient 

histogram features (225 dimensions), Local Binary Pattern features (59 dimensions), pixel 

height and centreline calculation in which position feature is used, which has two dimensions. 

Proposed MSP features showed promising performance on benchmark dataset and accuracy 

obtained for the vegetation dataset was 82.00%, for the Stanford dataset was 82.64%, for 

MSRC was 83.00% and for SIFT flow was 77.43%. This feature helps to identify objects like 

trees, grasses, shrubs or any other roadside objects.     

 

 What are the most suitable parameters for a classifier that can effectively classify the 

objects from video data in terms of efficiency and accuracy? 

The thesis investigated a number of classifiers, examining the performance with different 

parameters like kernel function, the number of hidden neurons, the number of iterations, root 

mean square error, training algorithm, etc. As various parameters were changed, results with 

individual classifiers were investigated and finally the best parameters were chosen. The 

proposed CBP technique used an ensemble model, but DCC and QFNN used single SVM and 

neural network classifiers. The proposed MSP feature extraction technique used deep learning 

architecture. Deep learning strategy achieved better performance than any other technique 

with 70 hidden neurons, 300 iterations and an RMS error of 0.001. 

 

 How can the risk location be identified from the video data? 

The last research question that the thesis needs to address is the risk location from the video 

data. As one of the possible applications of the research is identifying the risk locations from 

the engaged video, it is necessary to point out those specific regions. For each frame, the 

proposed DCF based feature created fifteen windows and analysed each window and 

calculated the feature value from the grass region. This value indicates the fire risk level as 

being high, moderate or low. From the video data, the total length of time of the video 

recording and related GPS coordinates are known. Moreover, the distance of overall road 

travel distance is known and, from the converted video, the length of road covered can be 

calculated. Thus the high fire risk locations can be generated from the video.  
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6.2 Future Research Directions 

This thesis provides important knowledge about the feature descriptors and their applications to real-

world problems. The proposed techniques can be further extended as described below. 

 CBP, DCC, and QFNN based Feature Extraction Technique 

The co-occurrence of binary pattern based technique using grayscale images loses the colour 

information. Colour plays an important role in object differentiation. Hence further 

investigation is needed to improve the feature. The dataset used to evaluate the proposed 

technique was small. Further investigation can include more dataset content for training and 

testing.  

The distance and cross-correlation based feature extraction technique also depends on 

grayscale images and YCbCr images. Research shows that YCbCr images help with 

differentiating objects under different illumination conditions. Still, shadows create a big 

impact on overall classification. Further investigation is needed with other colour channels and 

performance needs to be compared. The dataset used for this technique was also small. To 

make the system more robust, larger datasets need to be included.  

Quantisation based feature extraction technique introduced two new features which show 

better performance on a small dataset. Further investigation is needed to validate the 

performance by applying it on the standard benchmark dataset. In future, results can be 

compared with deep learning feature.           

 DCF based Feature Extraction Technique 

The directional connectivity based feature extraction technique helps to differentiate between 

the depths of grass in the images. Further investigation is needed to find whether it is useful 

for differentiating vertical and horizontal images. If it is possible to further extend the method 

for plane estimation, this will be helpful in solving many real-world problems. 

 MSP Feature Extraction Technique 

Multiscale perceptual features help to improve the overall scene classification accuracy. The 

proposed technique was verified on three benchmark datasets and a local dataset. Further 

investigation is needed to check the performance on other benchmark datasets. Moreover, only 

deep learning architecture was used for classification. Further investigation is needed to 

determine whether or not an ensemble classifier can produce better results.   
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 Make the system real time 

The proposed techniques have been designed for offline use. Data collected from the video 

camera is stored and analysed later for further decisions. As roadside conditions keep 

changing, the decisions might not be accurate. Therefore, this research can be extended by 

including some real-time video processing which would be beneficial for the industry. 

 Shadow removal from the vegetation image 

The proposed techniques do not remove shadows and other illumination changes as all the 

videos are collected during the daytime with good illumination conditions. Further 

investigation is needed to consider those areas which are affected by shadow. Existing shadow 

removal algorithms will not be applicable as the image properties are different. 

 3D feature extraction from the LiDAR image  

The proposed techniques used 2-D image data. They can be extended to use 3-D data. It might 

be found to be beneficial to use 3-D data as this might allow calculating the grass height much 

easier than from RGB image data.  
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