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Abstract 

Overall performance of a visible-shortwave near infrared (NIR) spectroscopy system for a 

given application will be influenced by component performance, including optical 

geometry, lamp type and output stability in terms of aging and environmental conditions, 

detector wavelength range, signal to noise and stability to environmental conditions, 

model transfer across instruments and model robustness in terms of function in the face of 

varying temperature and ambient light levels. This thesis investigated the characteristics 

of individual components in context of their effect on performance of partial least squares 

(PLS) models of intact fruit total soluble solid content. 

The requirement for a ‘burn in’ period (up to 2 h) before first use for quartz halogen 

lamps was characterised. Following this period, lamp output was spectrally stable for the 

purpose of predictive models based on second derivative of absorbance data until the last 

hours of lamp life. However, total lamp illumination was not constant until approximately 

40 min from each start up event, and varied with ambient temperature. Temperature 

changes of the NIR spectrometric system components (lamp and front end electronics) 

affected signal level rather than quality, and thus did not affect the predictive performance 

of PLS models due to the second derivative absorbance pre-treatment. 

Similar analysis of light emitting diodes (LED) demonstrated a requirement for a short 

(<24 h in all cases) ‘burn in’ period to stabilise output intensity. As expected, increase in 

ambient temperature produced a logarithmic decrease in overall intensity of the LEDs and 

a linear shift to longer wavelength of the peak emission. The effect of ambient 

temperature on performance of a commercially available instrument utilising LED 

illumination was documented, with a decrease observed in the measured IAD Index (A670 – 

A720) with increased ambient temperature.  

Spectroscopic assessment of intact fruit relies on collection of light that has passed into 

and out of the fruit, as opposed to specular reflection from the surface.  The performance 

of a shadow probe interactance optical geometry was characterised in terms of the ratio of 

specular to diffuse radiation received by the detector using a technique based on 

polarisation of light.  This ratio was less than 0.03 at probe to sample distances less than 

30 mm but increased rapidly at greater distances due to loss of the shadowing effect. 
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Design features to increase the contribution of specular reflection to the detected signal 

are discussed. 

The ability to transfer calibration models between instruments is imperative for the 

adoption and widespread use of an NIR spectrometric system. Pixel to wavelength 

assignments for a commercial Si diode array instrument showed errors of up to 2.3 nm. 

Improvement of wavelength assignment, particularly for the wavelength range used in the 

PLS regressions, was found to significantly decrease bias and standard error of prediction 

values. Several calibration transfer techniques were compared. It was found that a 

difference spectrum adjustment method, combined with new wavelength assignments and 

model updating, gave results comparable to the performance of the master instrument and 

to models directly developed on the slave instruments. Considering only 10 fruits were 

used, this is an easy method to transfer calibrations and allows for models to be updated 

for seasonal changes in samples.  

NIR spectroscopy is being adopted in an increasing range of applications. The work of 

this thesis contributes to an understanding of the performance of a spectroscopic system 

for the application of fruit grading in context of illumination source, electronics and 

detector attributes.  
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1 Introduction 

Near infrared (NIR) spectroscopic systems have been successfully utilised in non-

invasive analysis of internal attributes of fresh horticultural produce over the last 25 

years, with the first commercial use claimed by Mitsui (Japan) in 1988. The technology 

has been used in assessment of parameters such as total soluble solid content (TSS), dry 

matter (DM), acidity and other internal characteristics in real time, in both an in-line 

packhouse environment and in orchard. Instrument specifications for the required 

assessment of internal quality attributes, vary according to attribute and fruit type. This 

thesis focuses on the assessment of TSS or DM in fruit.  

However, the technology is not yet fully mature in this application, as apparent in the 

number of publications per annum (Figure 1.1). Issues include sample geometry, lamp 

type, lamp and detector stability, model transfer across instruments and robustness in 

terms of function in the face of varying temperature and ambient light levels. 

 

Figure 1.1. Number of publications per annum, based on use of the keywords “Near 

Infrared + Fruit”, “Near Infrared + Fruit + Calibration Transfer” and “Near 

Infrared + Light Source” within Scopus database1 as shown this figure (searched on 

23 March 2016) 
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Due to the popularity of fresh horticultural produce, and widespread awareness of internal 

quality issues, there has been an allure for many manufacturers attempt to enter the fruit 

assessment industry. The industry, however, is low cost, given the low cost product 

(fruit), non-technical and the market size is comparatively small. The harvest period is 

limited, and so equipment is not fully used, sitting idle for many months. The high 

moisture content, variable environmental conditions, limited attribute range,  and sample 

matrix inconsistencies make it a demanding field, thus few manufacturers have survived 

or devices been widely adopted. 

The following section reviews the science and technology underpinning the field of 

NIRS. Subsequent chapters present focussed literature reviews and experimental work on 

specific topics. Chapter 3 investigates quartz tungsten halogen lamp stability from power 

up and with temperature variations; and front end electronics and spectrometer readout 

with temperature variations. Chapter 4 assesses light emitting diode output with respect to 

elapsed time from power up and variation in environmental temperature. Chapter 5 deals 

with an optical geometry suited to non-contact assessment of fruit. Chapter 6 investigates 

transfer of calibration models for TSS of intact apple fruit between instrumentation based 

on silicon photodiode arrays. 
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2 Underpinning Technology 

2.1 NIR Spectroscopy 

In 1800, Sir William Herschel2 investigated the amount of heat in each colour. Sunlight 

was directed through a prism to create a spectrum and made to fall on a thermometer. It 

was noted that the temperature of the colours increased from violet to the red part of the 

spectrum. The thermometer was moved to just beyond the visible (red) part of the 

spectrum and it was noted the temperature was highest in this region. He named this 

radiation “calorific rays” (derived from the Latin word for heat), later called infrared (IR) 

(the Latin prefix infra means “below”). 

The near infrared region of the electromagnetic spectrum refers to the portion extending 

from the end of the visible range to the beginning of the IR spectral region. It is defined 

by the International Union of Pure Applied Chemistry (IUPAC) as the region 780 to 2500 

nm.3 

When electromagnetic radiation interacts with matter it may be absorbed, transmitted or 

reflected. The conservation of energy requires that the total incident radiant energy be 

equal to the sum of the radiant power absorbed, transmitted and reflected. For NIR 

spectroscopy, the specularly reflected data is rejected as non informational and the 

fraction of incident light subject to scattering or absorption is used. The measured 

deficiencies in the exiting electromagnetic energy can provide the identifying 

‘fingerprint’ of the constituent molecules. 

2.2 Vibrational Spectroscopy 

The theory of vibrational spectroscopy is briefly reviewed in this section. For greater 

depth the reader is referred to Ciurczak4, Eisberg and Resnick5, Siebert and Hildebrandt6 

or Sathyanarayana7. The starting point for understanding vibrational spectroscopy is 

simple harmonic oscillation and Hooke’s Law. Hooke’s Law (F = -kfx, where F is the 

force, kf is the force constant and x is the distance travelled) can be combined with 

Newton’s Law (F = ma, where F is the force, m is the mass and a is the acceleration) to 

derive the classic equation for a simple harmonic oscillator (Eqn 2.1). 
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where v is the vibrational frequency, kf is the classical force constant and  is the reduced 

mass of the two atoms. The fundamental vibrations for diatomic molecules in the 

fundamental mid infrared (MIR) region of 2500 – 50000 nm can be derived from this 

equation. The NIR region contains combination bands and overtones of these 

fundamental frequencies.  

In his studies of black body radiation in 1900, Max Planck proposed that the energy of an 

oscillator was discontinuous, and that changes in energy content (at a quantum level) 

could only occur between two discrete energy states. The discrete energy level steps were 

related to the frequency of the electromagnetic radiation, v, by the equation E = hv, 

where E is the energy and h is Planck’s constant. Application of Schrödinger’s equation 

yields solutions that are the quantum equivalent of a classical simple harmonic oscillator. 

This is given by 

   (n 0.5) (n 0,1, 2,...)nE hv      Eqn 2.2  

where n is the vibrational quantum number. 

The equation for a simple harmonic oscillator is only valid for ideal systems and, 

therefore, does not accurately describe the reality at a quantum level. In reality, molecules 

do not obey the laws of simple harmonic motion. Other inter-nuclear forces also 

contribute to the distribution of the molecular system. As two atoms approach each other, 

the potential energy, due to Coulomb repulsion, rises more rapidly than the harmonic 

model predicts. The equation to describe the anharmonic oscillator (Figure 2.1) is: 

2 3

0

1 1 1
...

2 2 2n e eE hv n x n y n
                  
       

  Eqn 2.3 

where xe and ye are the anharmonic constants. For small values of n in Eqn 2.3, the third 

term and beyond can be ignored. The selection rules become n = 1, 2, 3,…  

The transition from the ground state, n = 0, to the n = 1 state produces the fundamental 

band. This transition has the highest probability and falls in the MIR region8. The 
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transitions from ground to higher states, n = 2, 3, 4,… produce overtones and occur 

within the NIR region. Combination bands, which also occur in the NIR region, emerge if 

two or more different vibrations interact to produce bands that are the sums (or 

differences) of multiples of fundamental frequencies. These overtones and combination 

bands characteristically have broad bandwidths (typically 30-40 nm FWHM)9 and are 

extremely weak, typically about 100 times, compared to their corresponding mid IR 

counterparts10. 

 

Figure 2.1. Calculated energy levels for (a) a simple harmonic oscillator and (b) an 

anharmonic oscillator. V(r) is the potential (or energy), r is the interatomic distance 

and v is the vibrational quantum number4 

For a molecule to absorb electromagnetic energy in the infrared region (that is, for it to be 

IR active), the molecular vibration must cause a change in the dipole moment of the 

molecule. Spectral observations in the NIR region come principally from energy 

interactions from AX2 groups (triatomic molecules) and AX3 groups. Vibrations can 

include either stretching or bending movements, which involve changing of the 

interatomic distance or angle of the bonded atoms respectively (Figure 2.2).  
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Figure 2.2 Vibration modes of AX2 group8 

Each of these vibrational modes may yield overtones or combinations observable in the 

NIR. Eqn 2.4 and Eqn 2.5 define the energy levels for vibrational and rotational energy 

levels respectively. 

1
v v 1, 2,3,...

2vibE     
 

   Eqn 2.4 

 
2

1 1,2,3,...
2rot

cm

E j j j
I

  


  Eqn 2.5 

where v is the vibrational quantum number,  is the classical frequency of vibration, j is 

the rotational quantum number and Icm is the moment of inertia about the reduced mass. 

For combination band energy levels the relationship simply becomes: 

    2
1
2( 1) (v )

2

rot vib rot vib

cm

E E E

j j
I



  

   
 

   Eqn 2.6 
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The higher order overtones have lower absorption. Low absorptivity allows for the use of 

longer path lengths, allowing little or no sample preparation. The most prominent 

absorption bands in the NIR region are related to hydrogen bonds, for example, C-H, N-H 

and O-H molecular groups (Figure 2.3).11, 12 For biological samples, the presence of 

water, a strong absorber, can limit effective path lengths. 

 

Figure 2.3 Major analytical and relative peak positions for prominent NIR 

absorptions13 

 

2.2.1 Properties of light – polarisation 

Back-scattered and forward-scattered rays are unpolarised (Figure 2.4), while rays 

scattered perpendicular to the incident rays are polarised.  This is due to the fact that the 

vibrating electrons of particles in scattering centres absorb light and then re-emit it 

asymmetrically, with most light emitted perpendicular to the electronic vibration 

direction.  
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Figure 2.4 Scattering and polaristion of incident rays. 

Once the source is polarised, a second linear polariser (polariser analyser) can be used to 

either transmit or absorb the light. When a second polariser is rotated, the vector 

component perpendicular to its transmission plane is absorbed, reducing its amplitude to14 

     0 cosE E       Eqn 2.7 

Since the transmitted intensity is proportional to the amplitude squared, the intensity is 

given by the Law of Malus14 

2
0 cosI I       Eqn 2.8 

2.2.2 Optical geometry - Absorption 

NIR spectral analyses can be based on diffuse reflectance, or full or partial transmittance 

of the incident electromagnetic radiation through the object of interest. By considering 

light as an electromagnetic wave, in a three-dimensional space the electric field vector 

can oscillate up and down, side to side, or anywhere in between.  Incandescent, 

fluorescent, light emitting diode (LED), and many laser light sources are randomly 
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polarised.  Taken as a time average, therefore, randomly polarised light sources 

continuously output all angles of polarisation. 

Quantitative absorption spectroscopy relies fundamentally on the Beer-Lambert Law. 

This law describes the relationship between absorbance and concentration of an absorbing 

species, stating that the fraction of radiant energy P, absorbed in an infinitesimal thick 

sample, is proportional to the number of molecules dn, in that sample: 

dnk
P

dP



     Eqn 2.9 

which gives 

abcA
P

P

T T
















 0log

1
log    Eqn 2.10 

where T is the transmittance (ratio of transmitted energy PT to incident energy P0), A is 

the absorbance, a is a wavelength-dependent absorptivity coefficient, b is the sample 

thickness, and c is the analyte concentration.  

2.2.3 Optical geometry - Scattering and Reflection 

The Beer-Lambert Law does not allow provision for other interactions, such as reflection 

or scattering. In practice some radiation will be transmitted through the first interface. If it 

undergoes absorption, it will be attenuated, according to the Beer-Lambert Law. At 

further interfaces inside the sample, random reflections, refractions and scattering may 

occur inside the sample to diffuse the radiation emerging from this first boundary. 

Scattering caused by radiation encountering discrete particles inside the sample that are 

much larger than the wavelength. The radiation can undergo further transmittance and 

absorption at other interfaces, or be re-emitted from the surface, producing diffuse body 

reflection (Figure 2.5). The phenomenon, known as scattering, was described by Tyndall 

in 18698. When destructive interference becomes incomplete, the radiation propagates in 

all directions.  

For most materials, except metals, at least 4 percent8 of incident radiation undergoes 

specular reflectance and therefore a significant level of background specular reflectance is 

superimposed on the diffuse reflectance arising from internal effects. If the sample 
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surface is described as being ‘matt’, the boundary between the sample and the 

surrounding medium consists of a series of small edges, directed at all possible angles to 

the normal (Figure 2.5). The first consequence of this is to diffuse the specular 

component of reflectance8. NIR reflectance spectroscopy implements mathematical and 

physical techniques to minimise this surface specular reflectance component to use only 

the diffuse component originating from within the sample for analyses. 

 

Figure 2.5 Specular reflectance by a matt surface (left) and diffuse body reflectance 

(right)8 

It is extremely difficult to describe mathematically the exact path of the propagating 

radiation. The widely adopted method for describing the interaction of light with 

diffusing media is that formulated by Kubelka and Munk8. Their theory relates the total 

diffuse reflection from a sample to the scattering and absorption coefficients of that 

sample. The special case of a layer of infinite thickness that is completely opaque with a 

homogeneous distribution of absorbers and scatters can be described by the Kubelka-

Munk function: 

2(1 )
( )

2

R K
F R

R S


      Eqn 2.11 

where R is the observed diffuse reflectance, K and S are absorption and scattering 

coefficients respectively. F(R) is proportional to the absorber concentration. 

Diffuse scattering from solids contain spectral information, and the Kubelka–Munk 

function is the theoretically preferred treatment8. However, it has found little favour with 

experimentalists in NIR spectroscopy, with preference given to use the function log(1/R) 
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to describe the absorbance. The most often quoted advantage for the Kubelka-Munk 

function is an improvement in linearity with concentration, which occurs when 

measurements are made over a wide range of reflection and concentration. 

Both the Kubelka-Munk function and log(1/R) are proportional to absorbance, and the 

interrelation with Reflectivity is shown in  

Figure 2.6, for three scattering coefficients. Higher scattering results in higher reflectivity. 

As for the Kubelka-Munk function, the decline in absorbance at increasing reflectivities is 

much more rapid than that for the log(1/R) function. 

 

Figure 2.6 Comparison of the Kubelka-Munk (K) for given scattering coefficients 

and log(1/R) function. 
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2.3 Instrumentation 

The first instrument to automatically record NIR absorption spectra was developed by 

Kaye et al.15 in 1951 using a lead sulphide detector to replace the photomultiplier tube of 

a Beckman Model DU spectrometer (Beckman Coulter Inc., Brea, CA, USA). Fourier 

Transform Near Infrared (FTNIR), Scanning Grating, Acousto-Optical Tuneable Filter 

(AOTF) and Photodiode Array (PDA) spectrometers are several different types of NIR 

spectrometers that are now commercially available. These instruments all use different 

principles to measure the NIR spectrum. It is generally accepted that the basic 

requirements of an NIR instrument are as follows8: 

1. Detect within the NIR spectral window (700-2500 nm), depending on 

the application. 

2. The instrument should be capable of resolving wavelength intervals that 

are narrow compared to an absorption feature, typically 0.1-2 percent of 

the measured wavelength. 

3. For solid samples, an optical geometry suited to work with diffusely 

scattered radiation is required.  

4. For liquid samples a transmission design may be required. 

5. A wide photometric (or dynamic) range of 104-105 may be required for 

weak or small absorption changes to be measured. 

6. The instrument should be sufficiently luminous and efficient, to enable 

measurements to be acquired in real time. 

7. The instrument should be robust and stable. It is also desirable for the 

equipment to be compact. 

NIR spectrometers have three main components – light source, dispersion mechanism and 

detector. Each is discussed in the following sections. 

2.3.1 Light Sources 

2.3.1.1 Thermal Sources 

The quartz tungsten halogen (QTH) lamps, commonly referred to as quartz halogen 

lamps, are generally employed by dispersive and interferometric systems. The QTH lamp 
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is filled with halogen gas, which combines with the tungsten that has been sublimed from 

the filament. By dissociation the tungsten is deposited back on the hot filament. This 

procedure allows the lamp to run hotter and more efficiently. QTH lamps have running 

temperatures from 2600 to 3200 K8. The lamps have a finite life, due to the tungsten 

being randomly deposited on the filament, not necessarily the thinnest portion, which 

becomes coarsely crystalline, brittle and therefore prone to mechanical shock. Its life is 

highly dependent on its operating temperature. Typically QTH lamps have a life of 2000-

3000 hours, with instrument grade lamps having a life of 10 000+ hours –  operating at 

the lower end of the operating temperate range8.  

Incandescent objects (such as tungsten) emit energy that approximates that of a 

blackbody. The spectral output of a QTH lamp is thus dependent on the operating 

temperature. At 3000K (the normal temperature of a QTH lamp) tungsten has a peak 

emission (Figure 2.7) of approximately 950 nm16, roughly coinciding with the peak 

efficiency of a silicon based detector, approximately 850 nm8. Their spectral output 

generally varies less than 2 percent until failure10. More detail of QTH lamp operation is 

covered in Chapter 3. 

 

Figure 2.7 Black-body emission spectrum at normal operating temperatures of QTH 

lamps 
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2.3.1.2 Non-thermal Sources 

Non-thermal sources emit radiation from a much narrower range of wavelengths, down to 

individual lines. These emitters are devices such as discharge lamps, LEDs, laser diodes 

and lasers. The advantage of non-thermal sources is their energy efficiency.  

Due to their efficiency and now low cost, many instrument manufacturers are 

investigating the use of LEDs to replace QTH as light sources. An LED is an 

optoelectronic component, consisting of a chip of semiconducting material doped with 

impurities to create a p-n junction. In silicon or germanium diodes, p-n junctions, 

electrons and holes from n-type and p-type materials (the majority carriers), are injected 

across the junction to establish the flow of current.  The electrons and holes usually 

recombine by a non-radiative transition, which produces no optical emission, because 

these are indirect band gap materials. Materials used in an LED have direct band gaps, 

with energies corresponding to bands in the near-infrared, visible, or near-ultraviolet.  

Light is produced from radiative recombination.  

LEDs are considerably more efficient than QTH and arc-discharge lamps at converting 

electricity into visible light, often achieving outputs of up to 100 lumens per watt 

compared to the 22 lumens per watt for a 100 W arc-discharge lamp. LEDs are rugged 

and compact, and can survive for >100,000 hours17 or approximately 500 times longer 

than a typical QTH lamp with life of 2000 hours18. Some manufacturers guarantee a 

lifetime of 100,000 hours before the source intensity drops to 70% of the initial value17. 

Under given conditions, LED spectral output remains stable throughout life. QTH lamps 

are also spectrally stable until close to their end of life19. However, due to low output 

power, a cluster of diodes is usually required to obtain an adequate signal-to-noise ratio 

(SNR), especially in diffuse reflection measurements. 

LED light output is proportional to current flow, making LEDs particularly suitable to be 

driven by a microcontroller20. LEDs also have the advantage of being able to be “pulsed” 

for periods of milliseconds to higher voltages and/or currents to produce higher light 

output, whilst not burning out. Pulsing is more energy efficient and allow for greater heat 

dissipation relative to continuous current use. Instruments incorporating LEDS can have 

sub millisecond cycle times for pulse and detector readout. Indeed, information transfer is 

possible through such pulsing (so called ‘li-fi’).   
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Impurities, structural dislocations, and other crystalline defects in semiconductor 

materials can lead to non-radiative recombination events, which do not result in emission 

of a photon. A primary goal in LED design is to maximize the radiative recombination of 

charge carriers by careful selection of suitable semiconductor materials to provide the 

appropriate band structure in order to produce favourable quantum efficiency values. 

Nearly all LED structures are composed of a layered configuration in which a series of 

lattice-matched materials are deposited on top of one another, with a transparent moulded 

plastic (polymer) to gather and focus the emitted light (lens). The amount of light 

escaping an LED is dependent upon the specific semiconductor materials, the p-n 

junction characteristics, and epoxy dome lens material and shape. The remaining light is 

absorbed within the semiconductor via total internal reflection.  In a typical LED having a 

cubic geometry, only about 2 percent of the generated light is able to escape through the 

top surface, hence LEDs emit radiation in a narrow cone 17, 21. When combined with the 

hemispherical epoxy dome, LED emission can typically can range from ±7° to ±62° half 

viewing angle (50% intensity), depending on the dome/lens22. Due to low output power, a 

cluster of diodes is usually required to obtain an adequate illumination level, and thus 

signal-to-noise ratio (SNR). 

 
There are few manufacturers of SWNIR wavelength LEDs. Commercially available LED 

visible-SWNIR wavelengths are given in Table 2.1 for two manufacturers. 
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Table 2.1. Commonly available wavelengths (nm) in LEDs, specified at 25 °C from 

Ushio Epitex Inc., Kyoto, Japan and Roithner LaserTechnik GmbH, Wien Austria.  

Epitex Roithner LaserTechnik 
365 620 800 365 620 810 
375 630 810 375 630 820 
385 660 830 385 635 830 
395 680 850 395 650 850 
405 690 870 405 660 870 
415 700 880 410 670 880 
420 720 910 420 680 940 
430 735 940 435 690 970 
450 740 970 450 700 980 
470 750 980 470 720 1020 
490 760 990 490 730 1030 
520 770 1050 505 735 1050 
525 780 1070 515 740 1300 

 1200 520 750 1550 
1300 525 760  
1450 590 770  
1550 780 
1600 780 

 

 “White light” LEDs can be produced using two approaches. The first approach involves 

combination of the output of three monochromatic LEDs, red; green; and blue, in such a 

proportion that the output appears white, by either using different semiconductor 

materials in a common die, or by combining red, green, and blue diode dies into a single 

package, or in a lamp assembly housing a cluster of diodes. By employing circuitry that 

drives the three diodes independently, any combination of colours can be created, 

including white light. The second approach is to use an ultraviolet or violet (365 to 450 

nm) LED to excite phosphor which then emits white light.17   

Laser diodes and lasers emit over a narrow range of wavelengths, eliminating the need for 

pre-filtering for some applications. However, LEDs emit a wide range of wavelengths 

(typical FWHM 50 nm) and an interference filter is normally required so that radiation is 

limited to a suitable bandwidth. 

There have been attempts to develop SWNIRS instrumentation based on LEDs as light 

sources, generally utilising one of two approaches : (i) sequential activation of LEDs at 
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discrete wavelengths, with use of a single detector; and (ii)  use of a series of LEDs with 

overlapping emission or a white phosphor based LED that acts as a broadband source, 

with use of a grating to disperse light. However, given that the dependence of LED output 

on temperature is well known, surprisingly most reports fail to mention the effect of 

temperature.  For example, temperature was not considered in the following reports: 

Gaião et al.23 constructed a portable instrument based on a 1550 nm LED (L1550-35k42 

Eptitex Inc., Japan) and a PbSe photoresistor as detector, to detect adulterants (solvents 

and kerosene) in Brazilian blended gasoline.  

Fonseca and Raimundo24 developed an LED array based spectrometer for the 

determination of Zn and Cu in pharmaceutical and metallic alloy samples. Eight LEDs 

(Ultrabright, RS Components, UK, with wavelength maxima at 470, 500, 525, 562, 590, 

612, 636 and 654 nm) were employed with a single photodiode detector (RS 308-067). 

Dependant on the application, either a single LED was continually driven, or when 

multiple wavelengths were required, the LEDs were sequentially pulsed. A 3-4% 

intensity decrease was noted after reaching maximum intensity from initial power on for 

all LEDs except the 500 and 525 nm units.   

Veras et al.25 employed a compact disc as a diffraction grid with a geared stepper motor 

to disperse the output of a white LED to produce a low cost spectrometer. This system 

was compared in performance to a HP 8453 diode array and a Micronal B34211 

spectrophotometer for the determination of food colorants in synthetic samples and iron 

in solutions. 

Further reports of LED based instrumentation development where temperature effects 

have been considered are presented in Chapter 4. 

2.3.2 Gaining spectral information 

NIR spectrometers fall into one of three categories – discrete wavelength (usually non-

thermal source), dispersive and interferometric. The dispersive element can be employed 

in the optical design of an instrument either before or after the sample, i.e. pre or post 

dispersive instrument.  
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2.3.2.1 Dispersive System 

Dispersive systems are those where the wavelengths of light are separated spatially. 

Spectrometers commonly use diffraction gratings, with reflection gratings being simpler 

and much more efficient than standard transmission gratings. A reflection grating consists 

of a highly reflective surface, such as aluminium or gold, on which a large number of 

parallel grooves are created (sometimes as many as 2400 lines per mm10). The working 

faces may be specially shaped to create a blaze angle to optimise the efficiency of the 

grating (Figure 2.8). Incident light of wavelength λ, at an angle α, on a diffraction grating 

of line spacing d, is reflected at an angle β, given by 

 md  )sin(sin    Eqn 2.12 

where m is the order of diffraction. If the grating has N lines, the intensity of the 

diffracted light I(β) is given by 

)/sin(sin

)/sin(sin
),()(

2

2

0 


d

dN
IRI    Eqn 2.13 

where I0 is the incident light intensity and R(θ,β) defines the grating efficiency. Slits, 

mirrors and gratings all introduce an element of polarisation in a spectrometer, but the 

effect is dominated by the influence of the grating.26  

 

Figure 2.8 Illustrative representation of a blazed reflection grating27. 
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The efficiency of a grating also depends on the polarisation of the incident light (as well 

as blaze angle and grating period), although several design features can be used to 

minimise this effect28. S-polarised light, where the direction of the grating grooves and 

the oscillation direction of the electric field vectors is perpendicular, exhibits a higher 

diffraction efficiency at longer wavelengths then P-polarised light, where the direction of 

the grating grooves and the oscillation direction of the electric field vectors is parallel, for 

which diffraction efficiency peaks at the blaze wavelength and decreases with a smooth 

curve.29 The efficiency difference between S and P polarised light thus depends upon a 

range of factors, and range from very little to over 80 %26. It is, however, easily 

experimentally determined. 

A common type of grating in current use is the concave holographic grating. The gratings 

are created using the interference pattern of two intersecting lasers on a photosensitive 

material. This alleviates the imperfections and aberrations in mechanically ruled gratings. 

This design both disperses and focuses the light. 

The classical dispersing instrument is the prism. Grating spectrometers achieve better 

resolution, but are more wasteful of light due to the production of many orders of 

diffraction. Prisms have a theoretical resolution limit of about 0.3 nm10, but can be useful 

when high resolution is not a critical factor. 

Another dispersive device is an acousto-optically tuneable filter. An AOTF is a solid-state 

device that is based on the grating. An anisotropic crystalline medium is specifically 

aligned, cut and polished. A piezo-electric transducer is attached to the side. When an 

electro radio frequency (RF) signal is applied, the wave produced in the crystal together 

with the spatial parameters of the crystal creates a standing wave, defining the parameters 

of the diffraction grating. The standing wave acts as a diffraction grating to the incident 

light. It separates the incident light into a non-deviating polychromatic beam and two 

monochromatic beams of the wavelength which interact with the spacing of the standing 

wave. Bragg’s equation relates the wavelength and acoustic frequency via: 

 sin2dm      Eqn 2.14 

where d is the period of the standing wave in the crystal, m is the order of diffraction and 

θ is the angle of the incident light. 
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2.3.2.2  Interferometric Systems (Non-dispersive) 

Interferometers are modulators that do not produce angular dispersion. The basis for these 

systems is to split the beam of light into two or more beams. Their optical paths are then 

changed, by either lengthening the optical path distance or by slowing down the velocity 

of one ray over the same distance by using a material with a different refractive index.30 

The recombination of the beams is then observed, with interference created if a phase 

difference exists from the differences in optical path. A frequency decomposition, by 

taking the Fourier Transform (FT), is required to construct the spectrum. The construction 

and calculation of the spectra is rapid due to the use of Fast Fourier Transform (FFT) 

algorithms and microprocessors.  

The Michelson interferometer is one such device. It divides light into two equal beams 

and coalesces them after a path difference has been introduced by use of a beam splitter 

(half silvered mirror) and two mirrors (one fixed, one adjustable). An interferogram is 

generated onto a single detector, by making measurements of the signal at many positions 

of the moving mirror. FT spectrometers use either a step scan approach, or modulate the 

incoming optical radiation by changing the optical path difference (mirror) in a smooth 

continuous fashion, thus each wavelength of the collected radiation is modulated at a 

unique frequency that is a function of the wavelength of the radiation and the velocity of 

the moving mirror.31 When the mirror has travelled the required distance, governed by the 

required spectral resolution, it is rapidly returned to the start position to begin the next 

scan. The alignment of the mirrors to each other affects how the beams overlap as they 

recombine. Some systems incorporate a compensating mechanism that automatically 

adjusts the orientation of one mirror to maintain the precise alignment, while in other 

systems Michelson classical plane mirrors are replaced with cube corner reflectors that 

have the ability to always reflect the light in the parallel direction.31 All fibre–optic FT 

spectrometers have been developed by precisely stretching the fibre optic in an 

instrument32, or by using the temperature dependency of refractive indices to alter the 

optical path sufficiently33. 

Another type is the Fabry-Perot (FP) interferometer. Modern FP interferometers have the 

component plates measured and aligned piezo-electrically to a very high accuracy. They 

have a relatively rapid scan rate, with the ability to be scanned at 6 s intervals10. These 
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types of devices have practical limitations such as beam divergence, optical alignment 

and scanning, photometric range and phase errors.  

2.3.3  Detectors 

Infrared detectors can be classed as either photon or thermal detectors. The latter respond 

to total radiated energy, irrespective of wavelength, and are too inefficient for serious 

NIR spectroscopic use8. In a common system, a fibre optic cable collects light and 

delivers it onto a diffraction grating. The resultant spectrum is directed across two mirrors 

and onto an array, where it is converted into electrical output signals.  

Low cost spectrometric designs operating in the SWNIR typically use a silicon based 

photodiode or linear charged coupled device (CCD). Photodiode cells consist of reverse-

biased p-n junctions. A small potential is produced when sufficiently energised electrons 

create an electron-hole pair across the boundary. Silicon (Si) detectors respond 

throughout the visible part of the spectrum up to 1100 nm, peaking at 850 nm 8. 

Photodiodes detectors can also be composed of germanium (Ge), indium gallium arsenide 

(InGaAs), lead sulphide (PbS) or lead selenide (PbSe). Ge and InGaAs have similar 

operating ranges of 800 – 1800 nm 8. PbS and PbSe have operating  ranges of 1000-2500 

nm and 2500-3500 nm 8, 34 respectively. PbS is much more sensitive than PbSe, but has a 

much longer response time of 100-200 s compared to less than 1s8. InGaAs has a 

response time of less than 1 s and has a higher SNR and sensitivity compared to PbS, 

but costs approximately 5 times more34. Detector characteristics are given in Table 2.2. 

Table 2.2 Photodiode Detector Characteristics 

Type Range (nm) Response time (µs) 

Si 400 – 1100 < 1  

Ge 800 – 1800 <1 

InGaAs 800 – 1800 < 1 

PbS 1000 – 2500 100 - 200 

PbSe 2500 – 3500 < 1 
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Many NIR spectrometers utilise a linear array of individual photodiodes, called a 

photodiode array (PDA). The dispersed spectrum is incident on the PDA, thus a range of 

wavelengths are measured simultaneously. This results in PDAs having a much faster 

scan time for an entire spectrum than systems that select each wavelength and scan 

sequentially. However, each individual photodiode in the array has its own 

characteristics, and thus each array will have different characteristics. This results in less 

precision in measurements between instruments, affecting the transferability of 

measurements and calibration models between instruments. In order to accurately transfer 

calibrations between PDA based spectrometers, it is likely that the individual fingerprint 

(array of characteristics) for each array will be required. 

Figure 2.9 shows the normalised efficiencies of a light source (blackbody), a dispersive 

mechanism (grating) and a detector (silicon photodiode).  

 

Figure 2.9 Graph of normalised black-body curve at 2900C, actual and expected 

typical silicon detector response and diffraction grating efficiency (flat, ruled, gold 

coated, blazed for 750 nm, 1200 grooves per mm)10 
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Another highly sensitive photon detector commonly employed is the silicon based CCD. 

The CCD is divided up into a large number of light-sensitive small areas, known as 

pixels. Each of these is represented by p-doped metal oxide semiconductor capacitor. A 

photon of light which falls within the area defined by one of the pixels will be converted 

into one (or more) electrons and the number of electrons collected will be directly 

proportional to the intensity of the scene at each pixel. CCDs have a wavelength range the 

same Si photodiodes, peaking at approximately 700 nm35. A process known as 

backthinning makes it possible to extend the range to shorter wavelengths c.a. 200nm35. 

2.3.4 Spectrometer Specifications 

There are several specifications used for instrument comparisons. Spectral range, spectral 

resolution and intensity resolution are all important design parameters for application 

specific spectrometers. The spectral resolution of a spectrometer is described by several 

terms: Rayleigh criterion, Full Width at Half Maximum (FWHM), wavelength accuracy 

and pixel dispersion. The most significant is the Rayleigh criterion, ΔλRayleigh, which 

indicates the wavelength separation of two close peaks in the same spectrum of the same 

intensity. The decrease in intensity, ΔI, between the peaks must be at least 19% from 

maximum for the lines to be individually recognised36. Another important property is the 

measured width of a spectral line. The Full Width at Half Maximum or measured 

bandwidth at 50% intensity ΔλFWHM gives information about the broadening of the line. 

 

Figure 2.10 Spectral resolving power: ΔI must be 19% from maximum for lines to 

be individually recognised36 
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Wavelength accuracy specifies that a measured wavelength will be within the specific 

accuracy Δλ±, of the absolute spectral position λ. This is dependent on the stability and 

accuracy of the positions of the grating, optical bench and PDA, which are dependent on 

mechanical and thermal properties. Pixel dispersion refers to the linear dispersion of the 

PDA, i.e., the wavelength distance between consecutive pixels. Pixel dispersion and 

spectral resolution are related via the width of the slit and the imaging properties of the 

spectrometer. 

Spectroscopy is based on measurement of ‘intensity’ changes at specific wavelengths. 

Thus ‘intensity’ resolution is an important factor. Intensity resolution is defined by the 

following related properties: smallest detectable change, signal stability, dynamic range 

of digital interface and linearity. The smallest detectable change and stability are 

dependent on each other. In most spectrometers the optical path is constant, thus the 

stability and smallest intensity step are limited by the electronic noise present and the 

analogue to digital conversion rate. 

The dynamic range is the ratio of the intensity at saturation value and the noise, or the 

SNR. SNR depends upon both the detector and the electronics performing the 

digitalisation. These electronics determine the smallest step width of a measured signal. 

Linearity is significant in systems that require relative measurements of intensity to be 

made. For the instrument used in this study (Zeiss MMS1) it is claimed that behaviour of 

modern semiconductor detectors is almost perfectly linear within a wide range36, although 

it is also stated that before saturation, the increase of the current is not linear to the 

number of photons striking the photosensitive material and therefore the range of linearity 

is smaller than the dynamic range36. Changes in temperature can also affect the sensitivity 

of the detector by impacting on the detector quantum efficiency and the dark current 

(noise). This effect tends to be wavelength specific. 
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2.3.5 Description of two common detectors 

A number of low cost SWNIR miniature spectrometers are marketed. Two units well 

established in the market are the Zeiss MMS1 (Carl Zeiss GmBH, Jena, Germany) and 

the Ocean Optics S2000+ (Ocean Optics Inc., Dunedin, USA) (Figure 2.11). A 

description of these two spectrometers is given below, with specification given in Table 

2.3 

 

Figure 2.11 Zeiss MMS137 (left) and Ocean Optics USB2000+38  (right) 

2.3.5.1 Zeiss MMS1: a Si photodiode array based spectrometer 

The central body of the MMS1 is a lens-type device made of borosilicate crown glass 

(UBK 7, Schott AG, Mainz Germany). All components, including the grating, cross 

sectional converter and detector, are permanently connected to the quartz body (see 

Figure 2.12). This protects the components from environmental anomalies and makes the 

module exceptionally resistant to mechanical shock and temperature changes, thus 

ensuring wavelength accuracy. The use of an optically dense medium together with the 

resultant larger aperture allows the use of a smaller grating and thus fewer aberrations.  

The grating is an aberration corrected concave, holographically blazed, efficiency 

optimised, flat-field grating. Produced using stationary wave techniques, it achieves 

higher efficiencies (for non-polarised light) than its sinusoidal counterpart. The grating 

images the entrance slit onto the diode array detector. Coma is minimised and the focal 

curve flattened (flat-field) by varying the groove density and using curved grooves. The 

flat-field effect ensures that the focal curve is optimally adapted to the flat detector 

structure, producing flat spectra over 6 mm long39. 
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Figure 2.12 Zeiss MMS1 schematic diagram37. The optical fibre input is converted to 

a linear configuration, forming the entrance slit, which is imaged via the grating 

onto the diode array. 

The light sensitivity of the device is further enhanced by the use of a fibre bundle cross-

sectional converter. The fibre bundle consists of approximately 30 individual Infrasil-

quartz glass fibres. The input bundle is 0.5 mm in diameter, which is converted into a 

linear configuration, forming the optical entrance slit. The output of the converter is 

approximately 2.5 mm high and 70 m wide (individual fibre diameter). The input 

diameter has been tailored to suit the pixel size of the diode array detector and the 

imaging and dispersive properties of the grating. This helps to achieve light intensities 

near the theoretical limit39. 

The MMS1 NIR enhanced module employs a 256 pixel Hamamatsu S4874-256Q Silicon 

(Si) multiplexed linear diode array (Hamamatsu Photonics K.K., Hamamatsu City, 

Japan). This provides the module with a spectral range of 400 nm – 1100 nm. A special 

shorter housing allows the detector to be positioned closer to the optical input, resulting in 

a small split-off angle and increased grating efficiency. To suppress the second order 

diffraction, the diode array has been directly coated with a dielectric cut-off filter39. The 

specifications of the spectrometer are listed in Table 2.3. 
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2.3.5.2 Ocean Optics USB2000+: a Si CCD based spectrometer 

All components of the USB2000+ are permanently connected to the body, as well as the 

electronic circuits for spectrometer operation. The user can select the entrance slit size, a 

long pass filter (optional), collimating mirror, grating and starting wavelength, focusing 

mirror, optional detector collection lens, optional longpass order-sorting filter and 

detector window. The user can customise each of these for the application. 

 

Figure 2.13. Ocean Optics USB2000+38. The individual conponents are: (1) SMA 905 

connector, (2) fixed entrance slit, (3) optional longpass absorbing filter, (4) 

collimation mirror, (5) grating (6) focusing mirror, (7) optional detector collection 

lens, (8) detector, (9) optional longpass order-sorting filter and (10) detector 

window. 

The entrance slit comes is six different sizes ranging from 5 to 200 μm, giving pixel 

resolutions of ~3.0 to 24 pixels. Seven optional longpass filters are available with cutoffs 

from 305 – 590 nm. The collimating mirror is matched to the 0.22 numerical aperture of 

the optical fibre, with either a standard or UV absorbing SAG+ mirror.  The focussing 

mirror is also available in standard or SAG+. 
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Seven ruled gratings with blaze wavelengths of 250 to 1000 nm and grating densities of 

500 to 1200 lines/mm are available. Also available are eight holographic gratings 

optimised for UV or visible, and grating densities of 1200 to 2400 lines/mm. Holographic 

gratings produce less stray light while ruled gratings are more reflective, resulting in 

higher sensitivity.40 

The detector is a Sony ILX511B linear silicon CCD array. It has a range of 200-1100nm. 

It has 2048 pixels, each 14 x 200 μm and a well depth of 62 500 electrons. It has an SNR 

of 250:1 and a dark noise of 50 RMS counts. The linearity is specified at 99.8 %. An 

optional cylindrical detector lens is available to increase collection efficiency and reduce 

stray light. An optional variable longpass order filter can be selected to block second and 

third order diffraction. The detector comes with a standard borosilicate crown glass (BK 

7, Schott AG, Mainz Germany) window, although a quartz window is available to 

enhance application < 340 nm. 
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Table 2.3 Specifications of the Zeiss MMS1 NIR enhanced and Ocean Optics 

USB2000+ VIS-NIR-ES configured spectrometer 39 

Spectrometer: Zeiss MMS1 NIR enhanced Ocean Optics USB2000+ 

VIS-NIR-ES 

Optical entrance: 

 

 

Cross section converter - Fibre 

bundle consisting of approx. 30 

Infrasil-quartz glass fibres. 

Dia. 0.5 mm, NA=2 

Linear output: 70m x 2.5mm 

SMA 905 connector 

 

 

Entrance slit – 1mm high 

25 μm wide 

Grating: Holographically blazed, flat-

field grating 

366 lines/mm (centre); f-

number 1.6; imaging ration 1:1 

Ruled  

600 lines/mm 

500 nm blazed 

Diode array: Hamamatsu S4874-256Q  

Si PDA 

256 pixels, 25x2500 μm each 

Sony ILX511B  

Si CCD array,  

2048 pixels, each 14 x 200 

μm 

Spectral Range: 400 - 1100nm 350 – 1000nm 

Spectral 

Resolution: 

(Rayleigh-criterion) 

10nm FWHM 1.5 nm FWHM 

Wavelength 

accuracy, absolute: 

 0.3 nm +/-0.0005 

Pixel dispersion:  3.3 nm 0.33 nm 

SNR 5000:1 250:1 

Dark Noise 1.5 SD 50 RMS 

Dynamic Range 214 8.5 x 107 (system); 1300:1 

for a single acquisition 
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2.4 Chemometrics 

Chemometrics is defined as the application of mathematical, statistical, graphical or 

symbolic methods to process, evaluate and interpret the maximum chemical information 

that can be extracted from data34, 41. Chemometric methods are applied to find statistical 

correlations between spectral data and known properties of a sample34. The reduction of 

the number of elements needed to describe the characteristics of the data set, while still 

maintaining accuracy, is one of the primary goals of chemometrics. This can be achieved 

by numerous techniques, such as selecting a significant subset of the original variables, or 

by creating a set of new variables that are more effective. 

2.4.1  Data Pre-treatment 

Data pre-treatment procedures can assist in the extraction of information from the raw 

data, such as the distinguishing of overlapping spectral features or distinguishing between 

signal and noise and removing the latter. In the field of NIR spectroscopy, pre-processing 

is frequently, but not exclusively, performed to identify any baseline drift or slope in a 

spectrum, which tends to occur in diffuse-reflectance measurements due to significant 

light scattering by particulate matter34. This can be minimised by baseline subtraction and 

can entail a first and/or a second derivative transformation, the second being more 

common. It is advantageous to use the second derivative since, although positive peaks in 

raw spectrum are converted to negative peaks, enhanced resolution is achieved to allow 

separation of overlapping peaks and emphasis of small peaks and additive and 

multiplicative baseline shifts in a raw spectrum are removed34. There are, however, 

disadvantages to this approach. The SNR can be decreased with each successive 

derivative as two false valleys are generated in the positive ordinate scale for every band 

in a negative direction8. To combat this, various smoothing techniques are often used 

before and after differentiation. An alternative is to differentiate using the Savitzky-

Golay42 method, which effectively combines a smoothing step. 

A number of other pre-treatments are commonly used, particularly with diffuse reflection 

data eg mean centering, auto scaling, standard normal variate, detrend, multiplicative 

scatter correction, orthogonal signal correction etc. For a summary and review see 

Martens and Næs 43 and Næs et al.44 
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2.4.2 Outliers 

After corrections for baseline drift have been applied, outlying samples (those that fall 

considerably outside the trend of the main population) must be removed. These outlying 

samples may be the result of laboratory measurement error, or may be spectrally distinct. 

Of course, if the outlier is representative of samples to be predicted in the future, it should 

be retained in the model. A common method of outlier identification is based on 

Mahalanobis distance45, 46, calculated as the average distance of a sample from the 

population mean in multi-dimensional principle component (PC) space. Other common 

outlier identification methods include Hotelling’s T2 test47, 48, X-residuals43 and potential 

functions49, or use of robust regression methods.  

Removing outliers from a calibration set will of course improve calibration statistics, but 

its effect on prediction of new data that is important. Note that outlier identification 

methods that are based on X (spectra) can be used to decide whether to implement a 

prediction or not. For a more comprehensive discussion of outliers see Cook and 

Weisberg50 and Martens and Næs43.   

2.4.3  Models 

NIR analysis is dependent on the ability to develop a calibration model that relates the 

spectral intensities at different wavelengths to the chemical composition of the product. 

Numerous models have been employed in the development of a calibration model. These 

are briefly described below. For a more comprehensive discussion see Martens and Næs 
43 and Næs et al.44 

The classical least squares (CLS) model is basically a multiple linear regression (MLR) 

model that assumes the measurements are the weighted sum of linearly independent 

inputs.44 When applied to spectroscopy, the CLS model deduces that measured spectra 

are the sum of spectra constituents from known pure component spectra, weighted by the 

concentration of the analytes. This model presents one major disadvantage in that the 

analyte concentrations must be known for all constituents or estimated from the data. This 

includes the spectra of minor components that are not necessarily of interest themselves, 

but may contribute to the measured signal. This problem can be avoided by using the 

inverse least square (ILS) method3. 
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One of the most versatile chemometric methods is principal components analysis (PCA). 

Its purpose is to maximise the variance information present in a data set in as few new 

dimensions as possible. It reduces the number of variables that need to be considered, 

yielding a new set of variables (principal components), which are orthogonal to each 

other. Mathematically it performs a simple linear transformation, achieving this by 

twisting the axes of the data to conform to new axes that contain a maximum amount of 

variance information.   

A robust ILS calibration method is principal components regression (PCR). In this 

method the system properties are regressed on the principal component scores of the 

measured variables, instead of regressing the system properties on the original measured 

variables. The function of the regression model is to predict the properties of interest for 

new samples, thus a determination on the number of PCs that optimises the prognostic 

ability of the model must be made. This is achieved by cross-validation, where the 

available data is split between training and test sets.  

Another chemometric method is partial least squares (PLS) regression. MLR seeks a 

single factor that best correlates predictor variables with concentrations of analyte, 

whereas PCR finds factors that capture the greatest amount of variance in the predictor 

variables. PLS goes further and endeavours to find factors that attain predictor variable 

variance and achieve predictor/predicted variable correlation. 

Calibration models can be developed using pattern recognition methods (PRMs) to 

identify similarities and regularities in the data. There are two types of PRMs, clustering 

and supervised learning.  Supervised methods entail the training of the system, using a set 

of objects belonging to specific previously known classes and a mathematical model to 

predict the class of a newly presented unknown object. Clustering methods engross the 

linking of all objects in a data set (one by one) by measuring their relative similarity.  

After the calibration model has been developed, it must be tested to ensure its validity. In 

multivariate statistics, it is relatively easy to overfit data to a model. In this case, the 

model statistics (eg R2 and RMSEC) can look good, but as the model has effectively 

described some of the noise present in the calibration set, it will fail in prediction . 

Another major issue is that biological samples are variable, and one calibration set ( eg 50 
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samples) will fail to represent the optical and chemical variation present in future 

samples. 

2.4.4  Calibration Model Statistics/Testing/Assessment 

Several statistical parameters define the performance of a calibration model. Common 

parameters used are: the coefficient of determination (R2), standard deviation from the 

reference method values (SD), root mean standard error of calibration (RMSEC), root 

mean squared error of cross calibration (RMSECV), root mean squared error of 

prediction (RMSEP) and standard deviation residual (SDR). 

RMSEP and RMSECV are both measures of model accuracy. For RMSEP, an 

independent validation set of samples (completely separate from the calibration samples) 

is used to provide a true estimate of the performance of the predictive model on unseen 

samples. RMSECV iteratively removes a subset of samples from the calibration set and 

calculates a new calibration model. The removed samples are then used for validation. 

The validation set is returned to the calibration set and the cycle is repeated for a 

specified number of validation samples. RMSECV is intended to avoid the need for a 

large separate validation set, but this depends on sound design in selection of cross 

validation groups. These statistics are calculated by: 

 2

1

ˆ/ /
N

i i
i

RMSECV RMSEP c c N


    Eqn 2.15 

where ĉi and ci are the reference and predicted values respectively of the ith sample from 

the set of N validation samples. SDR is calculated as SD/RMSEP or RMSECV. 

Another model statistic that can be employed to assess model performance is the standard 

error of prediction (SEP). This is calculated similarly to RMSEP, except it has been 

corrected for bias and with N-1 as the denominator.  
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bias c c N


       Eqn 2.16 
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SEP c c bias N


       Eqn 2.17 
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2.4.5 Instrument Standardisation 

A predictive model generated on spectra from one instrument generally gives poor results 

when used on spectra acquired from a different instrument. This is due to the small 

differences between detectors such as photometric response, wavelength accuracy, 

electronic noise, optical noise and temperature stability. These impact on the shape and 

position of the spectral characteristics. Generation of calibrations is labour and time 

intensive, thus expensive and impractical, due to the acquisition of large data sets over a 

broad range of samples. 

A plethora of work on calibration transfer and instrument standardisation between NIR 

spectrometers has been published by Bergman et al.51, Blank et al.52, Blanco et al.53, 

Bouveresse et al. 54-58, De Noord59, Despagne et al.60, 61, Dresssi etal.62, Duponchel et 

al.63, Fearn64, 65, Geladi et al.66, Leion et al.67, Pérez-Marín et al.68, Shenk and 

Westerhaus69, 70, Sjöblom71 and Wang72-76. The majority of published work focuses on the 

transfer of calibration models on scanning grating or Fourier transform near-infrared 

instruments. This has been successfully achieved on these instruments for relatively dry 

(< 10 %) samples, e.g. grain, pharmaceuticals and petroleum products 77. 

Instrument standardisation involves transfer of calibrations developed on one master 

spectrometer to the slave spectrometer(s), or by making the spectra on the slave 

instrument appear to originate from the master instrument, thus using the same 

calibration. This can be just as resource intensive as developing new calibration models 

for each spectrometer.  

Common methods include: 

 Slope and Bias Correction (SBC) 

 Linear transforms 

 Shenk and Westerhaus standardisation technique 

 Direct Standardisation (DS) 

 Piecewise Direct Standardisation (PDS) 

 Double Window Piecewise Direct Standardisation (DWPDS) 

 Orthogonal Signal Correction (OSC) 

 Finite Impulse Response Filtering (FIR) 
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 Wavelet Transforms (WT) 

 Neural Networks (NN) 

 Model Updating (MU) 

2.4.5.1 Slope and Bias Correction 

This method78, 79 can work relatively well for instruments which are almost identical 

(light source, dispersion mechanism and detector) and where adjustments required are 

small8. Because only two constants are determined, only a small number of samples is 

required. Application of the method has to be repeated for each calibration model. 

Spectra are acquired on both master and slave spectrometers and predictions are made 

using the predictive model generated on the master. Predicted values from master (old) 

instrument, Ŷm, are plotted against the predicted values from the slave (new) instrument, 

Ŷs. If a straight line can be fitted to the plot, the results are linearly regressed to give  

biasYslopeY sm  ˆ.ˆ    Eqn 2.18 

Predictions made on the slave instrument are then altered using this equation, or 

alternatively, all the calibration constants (including the intercept) are multiplied by the 

slope and then the bias is added to the intercept. Bias correction is a simpler version that 

only corrects for the bias, not the slope. 

2.4.5.2 Linear transforms 

Each wavelength in the spectra of the slave instrument is transformed by a linear function 

(which considers each constituent wavelength) and an offset. 

The general formula is  

a  x b xF      Eqn 2.19 

where x is a 1 x p row vector containing the raw spectra and xa is 1 x q row vector 

containing the adjusted spectra. b is a 1 x q row vector of offsets and F is a p x q 

transformation matrix.  

The most common situation is where the instruments are of the same type and thus p = q. 

Spectra are acquired on both instruments and are used to calculate b and F. As this is 
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much like calibration itself, overfitting must be considered, where too many constants 

with too few data samples gives a perfect fit for the calibration data, but poor 

performance on unknown data. 

The F transformation matrix gives a set of weights which are applied to the raw spectra to 

give the corresponding adjusted wavelength. Depending on the values in this matrix, any 

or all of the wavelengths may contribute to the calculation of the new adjusted 

wavelength. Wavelength shift and multiplicative absorbance shift are correct by the F 

matrix. The offset b corrects for an additive absorbance shift.  

2.4.5.3 Shenk and Westerhaus standardisation technique 

Shenk and Westerhaus80 patented a standardisation technique in 1989. It is currently 

incorporated into their chemometric software WinISI (Infrasoft International, LLC, State 

College, U.S.A.). A detailed description is given by Bouveresse et al57. The two main 

steps of Shenk and Westerhaus’s method are wavelength index correction and spectral 

intensity or photometric response correction.  

Spectra from the standardisation sets acquired from both master and slave instruments are 

transformed by a first derivative. For each wavelength (i) the absorbance on the master 

instrument (Xm) is linearly correlated to the absorbance on the slave instrument (Xs) at 

wavelengths in a spectral window (i ± w). The wavelengths with the highest correlation 

within the window are matched. A more precise wavelength correlation match is obtained 

by fitting a quadratic function to the matched wavelength (m) and its two neighbours (m ± 

1), giving new slave wavelengths 

2` cibiai      Eqn 2.20 

where i` is the new (adjusted) slave wavelength, i is the master instrument wavelength 

and a, b and c are regression constants. 

Raw absorbance data is used for spectral intensity correction. Absorbance values for the 

new (adjusted) slave wavelengths (Xs
#) are calculated using interpolation. The spectral 

intensity (absorbance) at each wavelength of the master and slave instruments are linearly 

regressed to identify correlation between them. The regression is given by by 
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#).()(
ii sm XibiaX     Eqn 2.21 

This is then used to adjust the absorbance values to new values using 

#).()(
ii sSTD XibiaX     Eqn 2.22 

 where XSTD is the Xs absorption matrix after standardisation and a(i) and b(i) are 

regression coefficients computed for each wavelength i. Each new spectrum obtained 

with the slave instrument is standardised using these wavelength and spectral intensity 

coefficients to correct for wavelength and absorbance values.  

2.4.5.4 Direct Standardisation  

DS was proposed in 1991 by Wang et al.75.  Samples are scanned on both master and 

slave instruments and used as training sets. Response matrices from both instruments are 

related to each other via  

1 2R R F     Eqn 2.23 

where R1 and R2 are matrices of absorbance values for the same subset of standardisation 

samples measured of master and slave instruments respectively and F is the 

standardisation transformation matrix. PCR or PLS is used to estimate the coefficient 

vector for predicting the absorbance at wavelength j on the master instrument from the 

full spectrum on the slave instrument. This forms the jth column of F and the process is 

repeated for each wavelength. The response vector rT
2.um of an unknown sample 

measured on the slave instrument is standardised to appear as a response vector ŕT
1.um 

originating from the master instrument using 

Frr TT
unun ,2,1ˆ     Eqn 2.24 

The full spectrum acquired on the slave instrument is used to calculate each data point on 

the standardised new spectrum. As there are generally not many samples in the training 

set and numerous coefficients to be calculated in F, overfitting is a very likely risk. 
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2.4.5.5 Piecewise Direct Standardisation 

This method was also developed by Wang et al.75. It is similar to DS, but reconstructs 

each spectral point from the measurements within a sliding window on the slave 

instrument, not the entire spectrum. Sample spectra are acquired on the master instrument 

X1 and slave instrument X2. For each wavelength of a sample collected on the master, 

absorbances are regressed against the corresponding absorbances within a window of 

neighbouring wavelengths, of width 2j + 1, from the slave instrument. The regression 

vector is calculated by  

1 2(: ) (: : ) ii i j i j  X X b    Eqn 2.25 

where X1(:,i) and X2(:,i-j,i+j) are columns used in the calculation of bi. The regression is 

performed via numerous multivariate calibration methods such as PLS or PCR. The 

response vector of an unknown sample measured on the slave instrument is standardised 

using 

1, , 2, , ,...,
ˆ

un i un i j i j  ir r b    Eqn 2.26 

An additive background correction for an intercept b was included by Wang et al. which 

was shown to give improvement over the purely multiplicative version. 

 

2.4.5.6 Double Window Piecewise Direction Standardisation 

In some FTNIR spectra, spectral features are very narrow, with regions of only noise in 

between. PDS does not perform well in these cases. Wise81 developed double windows 

PDS (DWPDS) to address this issue. DWPDS is very similar to PDS, but uses a sliding 

window on the slave instrument (width 2[j + k] + 1) and a (different) sliding window on 

the master instrument (width 2k + 1). The regression vector is identified by 
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DWDWi XXb 12
     Eqn 2.27 
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2.4.5.7 Orthogonal Signal Correction 

OSC was introduced by Wold et al.82. Use of OSC for instrument standardisation was 

investigated by Sjöblom et al.71 as a technique for pre-processing NIR spectra before they 

are subjected to a multivariate calibration. Sjöblom claimed that OSC makes the spectra 

less dependent on instrument variation, by removing instrument specific features from the 

spectra before a calibration model is developed. The main principle of OSC is to reduce 

the largest features possible to model variation in X (spectra) not correlated to analyte 

variation described by y (concentration). This is achieved by correcting the X-matrix by 

subtraction of variation that is orthogonal to the calibration Y-matrix. Usually both 

spectral and analyte matrices are individually centred before orthogonalisation. A score 

vector is calculated using PCA, then orthogonalised to y. This is repeated until stability is 

achieved.  The spectral data is then PLS regressed against this score vector. B coefficients 

are employed to construct new scores and loading which transform the spectral data. This 
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correction is applied to new spectra which are going to be used in predictions. Several 

different algorithms have been developed for the calculation of the score vector by Wold 

et al.83 , Fern84, direct orthogonalisation (DO) by Andersson85, direct OSC (DOSC) by 

Westerhaus et al.86 and orthogonal projection to latent structures (OPLS) by Trygg and 

Wold87. 

2.4.5.8 Wavelet Transform 

Transference of near-infrared spectra in the wavelet domain was proposed by Walczak et 

al.88 in 1997. A WT involves the decomposition of a spectrum into simpler fixed building 

blocks at different scales and positions. It allows for the analysis of signals at different 

levels of resolution. WT has a similar mathematical basis to Fourier transforms in 

transforming a signal linearly from its domain to a different domain. WTs use a scaling 

variable and a position variable that closely resembles their Fourier transform time-

frequency variable counterparts. This method can have the benefit of reducing spectral 

noise. 

The signal of length N = 2L can be divided into its low frequency components 

(approximation/average) and high-frequency components (details/difference) from 0 Hz 

to the Nyquist frequency (half the number of wavelengths) on the L different scales/levels 

of resolution. The data is transformed by the discrete wavelet transform (DWT)89.  At 

each stage the sample signal is passed through a low-pass filter (scaling filter), denoted as 

H, and a high pass-filter (wavelet filter), denoted as G. These filters must satisfy the 

orthogonality conditions  

*HG = GH* = 0     Eqn 2.28 

and     

H*H + G*G = I     Eqn 2.29 

where I is the identity operator 

This produces a set of N/2 coefficients of approximations and N/2 coefficients of details. 

The decomposition is iterated on the low frequency components only (approximations). 

Each time this results in new sets of approximations and details and continues until the set 
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consists of a single unit. If a and d denote approximation and detail respectively and f is 

initial signal, the decomposition and reconstruction can be represented by 

Decomposition: Set aj = f . Then for j = 0, 1, 2, …, L 

1j ja = Ha     Eqn 2.30 

and 

1j jd = Ga     Eqn 2.31 

Reconstruction: Start with aL and dL . Then for j = L, L-1, …, 0 

1j j j  a H *a G *d     Eqn 2.32 

For calibration transfer, a subset of spectra from the master (mS) and slave (sS) 

instruments are chosen and wavelet transforms are applied using the selected filter and 

resolution criteria. These yield the mW and sW matrices, containing the WT coefficients 

of the master and slave respectively. A univariate linear regression model is applied to the 
mW and sW matrices via 

(:, ) ( ) (:, )m si t i iW W     Eqn 2.33 

where i=1, …, number of wavelet transform coefficients. 

Each slave spectrum is then computed using the wavelet transform. The coefficients are 

transferred with the computed standardisation parameters t. The inverse WT 

(reconstruction) is performed to the transferred wavelet coefficients, giving standardised 

NIR spectra. 

2.4.5.9 Finite Impulse Response 

This method proposed by Blank et al.52 has the advantage that only one spectrum from 

the master instrument is required, not a complete set of spectra from standardisation 

samples. This approach involves the reduction of the instrument variation function in the 

presence of chemically relevant variation. A spectrum from the master instrument, 

denoted by r, is used to filter the spectra to be transferred using a sliding processing 
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window of 2p + 1. A spectrum acquired on the slave instrument, denoted by s, and r, are 

mean centred within the procession window by the relations 

1( ), ( ), ..., ( )p p ps mean s mean s mean      s s s s   Eqn 2.34 

  1( ), ( ), ..., ( )p p pr mean r mean r mean      r r r r   Eqn 2.35 

where the subscript on s and r refer to elements within the 2p + 1 window and  

    ( )
2 1

p
k

k p

x
mean x

p


     Eqn 2.36 

The mean centred spectra are regressed against each other using least squares (within the 

processing window), yielding a regression coefficient, bi. This is iteratively repeated for 

each wavelength according to  

      1T T

i



   b r r r s    Eqn 2.37 

The regression coefficient is then used to generate the transferred spectrum, *s , by the 

relation 

    * ( )i
i

i

mean 
s

s r
b

    Eqn 2.38 

End points of the slave spectra are processed using multiplicative scatter correction.   

It is claimed that centring at each point reduces reliance on regression, improves the 

predictive power and makes the model more resistant to model errors, such as error 

caused by nonlinear effects52. 

2.4.5.10 Neural Networks 

Artificial NN can be broadly classified as feed forward networks or recurrent networks. 

Recurrent networks model oscillating or dynamic systems, where the output is fed back 

into the network as input for the next cycle. Feed forward networks are purely functions 

of the current input, thus the most appropriate for spectroscopic data90. 
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A typical multilayer feed forward NN architecture consists of three layers: input, 

intermediate or hidden and finally the output. The inputs layer of neurons is simply input 

with no processing ability. The hidden (intermediate) layer of neurons is where the 

majority of the processing/calculation is performed. The output layer contains a single 

neuron unit for each response. All neurons in adjacent layers are connected by links, each 

having an associated weight. Neurons sum the weighted signals that are supplied to them, 

and then scale the signal via an activation/transfer function, before outputting to each 

driven connection (see Figure 2.14). 

 

Figure 2.14 Signal transmission between two layers of neurons63 

A NN is trained by iteratively adjusting the weightings on each of the links. This is 

achieved by inputting a training set, then noting the differences between the actual and 

desired output at each neuron. These differences, taken over the entire training set, are fed 

in reverse direction to signal flow (back-propagation of error) through the NN, modifying 

the weights. This process is repeated until a suitable error is achieved. 

Goodacre et al.91 , Duponchel et al.63 and Despagne et al.61 have all applied NN to 

calibration transfer. The framework for calibration transfer is based on PDS, but with the 

PLS or PCR replaced with artificial neural networks. Figure 2.15 shows a typical 

application of NN to calibration transfer. 
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Figure 2.15 Typical application of neural networks to calibration transfer63 

 

2.4.5.11 Model Updating 

MU provides an evolving model by where new spectra from the slave (new) instrument 

are added and old spectra from the master instrument are removed from the calibration 

model. Eventually the calibration model will contain only spectra from the slave (new) 

instrument. Samples are not required to be measured on both instruments, but a new 

predictive model for each instrument is required.  
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2.5 Conclusion 

Individual visible-shortwave NIR spectroscopy hardware components influence the 

performance. Issues including lamp type, lamp and detector stability, model transfer 

across instruments and robustness in terms of varying temperature have been sparsely 

reported. The aim of this thesis is investigate the characteristics of individual 

components, particularly their effect on performance on PLS models. The following 

objectives were thus proposed  

 Investigate light source stability from power-up and with temperature variations 

 Investigate front end electronics and spectrometer readout with temperature 

variation 

 Assess optical geometry suited to non-contact assessment of fruit 

 Assess spectrometer linearity and wavelength accuracy. 

 Transfer calibration models for TSS of intact apple fruit between instrumentation 

based on silicon photodiode arrays 
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3 Temporal and Environmental Sensitivity of a 

Photodiode Array Spectrophometric System 1 

Abstract 

The effect of the spectral variation in quartz tungsten lamp output with respect to elapsed 

time from power up and variation in environmental temperature, and the variation in 

readout in the front end electronics (FEE) and spectrometer with temperature, on 

predictive model performance of total soluble solids (TSS) in intact fruit was assessed for 

a silicon photodiode spectrometer based system.  Lamp (10 each of OSRAM HLX64623 

and Sylvania 521995 12 V 100 W GY6.35 QTH) output was assessed at 10 s intervals 

over a 4 h period, and 10 min intervals over approximately 3,000 h.   Environmental 

temperature of each component in an NIRS system (lamp, FEE, spectrometer) was 

incrementally adjusted in 10°C intervals between 10 and 60 °C.  Lamp output was 

spectrally stable within the time of the first measurement (10 s), although total 

illumination was not stable until approximately 40 min from start-up. Thus performance 

of the predictive models based on second derivative of absorbance data was not 

significantly impacted by lamp warm-up time. Noise on measurement associated with use 

of a single white reference resulted in a mean increase in RMSEP as high as 0.22% TSS 

and individual increases high as 0.82. Averages of white reference measurements 

significantly improved performance. When predictive models were developed using 

second derivative absorbance data and averaged (10) white references, there was no 

statistically significant impact in RMSEPs on time of lamp warm up (after 10 s), even 

during the last hours of lamp life. Spectral variation resulting from temperature changes 

of NIRS system components (lamp & FEE) also affected output quantity rather than 

quality and thus did not affect the predictive performance due to the second derivative 

absorbance pre-treatment. Some lamps displayed start-up output characteristics on their 

first use, which were not repeated in subsequent trials. This result indicates the need for a 

short lamp ‘burn in’ period.   

                                                 

1 This chapter has been published under this title in the Journal of Near Infrared Spectroscopy 2014. A 
shortened version was presented at the International Horticultural Congress 2014 (Appendix A), which 
includes additional work on QTH lamp stability during warm up, to sub second time frames during the first 
few seconds of power on, and statistical analysis comparing performance of lamps from two manufacturers. 
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3.1 Introduction 

The repeatability of a NIR measurement is linked to the stability of the illumination 

source and the detector system.  This stability can be impacted by several factors, 

including power stability and ambient temperature.  Typical NIR equipment protocols 

require halogen lamps to be stabilised for a period (e.g., 1 h) before use, and ideally a 

reference measurement would be taken before every sample measurement.  In portable 

instrumentation, however, power demands may mean it is impractical to allow such 

lengthy warm up periods, and in other instruments, references are often taken at long 

intervals. 

Changes in ambient temperature can affect both lamp output (intensity and quality) and 

detector response (wavelength sensitivity), as well as electronic noise10.  For example, for 

a silicon photodiode array based shortwave NIR (Zeiss MMS1) detector and halogen 

lamp assembly, Walsh et al.92 reported a small change in detector output, and an order of 

magnitude larger change in lamp output from time of power on.  Lamp output (irradiance) 

was effectively stable within 30 min of activation. The ‘dark’ count from the detector 

increased with temperature by a count of 0.33 oC-1 from a count of 29 at 0 oC-1 (i.e. 0.1% 
oC-1) while a 912 nm peak count increased by 0.40% oC-1, consistent with Zeiss Spectral 

Sensor product information (79-802e)37 which reports a sensitivity increase of 0, 0.18, 

0.47 and 0.69% oC-1 at 500, 735, 912 and 1000 nm, respectively.   

Quartz tungsten halogen (QTH) lamps are commonly employed by dispersive and 

interferometric spectroscopic systems. QTH lamps consist of a quartz glass envelope 

holding a low pressure halogen gas and a tungsten filament through which a current is 

passed. Halogen gas combines with tungsten that has been sublimed from the filament 

and deposits the tungsten, by dissociation, back on the filament once the correct filament 

temperature has been reached. This process allows the lamp to run hotter, longer and 

more efficiently, with lamp filaments typically reaching from 2600 to 3200 °C.93 The 

lamps have a finite life because as the tungsten is deposited on the filament, it becomes 

coarsely crystalline, brittle and therefore prone to mechanical shock.  ‘Typical’ QTH 

lamps have a life of 2000 - 3000 h, while instrument grade lamps8 have a life of more 

than 10,000 hours, with lifespan dependent on the operating temperature.  
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Incandescent objects (such as a heated tungsten filament) emit energy over a broad range 

of wavelengths, approximating that of a blackbody. The intensity distribution is 

dependent on the object temperature. The intensity per wavelength, I, for blackbody 

radiation is given by the Planck radiation law94 

)1(

2
)(

/5

2




kThce

hc
I 

     Eqn 3.1 

where h is Planck’s constant, c is the speed of light, k is Boltzmann’s Constant,  is the 

wavelength and T is the absolute temperature.  Thus as object temperature increases, 

intensity is expected to increase, and increase more at shorter wavelengths, giving a non-

correlating curvilinear trend in spectral intensity variation between wavelengths as 

ambient temperature varies.  Assuming a filament temperature of 2900 oC, the effect of a 

temperature increase of 20 – 60 oC (representing expected change in ambient 

temperature) might be assumed to have minimal effect on blackbody output, but, from 

eqn. 1, intensity at 1000 nm is expected to increase by 10.7% with a 60 oC increase 

(Figure 3.1).  Note that at an operating temperature of 2900 °C, a tungsten filament is 

expected to have a peak emission of approximately 1000 nm, roughly coinciding with the 

peak efficiency of a silicon based detector, approximately 900 nm.16, 95   However, grating 

efficiency, typically varying from 0.9 at the blaze wavelength to 0.4 or lower at other 

wavelengths, impacts on overall spectrometer sensitivity.  For example, the peak count of 

a Zeiss MMS1 (NIR enhanced)-halogen lamp based system is seen at approximately 800 

nm. 
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Figure 3.1. Spectral emittance as a function of temperature based on theoretical 

calculation (Planck’s radiation law) 

Another potential effect of ambient temperature increase is through its effect on 

expansion of the different components of a spectrometer optical bench, resulting in 

changes in wavelength calibration to detector pixels (or wavelength accuracy).  

Wavelength drift of 0.012 nm/oK is reported for the Zeiss MMS1 (NIR enhanced) unit37.  

Martinsen and coworkers96 considered the effect of drift in wavelength calibration over a 

12 month period.  Although the drift was small (<0.1 nm), they noted that partial least 

squares (PLS) regression models based on short wavelength NIR could be very sensitive 

to such changes, e.g. a kiwifruit dry matter (DM) model demonstrated a bias shift of 7% 

DM for a 1 nm perturbation. 

Additional to effect on lamp spectral output, detector spectral sensitivity and wavelength 

accuracy, increasing temperature will also increase electronic noise (detector dark 

current).   Poor power supplies or poor grounding can also contribute to such detector 

noise.   
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In summary, lamp and detector behaviour can be expected to change with time, and with 

changes in environmental conditions, principally temperature.  In implementing NIR 

solutions into field based applications, ambient temperature variations of 50 °C or more 

may be experienced, and a past reference measurement may no longer be representative 

of the current condition, with surprisingly small changes capable of causing large bias 

effects on PLS model predictions.   Such impacts can be minimised by reducing 

temperature change and/or by collecting reference spectra under the same conditions 

experienced in collection of sample spectra.  Thus guidelines on frequency of reference 

measurements need to be established for a given instrument/application/environment to 

ensure and maintain optimal system performance.  

The objective of the current study was to document the spectral variation of quartz 

halogen lamps with respect to elapsed time from power up and to environmental 

temperature, and the effect of environmental temperature on front end electronics (FEE) 

and detector in terms of readout, to aid in the development of guidelines to enhance 

predictive model performance. Our work is focussed on the application of SWNIRS to 

internal quality of fruit, so this study is framed by work with a spectrometer system and 

data set relevant to that application. 

3.2 Materials and Methods 

3.2.1 Equipment 

The spectrometric system comprised a light source constructed from a 100 W quartz 

tungsten halogen lamp with the filament at the focal point of a parabolic reflector to 

produce a collimated beam of light, and an optical probe accepting light to the detector, 

located in the centre of this light beam and thus creating a shadow on the viewed 

sample97. This configuration enforces an interactance optical geometry.  Zeiss MMS1 

NIR Enhanced (Carl Zeiss GmBH, Jena, Germany) spectrometers were interfaced with 

computers via 16-bit tec5 PD-PCI01V1 A/D card (Tec5 AG Sensorik und Systemtechnik, 

Oberursel, Germany) and front end electronics box (Tec5 AG Sensorik und 

Systemtechnik, Oberursel, Germany), and used to acquire spectral data of light 

interacting with a white teflon tile which was illuminated by the light source. Spectral 

data were acquired using software incorporating LabView (National Instruments 
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Corporation, Austin, TX, USA) drivers supplied and developed specifically for this 

project. A stabilised 12V power supply (MAF Oceania, Bacchus Marsh, Vic.,  Australia) 

was used to minimise current fluctuations to the halogen lamps. A Contherm 5200HS 

environmental chamber (Contherm Scientific Limited, Petone, New Zealand) was used to 

control the environmental temperature of the components under assessment. Temperature 

inside the environmental box was monitored using a TSI TH-Calc 7425 

Thermohygrometer (TSI Inc, Shoreview, MN, USA)  whilst the temperature outside was 

monitored using a Vaisala HMI 31 Thermohygrometer (Vaisala, Helsinki, Finland). The 

relative humidity level of the enclosure was maintained at 50% for all experiments. 

This study assessed the performance of: 

(i) Twenty 12 V 100 W GY6.35 QTH Lamps, of which ten were Osram HLX64623 

(Osram A.G., Munich Germany) and ten were Sylvania 521995 (Sylvania 

Lighting Australasia Pty Ltd, Macquarie Park NSW, Australia.) with rated 

lifespans of 1500 and 3000 hours respectively18, 98;  

(ii) 3 FEE devices manufactured by tec5 (Oberursel, Germany), serial numbers (SN) 

023, 026 and 029,  

(iii) 6 Zeiss MMS1 NIR Enhanced (Carl Zeiss GmBH, Jena, Germany), SN 301726, 

301729, 023104, 023126, 053009 and 055074. 

Interactance spectra of peaches were collected using an in-line system (‘InSight’ MAF 

Oceania) operating at 7 fruit per second, in a commercial packhouse employing the 

optical configuration we described previously97. White and dark references were collected 

once only, at the beginning of the day.  Fruit total soluble solids (TSS) was assessed using 

an Atago digital refractometer of juice squeezed from a 2 cm diameter, 1 cm deep core of 

fruit taken at the point of spectral acquisition. 
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3.2.2 Experimental exercises: 

3.2.2.1 Exercise 1: Spectral variation during lamp ‘warm-up’ 

To assess spectral variation from ‘cold’ power up, spectral measurements were 

automatically acquired at ten second intervals over a period of 4 h after initial power up. 

The light source, parabolic reflector and Teflon tile were housed within an environmental 

chamber, at a temperature of 30 °C. The spectrometer (SN 301726), FEE (SN 023) and 

associated computer were located outside the environmental box, in an air conditioned 

laboratory at 22.5 ± 1 °C. This procedure was repeated three times for each of the 20 

lamps used in this study (60 trials in total).  

3.2.2.2 Exercise 2: Spectral variation over lamp lifetime  

To assess spectral variation over the life of the lamps, spectral measurements were 

automatically acquired at 10 min intervals over a period of 8 months of continual use, or 

until failure. Seven lamps were so monitored (3 Sylvania and 4 Osram). All components 

were housed within a laboratory under the same temperature conditions (22.5 ± 3 °C) 

during the working day, when the building air conditioning system was operating. 

3.2.2.3 Variation in components with environmental temperature 

To assess the effect of variation in environmental temperature on the NIRS system, each 

of the components being tested, lamp (including parabolic reflector), FEE or MMS1, was 

housed in the environmental chamber whilst the other components and computer were 

located outside the environmental box, in an air conditioned laboratory at 22.5 ± 1°C . 

The temperature in the enclosure was incrementally increased in 10 °C intervals between 

10 and 60 °C. The system was initially stabilised over 3 h, with a 1 h stabilisation 

between temperature intervals. 

3.2.3 Impact on predictive performance for a peach TSS model 

The impact of spectral variation recorded in the above the exercises were assessed in the 

context of effect on predictive performance measures. PLS predictive models for fruit 
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TSS were developed using a system employing MMS1 SN301738 and a population of 

101 peaches. 

For Exercise 1, the white reference spectra used in the calculation of (fruit) absorbance 

spectra was replaced with white reference data acquired during lamp testing. The average 

of the last ten white reference measurements collected over the four hour period was used 

(lamp output was considered stable at this extended time point), and a PLS model on fruit 

TSS developed.  The model was used to predict TSS of data sets in which, iteratively, 

each white tile measurement taken over the 4 h period was used as the white reference for 

calculation of the 101 fruit absorbance spectra.  This exercise was repeated using white 

reference spectra calculated as the average of three, six, ten and twenty sequential 

measurements.  

This analysis was repeated for the Exercise 2, using white tile measurements taken at 10 

minute intervals over the life of the lamp (approx. 3000 h) as white references.  The 

analysis was again repeated for the third exercise, using an average of 10 white tile 

measurements acquired at a range of temperatures (10 to 60 °C at 10 °C intervals). The 

PLS predictive models were redeveloped using the white reference acquired with the 

lamp ambient temperature of 10 °C, and used for prediction on spectra redeveloped using 

as a reference the average of ten white tile measurements at each lamp ambient 

temperature setting.   

3.2.4 Chemometrics 

PLS regression models were developed using MATLab R2012b (MathWorks Inc., 

Natick, USA) with PLS toolbox 6.7 (Eigenvector Research Inc., Wenatchee, USA). The 

wavelength range used was 730-930 nm. Model performance was assessed in terms of 

calibration R2, root mean square error of cross validation (RMSECV) based on full cross 

validation, and the ratio of SD to RMSECV (SDR). Prediction performance was assessed 

in terms of root mean square error of prediction (RMSEP) and bias corrected RMSEP 

(SEP-b). 

Bias can be calculated as: 

2 2
bbias RMSEP SEP      Eqn 3.2 
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When the white reference used for calculation of absorbance for a set of spectra is 

changed, the effect on a PLS regression model prediction will be to change the bias of the 

model, with no effect on SEP-b.  This bias could be calculated by multiplying the second 

derivative of the absorbance spectrum of the new white tile measurement (using the 

original white measurement as reference) by the coefficients of the model.  However, 

RMSEP data is presented, with the minimum RMSEP in the plots being equivalent to that 

of the original model, to illustrate the importance of the error to the model prediction. 

3.3 Results and Discussion 

3.3.1 Stonefruit TSS PLS regression models 

The population (n=101) of fruit used had a mean TSS of 9.71 and SD 0.619 %w/v.  The 

PLS regression models developed on the spectra as received from the in-line grading unit 

achieved a root mean square error of calibration (RMSEC) of 0.347, RMSECV of 0.423 

%TSS and Rcv
2 of 0.966. 

3.3.2 Spectral variation during lamp ‘warm-up’ 

Following lamp power-up, spectral intensity decreased across all wavelengths, entering a 

plateau phase after approximately 40 min (Figure 3.2).   
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Figure 3.2. Graph of spectrometer output for three wavelengths (810, 840, 863 nm 

represented by upper, middle and lower lines, respectively) for a QTH lamp output 

over a four hour period from cold start-up (data shown for an example lamp, of 20 

lamps trialled). 

To test the impact of reference averaging on the predictive performance, white references 

were averaged over three, six, ten and twenty sequential measurements. The variation in 

RMSEP values with use of a single white reference were well above the RMSECV for the 

model (Figure 3.3 and Figure 3.4). For all subsequent analysis, an average of 10 white 

references was used (conforming to the protocol used in the InSight on-line grading 

system). 

 

Figure 3.3. RMSEP variability, assessed as a SD (% TSS) (over the four hour trial), 

as a function of number of white reference spectra averaged before use in 

calculation of absorbance of the fruit data set. 
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Figure 3.4. PLS regression model prediction statistics (RMSEP, % TSS) based on 

use of white reference data collected at various times over 4 h from lamp power up 

for the representative case of data from Osram Lamp J Trial 1.  The top panel 

represents use of individual spectra in the absorbance calculation, while the bottom 

panel represents use of a running average of 10 spectra. 

The effect of the change in lamp spectral quality in terms of predictive performances of 

the calibration models were assessed for the 60 trials.  In most cases, there was no 

improvement in RMSEP after the initial 10 s measurement following start up (example 

Slyvania lamp, Figure 3.4 and example used Osram lamp, Figure 3.5). The exceptions 

were four of the Osram lamps and three of the Sylvania lamps, which displayed 

improvements in RMSEP after an initial warm up period, but only on their first trial 

(Figure 3.5). This result was interpreted as evidence of lamps requiring an initial “burn 

in” period to achieve to achieve the same spectral quality. The length of the “burn in” 

period was not consistent across the seven lamps, varying from 20 to 220 min.     
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Figure 3.5. PLS regression model prediction statistics (RMSEP, % TSS) based on 

use of (average of ten) spectra collected at various times over 4 h from lamp power-

up as white reference data.  Data from Sylvania lamp G is displayed.  The top panel 

represents a 4 h period involving power up of the unused bulb, while the bottom 

panel represents a 4 h period after 4 h of lamp use. 

The performance of each lamp and manufacturer was compared using the mean RMSEP 

of relative reconstructed prediction sets. There was no statistically significant difference 

(at α=0.10) between lamps of a given type, or between lamp types (analysis of variance, 

data not shown).   
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3.3.3 Spectral variation over lamp lifetime  

Lamp output was remarkably stable until filament breakage, although a clear diurnal 

cycle linked to the building’s air-conditioning was obvious (Figure 3.6). Some lamps 

showed no ageing apparent in spectra through to filament breakage, while others 

demonstrated change in the last minutes to hours of lamp life (as in the example shown in 

Figure 3.6). During this end-of-life period, the increase in lamp intensity was greater at 

shorter wavelengths (Figure 3.7), but there was no effect on RMSEP values. Of the seven 

lamps trialled, one lamp lasted only for approximately 520 h, while all others outlasted 

the manufacturers’ specifications of 1500 and 3000 h (Osram and Slyvania, respectively). 

 

 

Figure 3.6. Spectral intensity of a lamp (OSRAM G) at 720 nm in the month ending 

in lamp failure, showing the diurnal cycle of the laboratory airconditioning (note 

weekend periods are not airconditioned) and the increase in spectral intensity before 

the filament breaks. 
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Figure 3.7. Spectral intensity (ADC) recorded of a white tile, with increasing lamp 

(OSRAM G) age, as a difference (top panel) and as percentage (bottom panel), 

recorded from spectra at 4 hours from power on. 

The effect of lamp age across 90 days (2000 h) on regression model prediction varied 

greatly across the 60 trials, demonstrating lamp individuality (Figure 3.8). Some lamps 

were quite stable over the period, others showed instability.  
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Figure 3.8. Plots showing model performance (as RMSEP, % TSS) using white 

references taken during lamp aging for Osram Lamp J (bottom) and G (top) and 

Sylvania Lamp A (middle). 

3.3.4 Variation in components with environmental temperature 

3.3.4.1 Lamp variation 

The spectral output of the QTH lamps decreased as ambient temperature increased, 

consistent with the observed diurnal cycle of but with little differential variation over the 

wavelength range 720 - 970 nm (the range used in the Brix PLS model) (Figure 3.9). At 

800 nm, a 4% decrease in spectral emittance was observed over the 50°C temperature 

range.  
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Figure 3.9. Spectral intensity (ADC) recorded of a white tile, with increasing 

ambient temperature of the lamp, presented as a difference spectrum from spectra 

recorded at an ambient temperature of 10 °C (A) and as percentage of spectra 

recorded at an ambient temperature of 10 °C (B). Results are shown for a single 

lamp (Osram E), but were typical of 60 trials.  
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In contrast, a 11.1% increase in spectral emittance at 800 nm is expected from a 50°C 

temperature increase based on blackbody behaviour (from Eqn 3.1). From Plank’s 

radiation law (Eqn 3.1), the change in spectral intensity at 2900K for 800 nm is calculated 

to be 0.22% K-1. However, an increase in filament temperature would also cause an 

increase in resistivity of the filament, which varies via a resistivity coefficient, α, for the 

given conductor94 given by. 

R
T

R


       Eqn 3.3 

where R is the resistivity and ΔT is the change in temperature. For tungsten, α is 0.0045 

ΩK-1.94 Thus a 50K increase would result in a 22.5% increase in resistivity, which gives a 

corresponding drop in power output.  

It cannot, however, be assumed that the filament temperature and ambient temperature are 

linearly correlated during lamp operation. Solving for a 4% decrease in counts given both 

the change in resistivity and blackbody behaviour gives an estimate of lamp filament 

temperature - approximately an 18 °K increase in filament temperature for the 50 °K 

ambient temperature increase.  

As ambient temperature was increased, an absorption feature at 940 nm, also increased 

(Figure 3.9).  This feature is interpreted as a water vapour absorption feature. Relative 

humidity was held constant at 50% across the temperature conditions, such that water 

vapour pressure will have increased from 4.69 to 60.68 g/m3 at 10 to 60°C, respectively 
99, throughout the 15 cm pathlength of the experimental set up. Pure water has many 

absorption peaks in the 934-952 nm range 100, due to the rotational-vibrational transitions 

of the hydrogen bonds, but the spectrometer wavelength resolution (FWHM of approx. 10 

nm) results in an apparent single peak centred at 940 nm. 

To assess the impact of change in lamp ambient temperature on in-line assessment of 

fruit, TSS model predictions were calculated by replacing white tile reference 

measurements, as in the previous exercises. The PLS predictive models were redeveloped 

using the new white reference acquired with the lamp ambient temperature of 10 °C, and 

used for prediction on spectra redeveloped using the white reference at each lamp 

ambient temperature setting.  The average of ten measurements taken at each temperature 

setting was used.  
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Change in lamp temperature had little effect on RMSEP or bias values (Table 3.1) and 

indeed the observed variation in RMSEP and bias values was within that observed 

associated with lamp variation with time (Exercise 2). The lack of an effect resulting from 

changes in lamp spectral output with ambient temperature is ascribed to the second 

derivative absorbance pre-treatment, and a temperature impact on spectral intensity, but 

not quality. 

Table 3.1. Typical prediction statistics for a model based on reference spectra 

collected at 10 oC, used in prediction of a population with references at different 

temperatures, where temperature was varied of either (A) lamp, (B) FEE or (C) 

MMS1 ambient temperature.  The calibration model possessed an RMSEC of 0.347 

%TSS. 

  Lamp ambient temperature increase (oC) 
  10 20 30 40 50 
RMSEP 0.350 0.347 0.375 0.415 0.362 
Bias 0.048 0.000 -0.143 -0.227 -0.103 
  FEE ambient temperature increase (oC) 
  10 20 30 40 50 
RMSEP 0.368 0.383 0.373 0.367 0.363 
Bias 0.124 0.162 0.137 0.120 0.106 
   MMS1 ambient temperature Increase (oC) 
  10 20 30 40 50 
RMSEP 0.415 0.674 0.969 1.581 2.467 
Bias 0.228 0.578 0.904 1.54 2.44 

 
 

3.3.4.2 FEE and spectrometer temperature variation 

The same procedure was repeated for variation in readout with changes in FEE 

temperature (Figure 3.10). Again, variation in RMSEP values was consistent with that 

observed associated with lamp variation with time, and the lack of impact was ascribed to 

the use of a second derivative absorbance pre-treatment, and impact on spectral intensity, 

but not quality. 
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Figure 3.10. Spectral intensity (ADC) recorded of a white tile, with increasing 

ambient temperature of the FEE, as a difference spectrum from spectra recorded at 

an ambient temperature of 10 °C (A) and as percentage of spectra recorded at an 

ambient temperature of 10 °C  (B).   Results are shown for a single lamp, but were 

typical of 9 trials.   

The procedure was repeated for variation in readout with changes in MMS1 temperature. 

In all trials of all MMS1 units, RMSEP increased with temperature of spectrometer, albeit 

by differing amounts. For reasons that require further investigation, the bias and thus 

RMSEP values for some units became significantly higher after only a 10 °C increase, 
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whilst for other units the change was minimal for the first 30 °C increase.  In the example 

given (Figure 3.11), change in the 730 – 930 nm region used in the Brix model was 

relatively small. Thus the temperature at which a model fails (e.g. RMSEP > 1% TSS) is 

unit dependent, for reasons that require further investigation. 

 

Figure 3.11. Spectral intensity (ADC) recorded of a white tile, with increasing 

ambient temperature of the MMS1 spectrometer, as a difference spectrum from 

spectra recorded at an ambient temperature of 10 °C (A) and as percentage of 

spectra recorded at an ambient temperature of 10 °C  (B).   Results are shown for a 

single spectrometer, but were typical of 18 trials.    
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3.4 Conclusion 

Lamp output was spectrally stable within the time of the first measurement (10 s), 

although total illumination was not stable until approximately 40 min from start-up. Thus 

performance of the predictive models based on second derivative of absorbance data was 

not impacted by lamp warm-up time. Noise on measurement associated with use of a 

single white reference resulted in a mean increase in RMSEP as high as 0.22 and 

individual increases high as 0.82. Averages of white reference measurements 

significantly improved performance. When predictive models were developed using 

second derivative absorbance data and averaged (10) white references, there was no 

statistically significant impact in RMSEPs on time of lamp warm up (after 10s), even 

during the last hours of lamp life. 

Spectral variation resulting from changes of NIRS system components (lamp and FEE) 

also affected lamp output quantity rather than quality and thus did not affect the 

predictive performance due to the second derivative absorbance pre-treatment.  

Some lamps displayed start-up output characteristics on their first use, which were not 

repeated in subsequent trials. This result indicates the need for a short lamp ‘burn in’ 

period.   
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4 LEDs as light sources for spectroscopy of 

fruit - sensitivity to temperature 2 

Abstract 

Understanding of LED lamp behaviour is essential to support the use of these devices as 

illumination sources in NIR spectroscopy. Spectral variation in LED (of each of 9 peak 

wavelengths : 680, 700, 720, 735, 760, 780, 850, 880 and 940 nm) output was assessed 

with respect to elapsed time from power up and variation in environmental temperature 

from 0 to 60 °C, in 10°C intervals. Initial LED power-up to full intensity occurred within 

a measurement cycle (12 ms), then decreased exponentially over approximately 6 min, a 

result ascribed to an increase in junction temperature as current is passed through the 

LED. Some LEDs displayed start-up output characteristics on their first use, which were 

not repeated in subsequent trials. This result indicates the need for a short lamp ‘burn in’ 

period, which was less than 24 h in all cases. Increase in ambient temperature produced a 

logarithmic decrease in overall intensity of the LEDs and a linear shift to longer 

wavelength of the peak emission. This behaviour is consistent with the observed decrease 

in the IAD Index (A670 – A720) with increased ambient temperature, as measured by an 

instrument based on LED illumination (DA Meter). With the shift in wavelength with 

temperature being predictable, instruments should be designed to accommodate for the 

effect of temperature.  

  

                                                 

2 This chapter has been submitted under this title to the Journal of Near infrared Spectroscopy, March 2016 
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4.1 Introduction 

The non-invasive assessment of parameters relevant to fruit quality typically involves use 

of visible wavelengths pertinent to the assessment of pigment (e.g. chlorophyll, 

carotenoid, anthocyanin) levels, and SWNIR wavelengths which allow for relatively long 

path-lengths through fruit while carrying information on attributes such as total soluble 

solid content (TSS) and dry matter content (DM). The repeatability of a NIR 

measurement is impacted by the stability of the illumination source and the detector 

system, which are in turn impacted by factors such as power stability and ambient 

temperature. 

Light sources for NIRS can be divided into two groups, broadband (thermal) and 

narrowband (non-thermal)8. Quartz tungsten halogen (QTH) lamps are excellent thermal 

broadband excitation light sources in terms of their lifetime and stability19, 101. 

Unfortunately, they can lead to strong heating of the sample, affecting both NIR spectra 

and the physico-chemical stability of the sample material102. Ambient temperature also 

impacts QTH lamp output 19. Non-thermal sources emit radiation over a much narrower 

range of wavelengths, down to individual lines, and thus consume far less power than a 

QTH for a given intensity of a specified wavelength. These emitters include discharge 

lamps, light-emitting diodes (LEDs), laser diodes and lasers, and can have a feedback 

loop on current/voltage, under photodetector control. Laser diodes and lasers emit over a 

range of wavelengths as narrow as 0.18 nm FWHM103, eliminating the need for pre-

filtering for most applications. LEDs emit a wider range of wavelengths, typically 20-50 

nm FWHM, and an interference filter can be used to limit radiation to a suitable 

bandwidth. Alternatively, LEDs of different wavelength maxima can be combined to 

make a broadband source over a given wavelength range (e.g. at equal 50 nm steps, 8 

emitters would be required to cover the SWNIR, 700-1100 nm). LEDs can achieve 

outputs of up to 100 lumens per watt and can survive for >100,000 hours17. LEDs can 

also be pulsed for milliseconds to produce higher light output, which is more energy 

efficient and allow for greater heat dissipation. 

Materials used in LED production have direct band gaps, with energy levels 

corresponding to bands in the near-infrared, visible, or near-ultraviolet, with light 

produced from radiative recombination. The band gap energy depends on the materials 
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forming the p-n junction, i.e. the semiconductor material and the doping elements. The 

approximate energies of the carriers correspond to the upper energy level of the valence 

band and the lowest energy of the conduction band. The wavelength (λ) of the light 

emitted from an LED is approximated according to17  

bg

hc

E
       Eqn 4.1 

where h is Plank’s constant, c is the velocity of light and Ebg is the band gap energy.  

Semiconductor materials commonly used in LEDs include AlInGaP (Aluminium–

Gallium–Indium–Phosphide), AlGaAs (Aluminium–Gallium–Arsenide), GaAs (Gallium–

Arsenide), InGaN (Indium–Gallium–Nitrogen) and InGaAsP (Indium–Gallium–

Arsenide–Phosphide). There are few manufacturers of SWNIR wavelength LEDs, but 

these manufacturers offer LEDs with peak wavelength outputs available at approximately 

every 10 nm from 700 – 830, then 850, 870, 880, 910, 940, 970, 980, 990, 1020, 1030, 

1050, 1070, 1200, 1300, 1450, 1550, and 1600 nm. 

LEDs, however, have the disadvantage of being sensitive to ambient temperature in terms 

of intensity and peak emission. With any LED, temperature increases give relative 

intensity decreases and shifts to longer wavelengths (“red-shifts”) in peak emission. Near 

room temperature, LED emission intensity, I, is frequently described as104  

1
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T

T
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
      Eqn 4.2 

where I300K is the intensity at 300 K, T is the ambient temperature (in kelvin) and T1 is the 

characteristic temperature specific to each LED. The temperature dependence of the 

energy gap is expressed by the Varshni formula105 
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    Eqn 4.3 

where Eg0 is the band gap energy at T=0 K, α and β are fitting parameters characteristic of 

a given material, frequently called the Varshni parameters. Thus a change in band gap 

energy produces a change in peak emission according to Eqn 4.1, and therefore a change 

in temperature produces a change in the wavelength of peak emission.  
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For example, Ushio Epitex (Kyoto, Japan) specifications indicate ambient temperature 

changes between 20-60 °C will cause variations of LED intensity of between 10-28%, 

and shifts in peak wavelength of 8-10 nm, dependant on the band gap material22. 

Consistent with these specifications, Yu et al.106 reported an intensity decrease of 

approximately 10% as the ambient temperature was increased from 20 to 60 °C for a 1 W 

blue LED and Guo et al.107 reported an intensity decrease of 6 and 10-14% for blue and 

red LEDs, respectively, and an almost linear increase in peak wavelength emission. In 

these cases, the LEDs were driven at 350 mA and the increase in temperature was 

associated with a decrease in forward voltage. Chhajed et al.108 reported peak wavelength 

increases of approximately 0.05, 0.04, 0.03 and 0.16 nm/°C in UV, blue, green (all 

GaInN), and red (AlGaInP) LEDs respectively, when changing ambient temperature 

between 23 and 120 °C.  

Other factors in quality control of LEDs include batch variation at manufacture and burn 

in period.109 The final product step in LED manufacture involves optical characterisation 

(with these values often reported on manufacturer specification sheets), followed by 

sorting to ‘bins’. This measurement is typically undertaken approximately 20 ms after the 

LED is switched on, although the LED will not be thermally stabilised or fully ‘burnt 

in’.110  

‘Burn in’ refers to a period of instability in peak emission wavelength and intensity in the 

first period of use after manufacture. Modern high power LEDs have a relatively lengthy 

stabilisation period. Nägele110 documented an increase in intensity of approximately 10% 

over the first 1000 h, while most others, such as Chen et al.111, Narendran and Gu112 and 

Meneghesso et al.113 report decreases in intensity over time, with the amount dependant 

on the operating current. Variation between individual LEDs is also expected, even with 

units from the same manufacturer’s flux bin. Therefore users of these products are 

advised to perform their own characterisation under stable conditions appropriate for the 

intended use. 

There have been attempts to develop SWNIRS instrumentation based on LEDs as light 

sources, generally utilising one of two approaches: (i) use as a monochromatic source, 

with sequential activation of LEDs at discrete wavelengths and use of a single detector; 

and (ii) use as a broadband source, employing a series of LEDs with overlapping 

emission spectra, with use of a grating or other means to obtain monochromatic light. 
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However, given that the dependence of LED output on temperature is well known, 

surprisingly most reports fail to mention the effect of LED temperature on a spectroscopic 

application. For example, temperature was not considered in the reports by Gaião et al.23, 

Fonseca and Raimundo24 or Veras et al.25. 

Other developers have documented attempts to minimise temperature change.  Malenin et 

al.114 developed a 32 wavelength NIR LED-array comprised of surface-emitting LEDs 

centred at 850, 900, 935, 950 and 1020 nm, temperature stabilised with a Peltier element 

and thermistor. Control electronics sequentially drive the LED array, with light directed 

to a fixed grating monochromator positioned to give the required wavelength scale. The 

narrow band spectrum was then transmitted and detected by a single Si diode. As the unit 

aged, optical output decreased from 0 to 10% depending on the wavelength, but changes 

in wavelength scale were limited to ± 0.05 nm. 

Dasgupta et al.115 reviewed the use of LED based instruments for absorbance, 

fluorescence and spectrochemical measurements in planar flow-through cells, and 

suggested that thermal stability of the light output could be achieved using a resistor in 

combination with a negative temperature coefficient thermistor. To combat long-term 

output instability, it was suggested that the LED be driven with photometric feedback 

while maintaining the photosensor at constant temperature (e.g. using a temperature 

sensor and Peltier heating). The commercial Methanalyzer (Alpha-Omega Power 

Technologies LLC, Albuquerque, NM, USA) uses such a circuit. 

Many researches have attempted assessment of TSS or DM of fruit using measurement at 

only a few SWNIR wavelengths. Early work includes that of Norris116 and Kawano117. 

Long et al.118 reported R2 values of 0.91 %TSS for PLS (720-930 nm) and 0.52 %TSS for 

MLR models (at 869, 882, 905 and 915 nm) for assessment of melon tissue TSS.  More 

recently, Shafie et al.119 optimised a six-wavelength (650, 800, 815, 885, 920 and 930 

nm) MLR model for predicting kiwifruit dry matter, with results at least as accurate as 

PLS models (R2 value of 0.94 and RMSEP of 1.22 %TSS). MLR and PLS models were 

based on the same Zeiss MMS1 spectra. The temperature related drifts expected of LED 

sources were also simulated, with wavelength perturbations of up to ± 5 nm investigated. 

Fixed drift of as little as ±1 nm or random drift of 0.25 nm caused a relative percentage 

increase of approximately 3% in RMSEP values. This result is consistent with that of 

Hayes et al.19, who noted a wavelength shift of 1 nm resulted in an increase in bias 
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corrected SEP from 0.64 to 0.85 and a bias change of 4.2 %TSS for a PLS model 

prediction of stonefruit. 

Several instruments targeting fruit assessment have used LEDs as their light source, as 

follows, although no documentation of the effect of temperature on performance was 

found: 

Giovenzana et al.20 reported on an optical prototype system for rapid estimation of the 

ripening parameters (soluble sugar content, TSS, and titratable acidity) of white grape in 

the field. Reflectance measurements were made at four wavelengths (630, 690, 750 and 

850 nm) using AlInGaP and AlGaAs based LEDs (ELJseries, Roithner Lasertechnik 

GmbH, Austria). Silicon based photodiode detectors (IQ800 series, Roithner Lasertechnik 

GmbH, Austria) were used, one for each LED. Each LED was pared with a filter at the 

same wavelength to further improve SNR. The filter would act to maintain wavelength 

maximum of light reaching the sample, despite drift in LED spectral output with 

temperature. This system was reported to be only slightly less accurate in estimation of 

grape TSS and titratable acidity (TA) than that of a PLSR model developed using spectra 

collected with a vis/NIR spectrometer (QTH source and a CCD 2048 pixel detector ; Jazz, 

OceanOptics, USA operating over the range 400-1000 nm).  

The CP Pigment Analyzer 1101 (Control in applied Physiology, GbR, Falkensee, 

Brandenburg, Germany) is a commercially available instrument intended for use with 

fruit. It has an LED broadband light source and a Zeiss MMS1 unit as the dispersive 

element and detector, and has been used in assessment of fruit pigment content and 

TSS120 by researchers such as Praeger et al.121, Seifert et al.122 and Rutkowski et al.123.  

The DA Meter (Turoni, Italy) uses LEDs to produce light at 680 and 720 nm, sequentially 

activated.  The difference in absorbance at the two wavelengths is used as an index of 

chlorophyll content, and thus fruit maturity. An LED based handheld unit (‘Spectron’) 

was developed by Pellenc P/L (France) for assessment of grape bunch TSS, however the 

unit has not been commercially released.124 

The objective of the current study was to document the spectral variation of LEDs with 

respect to ambient temperature and to elapsed time from power up, to aid in the 

development of instrumentation based on use of LEDs. This study characterises the 
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temperature and power up response of LEDs appropriate for use in a fruit spectroscopic 

system. 

4.2 Materials and Methods 

4.2.1 Equipment 

Three SMB series High Power Top LEDs (Eptitex Inc. Japan) each of 9 peak 

wavelengths (680, 700, 720, 735, 760, 780, 850, 880 and 940 nm) were used.  The 940 

nm LED is GaAs based, whilst the rest are AlGaAs based. The units were powered by a 

Powertech MP-3086 Regulated Variable DC Laboratory Power Supply (Jaycar 

Electronics, Sydney, NSW, Australia), used to minimise current fluctuations to the LEDs. 

The current and voltage for each LED is given in Table 4.1, and was based on 

specification sheet information.  

Table 4.1. LED (Epitex) specifications, for operation at 25 °C for each of peak 

wavelength and FWHM, at the stated forward current (IF) used for specifications, 

and typical driven current and forward voltage used in normal operation.  

Model 
Peak Wavelength 
(nm) @ IF (mA) 

FWHM (nm) 
@ IF (mA) 

Typical driving  
IF (mA) V (V) 

SMB680-1100-I 680 (20) 25 (100) 500 2.4 
SMB700-1100 700 (20) 25 (500) 500 2.4 
SMB720R-1100 720 (100) 25 (100) 600 2.1 
SMB735-1100 735 (50) 25 (100) 600 1.9 
SMB760-1100 760 (50) 25 (100) 800 2.0 
SMB780-1100-I 780 (50) 25 (100) 800 2.0 
SMB850D-1100-02 850 (100) 20 (100) 1000 2.1 
SMB880-1100-I 880 (800) 50 (800) 800 1.7 
SMB940-1100-02-I 940 (50) 60 (100) 500 1.4 

 

A Contherm 5200HS environmental chamber (Contherm Scientific Limited, Petone, New 

Zealand) was used to control the environmental temperature of the components under 

assessment. Temperature inside the environmental box was monitored using a TSI TH-

Calc 7425 Thermohygrometer (TSI Inc, Shoreview, MN, USA), while the temperature 

outside was monitored using a Vaisala HMI 31 Thermohygrometer (Vaisala, Helsinki, 
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Finland). The relative humidity level of the enclosure was maintained at 50% for all 

experiments. 

Zeiss MMS1 NIR Enhanced (Carl Zeiss GmBH, Jena, Germany) spectrometers were 

interfaced with computers via 16-bit tec5 PD-PCI01V1 A/D card (Tec5 AG Sensorik und 

Systemtechnik, Oberursel, Germany) and front end electronics box (Tec5 AG Sensorik 

und Systemtechnik, Oberursel, Germany) to acquire spectral data of a TeflonTM (PFTE) 

tile illuminated by an LED. Spectral data were acquired using software incorporating 

LabView (National Instruments Corporation, Austin, TX, USA) drivers developed in-

house.  

4.2.2 Experimental exercises: 

4.2.2.1 Exercise 1 – Initial power up behaviour  

To assess spectral variation from ‘cold’ power up over a short period, spectral 

measurements were acquired at 12 ms intervals over a period of 6 min after initial power 

up. All components were maintained in an air conditioned laboratory at 23 ± 1 °C. 

4.2.2.2 Exercise 2 – Longer term power up behaviour 

To assess spectral variation from ‘cold’ power up over a longer period, spectral 

measurements were acquired at one second intervals over a period of 4 h after initial 

power up. LEDs were housed within an environmental chamber at 10 °C while the power 

supply, spectrometer (SN 301726), front end electronics (SN 023) and associated 

computer were located outside the environmental box in an air conditioned laboratory at 

23 ± 1 °C.  

4.2.2.3 Exercise 3 – Response to temperature 

To assess the effect of variation in environmental temperature on the LEDs, the 

temperature in the enclosure was incrementally increased in 10 °C intervals between 10 

and 60 °C, with a 1 h stabilisation between increments after the initial start-up period of 4 

h. These procedures were repeated three times for each of the LEDs used in this study (81 

trials in total). 
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4.2.2.4 Exercise 4 – Effect of environmental temperature on an LED based 

instrument (DA Meter) 

The IAD index of fruit maturation involves measurement of the absorbance difference 

between 670 and 720 nm.125 This is achieved in the 53500 DA Meter (T.R. Turoni srl, 

Forlì, Italy) utilising LED illumination. The DA Meter has a stated operating temperature 

range of 0 to 70 °C.126 To demonstrate the effect of temperature on LED output in context 

of a specific application, a DA Meter was housed within the environmental chamber, with 

temperature incrementally increased in 10 °C intervals between 0 and 60 °C as in 

Exercise 3. Spectra of LED output reflecting from a TeflonTM tile were acquired using a 

MMS1 spectrometer located outside the chamber.  DA Meter readings were acquired of 

two mango fruit at two locations as the instrument temperature was increased, with the 

fruit maintained and the meter referenced at 23 ± 1 °C. 

4.3 Results and Discussion 

4.3.1 Exercise 1 – Initial power up behaviour  

Initial LED power-up to full intensity occurred within a measurement cycle (12 ms). 

Spectral intensity then decreased exponentially over 6 min, but did not stabilise during 

this period (Figure 4.1 and Figure 4.2). This behaviour is ascribed to an increase in 

junction temperature as current is passed through the LED. A shift in peak intensity to 

longer wavelengths also occurred (Figure 4.1 and Figure 4.2), varying from 10 - 27 nm 

depending on the LED wavelength rating (data not shown). The time taken for junction 

temperature equilibration will depend on the forward current driving the LED, and thus 

the maximum temperature reached. The spectral change did not stabilise during the 6 min 

period, suggesting junction temperature was not equilibrated in this period. 
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Figure 4.1. Spectral output (ADCC) over the first second from power-on of a 

SMB880-1100-I LED (representative of three replicate trials of three LEDs) 

operated at an ambient temperature of 23 °C. Spectra were acquired at 12 ms 

intervals. Arrow represents direction of time. 
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Figure 4.2. Intensity (ADCC) at 880 nm and maximum intensity at any wavelength 

(top panel) and the shift in peak wavelength emitted (bottom) of the SMB880-1100-I 

LED over a 6 min period from power-up (representative of three replicate trials of 

three LEDs). Power was turned on at t = 0. 

4.3.2 Exercise 2 – Longer term power up behaviour 

In the initial minutes following LED power-up, intensity decreased and the wavelength of 

peak intensity was red-shifted (Figure 4.3, bottom panel), as seen with the shorter trials in 

Exercise 1. This shift is consistent with an increase in junction temperature during 

operation. The peak wavelength stabilised at approximately this time (6 min) in all trials 

involving previously used LEDs, varying by less than 0.5 nm thereafter, if environmental 

temperature was constant (e.g. variation was noted during cabinet defrost cycles).   
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Figure 4.3. The effect of environmental temperature (top panel) on SMB720R-1100 

LED intensity (ADCC) (middle panel) and the wavelength of maximum intensity 

(bottom panel), monitored over a four hour period. Black and red lines represent 

sequential trials of one LED, being the maximum intensity at any wavelength. Green 

and blue lines are intensity at 720 nm for the same two trials.  This was the first use 

(power-up) of these units. Arrows mark initial readings (t = 0, ie at power up). The 

sharp feature (at approx. 180 min) was associated with a cabinet defrost cycle event.  

The intensity difference between the two trials was due to slight differences in the 

LED to fibre optic input alignment. 
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However of the 27 LEDs used, 13 demonstrated a ‘burn in’ behaviour on their first use. 

In these cases emission intensity was not stabilised within 240 min of initial power up, 

and five did not reach a stable emission over this period in their second use, although the 

intensity difference was much smaller (<2.5 %). In the example provided (Figure 4.3, first 

trial), emission intensity increase was superimposed on the shifts due to change in 

environmental temperature (ie. intensity was higher on return to environmental 

temperature, post 240 min from power on; black and green lines on Figure 4.3). The 

‘burn in’ period required to achieve output stability varied between individual LEDs but 

was less than 24 h in all cases.  

4.3.3 Exercise 3 – Response to temperature 

An increase in environmental temperature produced a decrease in overall intensity of the 

LEDs and a shift to longer wavelength of the peak emission (Table 4.2, Figure 4.3, Figure 

4.4, Figure 4.5), ranging from 0.20 to 0.33 nm depending on LED type (Table 4.3). This 

shift was consistent with the Epitex LED specification for temperature response of 

approximately 0.2 nm/°C.  

 

Figure 4.4. Spectral output (ADCC) of a SMB720R-1100 LED with increase in 

environmental temperature from 10 to 60 °C. Arrow indicates direction of 

increasing temperature. 
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Figure 4.5. Wavelength of peak emission at a range of environmental temperatures 

for a SMB720R-1100 LED.  

LED output intensity decreased with increase in temperature (Table 4.2), with the 

relationship described slightly better by a logarithmic than a linear relationship (Figure 

4.6). 

Table 4.2.  Wavelength of peak emission and relative intensity of emission, for a 940 

nm LED at a range of environmental temperatures. Mean and standard deviation of 

three repeated trials is presented.  

Temperature (oC) Wavelength (nm) σ Relative Intensity (%) σ 
10 938.9 0.25 100.0 0 
20 942.7 0.35 90.7 0.08 
30 946.5 0.25 81.6 0.18 
40 950.3 0.25 74.1 0.21 
50 952.7 0.30 67.3 0.17 
60 955.6 0.35 61.1 0.02 
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Table 4.3. Increase in peak wavelength position per degree environmental 

temperature increase with a linear fit for 9 LED types. 

LED Peak 
Wavelength (nm) Peak shift (nm/°C) 

680 0.206 
700 0.204 
720 0.210 
735 0.242 
760 0.234 
780 0.253 
850 0.265 
880 0.259 
940 0.333 

 

 

Figure 4.6. Spectral intensity relative to that at 10 °C with change in environmental 

temperature, presented on a linear (top panel) and a logarithm (bottom panel) scale 

for intensity. Data presented for a SMB940-1100-02-I LED. 
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4.3.4 Exercise 4 – Effect of environmental temperature on an 

LED based instrument (DA Meter) 

The DA instrument has three LEDs each of two wavelengths.  The two sets pulse 

alternately, each for a period of approximately 115 ms, during which time a slight 

increase in the peak wavelength ~ 0.5 nm occurred as the LED warmed up (data not 

shown). There was 2 - 3 nm difference in peak wavelength between the individual LEDs 

of each set (data not shown). As expected, as instrument temperature was increased, the 

peak wavelength shifted to longer wavelengths (Figure 4.7), although the shift was 

slightly smaller ~0.18 nm/°C than noted in Exercise 3. Temperature increase was also 

associated with a decrease in the IAD Index readings of the instrument (Figure 4.8).   

 

Figure 4.7. Wavelength of peak emission at a range of environmental temperatures 

for the DA Meter. Mean standard deviation at each wavelength was 0.27 and 0.21 

for the 670 and 720 nm wavelengths respectively. 
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Figure 4.8. DA Meter IAD Index measurement of two mango fruits (1, 2) at two 

positions (A, B) with the instrument at various operating temperatures. Fruit 

temperature was constant at 23 °C.  

In the IAD index, the 670 nm reading is associated with chlorophyll while 720 nm is used 

for normalisation. In an interactance spectra of mango fruit, the chlorophyll peak can be 

centred at between 668 and 676 nm, dependent on sample (example spectrum given, 

Figure 4.9),. The peak is narrow, with 16 – 31 nm between peak maximum and the red 

edge, that is, maximum derivative of right shoulder of peak, at 691 – 701 (Figure 4.9).  
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Figure 4.9. Absorbance spectra of a mango fruit measured with an MMS1 

spectrometer in an interactance mode. 

The IAD index can be calculated from the interactance spectra of mango fruit (as in Figure 

4.9), based on apparent absorbance at 670 and 720 nm. A shift in of LED operating 

temperature of 10 °C invokes a shift of approximately 2 nm in peak wavelength, e.g. from 

670 to 672 nm and 720 to 722 nm. The effect of such a shift on the IAD index was 

calculated based on spectra of 60 mango fruits, incrementing the wavelengths used for the 

index from 670 and 720 nm by up to 12 nm (representing approximately a 0 - 60 °C 

change in LED temperature). Under these conditions, the calculated index changed by 

0.02 to 0.16 units (Figure 4.10).  

The pattern of change of the calculated IAD index with increased temperature/wavelength 

was different to that observed with the DA Meter. Of course the calculated index is based 

only on the difference between A670 and A720 using the Zeiss MMS1 spectrometer, which 

has a FWHM of approximately 10 nm. The DA Meter LEDs have approximately 50 nm 

FWHM wide peaks and thus in practice, IAD measurements for 670 and 720 nm will be 

based on overlapping wavelengths. Intensity change with temperature will also impact the 

estimation of IAD, unless the unit is referenced at the temperature prevailing during the 

sample scan. 
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Figure 4.10 Change in calculated IAD index of several mangos with shift in 

wavelength compared (A670+λ – A720+λ), taken from full spectrum absorbance 

measurements. A 10°C increase in temperature gives approximately a 2 nm increase 

in peak wavelength. Results shown for a sample from 60 mango fruits.  
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4.4 Implications to instrument design 

LEDs that are pulsed rather than operated constantly will also show spectral intensity and 

wavelength shifts similar to the above exercise in start up and as ambient temperature 

changes. The time taken for temperature equilibration will depend on the forward current, 

pulsing cycle and duration time. Change in LED intensity and spectral profile, as caused 

by changes in temperature due to LED warm up or environmental temperature, will 

obviously impact the performance of a spectroscopic system employing these units as an 

illumination source.   

Several measures could be implemented to mitigate such effects. In an ‘avoidance’ 

strategy, as Dasgupta et al.115 suggested, stability of the light output could be achieved 

using a resistor in combination with a negative temperature coefficient thermistor, with 

photometric feedback. For continuously operating instruments, a warm-up time should be 

established to ensure wavelength and intensity stability. An alternate avoidance strategy 

involves the use of interference filters to maintain spectral bandwidth, however intensity 

changes would still need to be accommodated, either mathematically or via re-

referencing. In an ‘adaptation’ strategy, change in illumination intensity and spectral 

quality could be mitigated by re-referencing. Alternately, the observed changes in peak 

wavelength and relative intensity are explicable in terms of forward current and 

temperature and thus predictable if current and temperature are known. Change in 

illumination intensity and spectral quality could thus be addressed by modelling, given 

knowledge of current and temperature.  
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5 Characterisation of an interactance probe 

configuration in terms of the ratio of specular 

and diffusely reflected radiation 3 

Abstract 

The polarisation properties of light were used to determine the effect of light polarisation 

on detector response, and quantify the ratio of specular to diffuse radiation of the light 

collected by a ‘shadow probe’ geometry. The spectrometer in use was demonstrated to 

possess a grating bias of 1.85% at 800 nm, for vertically polarised light relative to 

horizontally polarised light. 

Using a polariser on the light source as well on the detector input, spectra of an apple, and 

subsequently a kiwi fruit, were acquired with the sample incrementally moved to 150 mm 

from the probe. At probe to sample distances < 30 mm, the ratio of specular to diffuse 

radiation was < 3%, with slightly higher values noted for kiwifruit compared to apple. 

This is consistent with an effect of kiwi skin hairs on light scattering. The specular 

component increased rapidly at greater distances due to loss of the shadowing effect. At 

probe-sample distances >70 mm, a reduced specular component was demonstrated in 

apple fruit compared to kiwi fruit.  This result is consistent with a higher component of 

diffuse reflection for apple than for kiwi fruit. 

  

                                                 

3 This chapter has been submitted under this title to the Journal of Near infrared Spectroscopy, March 2016 
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5.1 Introduction 

The use of near infrared spectroscopy with solids involves either diffuse reflectance, 

partial transmission (interactance) or full transmission geometries. For determination of 

the properties of a solid sample it is desirable to minimise the contribution of specular 

reflection compared to diffusely scattered light to the determinate. For example, for 

determination of total soluble solids (TSS) of intact fruit using near infrared spectroscopy 

(NIRS), a partial transmission system yields a better result than a reflectance system. The 

so-called ‘shadow probe’ interactance geometry as described by Greensill et al.97 consists 

of a light collection assembly connected to a VIS-NIR spectrometer, situated directly in 

front of a parabolic lamp reflector (Figure 5.1), resulting in a well-defined shadow just in 

front of the probe. Light incident on the sample is diffusely scattered, with a portion of 

the radiation re-emerging in the probe shadow collected for measurement.  The probe 

contains a convex lens, such that only parallel rays emerging from the sample at normal 

to the lens diameter will be focussed to the detector fibre optic, thus the observation area 

of the probe is constant for different probe-fruit distances. The InSight I, InSight II-RH 

(MAF Oceania, Bacchus Marsh, Vic, Australia), Nirvana (Integrated Spectronics, 

Sydney, Australia) and F750 (Felix Instruments, Camas, WA, USA) employ this 

configuration in measurement of internal attributes of intact fruit (e.g. as described by 

Walsh et al.127).  

Ideally a parabolic lamp reflector is used, although a true collimated beam is not 

achievable due to the non-point source, that is, the finite dimensions of the QTH filament 

(Figure 5.1). Thus, as the image plane moves away from the probe, the projected shadow 

deteriorates and this area is filled with light directly from the lamp source. The scattered 

light measured by the probe is therefore a convolution of directly reflected light (specular 

reflection) from the sample’s surface, and diffusely scattered light from scattering centres 

from within the sample, and emitted within the observation area of the probe. The 

specular component should be minimised with respect to the diffusely scattered 

component, since only the latter component contains spectral information about the 

internal composition of the sample. This aim is true for any optical geometry employed in 

a spectroscopic system. For example, in a typical reflectance geometry, the incident light 

beam is positioned at a 45o angle to the detector and the sample, to minimise specular 

reflection reaching the detector. In another approach, a fluid of a refractive index 
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matching human tissue is used to couple the tissue to the analyser, resulting in less 

internal reflection and a greater contribution of diffuse than specular reflection to the 

detected signal128. 

 

Figure 5.1. Shadow probe configuration, consisting of a parabolic reflector with 

lamp, projecting light past an optical probe which casts a shadow onto the sample 

(fruit).  Light received by the optical probe, be that specular reflection or diffusely 

scattered light emerging from the sample, is passed to the spectrometer. The probe 

entrance contains a double convex lens and the probe body contains a mirror to 

direct parallel incident light onto the detector fibre optic. For this experiment 

(exercise 3), polariser and analyser elements were added.  

Transmission spectroscopy systems are routinely characterised in terms of stray light 

detected, which is effectively a measure of light that has not interacted with the sample129. 

However, spectroscopic systems employing reflectance and interactance optical 

geometries are rarely characterised in terms of the proportion of specular reflection 

detected, although attempts are made to reduce the contribution of specular relative to 

diffuse. Specular reflections also degrade image quality and considerable knowledge 

exists on methods to physically (e.g. using polarising filters130) or mathematically131 
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remove its influence. Incandescent, fluorescent, LED, and many laser light sources are 

randomly polarised.  

A linear polariser will allow only a linearly polarised component of such radiation to 

pass, and a polariser analyser (a second linear polariser) can then be used to either 

transmit or absorb this light. The fraction of incident polarised light transmitted through a 

polariser analyser equates to cos2θ, where θ is the angle between the polarised light and 

the transmission axis of the polariser analyser (Law of Malus)14.   

When a sample is illuminated with polarised light, specular reflection from the sample 

will maintain its polarisation, while diffusely reflected light will lose its polarisation. 

Thus if an analyser is placed in front of the shadow probe optic, and the polariser-

analyser combination appropriately aligned, specular reflection together with a 

component of diffuse reflection will pass through the analyser. If the analyser is crossed 

with respect to the polariser, the specular reflection will be absorbed and a small 

component of diffuse reflection will pass. Measurements using this optical filtering 

system allow estimation of the ratio of specular and diffusely reflected light received. In a 

parallel exercise, but without estimation of relative specular and diffuse components, 

Backman et al.132 report on the use of polarising filters to restrict measurement to diffuse 

reflections on measurement of a highly scattering medium (human tissue). 

One further consideration is the effect of light polarisation on spectrometer response.  

Slits, mirrors and gratings all introduce an element of polarisation in a spectrometer, but 

the effect is dominated by the influence of the grating.26 Further, the efficiency of a 

grating also depends on the polarisation of the incident light (as well as blaze angle and 

grating period), although several design features can be used to minimise this effect28. S-

polarised light, where the direction of the grating grooves and the oscillation direction of 

the electric field vectors is perpendicular, exhibits a higher diffraction efficiency at longer 

wavelengths then P-polarised light, where the direction of the grating grooves and the 

oscillation direction of the electric field vectors is parallel, for which diffraction 

efficiency peaks at the blaze wavelength and decreases with a smooth curve.29 The 

efficiency difference between S and P polarised light thus depends upon a range of 

factors, and range from very little to over 80%26. It is, however, easily determined 

experimentally. 
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In this study, the polarisation properties of light were used to quantify the ratio of 

specular to diffuse radiation of the light collected by a shadow probe geometry with 

increase in distance between probe and sample surface. 

5.2 Materials and Methods   

5.2.1 Equipment 

The shadow probe assembly from an InSight I, InSight II-RH (MAF Oceania, Bacchus 

Marsh, Vic, Australia) and F750 (Felix Instruments, Camas, WA, USA), henceforth 

referred to as probes A, B and C respectively, were comprised of a light source (quartz 

tungsten halogen lamp, QTH) and reflector to produce a collimated beam of light, and an 

optical probe, accepting light to the detector, located in the centre of this light beam and 

thus creating a shadow on the viewed sample97, of dimensions as shown in Table 1. For 

the InSight assemblies, Zeiss MMS1 NIR Enhanced (Carl Zeiss GmBH, Jena, Germany) 

spectrometers were interfaced with computers via 16-bit tec5 PD-PCI01V1 A/D card 

(Tec5 AG Sensorik und Systemtechnik, Oberursel, Germany) and front end electronics 

box (Tec5 AG Sensorik und Systemtechnik, Oberursel, Germany), and used to acquire 

spectral data of light interacting with the sample. Spectral data were acquired using 

software incorporating LabView (National Instruments Corporation, Austin, TX, USA) 

drivers. A stabilised 12 V power supply (MAF Oceania, Bacchus Marsh, Vic, Australia) 

was used to minimise current fluctuations to the halogen lamp. For the F750 unit, in built 

electronics and power supply were used, again with an MMS1 spectrometer.  

Probe A assembly employed a 100 W QTH bulb positioned with the filament at the focal 

point of a parabolic reflector. Probe B assembly employed a 150 W lamp with an inbuilt 

gold coated reflector. Probe C assembly employed a 5 W lamp, again with an inbuilt 

reflector, with a cylindrical barrel between lamp and sample. In this case, the internal 

surface of the cylindrical barrel was polished (ie. reflective). The last 36 mm of the barrel 

is blackened, however it is not a perfect absorber and a small component of light is still 

reflected from this surface. 
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5.2.1 Experimental exercises: 

5.2.1.1 Exercise 1 – MMS1 grating bias  

The effect of light polarisation on detector response was considered using probe A. The 

Zeiss MMS1 diode array spectrometer used in this study contains a 366 line/mm 

holographic blazed flat-field grating, with a standing wave technique used in its 

manufacture, which is reported to maximise the average reflectivity and minimise the 

grating bias36. Spectra were acquired at a probe-sample distance of approximately 100 

mm. At this distance the shadow was lost with the detected field of view fully illuminated 

by the lamp. A 20 mm diameter polariser analyser was placed directly in front of the 

probe, and the analyser rotated.  Maximum and minimum signals (analogue to digital 

conversion count, ADCC) at 800 nm were recorded. The experimental setup was as 

shown in Figure 5.1, but with the polariser in front of the lamp removed. 

5.2.1.2 Exercise 2 – Signal level with probe-sample distance 

Spectra of a white PFTE tile was acquired using probe A, B, and C assemblies, with the 

tile incrementally moved in approximately 2 mm increments from the probe. 

5.2.1.3 Exercise 3 – Specular-diffuse ratio 

Using the probe A assembly, random polarised light from the parabolic reflector was 

converted to a linear polarisation using a 3M NIR polarising film (75 x 75 mm), and a 20 

mm diameter polariser analyser placed directly in front of the probe to discriminate 

between specular and diffuse components (Figure 5.1). Spectra of an apple, and 

subsequently a kiwi fruit, were acquired with the sample incrementally moved in 10 mm 

increments to 150 mm from the probe.  

5.3 Results and Discussion 

5.3.1 Exercise 1 – MMS1 grating bias  

Both specular and diffuse light from a sample illuminated from a QTH lamp is expected 

to be randomly polarised. A polarising analyser was used to transmit either a vertical or 

horizontal polarisation into the probe, connected to the MMS1 spectrometer. The peak 
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signal count measured at 800 nm demonstrated a grating bias of only 1.85% for vertically 

polarised light relative to horizontally polarised light (e.g. maximum and minimum 

ADCC 0f 27090 and 26598, respectively). The result was highly reproducible and was 

wavelength dependent26, 28 (data not shown). 

5.3.2 Exercise 2 – Signal level with probe-sample distance 

A point source placed at the focal point of a parabolic reflector will produce a collimated 

output. However, lamp filaments have finite dimensions and reflectors are rarely perfect 

parabolas, such that the resulting lamp output contains diverging and converging light 

rays. The full divergence angle of a parabolic lamp reflector depends on its design 

specifications, but it can be as low as 9o (~150 mrad) (compared to laser beams with 

divergence angles less than 0.5 mrad). 

In a shadow probe configuration, the converging rays from the outer perimeter of a lamp 

reflector will be the first direct rays to illuminate the observation area of the probe as 

probe-sample distance increases. This illumination can result in unwanted specular 

reflection from the area of detection. Specular reflection from the observed area is 

expected to rapidly increase as the sample moves away from the probe, as the observed 

area moves out of the umbra of the detector, causing an increase in detected light level.  

However, as the lamp does not project parallel light only, the sample will receive 

decreasing irradiance (radiant flux per unit area) at larger distances from the lamp.   

The geometric parameters involved are illustrated in Figure 5.2, with the “worst-case” 

rays converging from the perimeter of the parabolic reflector (of diameter A).   
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Figure 5.2. Ray tracing of shadow probe setup used (worst case scenario). The 

parabolic reflector has an outside diameter of A and distance to probe end of B. 

Bottom figure illustrates an enlarged version of the permanently shadowed area 

(umbra). The probe has an outside diameter of C and an optical entrance diameter 

of D. When the probe-sample surface distance is E, the area of detection is matched 

by the probe. Position F indicates the onset for full illumination of the observation 

area. 

 

  



Characterisation of interactance probe 

96 

The converging light rays converge to a point (distance F from the probe), resulting in a 

characteristic (dark) full angle of 2β. From basic trigonometry it follows that: 

( )B C D
E

A C





    Eqn 5.1 

BC
F

A C



     Eqn 5.2 

arctan
2

A C

B
    

 
    Eqn 5.3 

Dimensions and calculations using equations 1, 2 and 3 are given in Table 5.1. With the 

analyser filter in place (Exercise 3), the measurements for the Probe A become C = 20 

mm, E = 13 mm, F =  37.3 mm and 2β = 330  

Table 5.1. Measurement of lamp and reflector characters. All measurements are in 

mm.  Legend refers to Figure 2. 

Character Figure 
legend 

Probe assembly 

A  B C 

Lamp diameter A 72  45 28.2 

Lamp-probe distance B 97 127 27.6 (blackened) 

Outside diameter of probe C 18 15.5 11.8 

Inside diameter of probe D 13 9.0 7.3 

Probe-sample distance E 9.0 28.0 7.6 

Probe-sample distance F 32.3 66.7 19.9 

Angle of umbra 2β 31.1° 13.2° 33.1° 

Therefore, as a first approximation, reflected light from the perimeter of the parabolic 

reflector will just start to fall inside the observation areas of probes A, B and C at probe-

sample distances of 9, 28 and 8 mm respectively, and thus result in collection of specular 

reflected light. As the probe-sample distance is increased, the irradiance in the 

observation area will increase sharply because this area will be exposed to an increasing 

area of the parabolic lamp reflector. At a distances of 32, 67 and 20 mm respectively, the 
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complete observation areas will be irradiated, with intensity increasing with increasing 

distance. 

In practice, measured signal intensity level (ADCC) increased as a function of probe-

sample distance (Figure 5.3). For probes A and B, probe geometry maintained a low 

ADCC (i.e. a clear shadow, with minimal specular reflection expected) for probe-sample 

distances of up to approximately 25 mm, while at greater distances, detected (specular) 

light rapidly increased (Figure 5.3). There were slight differences between two units of 

the one model (probe A). With probe B, a slight increase in ADCC was measured at 

distances up to 40 mm, consistent with the use of a less collimated lamp, although at 

greater distances the increase in ADCC was not as pronounced as for probe A. Probe C 

demonstrated a poorer collimation of light associated with the reflective cylinder used 

between lamp perimeter and sample. 

 

Figure 5.3. Detected light level (800 nm) for four shadow probe assemblies, for 

various probe-sample distances.  
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5.3.3 Exercise 3 – Polarised light characterisation of shadow 

probe  

 

With both polarisers in the vertical position, the amount of light transmitted through the 

analyser consists of: 

    Total S DI I I       Eqn 5.4 

where IS is the specular intensity and ID the vertical component of the total diffuse 

intensity. With the analyser crossed with respect to the polariser, the light transmitted to 

the probe is: 

* *  Total DI I      Eqn 5.5 

where ID* is the horizontal component of the total diffuse intensity, assuming that all of 

the specular intensity is absorbed. ID* will equal the product of ID and a grating bias 

factor.  

With the apple at 0 mm from the probe, spectra were similar when the polariser-pair was 

either parallel or crossed (Figure 4). This condition represents detection of “pure” diffuse 

spectra, with maximum spectral information derived from the fruit sample.   

With the apple at 150 mm from the probe, crossing of the polariser-pair will eliminate the 

specular component of radiation received by the probe, resulting in only a component of 

diffusely scattered light from the apple and no specular light (Figure 5.4). 
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Figure 5.4. Apple spectra at a probe-sample distance of 0 and 150 mm. The top 

dotted lines are with the polarised filters parallel (top most) and perpendicular 

(crossed) respectively. The solid line at bottom is with the apple spectra at a probe-

sample distance of 0 mm, for both polariser positions (i.e. indistinguishable results). 

 

MMS1 ADCC output at 800 nm was assessed for different probe-fruit distances for both 

apple (Table 5.2) and kiwifruit (Table 5.3).  A dark count correction was performed on all 

values, and ID* corrected using the grating polarisation factor 0.0185.  These calculations 

assumed that the lamp illumination was perfectly linearly polarised by the film polariser, 

that all the specularly reflected light maintained its polarisation, and that all light 

diffusely reflected from the fruit was randomised. 

  

Diffuse only 
150 mm 

 

Specular + Diffuse- 150 mm 
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Table 5.2. MMS1 output (ADCC) at 800 nm assessed for different probe-fruit 

distances for an apple. 

Apple 

Probe-sample 
distance (mm) 

IS +  ID 

↑↑ 

ID* 

↑→* 

ID* Corrected 
(=ID) 

↑→ 

IS 

(=IS + ID - 
ID) 

IS/ID 

(%) 

0 3600 3536 3601 -1 0.0 

10 4587 4506 4589 -2 -0.1 

20 4147 4030 4105 42 1.0 

30 4065 3905 3977 88 2.2 

40 4525 4210 4288 237 5.5 

50 5755 4950 5042 713 14.2 

60 7790 6030 6142 1648 26.8 

70 10280 7330 7466 2814 37.7 

80 13090 8770 8932 4158 46.5 

90 16410 10255 10445 5965 57.1 

100 19520 11655 11871 7649 64.4 

110 22370 12933 13172 9198 69.8 

120 25140 14075 14335 10805 75.4 

130 27140 15050 15328 11812 77.1 

140 28707 15825 16118 12589 78.1 

150 29575 16420 16724 12851 76.8 
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Table 5.3. MMS1 output (ADCC) at 800 nm assessed for different probe-fruit 

distances for a kiwi fruit. 

Kiwi 

Probe-sample 
distance (mm) 

IS +  ID 

↑↑ 

ID* 

↑→* 

ID* Corrected 
(=ID) 

↑→ 

IS 

(= IS +  ID - 
ID) 

IS/ID 

(%) 

0 3640 3573 3639 1 0.0 

10 4175 4013 4087 86 2.1 

20 3825 3662 3730 93 2.6 

30 3750 3569 3635 112 3.2 

40 4045 3761 3831 209 5.6 

50 4920 4287 4366 541 12.7 

60 6460 5070 5164 1271 25.1 

70 8490 6014 6125 2326 38.6 

80 10790 7023 7153 3586 50.8 

90 13115 8020 8168 4886 60.6 

100 15370 8960 9126 6176 68.4 

110 17440 9844 10026 7340 73.9 

120 19345 10617 10813 8453 78.9 

130 21010 11250 11458 9469 83.4 

140 22300 11781 11999 10215 85.8 

150 23265 12180 12405 10772 87.5 

 

The ratio of specular-diffuse light varied as a function of fruit-probe distance (Figure 5.5), 

with both apple and kiwi fruit giving similar results.  The amount of specular light 

entering the probe was less than 3% of the diffusely reflected detector light at probe-

sample distances less than 30 mm and less than 6% of the diffusely reflected detector 

light at probe-sample distances less than 40 mm, but specular light entry increases rapidly 

at greater distances due to the loss of the shadowing effect. The contribution of specular 

was slightly less for kiwifruit than for apple for probe-sample distances less than 30 mm, 

consistent with an effect of skin hairs on light scattering from outside. At probe-sample 

distances greater than 70 mm, a reduced specular component was demonstrated in apple 

fruit compared to kiwi fruit, presumably with full illumination specular hairs of kiwifruit 

less aligned. 
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Figure 5.5. Ratio of specular to diffuse radiation at 800 nm, received at various 

probe-sample distances from an apple and a kiwi fruit. 

5.4 Conclusion 

Specular reflections contributed less than 3% of detected light at probe-sample distances 

up to 35 mm for the shadow probe assemblies.  Designs with less collimation of the light 

source were associated with lamp converging rays impacting the shadow area, and thus a 

greater contribution of specular reflection to the detected signal. Any shadow probe 

design should seek to minimise specular reflection. Effectively, the umbra size is 

proportional to lamp-probe distance and shadow probe diameter, and inversely 

proportional to the lamp diameter. However, increasing lamp-probe distance reduces 

sample illumination intensity and thus increases noise. A more powerful light source adds 

heating effects.  
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6 Improving calibration transfer between short 

wave near infrared silicon photodiode array  

instruments 4 

Abstract 

The use of a model developed on spectra of one (master) instrument with spectra 

collected using another (slave) instrument requires differences in spectra of master and 

slave units to be orthogonal to the calibration model. The more spectral similarity is 

achieved in hardware, i.e. by matching the optical characteristics of the devices, the less 

chemometric correction is required.  The transfer of partial least squares (PLS) models for 

total soluble solid (TSS) of intact apple fruit between instrumentation based on silicon 

photodiode arrays was improved by use of more accurate wavelength assignments over 

the wavelength range used in the model. Several transfer methodologies were trialled, 

including piecewise direct standardisation (PDS), transfer by orthogonal projection 

(TOP), model updating (MU) and difference spectrum adjustment. The difference 

spectrum method combined with new wavelength assignments and model updating gave 

results comparable to the performance of the master instrument and to models directly 

developed on the slave instruments (r2 = 0.95, SEP-b = 0.47 and bias = -0.03 %TSS, for a 

population of mean = 14.45 and SD = 1.64 % w/v). The use of average difference 

spectrum adjustment combined with model updating was preferred over PDS due to ease 

of implementation.  

  

                                                 

4 This chapter has been published under this title in the Journal of Near Infrared Spectroscopy 2016. 
Techniques from this chapter also informed the publication “Spectrophotometer Aging and Prediction of 
Fruit Attributes” (Appendix B) and “Assessment of internal flesh browning in intact apple using visible-
short wave near infrared spectroscopy” (Appendix C). 
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6.1 Introduction 

Silicon photodiode array (PDA) detectors find use within spectrometers targeted to high 

speed, low cost applications that require use of the Herschel region (780-1000 nm, also 

known as short wave NIR) of the spectrum. Example applications include those involving 

transmission through biological material, given strong absorbance by water. Such 

spectrometers vary in both photometric response and wavelength accuracy, and thus 

calibration models tend to be spectrometer specific. Calibration models can be developed 

for each device, but this is inefficient. The transfer of calibration models between 

instruments has been reported to be possible even across categories of instruments (e.g. 

PDA, Fourier Transform (FT-NIR), scanning grating), however, hardware matched 

instrumentation will minimise the software correction required in the calibration transfer 

process.  

As noted in the useful review on standardisation and calibration transfer for NIR 

instruments by Fearn64, the comparison of similar instruments can be simplified to a 

description of wavelength differences and absorbance differences.  A small shift in 

wavelength scale may cause model prediction problems if high model weighting is given 

to parts of the spectrum with high slopes.  Fearn64 also noted that the transfer problem can 

be approached in three ways (i) by making of a model that transfers without requiring 

standardisation, e.g. using spectral pre-treatments, by selection of wavelengths in areas of 

spectra ‘stability’, or by including several instruments in the calibration set; (ii) adjusting 

the model output such that it works on other instruments, e.g. simple slope and bias 

correction; and (iii) adjusting spectra from slave instruments to appear as they were 

produced by the master instrument. A fourth approach was introduced by Andrew and 

Fearn133 (and investigated by Soldado et al.134 and Igne et al.135) was that of transfer by 

orthogonal projection (TOP), with removal of spectral differences orthogonal to the 

calibration model.  

Simple slope and bias correction of model predictions can be effective, e.g.  Roggo136 

recommended this procedure for the transfer of a model of total soluble solids (TSS) 

content in sugar beets between two Foss NIRSystems 6500 scanning grating 

spectrometers (FOSS, Silver Springs, U.S.A.) over the methods of spectral correction 
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methods of spectral slope/bias correction (SSBC) and spectral bias correction (i.e. spectra 

modification).   

A range of techniques have been used to address the third approach in calibration transfer, 

that of adjusting spectra from slave instruments to appear as master instrument spectra. 

The methods of SSBC and spectral bias correction136 involve wavelength by wavelength 

simple linear regressions of spectra from each instrument. Other techniques include direct 

standardisation (DS), piecewise direct standardisation (PDS), double window piecewise 

direction standardisation (DWPDS), orthogonal signal correction (OSC), finite impulse 

response (FIR) and wavelet transform (WT), as reviewed by Fearn1.  

For example, Almar et al. 137 investigated the use of the PDS method to transfer 

calibrations of models of apple TSS from an FTNIR (InfraProver, Bran & Luebbe, 

Norderstedt, Germany) to PDA based spectrometers (Corona, Carl Zeiss GbmH, Jena, 

Germany) and between two PDA based spectrometers for the common wavelength range 

of 1020 to 1690 nm. The use of PDS decreased the root mean square error of prediction 

(RMSEP) from 17.69 to 0.56 % TSS. Salguero-Chaparro et al.138 investigated PDS, SBC 

and TOP algorithms for transferring olive quality (fat, free acidity and moisture content) 

databases between a Foss NIRSystems 6500 scanning grating spectrometer and a PDA 

based Corona 45 vis NIR system (Carl Zeiss GbmH, Jena, Germany). All three transfer 

methods were reported to work well. 

Other approaches achieve an ‘implicit’ orthogonalisation, such as the ‘repeatability file’ 

concept139, in which difference spectra (e.g. of the same sample scanned on multiple 

instruments) is assigned an attribute value of zero and included in the calibration set with 

a weighting factor proportional to the ratio of the number of samples in the repeatability 

file and calibration set.  In a similar vein, Saranwong and Kawano140 proposed a method 

using the difference in the average (second derivative absorbance) spectra of a group of 

samples to adjust the spectra of a slave instrument by simple subtraction, for transfer of a 

calibration on apple TSS between two Foss NIRSystems 6500 spectrometers. The method 

was quite effective, with the resulting bias at the same level as the validation results on 

the master instrument, and a 95% confidence pair t-test indicated no significant difference 

between the actual and predicted TSS values after spectral adjustment. 
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There are few reports on calibration transfer work involving the silicon PDA based 

spectrometers used with sorting of fruit. For applications involving melon and mandarin 

TSS assessment, Greensill et al.77, 141 compared the performance of the seven techniques 

mentioned above and a model updating (MU) technique based on use of Kennard-Stone 

selected representative spectra. WT and MU proved to be the best methods, decreasing 

the RMSEP from 7.03 to 0.21 % TSS, with very little difference in the RMSEP of the two 

techniques, although PDS and DWPDS methods also performed well.  

However, before attempting a chemometric correction of spectra from slave units, it is 

logical to first maximise matching of instrument optics, and in particular, wavelength 

accuracy.  A ‘selling’ point of FTNIR instruments is the ease of model transfer between 

units, based on the superior wavelength resolution and accuracy of these units (e.g. FT 

instruments have manufacturer claims of reproducibility corresponding to 0.002 nm at 

1369.9 nm142). Leion et al.67 found that differences between scanning grating instruments 

of >±0.3 nm increased RMSEP of transferred models. Similarly, Shenk and Westerhaus70 

reported that a wavelength alignment of ±0.25 nm is sufficient for most food and 

agricultural products. Brimmer and DeThomas.143 found differences in wavelength value 

for an absorbance peak of polystyrene at 1676 nm varied by only 0.1 nm between several 

scanning grating units (Foss NIRSystems, model 6500) and this indicated that, providing 

scanning grating instruments meet manufacturer specifications, wavelength alignment 

issues in calibration transfer should be minimal for these instruments.  

For PDA units, wavelength to pixel assignments are typically based on a third order 

polynomial fit to the peaks of spectral output from a mercury/argon (HgAr) lamp, with 

inaccuracies in peak assignment of up to 0.26 nm for a Si PDA with approximately 3.3 

nm pixel dispersion, such as the Zeiss MMS1144. Given that such instruments typically 

have a wavelength resolution (full width half maximum) around 10 nm and that the 

spectral features of the SWNIR are broad and overlapped, the wavelength accuracy 

attained in the current calibration process would appear adequate to the task of matching 

instruments. However, the issue of wavelength differences between units is of more 

importance than that of absorbance differences for diode array UV-Vis spectrometers 

(Blanco et al.53), in contrast to the situation for scanning monochromator NIR 

spectrometers. 



Improving calibration transfer 

108 

The objective of the current study was therefore to document the impact of wavelength 

accuracy on predictive model performance for a SWNIR instrument, and the benefit of 

improvement in wavelength calibration in concert with transfer routines for the porting of 

models between instruments. We were encouraged in this endeavour by Fearn’s64 

observation that ‘there are surprisingly few comparative studies (of transfer methods) in 

the literature’.  Our work is focussed on the application of SWNIRS to internal quality of 

fruit, so this study was framed by work with a spectrometer system and data set relevant 

to that application. 

6.2 Materials and Methods 

6.2.1 Instrumentation and fruit TSS 

Four exercises were undertaken, using procedures documented in later sections. In 

Exercises 1 and 2, Zeiss MMS1 NIR enhanced (Carl Zeiss GmBH, Jena, Germany) 

spectrometers were interfaced with computers via a 16-bit tec5 PD-PCI01V1 analogue to 

digital converter card (Tec5 AG Sensorik und Systemtechnik, Oberursel, Germany) and a 

front end electronics box (Tec5 AG Sensorik und Systemtechnik, Oberursel, Germany). 

Spectral data were acquired using software incorporating a LabView (National 

Instruments Corporation, Austin, TX, USA)  program developed specifically for this 

project. 

The four MMS1 units used were from two different manufacturing batches, with 

difference in the PDA used. Older MMS1 units (part number 224001-9001-000; serial 

number 3017XX) use a S4874 detector (Hamamatsu Photonics K.K., Hamamatsu City, 

Shizuoka, Japan). Newer MMS1 units (000000-1233-038; serial number 0231XX) have a 

S8381 detector (Hamamatsu Photonics K.K., Hamamatsu City, Shizuoka, Japan). The 

older units suffered a “ghost” effect, with charge being carried over between read out 

cycles. The new units have a faster removal time of electrons from each well, but less 

sensitivity past 800 nm. Calibration transfer between units from different manufacturing 

lots is therefore expected to be more problematic than between units of the same batch. 

In exercise 3, spectra of fruit were acquired using a stationary system employing an 

interactance optical configuration97 (‘InSight1’, MAF Oceania, Bacchus Marsh, Vic., 

Australia). A stabilised 12V power supply (MAF Oceania) was used to minimise current 
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fluctuations to the halogen lamps. White and dark references were collected once only, at 

the beginning of each day. For exercise 4, spectra of fruit were collected on each of four 

handheld units (Nirvana, Integrated Spectronics, Sydney, Australia). These units were 

equivalent to the F750 from Felix Instruments, Camas, WA, USA, with serial numbers 

A001, A002, A003 and A015, in which a reference is taken associated with every sample. 

Both instruments employ the MMS1 spectrometer. 

Fruit TSS was assessed using an Atago digital refractometer of juice squeezed from a 2 

cm diameter, 1 cm deep core of fruit taken at the point of spectral acquisition. 

6.2.2 Experimental exercises 

6.2.2.1 Exercise 1. PDA response 

The photometric response of the four MMS1 spectrometers (serial numbers  301726, 

301729, 023104, 023126) was assessed using combinations of eight optical crown glass 

metallic neutral density filters (Newport Corporation, Irvine, CA, U.S.A.) and bandpass 

spectral filters (Andover Corporation, Salem, NH, U.S.A.). A halogen light source (HL-

2000-HP; Mikropack GmbH., Ostfildern, Germany; serial number 200332) was 

connected to a stabilised power supply (EA1050B-240, CUI Inc, Tualatin, OR, U.S.A.) 

and allowed two hours to stabilise before measurements were taken. The fibre optic 

output of the light source was directly aligned with the MMS1 fibre optic input, and the 

filters placed in the optical path between. For each bandpass filter, MMS 1 integration 

time was set to approximately 75% of saturation level for the instrument, without a 

neutral density filter, and then combinations of neutral density filters giving optical 

densities between 0.04 and 1.5 (i.e. between 91.2 and 3.2 % transmittance) were placed in 

the optical path and spectra acquired. This procedure was repeated for each spectrometer, 

using the same integration time. 

6.2.2.2 Exercise 2. Impact of wavelength accuracy on PLS prediction of fruit 

TSS 

The MMS1 PDA spectrometers are supplied with a pixel to wavelength third order 

polynomial relationship calculated from the fit of 11 peaks from a HgAr lamp from 

across the wavelength range 300-1100 nm. Spectra were acquired from a HgAr 
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Calibration Source (HG-1, Ocean Optics Inc, Dunedin, FL, U.S.A.) using five Zeiss 

MMS1 spectrometers (serial numbers  301726, 301729, 023103, 023104, 023126). The 

HG-1 source was given 30 min to stabilise before spectra were acquired. Using inbuilt 

Matlab functions, spectra were interpolated to 0.0001 nm steps, based on a cubic spline 

fit, and the wavelengths of the HgAr peaks compared to NIST values145. 

The impact of wavelength inaccuracy on predictive performance was then assessed. A 

PLS regression model for apple TSS was developed using the spectra acquired for 

exercise 3, on MMS1 023103. The wavelength scale of the spectra were then shifted by 

0.01 to 5 nm in 0.01 nm steps, and the PLS model used to predict TSS using the modified 

spectra.   

6.2.2.3 Exercise 3. Calibration transfer between on line units 

Spectra were acquired of 88 apples using an InSight unit, with two spectra acquired from 

each of two sides of the fruit (i.e. 352 spectra), using three MMS1 units (023103, 023126 

and 301729, hereby designated by the last three digits). Subsets of these spectra were 

used for calibration (spectra of 53 fruit, mean TSS of 12.60 and SD of 1.95 % w/v), 

validation (spectra of 20 fruit, mean TSS of 12.83 and SD of 1.56 % w/v) and transfer 

(spectra of 15 fruit, mean TSS of 12.68 and SD of 2.34 % w/v). Fruit were randomly 

assigned to the three groups. PLS regression models for fruit TSS were developed on 

each unit, based on interpolated second derivative absorbance spectra.  

Each instrument was treated as a master unit, with performance of the PLS model for 

each unit tested against the unaltered and transformed spectra of the other units. The 

transformation techniques of PDS and DSA, which act to modify slave spectra to appear 

to be from the master instrument, the technique of model updating (MU) using the slave 

instrument fruit spectra from the PDS subset, and the combination of the transfer methods 

with MU were compared. The spectral pre-treatments of mean centring (MC), standard 

normal variate (SNV), multiplicative scatter correction (MSC) and/or autoscaling were 

also compared. 

The comparisons described above were then repeated using new wavelength to pixel 

assignments for each spectrometer. Pixel wavelength assignments for the 695 – 1014 nm 

range were generated for each spectrometer from a linear fit between adjacent peaks and a 

fourth order polynomial fit to wavelength peaks, using the HgAr data from Exercise 2. 
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PLS models for fruit TSS were then re-developed for each unit, and, as above, tested in 

terms of use with other spectrometers.  

6.2.2.4 Exercise 4. Calibration transfer between handheld units 

Spectra of 59 apples were collected on each of four handheld units. Four spectra were 

collected from two locations on each of 29 fruit and, at a later date an independent apple 

population, five spectra at two different sites on a group of 30 apples. Subsets of the 

spectra were used for calibration (spectra of 39 fruit, mean TSS of 14.45 and SD of 1.64 

% w/v), validation (spectra of 10 fruit, mean TSS of 14.35 and SD of 1.76 % w/v) and 

transfer (spectra of 10 fruit, mean TSS of 14.68 and SD of 1.93 % w/v). All fruit from the 

first group were assigned to the calibration set, with the second group randomly assigned 

into calibration, validation and transfer groups. To compensate the influence of 

measurement condition, particularly the position of the fruit relative to the instrument 

optics, interpolated second derivative absorbance spectra were averaged for spectra 

collected from a given position on the fruit for the samples used in PLS calibration and 

transfer. The validation sets were of individual spectra. 

PLS regression models for fruit TSS were developed for each unit. The PLS TSS model 

developed for the master unit was used in prediction of TSS using unaltered spectra of 

other units, as well as using instrument standardisation techniques of MU, PDS and DSA. 

The technique of model updating (MU), and the combination of transfer methods with 

MU were also tested, and the spectral pre-treatments of MC, SNV, MSC and/or 

autoscaling were compared. 

As the HgAr lamp spectra could not be collected without disassembly of the instruments, 

the master instrument was arbitrarily defined as having “correct” pixel wavelength 

assignments. The average of interpolated second derivative absorbance spectra in the set 

of spectra allocated to PDS development was used to generate new pixel wavelength 

assignments across the 695 – 1014 nm range from fourth order polynomial fits to spectra 

peaks in the slave units. PLS models for fruit TSS were then redeveloped on each unit, 

and, as above, tested in terms of use with other spectrometers.  
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6.2.3 Chemometrics 

PLS regression models were developed using MATLab R2014a (MathWorks Inc., 

Natick, MA, USA) with PLS Toolbox 7.3 (Eigenvector Research Inc., Wenatchee, WA, 

USA), using mean centred second derivative absorbance data interpolated to 3 nm steps, 

and the wavelength range 732-936 nm. The optimal number of principal components was 

chosen using software package The Unscrambler 10.3 (CAMO Software AS, Oslo 

Norway), however all other calculations were performed in MATLab. Model 

performance was assessed in terms of validation r2 and prediction performance was 

assessed in terms RMSEP and bias corrected RMSEP (SEP-b). 

PDS, as developed by Wang et al.75, reconstructs each spectral point from the 

measurements within a sliding window on the slave instrument. Sample spectra are 

acquired on the master instrument X1 and slave instrument X2. For each wavelength i of a 

sample collected on the master, spectra were regressed against the corresponding spectra 

within a window of neighbouring wavelengths, of width 2j + 1, from the slave 

instrument. In this study, j was assigned a value of 1 (given superior results for a width of 

3 compared to 5 and 7, data not shown). The regression vector is calculated by  

1 2(:, ) (:, : ) ii i j i j  X X b    Eqn 6.1 

where X1(:,i) and X2(:,i-j,i+j) are columns used in the calculation of bi. The response 

vector of an unknown sample measured on the slave instrument is standardised using 

1, , 2, , ,...,
ˆ

un i un i j i j  ir r b    Eqn 6.2 

The difference spectrum adjusted (DSA) method of Saranwong and Kawano140 requires 

calculation of a difference spectrum of the average of the second derivative absorbance 

spectra of a set of samples acquired on each instrument according to 

` ` `i i ia y x       Eqn 6.3 

where a`i is the value for the difference spectrum at wavelength i, x`i and y`i are the 

average second derivative absorbance value of calibration sample at wavelength i, 

measured with the master and slave instruments respectively.  
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Spectral correction is then performed via 

ˆ `y y a
ki ki i

      Eqn 6.4 

where yki is the second derivative absorbance value of sample k at wavelength i measured 

by the slave instrument, and ŷki is the corrected second derivative absorbance value of 

sample i at wavelength i for the slave instrument. 

The ‘repeatability file’ concept of Westerhaus139, takes difference spectra of the same 

samples scanned on multiple instruments, and is assigned an attribute value of zero. 

These are included in the calibration set with the spectra multiplied by a weighting factor, 

W, given by 

  

  

cal n
W

rep n
      Eqn 6.5 

where cal n is number of samples in the calibration set and rep n is the number of 

samples used in the repeatability file. 

The TOP method introduced by Andrew and Fearn133 removes spectral differences 

orthogonal to the calibration model. Spectra from a small number of samples scanned on 

each of m instruments, are averaged to produce one spectrum for each instrument. A 

resulting m × p matrix R of mean spectra is formed, were p is the number of wavelengths. 

A principal component analysis is performed on R giving m - 1 components representing 

the main directions of instrument variation in spectral space. This gives a p × d matrix P 

whose columns are the orthonormal eigenvector or R, where d ≤ m – 1. The required 

calculation is 

TX X XPP      Eqn 6.6 

where X  is the projection of calibration set matrix X onto the space orthogonal to the 

columns P. X  is used for the PLS regression model, with d being the maximum for this 

study (given superior results, data not shown).   
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6.3 Results and Discussion 

6.3.1 Exercise 1. PDA response 

The four MMS1 units demonstrated differences in photometric response consistent with a 

change in the type of Hammamatsu PDA used in these units. The units with 3017xx serial 

numbers displayed greater sensitivity from 820 to 970 nm (Figure 6.1). Calibration 

transfer between units from different manufacturing lots is therefore expected to be more 

problematic than between units of the same batch. Of course, the absorbance calculation 

given by 

log
S D

A
W D

     
    Eqn 6.7 

(where S is the sample analogue to digital conversion count (ADCC), D is the dark 

reference ADCC and W is the white reference ADCC) accommodates such differences, 

but differences in sensitivity and thus signal to noise remains, which may impact model 

performance. 
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Figure 6.1. Spectra of sample analogue to digital conversion count (ADCC) of a 

PFTE tile using the same light source but four different MMS1 spectrometers. 

There was a linear response by the sensors to increasing illumination over the ADCC 

range considered (0 to 75% of maximum ADCC; data not shown). There was also a high 

correlation between the photometric response of pixels of a given PDA with increasing 

illumination. As expected, conversion to absorbance values normalised the slope of the 

relationship between different pixel of an array to unity (Figure 6.2). When corresponding 

pixels of different MMS1 were compared (Figure 6.3), similar relationships for ADCC 

and absorbance were evident. Thus the use of absorbance data should correct for 

photometric response differences between instruments, allowing for calibration transfer. 

Sensor response differences that result in a marked increase in signal to noise ratio for 

data within the wavelength region used in a PLS model may result in a decreased SEP-b 

for a transferred model, although bias should be unaffected.  
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Figure 6.2. Graph of PDA photometric response of different pixels within the same 

MMS1 unit. Data from 023126 is shown, but was typical of all four units. The top 

panel represents raw sample analogue to digital conversion counts (ADCC), while in 

the bottom panel ADCC has been converted to absorbance.  
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Figure 6.3. Graph of PDA photometric response of the same wavelength from 

different MMS1 units. Data for 810 nm is shown, but was typical of other 

wavelengths. The top panel represents raw analogue to digital conversion counts 

(ADCC), while in the bottom panel ADCC has been converted to absorbance. 
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6.3.2 Exercise 2. Impact of wavelength accuracy on PLS 

prediction of fruit TSS 

The third order polynomial coefficients provided in the Zeiss test certificate for pixel to 

wavelength conversion across the whole spectrum showed an error of up to 3.214 nm, or 

up to 2.301 nm for the wavelength range used in the PLS regressions for TSS (e.g. for 

301729, errors for HgAr peaks of 696.5431, 727.2936, 738.3980, 763.5106, 800.6157, 

811.5311, 826.4522, 842.4648, 912.2967, 965.7786 and 1013.9760 were 1.1931, 1.0636, 

1.2280, 1.0669, 1.1906, 2.0757, 2.3011, 1.6922, 2.1648, 0.9667, -0.1514 and -1.9440 nm 

respectively).  

When fruit spectra were progressively shifted in 0.01 nm increments by up to 5 nm, both 

SEP-b and bias increased (Figure 6.4). Of course this bias represents the product of the 

model coefficient vector and the mean difference spectrum of wavelength shifted and 

original (derivative) spectra. 

Of interest is the size of effect of small wavelength shifts on TSS model predictions. A 

difference of a sub pixel interval (i.e. less than 3.3 nm) in terms of wavelength accuracy 

between detectors was significant to the results of a PLS prediction, e.g. a shift of 1 nm 

resulted in an increase in SEP-b from 0.64 to 0.85, and a change in bias by -4.17 %TSS.  
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Figure 6.4. Effect of a shift in wavelength scale by up to 5 nm on (top) RMSEP, 

(middle) SEP and (bottom) Bias for a PLSR regression model of total soluble solids 

(%TSS) of peach fruit created on the same data set (and original wavelength 

assignments).  
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6.3.3 Exercise 3. Calibration transfer with on line unit 

The performance of a TSS model from each unit in prediction of a validation set of 

spectra collected on the same unit was slightly improved with use of a 4th order 

polynomial over a restricted range for wavelength calibration (Table 6.1). Obviously 

simple assignment of wavelength values to pixels does not change the data set and thus 

model performance. Rather, the small change in model outcome must result from the 

change in data associated with interpolation (to 3 nm steps).  

Table 6.1. Apple total soluble solids (%TSS) for  PLS regression model statistics for 

three different MMS1 units, for the manufacturer assigned wavelengths, new 4th 

order polynomial fit and a linear fit shown in the top, middle and bottom 

respectively.    

MMS1 103 126 729 103 126 729 

Original Wavelengths 
New 4th Order Fit 

Wavelengths 
PC 4 4 5 4 4 5 

Mean Centring 
r2 0.92 0.93 0.94 0.92 0.93 0.94 

SEP 0.68 0.63 0.58 0.67 0.62 0.57 

BIAS -0.05 -0.01 -0.04 -0.05 -0.01 -0.04 

Auto-scaling 
r2 0.93 0.94 0.96 0.93 0.94 0.96 

SEP 0.64 0.61 0.49 0.64 0.60 0.49 

BIAS 0.06 0.07 0.02 0.05 0.06 0.02 
 

The autoscaling data pre-treatment improved results in every combination compared to 

MC, decreasing RMSEP values by as much as 0.09 for model validation (Table 6.1) and 

0.11 %TSS in transferred models (not shown). SNV and MSC improved performance in 

some cases, but decreased in others (not shown). 

The performance of a model created on one unit and used in prediction of spectra 

collected on another unit, with the same Hamamatsu detector type, was improved by use 

of the new wavelength assignments in terms of r2, SEP and bias. For example, for the 

master 103 - slave 126 combination showed improvements in r2 from 0.93 to 0.94, SEP 

from 0.89 to 0.71%TSS and bias from -3.69 to -0.36 %TSS, for original and 4th order 
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polynomial modified wavelength assignments respectively, for the prediction of slave 

spectra with the master model (Table 6.2). The 4th order polynomial procedure slightly 

out performed a linear fit procedure (not shown). However, the performance between 

units with different detector type (e.g., master 726 to slaves 103 & 126) did not improve 

with the modified wavelength assignments alone, a result ascribed to the detector 

sensitivity difference.  

Bias and SEP were improved with use of calibration transfer methods (PDS, MU & 

DSA), with PDS giving the best result of these methods (Table 6.2). In every case, the 

use of the new wavelength assignments and PDS was the optimal data treatment (in terms 

of RMSEP, SEP and bias), giving results comparable to that of models developed on the 

slave instruments (Table 6.1).  

 

 

Table 6.2. Apple total soluble solids (%TSS) prediction statistics for various master-

slave combinations and transfer methods. Autoscaling was used. Units 103 and 126 

are newer units containing the Hamamatsu S8381 detectors.   

  Original Wavelengths 

Slave 

 Direct PDS MU Rep 
File 

TOP PDS 
 + MU 

DSA DSA 
 + MU 

 Master 103 

126 

r2 0.93 0.94 0.93 0.91 0.87 0.94 0.93 0.93 
SEP 0.89 0.61 0.73 0.86 0.87 0.75 0.89 0.79 
BIAS -3.69 -0.02 -0.19 0.80 -0.07 -0.08 -0.05 -0.06 

729 

r2 0.93 0.93 0.92 0.90 0.86 0.94 0.93 0.94 
SEP 0.95 0.63 0.77 0.96 1.01 0.76 0.95 0.76 
BIAS -1.64 0.11 -0.14 0.94 0.01 0.05 0.12 0.05 

  Master 126 

103 

r2 0.88 0.92 0.90 0.90 0.86 0.92 0.88 0.90 
SEP 0.86 0.73 0.81 0.78 0.93 0.68 0.86 0.83 
BIAS 3.16 0.16 0.06 1.12 0.74 0.11 0.17 0.13 

729 

r2 0.93 0.93 0.87 0.90 0.86 0.94 0.93 0.93 
SEP 0.68 0.62 0.85 0.77 0.90 0.64 0.68 0.62 
BIAS 1.96 0.20 0.30 1.22 0.15 0.07 0.21 0.12 
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  Master 729 

103 

r2 0.92 0.92 0.93 0.93 0.91 0.91 0.92 0.92 
SEP 0.77 0.74 0.72 0.76 0.79 0.70 0.77 0.75 
BIAS 1.19 0.11 -0.08 1.11 0.66 0.01 0.13 0.10 

126 

r2 0.93 0.94 0.93 0.92 0.93 0.93 0.93 0.93 
SEP 0.63 0.59 0.64 0.68 0.61 0.66 0.63 0.61 
BIAS -2.66 0.08 -0.29 0.87 0.09 -0.04 0.04 0.02 

  New 4th order fit 

Slave 

 Direct PDS MU Rep 
File 

TOP PDS 
 + MU 

DSA DSA 
 + MU 

 Master 103 

126 
r2 0.94 0.94 0.94 0.92 0.91 0.94 0.94 0.94 
SEP 0.71 0.59 0.66 0.72 0.73 0.74 0.71 0.67 
BIAS -0.36 -0.03 -0.11 0.97 0.32 -0.09 -0.06 -0.08 

729 
r2 0.93 0.93 0.90 0.89 0.89 0.93 0.93 0.94 
SEP 0.78 0.61 0.77 0.83 0.88 0.77 0.78 0.64 
BIAS 3.55 0.11 0.09 1.29 0.37 0.06 0.11 0.06 

  Master 126 

103 
r2 0.92 0.92 0.92 0.92 0.89 0.92 0.92 0.92 
SEP 0.68 0.72 0.71 0.72 0.82 0.67 0.68 0.70 
BIAS 0.32 0.15 0.14 1.10 0.10 0.11 0.14 0.12 

729 
r2 0.92 0.93 0.88 0.86 0.88 0.94 0.92 0.93 
SEP 0.68 0.62 0.82 0.88 0.82 0.63 0.68 0.63 
BIAS 3.25 0.18 0.06 1.17 0.16 0.07 0.18 0.11 

  Master 729 

103 
r2 0.91 0.92 0.91 0.88 0.92 0.91 0.91 0.91 
SEP 0.73 0.73 0.78 0.88 0.71 0.72 0.73 0.73 
BIAS -2.49 0.10 0.08 1.18 0.19 0.01 0.10 0.10 

126 
r2 0.92 0.94 0.93 0.92 0.94 0.93 0.92 0.93 
SEP 0.69 0.59 0.63 0.65 0.58 0.69 0.69 0.65 
BIAS -3.80 0.07 -0.26 0.95 -0.06 -0.06 0.03 0.02 
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6.3.4 Exercise 4. Calibration transfer with handheld unit 

The performance of each of four handheld spectrometers on their validation sets was 

improved when the 4th order polynomial wavelength calibration was used (Table 6.3). As 

for the in-line unit, the performance of a model created on one unit and used in prediction 

of spectra collected on another unit was improved in terms of r2 by use of the new 

wavelength assignments for both master and slave units, with the 4th order polynomial 

(Table 6.4) slightly outperforming the linear fit (not shown). Again, model bias could 

potentially be estimated and corrected for each instrument, ideally from assessment of 

non-fruit samples on master and slave. Alternatively, any of the calibration transfer 

strategies resulted in decreased bias.  

The DSA method removed bias, and combined with new wavelengths and model 

updating, gave results comparable to the performance of the master instrument and to 

models directly developed on the slave instruments. Considering only 10 fruit were used, 

this is an easy method to transfer calibrations and allow for models to be easily updated 

for seasonal changes. PDS did perform marginally better in some cases, but DSA+MU is 

preferred due to ease of implementation. 

Whilst the autoscaling pre-treatment performed slightly better on  most model validation 

sets (Table 6.3), mean centring performed better on transferred models (not shown), in 

contrast to the result for the online units. This may be caused by the increased number of 

PCs used for the handheld units. On these units, MU outperformed PDS. 

Table 6.3. Apple total soluble solids (%TSS) model validation statistics for four 

handheld units, using pre-treatments of mean centring and autoscaling. Models are 

based on original wavelengths.  

 MMS1 A B C D 

Mean Centre 

r2 0.95 0.93 0.95 0.92 

SEP 0.46 0.53 0.50 0.58 

BIAS 0.03 -0.01 0.12 0.03 

Autoscale 

r2 0.96 0.95 0.95 0.91 

SEP 0.44 0.46 0.46 0.60 

BIAS 0.04 -0.07 -0.02 -0.09 
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Table 6.4. Apple total soluble solids (%TSS) prediction statistics using unit A as the 

master, given use of several transfer methods.  

Original Wavelengths 

Slave   Direct PDS MU 
Rep 
File TOP 

PDS 
 + MU DSA 

DSA 
 + MU 

B 
r2 0.88 0.84 0.86 0.89 0.75 0.93 0.88 0.94 

SEP 0.77 0.97 0.78 0.67 1.03 0.56 0.77 0.51 

BIAS -12.95 0.02 -0.04 -2.95 -4.28 -0.02 0.03 0.04 

C 
r2 0.91 0.91 0.95 0.95 0.90 0.95 0.91 0.94 

SEP 0.64 0.69 0.45 0.49 0.65 0.45 0.64 0.51 

BIAS 4.97 0.08 0.08 2.42 1.41 0.04 0.00 -0.02 

D 
r2 0.88 0.91 0.95 0.94 0.73 0.95 0.88 0.95 

SEP 0.72 0.67 0.47 0.53 1.19 0.44 0.72 0.48 

BIAS 12.90 0.04 0.18 5.31 1.99 0.08 0.03 0.01 

New 4th order fit 

B 
r2 0.93 0.85 0.90 0.92 0.91 0.92 0.93 0.94 

SEP 0.54 0.94 0.64 0.58 0.64 0.57 0.54 0.50 

BIAS -1.83 0.00 -0.16 -1.34 -0.21 -0.07 0.12 0.04 

C 
r2 0.94 0.91 0.94 0.94 0.90 0.95 0.94 0.95 

SEP 0.52 0.69 0.53 0.49 0.66 0.46 0.52 0.47 

BIAS -1.04 0.10 -0.05 -2.34 0.09 0.04 -0.03 -0.04 

D 
r2 0.92 0.91 0.93 0.91 0.89 0.95 0.92 0.95 

SEP 0.59 0.68 0.57 0.62 0.70 0.45 0.59 0.47 

BIAS -0.63 0.06 0.05 1.50 0.21 0.10 -0.09 -0.03 
 

6.4 Conclusion 

To match instrumentation, PDA photometric response and wavelength accuracy must be 

considered. The coefficients provided in the Zeiss MMS1 specification sheet for pixel to 

wavelength conversion across the whole spectrum produced assignment errors of up to 

2.3 nm for the wavelength range used in the PLS regressions on TSS. Both SEP and bias 

were found to increase with inaccuracies in wavelength assignments. Improvement of 

wavelength assignment, particularly for the wavelength range used in the PLS 

regressions, was found to significantly decrease bias and SEP prediction values. Bias may 

be removed by a simple slope and bias correction. Ideally this bias could be calculated 

from assessment of non-fruit samples on master and slave, although further investigation 
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is required. For units of the same model PDA, DSA combined with new wavelengths and 

model updating gave results comparable to the performance of the master instrument and 

to models directly developed on the slave instruments. Considering only 10 fruit were 

used, this is an easy method to transfer calibrations and allows for models to be updated 

for seasonal changes in samples. 
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7 Conclusion and future directions 

Near infrared (NIR) spectroscopic systems have been successfully utilised in non-

invasive analysis of internal attributes of fresh horticultural produce over the last 25 

years. It was in the 1970s that NIRS was first used for agricultural food samples by Karl 

Norris to analyse wheat grain for protein and moisture146. The first horticultural use 

reported by Birth et al.147 in 1984 for determination of dry matter in onions. This 

technique was extended by Kawano et al.148 in the 1990s for the determination of total 

soluble sugar (TSS) in fruit. Many manufacturers have attempted to enter the fruit 

assessment industry with NIRS instrumentation, however few have survived and devices 

not been widely adopted, indicating the technology is not yet fully mature in this 

application. In considering or comparing instrumentation for the application of 

assessment of internal fruit attributes, the following issues are relevant: 

- optical geometry (typically partial transmission) 

- lamp type and output stability in terms of aging and environmental conditions 

- detector wavelength range, signal to noise and stability to environmental 

conditions 

- model transfer across instruments  

- model robustness in terms of function in the face of varying temperature and 

ambient light levels .  

This thesis investigated the characteristics of individual components of a spectroscopic 

system, in context of performance of PLS predictive models of fruit TSS.  The effects of 

the environmental temperature on spectral variation in QTH lamp output and variation in 

readout of the front end electronics and spectrometer, as well as QTH temporal stability 

were assessed in terms of predictive model performance for TSS in intact fruit using a 

silicon PDA spectrometer based system. Spectral variation resulting from temperature 

changes of NIRS system components (lamp and FEE) affected output quantity rather than 

quality, and thus did not affect the predictive performance due to the second derivative 

absorbance pre-treatment. Some lamps displayed start-up output characteristics on their 

first use, which were not repeated in subsequent trials. This result indicates the need for a 

short lamp ‘burn in’ period (up to 2 h). Lamp output, once burnt in, was spectrally stable, 

for the purpose of predictive models based on second derivative of absorbance data, 
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within the time of the first measurement (10 s), even during the last hours of lamp life. 

The results showed that re-referencing was not required within the normal daily use 

period for an inline instrument, but change in white reference could be used as a 

diagnostic tool. Further work showed measurements were spectrally stable after only 350-

400 ms, although total illumination was not stable until approximately 40 min from start-

up.  

Understanding of LED lamp behaviour is essential to support the use of these devices as 

illumination sources in NIR spectroscopy. The temporal stability and effects of the 

environmental temperature on spectral variation in LED output were also investigated, 

with a requirement for a short (<24 h in all cases) ‘burn in’ period to stabilise intensity 

described. Spectral intensity decreased exponentially over approximately 6 min from 

power up, a result ascribed to an increase in junction temperature as current is passed 

through the LED. As expected, increase in ambient temperature produced a logarithmic 

decrease in overall intensity of the LEDs and a linear shift to longer wavelength of the 

peak emission. This behaviour is consistent with the observed decrease in the IAD Index 

(A670 – A720) with increased ambient temperature, as measured by an instrument based on 

LED illumination (DA Meter). Several measures could be implemented to mitigate such 

effects. Changes in peak wavelength and relative intensity are explicable in terms of 

forward current and temperature and thus predictable if current and temperature are 

known. Change in illumination intensity and spectral quality could thus be addressed by 

modelling, given knowledge of current and temperature, or photometric feedback. 

The performance of a shadow probe interactance optical geometry was characterised at a 

range of probe to sample distances. At distances < 30 mm, the ratio of specular to diffuse 

radiation was < 3%, with slightly higher values noted for kiwifruit compared to apple. 

This result is consistent with an effect of kiwi skin hairs on light scattering. The specular 

component increased rapidly at greater distances due to loss of the shadowing effect. 

Designs with less collimation of the light source were associated with lamp converging 

rays impacting the shadow area, and thus a greater contribution of specular reflection to 

the detected signal.  Effectively, the umbra size is proportional to lamp-probe distance 

and shadow probe diameter, and inversely proportional to the lamp diameter, and should 

be optimised for the application. If partial transmittance (cf. reflectance) is a requirement 
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of the application, then the contribution of specularly reflected light can be characterised 

using polarisers. 

The ability to transfer calibration models between instruments is imperative for the 

adoption and widespread use of an NIR spectrometric system. The more spectral 

similarity is achieved in hardware, i.e. by matching the optical characteristics of the 

devices, the less chemometric correction is required. Pixel to wavelength assignments for 

a commercial Si diode array instrument showed errors of up to 2.3 nm. Improvement of 

wavelength assignment, particularly for the wavelength range used in the PLS 

regressions, was found to significantly decrease bias and SEP prediction values. Bias may 

be removed by a simple slope and bias correction. For units of the same model PDA, 

DSA combined with new wavelengths and model updating gave results comparable to the 

performance of the master instrument and to models directly developed on the slave 

instruments. Considering only 10 fruit were used, this is an easy method to transfer 

calibrations and allows for models to be updated for seasonal changes in samples.  

Further work in the development of instrumentation is anticipated, particularly given the 

continued advances and reduced cost of LEDs and detectors.  However, some 

instrumentation claims are ‘ambitious’. Several claims for development of very low cost 

(<US$1000) instruments have been made. For example, Tellspec (Food Sensor, Tellspec 

Inc., Ontario, Canada) claim development of a digital micromirror (MEMS) based device 

for wavelength selection that operates over the window 900 to 1700 nm with a single 

InGaAs detector, using two QTH lamps in a reflectance mode, packaged within a palm 

sized unit.  The unit is claimed to be able to “identify calories, macronutrients, allergens, 

fiber, sugars, and also provide relevant nutritional information such as the glycemic 

index, with one simple scan.”  A similar product has been claimed by Consumer Physics 

(SCiO, Consumer Physics Inc., Israel). However, without an inbuilt system for 

referencing and with knowledge of the impact of factors such as ambient temperature on 

lamp and detector behaviours, the operational stability of these units is doubtful. Further, 

given the known limitations of NIRS, the claimed applications also appear doubtful. 

These units were successful with crowd sourced funding in 2014-5, but the claimed 

product release dates of late 2015 has been revised to August/September 2016. 

Nonetheless, the excitement generated around these products is indicative of market 

interest. Another area of ‘excitement’ is the use of the ubiquitous low cost sensor 
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platform, the mobile phone, as a base for a spectroscopy system.  Several systems are 

available that exploit the wavelength range of the phone camera CMOS detector (ca 400-

1100 nm) by coupling a wavelength dispersive element before the camera lens. However, 

the 8 bit analogue to digital resolution of the typical phone camera represents a barrier to 

serious spectroscopic application. Perhaps more likely is the entry of low cost application 

specific instruments built around use of LEDs with interference filters. 

Another area of continued development will be the use of wireless technology, e.g. to 

reduce instrument cost by using the screen of mobile devices rather than an inbuilt screen, 

and the use of cloud computing functions (in areas where wifi is adequate to the task). 

Cloud computing allows for the ability to update models with more data (samples), 

bulding a global calibration. This trend is presaged by the Foss networked feed and forage 

NIRS instruments (RINA, Remote Internet Analysis, FOSS Analytical A/S, Denmark) 

with use of neural network calibration. New sensor technologies and miniaturisation also 

show promise for use in fruit grading, including X-ray, magnetic resonance, Raman and 

Terahertz spectroscopy. 
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9 Appendix A 

The Impact of Lamp Environment on Prediction of Peach TSS Content5 

C.J. Hayes, K.B. Walsh and C.V. Greensill 

Abstract 

The implementation of NIRS in horticulture involves translation of a 

laboratory technique to packhouse and field conditions. Reference measurements 

are often difficult and inconvenient, therefore taken periodically. The variation in 

halogen lamp output with change in ambient temperature and lamp age, the later 

both in the short term (from lamp power up) and long term (warm up time and 

longevity) is documented. The impact of such changes on predictive performance 

(RMSEP and bias of a PLS model) for estimation of Brix content in intact peaches is 

evaluated. Some lamps demonstrated an initial ‘burn in’ period from first initial 

use, differing in length from 40 to 220 min. Long term drifts in lamp output over an 

eight month period caused bias changes of as much as 5 Brix units in model 

predictions.  The implications for practical use of this technology are discussed. 

 

INTRODUCTION 

The stability of the light source and near infrared (NIR) detector system can be 

affected by several factors, including ambient temperature. This in turn can affect the 

precision of an NIR instrument. Typical protocols for near infrared spectrometric (NIRS) 

systems require halogen lamps 1-2 h to stabilise before use and white reference 

measurements to be acquired before each sample measurement. However, many in-line 

applications that employ NIRS systems involve scanning of numerous samples (fruit) 

each second, making reference measurements difficult and inconvenient. Most systems 

take references only periodically, often after extended periods. Portable instruments may 

require measurements to be taken quickly, to minimize measurement time and power use. 

Ambient temperatures can vary by 50 °C or more, affecting light source intensity 

and quality, detector response (sensitivity), and electronic noise and readout of the front 

                                                 

5 This appendix has been published under this title in the proceedings of The 29th International Horticultural 
Congress Symposia 2014, Brisbane. It extends the analysis in chapter 3 of QTH lamp stability during warm 
up, to sub second time frames during the first few seconds of power on. 
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end electronics (FEE) (Greensill, 2000; Walsh, et al., 2000; Zeiss, 2005).  Such changes 

can have a detrimental effect on predictive model performance. A past reference 

measurement may no longer be representative of current conditions, thus guidelines on 

frequency of reference measurements need to be established to ensure and maintain 

optimal system performance. 

Quartz tungsten halogen (QTH) lamps are employed by most dispersive and 

interferometric spectroscopic systems. A QTH lamp has a low pressure halogen gas and a 

tungsten filament within a quartz glass envelope. In operation, tungsten sublimes from the 

filament, combines with the halogen gas but is then deposited back on the filament.  QTH 

lamp filaments typically operate at 2600 to 3200 °C (Henderson and Marsden, 1979).  

However, as the tungsten deposited back to the filament is crystalline and brittle and thus 

fragile.  The expected life of a QTH lamp is 2000 - 3000 h, although instrument grade 

lamp life may exceed 10,000 h (Osborne, et al., 1993).  

The objective of the current study was to model the spectral variation of QTH 

lamps with respect to elapsed time from power up and variation in environmental 

temperature. 

 

MATERIALS AND METHODS 

 

Lamp Spectral Variation with Time and Environmental Temperature 

This study utilised 20 x 12 V 100 W GY6.35 QTH Lamps, with ten each of 

OSRAM HLX64623 (OSRAM A.G) and Sylvania 521995 (Sylvania Lighting Australasia 

Pty Ltd.).  The QTH lamps were located at the focal point of a parabolic reflector to 

produce a collimated beam of light, and a detector optical probe located in the centre of 

this light beam, casting a shadow onto the sample (Greensill and Walsh, 2000) (see Fig1).  

A Zeiss MMS1 NIR Enhanced (Carl Zeiss GmBH, Jena, Germany) was used in 

acquisition of spectra of a white teflon tile.   

With the light source, parabolic reflector, and Teflon tile housed in a Contherm 

5200HS environmental chamber (Contherm Scientific Limited, Petone, New Zealand) at 

30 °C and 50% RH, spectra were acquired at ten second intervals over 4 h from initial 

power up. The spectrometer was located outside the chamber, at 22.5 ± 1 °C.  In another 

exercise, with all components at 22.5 ± 3 °C, measurements were acquired at 24 ms 

intervals over a period of 5 min after initial power up, and then at 10 min intervals over 8 

months of continual use, or until lamp failure.  
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To assess the effect of environmental temperature on lamp spectra, the 

temperature of the lamp assembly was increased in 10 °C steps from 10 to 60 °C, with 1 h 

stabilisation between temperatures. 

 

Assessment of Predictive Performance 

An assessment of the effect of lamp spectral variation was made using ‘actual’ 

predictive performance measures.  Peach spectra (n=72) were collected using an ‘InSight’ 

(MAF Oceania) in-line unit, operating at 7 fruit per second in a commercial packhouse. 

This unit (see Fig. 1) uses the optical configuration described above. Fruit total soluble 

solids (TSS) was assessed of juice squeezed from a 2 cm diameter, 1 cm deep core of 

fruit taken at the point of spectral acquisition.  PLS models for TSS were based on second 

derivate absorbance spectra, interpolated to 2 nm. Calibration statistics were: n=72, 

PC=4, µ=13.6 σ=1.887, R2=0.966, RMSEC=0.347, RMSECV=0.423, SDR=5.441. 

The effect of changing the white reference used in calculation of the peach 

absorbance spectra for those acquired at different times from lamp power up was 

explored. PLS models were redeveloped using the average of the last ten measurements 

over the 4 h period as the white reference (lamp output was considered stable at this 

extended time point). The data set was then iteratively reconstituted with the white tile 

measurements taken over the 4 h period, and the predictive performance of the model 

reassessed, simulating the taking of a white reference at the new time point. 

This procedure was repeated for the measurements acquired at 10 min intervals 

over a period of 8 months or until failure (lamp lifetime), with the model developed using 

an averaged ten measurements at the 4 hour period. The procedure was also repeated for 

the measurements acquired at 24 ms intervals over a period of 5 min after initial power 

up, using single white measurements, in line with hand held (‘F-750’, Felix Instruments, 

Washington) design parameters. 

The assessment of lamp spectral variation with temperature was performed similar 

to the above. The PLS predictive models were redeveloped using the new white reference 

acquired with the lamp ambient temperature of 10 °C, and used for prediction on spectra 

redeveloped using the white reference acquired with the lamp at a range of temperatures. 

As before, the average of ten measurements taken at each temperature setting was used. 
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Chemometrics 

PLS regression models were developed using MATLab R2012b (MathWorks Inc., 

Natick, USA) with PLS toolbox 6.7 (Eigenvector Research Inc., Wenatchee, USA). The 

wavelength range used was 730-930 nm. Model performance was assessed in terms of 

calibration R2, root mean square error of cross validation (RMSECV) based on full cross 

validation, and the ratio of SD to RMSECV (SDR). Prediction performance was assessed 

in terms of root mean square error of prediction (RMSEP) and bias corrected RMSEP 

(SEP-b). 

Bias can be calculated as: 2 2
bbias RMSEP SEP    Equation 1 

When the white reference used for calculation of absorbance for a set of spectra is 

changed, the effect on a PLS regression model prediction will be to change the bias of the 

model, with no effect on SEP-b.  This bias could be calculated by multiplying the second 

derivative of the absorbance spectrum of the new white tile measurement (using the 

original white measurement as reference) by the coefficients of the model. However, 

RMSEP data is presented, with the minimum RMSEP in the plots being equivalent to that 

of the original model, to illustrate the importance of the error to the model prediction. 

 

RESULTS AND DISCUSSION 

 

Stonefruit TSS PLS regression models 

The population (n=72) of fruit used had a mean TSS of 9.7 and SD 0.62 %TSS.  

The PLS regression models developed on the spectra as received from the in-line grading 

unit achieved a root mean square error of calibration (RMSEC) of 0.347, RMSECV of 

0.423 %TSS and Rcv2 of 0.966. 

 

Lamp spectral variation with time 

Initial examination of the spectral output of all lamps at 10 s increments over the 4 

h period showed that generally, the lamp intensity stabilised after approximately 40 min 

(Fig. 2).  

The predictive performances of the calibration models were assessed, as described 

above. Plots of RMSEPs as a function of times of the 60 trials showed two distinct lamp 

start-up behaviours: 



Appendix A 

147 

 4 lamps from Osram and 3 from Sylvania displayed improvements in RMSEP 

values from start up (an initial warm up period) - but only on their first trial (see 

Fig. 3). This result was interpreted as evidence of lamps requiring an initial “burn 

in” period from new and requires further investigation. The length of the warm up 

period was not consistent across the seven lamps, varying from 20 to 220 min.  

 In general (all other trials), there was no improvement from the initial 10 s 

measurement following start up (see Fig. 3).  

Analysis of the data showed that for nearly every trial (except those noted in the 

first dot point above), there was no statistical improvement past the first white reference 

measurement, made ten seconds after power up, for models using second derivative 

absorbance data. 

The performance of each lamp and manufacturer was compared using the mean 

RMSEP and SDR of relative reconstructed prediction sets. All outcomes compared 

favourably with the RMSECV and SDR of the original model. One way ANOVA 

analyses of the mean RMSEP values showed no statistically significant difference 

between any trials or between the manufacturers at α=0.01 

Spectra acquired every 24 ms during the initial power up plateaued in raw 

intensity at approximately 800 ms, followed by a gradual decrease (Fig. 2). However, the 

predictive performances (Fig. 4) of the calibration models plateau at approximately 350-

400 ms. Thus, while peak spectral intensity may not have been reached in this time 

period, spectral quality has stabilised, such that there is no impact absorbance second 

derivative based models. 

For measurements acquired over the lamp lifetime, lamp output was remarkably 

stable until filament breakage. Some lamps showed no ageing apparent in spectra through 

to filament breakage, while others demonstrated change in the last minutes to hours of 

lamp life (data not shown), with no effect on RMSEP values. Of the seven lamps trialled, 

one lamp lasted only for approximately 520 h, while all others outlasted the 

manufacturers’ specifications of 1500 and 3000 h (Osram and Slyvania, respectively). 

The effect of lamp age across 90 days (2000 h) on regression model prediction 

varied greatly across the 60 trials, demonstrating lamp individuality (Fig. 4). Some lamps 

were quite stable over the period, others showed instability. This instability could be due 

to imperfections or contaminants in the filament and/or halogen gas. The performance of 
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these lamps was still acceptable during the 4 hr trials, highlighting the need for regular 

referencing. 

 

Lamp Spectral Variation with Environmental Temperature 

Initial examination of the spectral output of the QTH lamps showed that generally 

the spectral intensity of the lamps decreased with increasing temperature, but no spectral 

intensity variation over the wavelength range 720 - 930 nm (the range used in Brix PLS 

model) was observed. 

No pattern was evident in any increase or decrease in RMSEP values with 

temperature. All RMSEP and SDR values were consistent with results from the lamp 

spectral variation with time. The result indicated that the spectral variation resulting from 

changes in lamp output with ambient temperature (Fig. 5) did not affect the predictive 

performance due to the second derivative absorbance pre-treatment. 

 

CONCLUSIONS 

Lamp output was spectrally stable within 400 ms, although total illumination was 

not stable until approximately 40 min from start-up. Thus, performance of the predictive 

models based on second derivative of absorbance data was not impacted by lamp warm-

up time. Noise on measurement (single white reference) accounted for a mean increase in 

RMSEP as high as 0.22 and individual increases high as 0.82, which may affect 

performance of models with a low SDR. However, using averages of white reference 

measurements significantly improved performance. When predictive models were 

developed using second derivative absorbance data and averaged (10) white references, 

there was no statistically significant impact in RMSEPs on time of lamp warm-up (after 

10s), even during the last hours of lamp life. 

Some lamps displayed start-up output characteristics on their first trial, which was 

not repeated in subsequent trials. This result indicates the need for a short lamp ‘burn in’ 

period of up to two hours, indicative of the need for quality assurance strategies being 

developed for processes which have tight performance requirements. 

Spectral variation, resulting from ambient temperature changes on the lamp, also 

affected lamp output quantity rather than quality and thus did not affect the predictive 

performance due to the second derivative absorbance pre-treatment. 
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Figures 

 

Fig. 1.  “Insight” shadow probe configuration, consisting of a parabolic reflector with 

lamp, projecting light past an optical probe which casts a shadow onto the sample. 
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Fig. 2. Graphs of spectrometer output for three wavelengths (810, 840, 860 nm 

represented by upper, middle and lower lines, respectively) for a QTH lamp output over a 

four minute period from cold start-up (left) and over a four hour period from cold start-up 

(right)(data shown for an example lamp). 

 

Fig. 3.  PLS regression model prediction statistics (RMSEP, % TSS) based on use of 

(average of ten) spectra collected at various times over 4 h from lamp power-up as white 

reference data.  Data from Sylvania lamp H is displayed.  The top panel represents a 4 h 

period involving power up of the unused bulb, while the bottom panel represents a 4 h 

period after 4 h of lamp use. 
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Fig. 4. Plots showing model performance (as RMSEP, % TSS) using white references 

taken (left) during lamp aging for Osram Lamp J (bottom) and G (top) and Sylvania 

Lamp A (middle), and (right) during intervals 24ms over 5 min from lamp power-up as 

white reference data.  

 

 

Fig. 5. Spectral intensity (ADC) recorded of a white tile, with increasing ambient 

temperature of the lamp, presented as a difference spectrum from spectra recorded at an 

ambient temperature of 10 °C (A) and as percentage of spectra recorded at an ambient 

temperature of 10 °C (B). Results are shown for a single lamp (Osram E), but were 

typical of 60 trials.   
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Abstract 

Deterioration of lamp output quality over time and degradation of detector signal to noise 

ratio are issues associated with aging of a spectrophotometer. To document the effect of 

instrument aging on SWNIRS based assessment of internal attributes of fruit quality 

prediction (e.g. Total soluble Solids, TSS, of juice), an assessment was conducted of 

several handheld PDA based spectrophotometers over several years, with repeated spectra 

of a reference PTFE (Teflon) tile and spectra of 20 apple fruit acquired at yearly intervals. 

The repeatability of each instrument was assessed as the standard deviation of absorbance 

of repeated measures of a reference, typically around 0.2 mAbs. Instrument changes were 

identified in performance and in PCA plots, but performance (apple TSS model) was not 

related to instrument repeatability. A piece-wise direct standardisation method is 

recommended to maintain multivariate calibration model across spectrometers. 

Keywords: apple, repeatability, PDS, spectrometer, total soluble solid 

 

                                                 

6 This appendix has been submitted to the Special Virtual Issue of Journal of Near Infrared Spectroscopy, 
January 2016 
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10.1  Introduction 

There is a trend to take instrumentation from the laboratory to the field, e.g. 

spectrophotometers are commercially available for in field assessment of attributes of 

fruit on tree1. Recently use of a multiple crop (pear, apple and persimmon) calibration 

model for total soluble solids (TSS) content was reported3. Unfortunately, field users tend 

to place less emphasis on instrument maintenance, so understanding performance issues 

is important. Further, transferability of calibration models across instrument and 

commodities remains a practical impediment to uptake of the technology2.  

The performance over time of a visible-shortwave near infrared spectrophotometer used 

in estimation of fruit attributes will depend on several factors, including aging of the light 

source, ambient temperature of lamp and detector system of spectrometer.14 For example, 

Greensill et al.15 demonstrated that for the application of assessment of sucrose 

concentration of aqueous solutions on cellulose fibre, model performance was decreased 

if wavelength resolution (FWHM) exceeds approximately 10 nm and repeatability 

decreased below approx. 0.1 mA (assessed as SD of repeated measures of a white 

reference, relative to that reference).  By way of comparison, Foss recommends a noise of 

< 20 µAbs for operation of its NIRSystems 6500 units (NIRSystems 6500 Operating 

Manual). 

Change in either detector or lamp response will impact the output of a predictive model of 

fruit attributes, primarily in terms of bias.16, 18  Change in ambient temperature is known 

to affect halogen lamp output, but in practice spectral quality is not affected sufficiently 

to impact TSS model predictions, and ageing of a halogen lamp is also not associated 

with changes in light quality, at least until near lamp failure.16, 17  Increasing temperature 

also affects silicon photodiode photo-response (becoming more sensitive to longer 

wavelengths14), and also increases thermal noise.   

Other instrument changes may also occur over time, affecting performance, e.g. probe 

alignment and wavelength19. The effect of small (sub nm) change in wavelength 

calibration of a diode array unit can be very dramatic in terms performance of a TSS 

model.17 These authors reported that a drift of 0.03 nm over 150 days and 0.1 nm over a 

year period for Zeiss MMS1 diode array spectrometers. Instrument drift, as mentioned in 
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a white paper from the NIR instrument manufacturer Foss (http://goo.gl/gwxa4C), is a 

well-established performance issue for NIR spectrometers.20  

There are a number of calibration transfer techniques available in literature, e.g. as 

documented by Feaudale et al.4 and Fearn5. There are three broad groups of methods6: (a) 

correction of calibration model before transfer (e.g. slope and bias correction); and (b) 

correction of spectra before calibration model development (e.g. orthogonal scatter 

correction (OSC), multiplicative scatter correction (MSC), standard normal variate 

(SNV), piecewise direct standardization (PDS), repeatability file (rep file)7, generalized 

least square weighting (GLSW)8, artificial neural network  (ANN), wavelet transform-

based standardization (WT), finite impulse transform (FIR) etc; (c) A ‘global’ model 

approach involving inclusion of all sample and instrument variability into the calibration 

set.  

Transfer of calibration across network based on-line and bench top NIR systems9, 10 is 

well established. Calibration transfer across instrument types has been demonstrated, 

including from bench top FTNIR to diode array based handheld NIR system2, 11.  For 

example, Alamar et al.2 reported transfer of an apple TSS PLSR calibration model from a 

FTNIR spectrometer (InfraProver, Norderstedt, Germany) to a diode array based 

spectrometer (MMS1, Carl Zeiss, Jena Germany, 380-2000 nm) using the PDS technique. 

Using a FTNIR as master, the prediction performance on two MMS1 units (R2>0.70, 

RMSEP = 0.73% TSS) were only slightly inferior to the situation wherein a MMS1 unit 

was used as master with another MMS1 unit as slave (R2= 0.76 and RMSEP = 0.56% 

SSC). 

In general, however, there are very few reports dealing with calibration transfer across 

handheld NIR spectrometers, or in context of attributes of moist samples as compared to 

dry samples. Examples of the former case include rockmelon6, mandarin12, barley9, 

apple2, olive11 and leaf chlorophyll.13 

Multivariate standardization across instruments is generally carried out using spectra of 

same samples acquired with the instruments across which standardization is to be 

perform.21 Ideally standardisation is performed using the sample type to be predicted in 

future. With hydrated biological samples (e.g. fruit), there is no possibility of retaining 

samples, thus all instruments need to be in one place at one time for standardisation.  
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For example, Wang et al.21 noted that NIR spectrometer response may vary due to 

variation in wavelength calibration, detector instability, and electronic drift, necessitating 

re-calibration and multivariate instrument standardization. In their study, spectra of 52 

gasoline samples were collected with each of two instruments (having different data 

points per nm), and instrument standardization was performed using d2A data of the 850-

1500 nm region. Direct, inverse model, classical model and piecewise direct 

standardization (PDS) methods were compared, with PDS recommended. 

To assess the impact of SWNIR instrument aging on spectral quality and its implication 

to apple predictive model performance over year across instruments, a study was 

conducted over three to four years.  

 

10.2  Materials and Methods 

10.2.1  Instrumentation and fruit 

Three Nirvana (Integrated Spectronics, Sydney; n.b. this company is no longer trading, 

but similar instrumentation is available from Felix Instruments, Camas, USA) handheld 

SWNIR spectrophotometers (Unit 05, 16 and 18) were used over a period of four years, 

following periods of intensive field use each year. These units utilise a Zeiss MMS1 

spectrometer and a halogen lamp, configured in an interactance geometry (a shadow 

probe, as described by Greensill and Walsh).22 In each of four years, spectra were 

repeatedly (n=20) collected of a Teflon (PTFE) tile to assess repeatability for at least 

three years while this work was extended to 7 years with unit 05 (year 2008-2014). 

Further, each year four fruit each from each of six apple varieties (Granny Smith, Red 

Delicious, Royal Gala, Pink Lady, Fuji and Jazz) were sourced from retail markets. Fruit 

were marked on opposite sides in the equatorial region. Spectra were collected twice at 

each marked spot, and then the fruit mesocarp at the marked spot was sampled with a 2 

cm diameter corer to 1 cm depth and used to measure TSS. The TSS reading was taken of 

juice extracted from the same spot where spectra were collected, using a temperature 

compensated refractometer (Bellingham and Stanley RFM320).  
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10.2.2  Data processing and analysis 

Apple and PTFE white tile spectra were manipulated to produce interpolated (to 3 nm 

steps) absorbance and second derivative (Savitsky-Golay, second order, 4 data points 

each side) (id2A) spectra.  

The calibration transfer approaches of PDS (20 spectra chosen with Kennard stone 

method6, repeatability file (using 20 spectra from PDS)7, global model analysis and 

model update with sample replacement were trialled. These tasks were conducted using 

script written in Matlab2014a (Math Works, Inc) using PLS toolbox 7.5.1 (Eigenvector, 

USA). Principle component analysis was undertaken using the multivariate analysis 

software package, The Unscrambler (v10.3, Camo, Norway). Full cross validation 

method was used for PLSR model cross validation. 

10.3  Results and Discussion 

10.3.1  Instrument repeatability 

The Nirvana unit uses an internal gold plated shutter as an internal reference with every 

sample measured, so the spectra of the PTFE tile presents an absorbance ‘feature’ in the 

visible region (gold is a good reflector on infrared wavelengths, but absorbs in the visible 

region) (Fig. 1). The apparent absorbance spectra of the PTFE (white) tile varied between 

instruments in the visible region (400-500 nm) (Fig. 1). This phenomenon is attributed to 

differences in the internal gold reference between units.  The shape of the absorbance 

spectra of the PTFE tile did not visibly differ between years in two instruments (unit 16 

and 18), while in unit 05, spectra collected in 2011 differed to other years (Fig. 1). 

Repeatability was assessed as the SD (n = 20) of absorbance spectra of a PTFE tile. 

Typical repeatability at wavelengths between 600 and 900 nm was less than 0.2 mAbs 

units (Fig. 2, Table 1). This compares favourably to the criterion (0.1 mAbs; above which 

model performance decreased) established for the Zeiss MMS1 module of for assessment 

of sucrose solutions on cellulose15. Instrument repeatability was generally consistent over 

time (Fig. 2, Table 1); however for unit 5, a poorer repeatability was recorded in 2010. 

A principal component analysis plot of absorbance data of PFTE spectra from three 

instruments over three years demonstrated spread with a given instrument in PC1 (Fig. 3), 
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which was weighted to wavelengths below 500 nm (Fig. 4). With use of the second 

derivative, the spread in PC 2 between units was reduced, as expected for removal of 

baseline shifts in the absorbance spectra, except for unit 5. The wavelengths loading for 

PC2 also featured wavelengths <500 nm, consistent with the observed difference in the 

white reference spectra for this unit (Fig. 1). These differences between units and years 

are ascribed to differences in the gold coating of the reference shutter. 

 

10.3.2  Apple TSS model performance 

Apple model performance was comparable to other reports in the literature (e.g. typical 

RMSECV 0.6 %TSS).  Performance varied between years; however this performance was 

neither correlated to unit repeatability nor was a trend with time apparent (Table 1 and 

Fig. 2). For example, in 2013 unit 16 recorded the poorest instrument repeatability (SD of 

3.5 mA), but produced an apple TSS model superior to the other two units. Thus all units 

were operating with repeatability values (up to 3.5 mAbs) that were adequate to the task 

of apple TSS prediction. 

Lu and McLure23 reported that full spectrum calibration methods such as PLSR does 

surprisingly well in prediction of a three component mixture even with the presence of 

99% noise (CV 0.17), while for PLSR of a natural product attribute (nicotine in tobacco); 

prediction error became poor only when noise was >30% (CV of 0.05). Thus while Signal 

to Noise Ratio is important, its impact must investigated in context of an application.  

This conclusion is consistent with the observed poor relationship between white tile 

repeatability and apple model performance, at least for repeatability to 3.5 mAbs.  

The cause of variation in apple model performance may be partly attributed to the change 

in apple population structure (between years), and partly attributable to shift in detector 

wavelength calibration. For example Martinsen et al.17 reported that a 1 nm perturbation 

of a Zeiss MMS1 spectra used in a kiwifruit DM model resulted in a 7% bias error. 

Wavelength calibration was noted to be consistent to 0.1 nm over a year.  When the fruit 

TSS was predicted from spectra of unit 05 in 2011 (for which reference spectra were 

notably different) using a model created using data from previous years, there was a large 

bias (Table 1), consistent with a consistent shift in spectra from that unit in that year (Fig. 

1). 
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10.3.3  Calibration model maintenance and instrument 

standardization 

PLSR model performance in TSS prediction over years, within and across instruments, 

were not consistent in terms of r2
p and bias (Table 2).  When a model was used from one 

instrument on other instruments for spectra collected of the same samples and the same 

time year), r2 was reasonable but bias was increased. When used to predict spectra 

collected from different instruments in a different year, bias was increased (Table 2). 

Modelling updating across two years in an attempt to capture variation associated with 

instrument ageing improved performance (decreased bias) for prediction of samples 

collected in another year (Table 2). 

Among four methods trailed for model maintenance (Global, repeatability file, GLSW 

and PDS), PDS method gave the best result across instruments and year (Table 3). The 

PDS method solved the problem of prediction bias when the model calibrated on a given 

unit (for e.g. U05-2011) was validated with spectra collected with another units (U16-

2013 and U18-2013) (Table 2 and 3). However, in another case with the same unit (U05-

2011, validated with U16-2012 and U18-2012), prediction performance was not 

improved, because the value of the bias was already low before PDS treatment. The PDS 

treatment was more effective than other methods in reducing high prediction bias. The 

better performance of PDS method is in agreement with the work of  Wang et al.21 on 

instrument standardization with gasoline samples and melon fruit SSC work of Greensill 

et al.6   

 

10.4  Conclusion 

No evidence for a consistent decrease in apple TSS calibration performance was found, 

indicating instruments were stable over the period of experimentation, despite extensive 

field use under tropical conditions. White tile repeatability varied between instruments 

and years but it was not a good indicator of apple model performance. Instrument 

updating with spectra collected over years had a mixed effect- satisfactory prediction 

within same instrument but not across instruments. The variation in units was mostly at 

the visible region (Figure 4, score plot of two PCs), and attention should be given to 

stabilising the reference. The prediction bias across instruments can be attributed to small 
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differences in wavelength calibration between the units. The PDS approach worked well 

while the repeatability file and GLSW methods failed for calibration model maintenance 

across years and instruments. 
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10.7  Tables and Figures 

Table 1. Apple TSS model (based on id2A spectra over 729-975 nm) from three units 

over a time period of 3 years. Values in bold highlight the unit with best 

repeatability and apple model performance in each year. Apple TSS SD was 1.75, 

1.53 and 1.51 in the years 2011, 2012 and 2013, respectively. 

Year Unit white tile PCs R2
cv RMSECV SDR 

2011 5 0.219 7 0.91 0.521 3.36 
 16 0.613 7 0.87 0.625 2.80 
  18 0.198 6 0.90 0.540 3.24 
2012 5 0.185 9 0.79 0.713 2.15 
 16 0.416 9 0.83 0.633 2.42 
 18 0.256 8 0.84 0.608 2.52 
2013 5 0.121 5 0.84 0.610 2.48 
 16 3.523 5 0.82 0.640 2.36 
  18 0.188 7 0.86 0.566 2.67 
2011-12 5 - 8 0.85 0.636 2.59 
 16 - 8 0.84 0.666 2.48 
 18 - 8 0.88 0.564 2.93 
2011 3 unit Combined 9 0.89 0.571 3.05 
  Rep-file 6 0.94 0.876 1.99 
    GLSW 6 0.83 0.720 2.42 
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Table.2. Prediction statistics based on models described in Table 1 (sample size=96, 

SD=1.51 %TSS).  Populations used in calibration and prediction are described in 

terms of the unit used to acquire spectra (e.g. U05) and the year of acquisition (e.g. 

2011-12 is combination of two sets). 

Calset Predset r2
p SEP SDR Bias 

U05-2011 U05-2012 0.72 0.84 1.80 -0.096 

U05-2011 U16-2012 0.75 0.83 1.82 0.323 

U05-2011 U18-2012 0.77 0.81 1.86 0.455 

U05-2011 U05-2013 0.70 0.84 1.80 0.053 

U05-2011 U16-2013 0.73 0.78 1.94 1.39 

U05-2011 U18-2013 0.61 0.95 1.59 -5.27 

U05-2011-12 U05-2013 0.60 0.97 1.56 0.08 

U05-2011-12 U16-2013 0.63 0.93 1.51 1.22 

U05-2011-12 U18-2013 0.48 1.08 1.40 -5.05 

U16-2011-12 U16-2013 0.61 0.96 1.57 0.44 

U18-2011-12 U18-2013 0.71 0.82 1.84 0.09 

 

  



Appendix B 

165 

Table 3. Performance of calibration model maintenance methods in prediction 

(sample size=96, SD=1.51 %TSS) 

Calibration set Prediction set r2
p SEP SDR Bias 

3 units-2011(Global) U05-2013 0.38 1.65 0.92 1.10 

3 units-2011 (Global) U16-2013 0.42 1.53 0.99 1.42 

3units-2011 (Global) U18-2013 0.37 1.51 1.00 0.66 

3 units-2011 (Rep file) U05-2013 0.38 1.27 1.19 0.06 

3 units-2011(Rep file) U16-2013 0.52 1.05 1.44 0.78 

3 units-2011 (Rep file) U18-2013 0.47 1.11 1.37 -0.50 

3 units-2011 (GLSW) U05-2013 0.38 1.48 1.02 0.12 

3 units-2011 (GLSW) U16-2013 0.42 1.29 1.17 1.10 

3 units-2011 (GLSW) U18-2013 0.34 1.38 1.09 0.21 

U05-2011 (PDS) U16-2011 0.89 0.642 2.35 -0.03 

U05-2011 (PDS) U18-2011 0.91 0.574 2.63 -0.10 

U05-2011 (PDS) U16-2012 0.70 0.839 1.80 0.44 

U05-2011 (PDS) U18-2012 0.76 0.759 1.99 0.32 

U05-2011 (PDS) U16-2013 0.74 0.769 1.96 0.61 

U05-2011 (PDS) U16-2013 0.68 0.851 1.77 0.02 
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Figure 1. Average PTFE white tile (Abs) spectra of three Nirvana units over three 

years period (n=20). 



Appendix B 

167 

 

Figure 2. Instrument repeatability, assessed as SD of 20 repeated PTFE tile spectra 

over several years 
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Figure 3. PCA score plot of (a) Absorbance white tile spectra, (b) D2A white tile 

spectra and (c) D2A apple spectra from three instruments over three years 
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Figure 4. Loading plot for PCs from (a) Abs white tile spectra (unit 18), (b) Abs 

white tile spectra (3 units), (c) D2A white tile (3 units) and (d) D2A apple spectra (3 

units) from PCA analysis over 3 years 
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Assessment of internal flesh browning in intact apple 

using visible-short wave near infrared spectroscopy 7 
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Abstract 

Certain cultivars of apple are prone to an internal flesh browning defect following 

extended controlled atmosphere storage. A number of (destructive) reference methods 

were assessed for scoring the severity of this defect in a fruit, including visual 

assessment, image analysis (% cross section area affected), chromameter CIE Lab values 

and juice Abs420, of which visual scoring on a 5 point scale and a colour index based on 

CIE Lab were recommended. Non-invasive detection of this disorder using three 

instruments operating in the visible-shortwave NIR but varying in optical geometry 

(interactance, partial transmission and full transmission) was attempted. Quantitative 

prediction of defect level was best assessed using visible-shortwave NIRS in a 

transmission optical geometry, with a typical partial least squares (PLS) regression model 

R2
p = 0.83 and RMSEP = 0.63 (5 point defect score scale). The binary classification 

approaches of linear discriminant analysis (LDA), PLS discriminant analysis (PLS DA), 

support vector machine approach (SVM) and logistic regression were trialled for 

                                                 

7 This appendix has been submitted under this title to the journal of Postharvest Biology and Technology, 
February 2016 
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separation of acceptable fruit, with the best result achieved using the PLS discriminant 

analysis (PLS-DA) method, followed by linear discriminant analysis and support vector 

machine classification. Classification accuracy [(TP+TN)/(P+N)] on an independent 

validation population  of  >95%  and a false discovery rate [FP/(TP+FP)]of <2% was 

achieved. 

Keywords: colour index, score, optical geometry, classification 

11.1  Introduction 

Several types of internal browning are recognised in apple (Malus domestica Borkh.) and 

other pome fruit, including radial, diffuse, bulge or internal breakdown (Bergman et al., 

2012; James and Jobling, 2009). The browning symptom is considered to result from 

membrane disruption, with consequent oxidation of polyphenols otherwise localised to 

the vacuole of the brown compound, quinone, or its insoluble polymer, melanin (Hatoum 

et al., 2014a). The diffuse browning disorder developing during controlled atmosphere 

(CA) storage is suggested to be associated with varieties bred for increased crispness 

which also have lower intercellular space content (Herremans et al., 2014), although 

incidence severity is influenced by both pre and postharvest factors and their  interaction 

(Lau, 1998; Castro et al., 2007; Franck et al., 2007; Castro et al., 2008; Benkeblia et al., 

2011; Felicetti et al., 2011; Bergman et al., 2012; Wang and Sugar, 2013; Hatoum et al., 

2014b).  The incidence of the disorder can therefore be erratic (James and Jobling, 2009). 

Pre-harvest factors include nutrition (chiefly calcium and nitrogen), irrigation, harvest 

maturity, growing degree days and days after full bloom (Moggia et al., 2015). The main 

postharvest factor associated with diffuse internal browning is high carbon dioxide 

concentration, (Ferguson et al., 1999; Hatoum et al., 2014b), with probability of incidence 

increasing for fruit in controlled atmosphere storage beyond six months (Castro et al., 

2007).  

Internal browning is considered a ‘major defect’ by retailers, with consignments subject 

to rejection if more than 2% of fruit display the disorder (e.g. Woolworths, 2015). This 

market pressure creates demand for a technology capable of detection of the disorder in 

fruit, allowing for sorting to remove defect fruit. A range of technologies have potential 

for detection of this disorder, including visible-short wave near infrared spectroscopy 

(SWNIRS), acoustic, X-ray or nuclear magnetic imaging.   For example, Gonzalez et al. 
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(2001) reported the use of MRI in detection of internal browning in ‘Fuji’ apples, with 

difference in longitudinal (T1) and transverse (T2) relaxation time and proton density 

between the normal, moderate and severe browning fruit. Indeed, Chayaprasert and 

Stroshine (2005) reported use of magnetic resonance imaging (MRI) for detection of 

browning in intact apple in an online sorting conveyor belt achieving classification 

accuracy [(TP+TN)/(P+N)] of 88%.  However, conveyor speed was less than 150 mm/s, 

too slow for commercial application (typically 1000 mm/s). Visible SWNIRS shows 

more promise for adoption into online sorting. 

(Norris, 1958) (reported in (Aulenbach et al., 1972) first reported on the measurement of 

transmittance of intact agricultural products for detection of internal defects. Birth and 

Olsen (1964) reported on the use of the difference in optical density at 760 and 810 nm of 

intact apple fruit as an index for water core, and this concept was expanded to the 

detection of both water core and internal browning by Francis et al. (1965). The topic was 

then left unreported for 30 years, until the work of Upchurch et al. (1997), Clark et al. 

(2003), and then McGlone et al. (2005) and then others. Francis et al. (1965) reported that 

the difference of absorbance at 840 and 740 nm was a useful index of the internal defect 

detection with 91% accuracy for separating normal fruit from defect in a population 

involving 50 fruit. Similarly, Upchurch et al. (1997) reported use of a ratio between 

transmittance at 720 and 810 nm as a classifier for discrimination between defective and 

good apples (the ratio decreased as the browning intensity increased, correlation 

coefficient of determination (R2) = 0.71). Error rates of 6.3% good apples misclassified as 

defect (false negative) and 12% defect fruit misclassified as good (false positive) were 

reported. The presence of bruises contributed to instances of false negatives. Clark et al. 

(2003) reported use of partial least squares regression using absorbance data over the 

wavelength region 697-861 nm for estimation of the degree of internal browning in 

Braeburn apple.  Model statistics of correlation coefficient of determination for prediction 

[(R2
p) = 0.91, error of prediction (RMSEP) = 7.9%] were reported when using the average 

of spectra obtained from opposite sides of the fruit. Increased absorbance in the visible 

range is presumably by phenolics associated with the browning symptoms.  

Given such positive results, the integration of SWNIR technology into on-line sorting is 

logical.  McGlone et al. (2005) reported detection of brownheart disorder of Braeburn 

apples of moving fruit at speed of five fruit per second, using SWNIR transmittance 



Appendix C 

173 

spectra over the range 650-950 nm range.  Use of a ‘large aperture spectrometer’ was 

recommended for online measurement, with a partial least square regression (PLSR) 

model result of correlation coefficient of determination for prediction (R2
p) = 0.9, and 

standard error in prediction (RMSEP) = 4%.   

Prediction of the level of disorder in fruit is, however, unnecessary as in practice 

separation to only two classes is required- accepted and non-acceptable. Han et al. (2006) 

reported use of a discriminant technique for detection of brown core in another member 

of the pome fruit family, pear (Pyrus communis L.), with spectra collected over the range 

651-1282 nm with a transmission optical geometry. Using the absorbance difference 

between 713 and 743 nm as a classifier, 5.3% of good pears were incorrectly classified as 

defect, while only 4.3% of defect fruit were classified as good. Fu et al. (2007) reported 

the use of transmittance spectra over 400-1028 nm and also reported that defect fruit 

demonstrated a higher absorbance below 750 nm and a lower absorbance above 750 nm. 

In calibration, a discrimination accuracy of 89% was noted, while in validation, accuracy 

decreased to 81%. Discrimination based on data of spectral regions is also possible, using 

techniques such as soft independent modelling of class analogy (SIMCA),  partial least 

square discriminant analysis (PLS-DA), k- nearest neighbourhood (k-NN) and linear 

discriminant analysis (LDA) (Moscetti et al., 2015; Pérez-Marín et al., 2011).   

Recent publications have focussed on the application of novel techniques.  Li (2011) 

reported assessment of internal browning in Fuji apples using Fourier Transform (FT) 

NIR in an interactance optical geometry, with the best PLSR model (R2 = 0.87) achieved 

at wavelength ranges of 950-1440 nm, 1480-1890 nm and 1960-2300 nm. Vanoli et al. 

(2014) reported the use of time resolved reflectance spectroscopy, with estimation of 

absorption and scattering coefficients at 780 nm used for separation of apple fruit with 

internal browning. They reported correct classification of 90% of good fruit and 71% of 

defect fruits.  

Thus a number of reports indicate that non-invasive sorting of fruit on internal browning 

is possible. For the light transmission studies, published reports of detection of internal 

browning generally recommend a transmission geometry and the use of wavelengths in 

the vis-SWNIR region, but there is variation between the reports on the best wavelength 

range to use, and on the algorithm to use (PLSR, simple ratio, discriminant analysis etc.). 

One study has considered defect detection of moving fruit.  The comparison of published 
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studies is difficult, as results depend on instrumentation, population distribution and the 

reference method used to assess level of defect. Further, all of the reports mentioned 

above are based on relatively small sample sizes, basically limited to a single population 

of fruit divided into training and validation sets, and thus fail to consider the range in 

variation of fruit optical properties occurring between populations (of different growing 

conditions etc.). The ‘reference’ method used in assessment of the internal browning 

defect varies across the published studies, from visual assessment to image analysis of the 

cut fruit surface or measure of browning of extracted juice. Perhaps it should not be a 

surprise then that commercial adoption of non-invasive technology for detection and 

sorting of this disorder is not widespread, an indication that application is not as 

straightforward as some of the scientific literature suggests. There are some commercial 

providers of instrumentation (e.g. as advertised by Compac, www.compacsort.com 

Greefa, www.greefa.nl, MAF www.maf.com, and www.sorter.eu, among others), but 

there are no reports in the scientific literature on use of this equipment in context of 

detection of apple fruit with internal diffuse browning.  

A specific issue not considered in previous reports is that of the effect of sample 

temperature. Fruit consist of approximately 80% water. The IR/NIR spectrum of water is 

affected by temperature due to an effect on the extent of hydrogen bonding, and this can 

impact prediction of soluble solids content (SSC) and dry matter  (DM) in intact fruit 

using SWNIRS with the simplest accommodating measure being the inclusion of samples 

of a range of temperatures into the training sets (Acharya et al., 2014). Given that the 

spectral information relevant to internal browning may be restricted to the visible region, 

spectral based measures of internal browning may be free from interference associated 

with temperature change, however, this issue should be explicitly considered. 

In the current exercise, results for detection of internal browning in apple are compared 

for spectra collected with instruments using an interactance, partial transmittance and full 

transmission geometries, including the instrumentation of a fruit grading equipment 

manufacturer, with consideration of reference method, wavelength region, algorithm and 

sample temperature, and the use of discriminant analysis with full spectral data. A 

preliminary report on this work was presented at IHC 2014.  
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11.2 Materials and Methods 

11.2.1  Fruit 

Apple (Malus domestica Borkh.) cv Pink LadyTM fruit were commercially harvested in 

Stanthorpe, south Queensland, Australia, in July 2013 and stored for six months in 

controlled atmosphere storage with 1-2% O2 and 4-5% CO2. Fruit were sampled from 

each of four bins, being fruit from different harvest events, transported overnight to 

Rockhampton, Queensland at 25 oC, and then stored for another two months at 4 oC. Fruit 

were allowed to equilibrate to room temperature for 6 h before spectra were acquired.  

The four independent lots (populations) of fruit contained a total of 296 fruit (93 good 

and 203 defect). Population 1, containing 69 fruit (22 good and 47 defect), was used for 

trials on chlorophyll fluorescence and absorbance at 420 nm of extracted juice. 

Population 2, consisting of 90 fruit (31 good and 59 defect), was used for SWNIR 

calibration model development. Population 3 and 4 contained 60 (12 good and 48 defect) 

and 77 (28 good and 49 defect) fruit, respectively, and were used as independent 

prediction sets for the SWNIR models. Population 2 and 3 (a total of 150 fruit) was 

further subset into five groups of 30 fruit (referred to as populations 5 to 9) for a study of 

the impact of fruit temperature on model prediction. 

11.2.2  SWNIRS 

Four spectra were acquired of each fruit (detector facing each of four equidistant 

locations around the equator of the fruit) using each of three instruments, involving 

different optical geometries and detectors: 

(i) a handheld instrument using an interactance optical geometry (Greensill and 

Walsh, 2000) with a 32 W halogen lamp and a MMS-1 photodiode array 

spectrometer (302-1150 nm); (‘Nirvana’, Integrated Spectronics, Sydney, 

Australia) 

(ii) an instrument developed ‘in-house’, employing a partial transmission optical 

geometry with a 300 W halogen lamp and a MMS1 photodiode array 

spectrometer (302-1150 nm) operated with an integration time of 1000 ms; 

(IDD0).  
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(iii) a commercial online sorting instrument using a full transmission geometry 

with a 150 W halogen lamp and an Avantes spectrometer (600-973 nm) 

operated with an integration time of 9 ms; (‘Insight-2’, MAF Roda, 

Montabaun, France) 

The IDD0, developed for this project was based on the Zeiss MMS-1 spectrometer, 

operated with a 16 bit analogue to digital converter (tec5, Germany). This unit has a mean 

pixel pitch of 3.3 nm, a wavelength resolution (FWHM) of approximately 10 nm, a 

repeatability of 1 milli-absorbance, a well depth of 1013 counts/Watt seconds and 

operates over the spectral range 310-1100 nm. Thus the unit has high signal to noise but 

modest sensitivity. To achieve a 180o geometry (lamp-fruit-detector angle) involving 

transmission of light through a whole fruit, a high intensity lamp (300 W Quartzline) and 

a long integration time were employed. The use of the 300 W lamp entailed heating 

problems of both fruit and lamp housing, so the unit was designed with a series of fans 

and a failsafe circuit to cut power if lamp holder temperature exceeded 100 oC. A shutter 

was incorporated to allow shielding of the fruit until measurement. Spectrometer 

analogue to digital conversion counts (ADCC) of over 67% of detector maximum were 

achieved for mandarin using this lighting, but for apple, similar detector ADCC and 

integration time was achieved only with a 90o illumination-sample-detector angle. Data 

acquisition and processing utilized LabView software developed in-house. 

11.2.3  Other measurements 

The extent of the browning disorder within apple fruit was assessed using several 

reference methods:  

(i) Visual browning score  

A panel of 6 members was trained in the assignment of a score for the severity of defect 

visible in a transverse equatorial cut of the fruit, using a 5 point scale, with scorers 

assisted by a reference pictorial chart (Fig. 1). The average value of all scorers was used. 

In the 5 point scale, score 1 is symptomless and score 2 is associated with an ‘off white’ 

colouration that can be considered acceptable to consumers, scores 3 to 5 are associated 

with increasingly distinct symptoms, all unacceptable to consumers (Fig. 1).  
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Figure 1. Cut surfaces of apple with internal browning symptoms in order 

increasing order of browning intensity from left to right, with visual score ratings of 

1 to 5, respectively. 

(ii) Area of defect  

The cut apple (equatorial transverse cut), as used in visual scoring, was imaged using a 

Canon DS 126211 camera with a 17-85 mm lens at a fixed focal distance. Images were 

processed using ImageJ software, with conversion of the RGB colour image into 

grayscale and use of a threshold setting to differentiate defect tissues and masking of the 

core area (Fig. 2). Affected tissue area was expressed as a percentage of total fruit cross-

sectional area, with subtraction of the core area.  

Figure 2. Image processing using ImageJ software for quantification of affected area 

as a % of total cross-sectional area. 

(iii) Chlorophyll fluorescence and Abs 420 

Chlorophyll fluorescence (Fv/Fm) was measured using an OptiSciences 30p 

(Bioscientific, Australia) at a modulation intensity of 4 following dark adaptation for 24 

hours. One reading was taken per fruit. 



Appendix C 

178 

The juice colour was assessed following the method of Song et al., (2007). Apple flesh 

(10 g fresh weight) was finely chopped and 12.5 mL of water added. The mixture was 

blended using an Ultraturrex and centrifuged for 5 min at 3000 rpm. An aliquot (5 mL) 

was mixed with 7.5 mL of 70% v/v ethanol and centrifuged again for 10 min at 3000 rpm 

and supernatant absorbance at 420 nm was measured using an UV-Visible 

spectrophotometer CARY 50 Bio (Labwrench, Ontario, Canada). 

Population 1 was assessed for % area defect based on image analysis, Abs 420 of juice and 

chlorophyll fluorescence.  

(iv) CIE colour space  

The cut apple (equatorial transverse cut), as used in visual scoring, was also used for the 

measurement of surface colour (CIE Lab colour space) using a Chromameter CR 400 

(Konica Minolta; 2 degree observer, D65 illuminant), with averaging of five randomly 

located measurements per fruit. CIE Lab values were used to calculate a Colour index 

(CI), as described by Magwaza et al. (2014): 

Colour Index = (1000 x a)/(L x b). 

(v) Weight, SSC and DM 

Following weighing of each fruit, a 20 mm diameter core was extracted to 10 mm depth 

from the point of spectral assessment. The core was halved radially, with one half used 

for dry matter (DM) and the other for soluble solids content (SSC) measurement. For DM 

assessment, tissue was dried in a fan forced oven at 65 oC for 48 h. For SSC, juice was 

extracted using a garlic press and measured using a refractometer (RFM 320, Bellingham 

and Stanley Ltd). 

11.2.4  Data analysis and Chemometrics 

Multivariate data analysis was undertaken using The Unscrambler software (version 10.3, 

Camo, Oslo, Norway) and MATLab R2014a (Mathworks Inc., Natick, MA, USA) with 

PLS Toolbox (Eigenvector Research Inc., Wenatchee, WA, USA). IDD0 and Nirvana 

spectral data was collected in Absorbance units. InSight2 spectral data was output in units 

of % transmittance (T) and was converted to Absorbance (log 1/T). Absorbance data of 

all instruments was subject to a number of pre-treatments including mean centring, 
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standard normal variate (SNV), multiple scatter correction (MSC), and Savitzky Golay 

second derivatization using a window of 9 points (SG-9). Spectral data used for the 

analysis was restricted to 500-975 nm for IDD0 and Nirvana instrumentation while for 

the InSight2 unit the entire available range (600-973 nm) was used. 

Predictive quantitative models developed partial least square regression (PLSR) were 

assessed using the criteria of correlation coefficient of determination (R2
cv), root mean 

square error of cross validation (RMSECV) and number of principal components (PCs), 

while predictive performance was assessed based on coefficient of determination of 

prediction (R2
p), root mean square error of prediction (RMSEP) and bias. 

The binary classification algorithms of PLS–discriminant analysis (PLS-DA) based on 

two or multiple classes, linear discriminant analysis (LDA) based on linear or 

Mahalanobis distance (MD), PCA based discriminant analysis, support vector machine 

(SVM) classification, soft independent modelling of class analogy (SIMCA), and 

multiple logistic regression (MLoR) were assessed based on the true positive rate [(TPR = 

TP/(TP+FP)] true negative rate [TNR = TN/(TN+FN)] and accuracy [(TP+TN)/(P+N)] 

where TP = true positive (defect fruit), TN = true negative (sound fruit) in a population, 

FP = false positives (sound fruit identified as defect, and FN = defect fruit identified as 

sound.  

 

11.3  Results and Discussion 

11.3.1  Population description 

Of the four populations assessed, population 3 had the highest mean visual (5 point) 

scores (Table 1). The mean CIE a* and colour index values of the three populations was 

not proportionate to the mean visual scores (Table 1) consistent with a poor relationship 

between these variables (Table 2). 
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Table 1. Mean and standard deviation of reference parameters for four populations 

– population 2 was used for model calibration and other sets were used as prediction 

sets. Score (5) refers to a 5 point scale visual score of the extent of browning. Values 

are presented as [Mean ± standard deviation (SD)]. 

Parameters Pop 1 Pop 2 Pop 3 Pop 4 

Number of fruit 69 90 60 77 

Score (5)  2.8 ± 1.60 3.21 ± 1.53 3.81 ± 1.39 3.36 ± 1.75 

Colour Index  0.37 ± 1.29 1.05 ± 1.4 1.38 ± 1.38 

 

A further five sets of fruit were used in the exercise on assessment of influence of 

temperature on prediction performance (section 3.5).  Each of these sets contained 30 

fruit, with mean and SD (5 point visual score) of 2.96 ± 1.49, 3.28 ± 1.57, 3.14 ± 1.48, 

3.36 ± 1.51 and 3.85 ± 1.38, respectively. 

 

Table 2. Correlation coefficient of determination (R2) between various destructive 

measures of Pink Lady apple fruit (Populations 2 and 3; n= 150). Values above 0.75 

are in bold. 

Parameters  Score CIE L*  CIE a*  CIE b*  Colour DM  SSC 

Score (5) 1       
CIE L 0.68 1      

CIE a 0.78 0.90 1     

CIE b 0.40 0.56 0.52 1    

Colour Index  0.70 0.71 0.77 0.43 1   

DM  0.11 0.14 0.12 0.07 0.19 1  

SSC  0.23 0.30 0.28 0.18 0.38 0.61 1 

 

11.3.2 Reference methodologies 

Consumer assessment of the diffuse browning defect of apple involves subjective visual 

inspection of a cut surface of the fruit. However there are inexacitudes involved in 

classifying this disorder, e.g. how should a fruit with a diffuse overall browning be scored 



Appendix C 

181 

compared to a fruit with a patchy but darker areas. In an attempt to quantify the visual 

assessment, five and ten point scoring systems were compared. For the 5 point scale, the 

average RMSED (root mean of squares of error of differences) of assessment of defect 

level in 125 cut fruit assessed by six different operators relative to that of the ‘average 

assessor’ was 0.54 (n=6), while for the 10 point scale it was 0.79 (adjusted to a 5 point 

scale). For a repeated assessment using the 5 point scale by one assessor only, the 

RMSED was 0.28. These errors are associated with the ability of a human observer to 

remember the descriptions of multiple levels.  The 5 point scale is therefore 

recommended over the 10 point visual scale. 

For population 1, the correlation (R2) between 1-5 visual score, 1-10 visual score, % area 

defect, Fv/Fm and Abs 420 nm was 0.85, 0.64, 0.2 and 0.02 respectively (data not 

shown). The indices of 1-10 visual score, % area defect, Fv/Fm and Abs 420 nm were not 

considered further.  

In an exercise involving 150 fruit (Pop 2 and 3), a stronger linear correlation existed 

between the 5 point visual score and CIE a (R2 = 0.78) than L or the colour index, and 

score was poorly related to SSC or DM (Table 2). As visual score mimics a consumer 

assessment of the fruit, this method was adopted as the most relevant measure for this 

disorder, and as an easy to undertake, though destructive method.    

McGlone et al. (2003) reported a correlation coefficient of determination (R2) of 0.93 

between harvest time DM and post storage SSC for Royal Gala apple. Lower correlations 

were recorded in the current study suggesting that fruit were not fully ripened, with starch 

to sugar conversion yet to complete. Indeed, a poorer relationship between DM and SSC 

existed for defect fruit (R2 = 0.47) than sound fruit (R2 = 0.76) (data not shown), 

suggesting defect fruit were less ripened than control.     

11.3.3  Visible – SWNIR spectral features 

Absorbance spectra of fruit were characterised by features associated with anthocyanin at 

around 550 nm, chlorophyll at around 665 nm and water at 730, 840 and 950 nm (Fig. 3).   
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Figure 3. Mean absorbance spectra for good and defect fruit and their difference (score 1 and 5, respectively, from populations 2 and 3) 

and univariate correlation coefficient (R) of internal defect parameters (visual score and colour index) with absorbance at each 

wavelength using three instrumentations (Nirvana, left;  IDD0, middle  and Insight 2 right). 
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Average absorbance values were higher for defect relative to sound fruit at shorter 

wavelengths, specifically wavelengths less than 830 nm for the InSight2 spectra, and less 

than 730 nm for the IDD0 spectra, consistent with previous reports (Fig. 3). For example, 

Clark et al. (2003) reported higher absorbance for apple with internal browning over the 

range 600-750 nm, and lower absorbance at wavelengths beyond 850 nm. McGlone et al. 

(2005) noted higher absorbance in the red to near red region of spectrum. For pear, higher 

absorbance was noted over the range 640-860 nm for fruit with brown core (Han et al., 

2006). The higher absorbance values in this region may represent absorption of light by 

the polyphenols associated with browning. 

The strongest correlation between absorbance at a single wavelength and defect intensity 

was achieved at around 620 and 710 nm for the Nirvana and IDD0 / InSight2 instruments, 

respectively (Fig. 3). 

11.3.4  Partial Least Square Regression 

Partial least square regression (PLSR) models were developed using the reference values 

of visual score and Colour index (Table 3). Better calibration results were obtained using 

the Colour index than the visual score value, but the reverse held for prediction results 

(Table 3). 
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Table 3. Partial least square regression results for spectra from three instruments, for raw absorbance spectra and for spectra treated 

with several pre-processing methods for Nirvana (interactance), IDD0 (partial transmission) and InSight2 (full transmission) 

instrumentation. Calibration set (pop2), prediction set 1 (pop3) and prediction set 2 (pop4) consist of 90, 60 and 77 fruit respectively.  

RMSEP and Bias have units of 5 scale color score and Color Index. 

A. Nirvana  

Pre treatments 
/Parameters 

Calibration statistics (pop2) Prediction statistics on pop3  Prediction statistics on pop4 

 R2
cv RMSECV PCs R2

p RMSEP Bias R2
p RMSEP Bias 

Raw Abs          

Score 0.79 0.7 14 0.57 1.01 -0.10 0.62 0.99 0.14 
Colour Index 0.86 0.45 14 0.80 0.62 0.15 0.70 0.83 -0.12 
Abs. SNV 
Score 0.77 0.71 14 0.52 0.40 -0.11 0.53 1.30 0.24 
Colour Index 0.85 0.47 14 0.77 1.15 -0.48 0.71 0.82 -0.10 
Abs MSC  
Score 0.76 0.73 11 0.53 1.08 -0.03 0.60 0.99 0.20 
Colour Index 0.83 0.51 11 0.75 0.73 0.20 0.66 0.88 -0.10 
Abs d2A 
Score 0.77 0.71 10 0.60 0.96 0.01 0.64 0.95 0.28 
Colour Index 0.84 0.49 10 0.74 0.69 0.12 0.71 0.82 -0.11 
Abs. SNV d2A 
Score 0.76 0.74 10 0.56 1.01 -0.08 0.59 1.00 0.20 
Colour Index  0.83 0.52 10 0.71 0.71 0.02 0.66 0.90 -0.19 
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B . IDD0 

Pre-treatments 
/parameters 

Calibration statistics (pop2)  Prediction statistics on pop3  Prediction statistics on pop4  

 R2
cv  RMSECV  PCs R2

p RMSEP  Bias  R2
p RMSEP  Bias  

Raw Abs 

Score  0.83 0.62 4 0.70 0.83 0.24 0.87 1.08 0.88 

Colour Index 0.87 0.46 4 0.73 0.72 0.04 0.75 0.73 -0.16 

Abs. SNV  

Score  0.78 0.71 4 0.76 0.7 0.16 0.89 0.82 0.56 

Colour Index 0.87 0.46 3 0.71 0.75 0.03 0.77 0.61 -0.53 
Abs MSC   

Score  0.77 0.73 3 0.75 0.71 0.13 0.89 0.9 0.66 

Colour Index 0.88 0.45 3 0.74 0.71 0.03 0.77 0.68 -0.06 

Abs d2A 

Score  0.75 0.75 3 0.73 0.73 0.06 0.84 0.8 0.02 

Colour Index 0.86 0.49 4 0.68 0.79 -0.08 0.77 0.82 -0.47 
Abs. SNV d2A  

Score  0.76 0.75 3 0.76 0.68 0.03 0.86 0.79 0.02 

Colour Index  0.87 0.47 5 0.7 0.76 -0.06 0.77 0.67 -0.10 
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C. InSight2 

Pre-treatments 
/parameters 

       Calibration statistics (pop2)        Prediction results on pop3          Prediction results on pop4 

 R2
cv RMSECV  PCs R2

p RMSEP  Bias  R2
p RMSEP  Bias  

Raw Abs 

Score  0.83 0.63 7 0.75 0.81 0.26 0.84 1.12 0.87 

Colour Index 0.85 0.50 7 0.68 0.81 0.11 0.65 0.89 0.23 

Abs. SNV   

Score  0.84 0.61 6 0.72 0.88 0.25 0.82 1.18 0.86 

Colour Index 0.84 0.52 6 0.68 0.82 0.13 0.64 0.99 -0.13 

Abs MSC  

Score  0.83 0.62 5 0.73 0.84 0.23 0.79 1.49 1.10 

Colour Index 0.84 0.51 5 0.68 0.82 0.12 0.70 0.92 -0.16 

Abs d2A 

Score  0.78 0.71 5 0.75 0.69 -0.08 0.84 0.92 0.56 

Colour Index 0.79 0.58 8 0.58 0.90 -0.10 0.61 1.08 -0.66 

Abs. SNV d2A  

Score  0.80 0.68 7 0.74 0.72 -0.03 0.87 0.73 0.39 

Colour Index 0.77 0.61 7 0.56 0.94 -0.18 0.69 1.02 -0.68 
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Initially, PLSR models were developed using the full wavelength range available from a 

given instrument. Smooth regression coefficients were obtained for the region 500-975 

nm for the units based on a MMS 1 spectrometer (Nirvana and IDD0), and for the entire 

available range of 600-973 nm for Avantes spectrometer (InSight2 instrumentation) (Fig. 

4), and these ranges were selected for further model development. For the IDD0 and 

InSight2 units, the PLSR models gave strong weighting to absorbance at 670, 710 and 

900 nm, and 680, 710, 800 and 835 nm, respectively. For the reference parameter of 

visual score and spectra obtained using the IDD0 and InSight2 units, better calibration 

and prediction performance was obtained for models based on raw absorbance spectra, 

followed by use of SNV and MSC pre-treatments (Table 3). A correlation coefficient of 

determination (R2) of 0.89 was achieved for IDD0 SNV or MSC treated absorbance 

spectra. However, model predictive performance was higher for models developed using 

second derivative spectra. Poor predictive performance was obtained using spectra 

acquired with the Nirvana unit.  
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Figure 4. PLS Regression coefficients for Nirvana (top), IDD0 (middle) and InSight2 

(bottom) for visual score models based on absorbance data for a combined 

population involving 150 fruit (pop 2 and pop 3).    

 

Overall, of the three instruments, best prediction results were obtained using the IDD0 

unit (e.g. R2
cv = 0.83, RMSECV = 0.62, for visual score model), with comparable results 

from the InSight2 unit but poorer results from the Nirvana unit (e.g. R2
p = 0.62, RMSEP 

= 0.99, visual score). The poorer performance of Nirvana unit is expected given its 
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interactance geometry, i.e. assessment of only a localised area of the fruit. IDD0 was 

operated in a 90o optical geometry, but scattering of light within the fruit apparently 

resulted in an adequate volume of fruit explored by detected light, supporting models 

comparable or superior to that achieved with the full transmission InSight2 system. 

11.3.5  PLS model robustness to sample temperature  

 The effect of sample temperature on prediction of apple diffuse browning was considered 

for the case of a PLSR model on diffuse browning developed using 120 absorbance 

spectra of 30 intact fruit (Pop 5) at 10 oC, with prediction undertaken for the same fruit at 

25 and 35 oC, and for further lots of fruit at three temperatures. There was no bias 

associated with prediction of fruit at temperatures different to that of the calibration 

samples (Table 4), consistent with use of wavelength regions in the model (e.g. 570, 620, 

670, 720, 900 nm) that were insensitive to temperature. Indeed, the b coefficients for the 

combined temperature model were similar to those models developed using fruit at a single 

temperature (Fig. 5).  
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Table 4. Prediction performance for a PLSR model developed using raw averaged 

absorbance spectra  for visual score (Pop5, 10 oC, calibration R2
cv = 0.87, RMSECV 

= 0.53 %SSC, PCs = 4) developed using IDD0 absorbance spectra (500-975 nm) 

collected of intact fruit at 10 oC. Populations 5 to 9 are subsets of population 2 and 3, 

with 30 fruit in each population. 

 

Populations Temp  

(oC) 

RMSEP  

(defect score) 

Bias  

(defect score) 

Pop 5 25 0.58 0.14 

SD* = 1.49 35 0.52 0.14 

Pop 6 10 0.65 -0.09 

SD = 1.57 25 0.59 0.07 

 35 0.60 0.03 

Pop 7  10 1.41 0.25 

SD = 1.48 25 1.07 0.17 

 35 1.28 0.27 

Pop 8  10 1.18 0.04 

SD = 1.51 25 0.99 0.06 

 35 0.93 0.07 

Pop 9  10 1.49 0.64 

SD = 1.38 25 1.15 0.51 

 35 0.98 0.47 

* Standard Deviation  
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Figure 5. PLSR b-coefficients for browning score models developed using spectra of 

fruit at three different temperatures (IDD0 instrumentation). 

 

11.3.6  Classification of sound and defect fruit 

Given that practical application involves sorting of fruit to two grades rather than 

assessment of level of defect, attention was given to methods of discrimination Principal 

component analysis (PCA) was undertaken using MSC treated absorbance data from the 

three instruments. A principal component plot using the first three PCs (explaining >95% 

of variation in the three cases) demonstrated separation of consumer acceptable fruit 

(visual score of 1 or 2) from defect fruit (visual score of 3 to 5 (Fig. 6).  

Discrimination of sound fruit from defect based on spectra collected using the three 

instrumentations were attempted using several classification algorithms (Table 5). As 

relatively poor prediction results were achieved for the Nirvana instrument compared to 

that for the other two instruments for prediction set 1, the result for this instrument was 

not presented. 
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Figure 6. Score plots for principal components 1, 2 and 3 from a principal 

component analysis of MSC treated absorbance spectra (500-975 nm) using an 

interactance (Nirvana)(A), partial transmission (IDD0) (B) and full transmission 

(InSight2) (C) optical geometries for 150 fruit (populations 2 and 3). Values for 

defect fruit displayed as circular dots while those of good fruit is displayed as square 

dots. 

A 

B 

C 
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Table 5. Classification of good and defect fruit in calibration and in prediction of independent sets using 12 classification algorithms, 

using absorbance spectra from two instruments, and a reference assessment of visual score. TPR is true positive rate, TNR is true 

negative rate. Accuracy (Accu.) is mean of TPR and TNR, False discovery rate (FDR) is FP/(TP+FP). False discovery rates <2% 

associated with accuracy rate of >95% are shown in bold. Units are in percentage. 

A. IDD0 

 Calibration set (pop2) Prediction set 1 (pop3) Prediction set 2 (pop4) 
Algorithms TPR TNR Accu.  FDR  TPR TNR Accu.  FDR  TPR TNR Accu.  FDR  
PLS DA(1-5) 6 PCs 76.3 98 87.2 2.6 89.6 96 92.8 4.3 97.3 91.84 94.6 7.7 

PLS (1-5) 6 PCs 84.9 92.4 88.7 8.2 97.2 99.8 98.5 0.2 96.4 100 98.2 0.0 

PLS DA (1-2) 6 PCs 79.8 94.2 87.0 6.8 97.9 97.9 97.9 2.1 100 82.7 91.4 14.7 

PLS-DA 83.0 98.3 90.7 2.0 83.3 99.1 91.2 1.1 83.9 93.9 88.9 6.8 

LDA (Linear) 87.6 98.6 93.1 1.6 80.5 99.5 90.0 0.6 91.0 86.7 88.9 12.8 

LDA (MD) 95.2 97.6 96.4 2.5 76.3 98 87.2 2.6 92.9 93.9 93.4 6.2 

PCA- LDA  78.5 97.2 87.9 3.4 98.6 97 97.8 3.0 98.2 83.7 91.0 14.2 

PCA- LDA (MD) 85.5 93.9 89.7 6.7 89.6 99.5 94.6 0.6 96.4 95.9 96.2 4.1 

k-NN  94.3 98.3 96.3 1.8 93 94.6 93.8 5.5 83.0 97.5 90.3 2.9 

SIMCA 94.6 55.5 75.1 32.0 82.6 77.8 80.2 21.2 100 3.57 51.8 49.1 

SVM, Linear 77.7 98.2 88.0 2.3 97.9 99.6 98.8 0.4 92.9 100 96.5 0.0 

Logistic regression 86.8 94.2 90.5 6.3 99.3 100 99.7 0.0 70.5 100 85.3 0.0 
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B. InSight2 

 Calibration set (pop2) Prediction set 1 (pop3) Prediction set 2 (pop4) 
 TPR TNR Accu.  FDR  TPR TNR Accu. FDR  TPR TNR Accu.  FDR  
PLS-DA (1-5) 
6PCs 

87.1 88.9 88 11.3 89.6 93.7 91.65 6.6 91.0 93.8 92.4 6.4 

PLS (1-5) 6 PCs 90.0 95.6 92.8 4.7 82.6 99.3 90.95 0.8 86.6 100 93.3 0.0 

PLS-DA (1-2) 6 
PCs 

88.2 96.6 92.4 7.0 85.4 99.5 92.45 0.6 91 100 95.5 0.0 

PLS-DA 79.4 99.6 89.5 0.5 100.0 97.6 98.8 2.3 87.9 97.8 92.9 2.4 

LDA (Linear) 91.6 99.1 95.4 1.0 80.5 98.8 89.7 1.5 91 98.5 94.8 1.6 

LDA (MD) 99.2 100.0 99.6 0.0 33.3 100 66.7 0.0 0.0 100 50.0 0.0 

PCA LDA 
(Linear) 

82.2 97.7 89.9 2.7 85.2 99.8 92.5 0.2 89.3 100 94.7 0.0 

PCA LDA (MD)  91.4 90.2 90.8 9.7 88.1 92.2 90.2 8.1 96.4 80.1 88.3 17.1 

k-NN 96.5 98.0 97.3 2.0 73.6 92.8 83.2 8.9 77.7 95.4 86.6 5.6 

SIMCA 98.4 43.5 70.9 36.5 95.1 59.0 77.1 30.1 96.4 84.2 90.3 14.1 

SVM. Linear 99.2 99.8 99.5 0.2 84.7 95.6 90.2 4.9 75.9 100 88.0 0.0 

Logistic 
regression 

86.0 94.9 90.4 5.6 84.7 99.5 92.1 0.6 67.9 100 84.0 0.0 
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Comparable results were obtained with PLS DA, LDA and PCA LDA classification 

algorithms (Table 5). The PLS DA classification method yielded fairly consistent 

classification accuracy for all three instruments. Prediction set accuracy of more than 

95% and false discovery rate of < 2% was achieved using IDD0 spectra with either SVM 

classification, logistic regression or PLS-DA using 4 PCs.  With use of InSight2 spectra, 

these specifications were achieved using PLS-DA with 6 PCs (Table 5). 

11.4  Conclusion 

Internal diffuse browning in apple developing during controlled atmosphere storage is a 

significant industry problem. In line sorting to remove affected fruit, to meet retailer 

specifications of <2% affected fruit, is desirable to avoid rejection of whole 

consignments. Another possibility is monitoring of a number of ‘sentinel’ fruit within the 

controlled atmosphere storage to detect the onset of the disorder. Near infrared 

spectroscopy using partial or full transmission geometry over the wavelength range 500-

975 nm is recommended for detection of the internal flesh browning using a discriminant 

analysis classification method such as PLS-DA.  The method is noted to be independent 

of fruit temperature.  
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