ABSTRACT

The principles of using mathematical models to describe processes involved in the
movement of water in soils are surveyed from the literature. Various models are
considered within a classification system based on the degree of empiricism or
mechanism of the approach. Empirical models are compared and contrasted with
mechanistic models and the role of these models in agricultural practice is discussed.
A new empirical mathematical model to describe the uptake of water by plant roots is
developed through a sink term and combined with well established models including the
Richards’ equation to provide a paradigm for the movement of water throughout the
soil/plant system. Methods of solution of the model are considered and a finite
difference method is employed to provide a computer implementation of the solutions
under a range of initial and boundary conditions. The computer simulation was found
to be easily adapted to a variety of field situations. In particular, the introduction of
the ’evaporation front’ concept and its embodiment in the new sink term, provide
insights into the criteria for scheduling irrigations, laying the basis for field verification
and investigation. The use of this mathematical model for determining an optimal
irrigation regime is discussed in relation to conventional scheduling methods.
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CHAPTER 1

IRRIGATION SCHEDULING

1.1 INTRODUCTION
This chapter provides the rationale for this study. The conventional methods of
scheduling irrigation are considered and then the contributions that mathematical

modelling of the situation may offer is detailed.

If water supply were limitless and costs associated with irrigating land were negligible,
what would be the best policy for irrigation scheduling? Perhaps the soil should be
kept constantly wet so that the plants would experience no stress due to lack of water -
perhaps this would lead to optimal growth and hence optimal yield? Not so! It is well
documented that this *overwatering’ leads to water-logging of soils, (and its subsequent
lack of aeration of the soil surrounding the roots), leaching of nutrients, and excessive

elevation of the water table.

It is clear then that an irrigation regime be established so that problems of over-
irrigation are avoided. This is coupled with the fact that water supply is indeed not
without limit and associated cost. So it would seem there is a two-fold incentive even
for the unprincipled irrigator (one unconcerned for water conservation) to not
overwater.

It is also the case that problems associated with over-irrigation are surpassed only by

under-irrigation. Once again crop growth is impaired and yield reduced, particularly



for those crops that have developmental stages where they are extremely sensitive to
water deficiency. Furthermore, salinity problems arise with under-irrigation since
plants normally extract water leaving soluble salts behind. Unless there is sufficient
flow-through drainage, these salts will accumulate in the root zone, becoming

detrimental to the proper development of the crop. This is particularly a problem in

arid lands.

The process of irrigation scheduling is therefore a matter of optimising the application
times and quantities of water to avoid under or over-irrigation and consequently
optimise yield. It is to be noted that the term ’optimal’ when referring to irrigation has
a twofold meaning. Firstly, that it is the ’right’ amount of water to achieve maximum
yield and secondly that it is optimal in terms of lessening environmental impact of
irrigating water. It would, of course, be desirable if the two meanings were
coincident. The question remains: "How does one ascertain the optimal irrigation
regime"? This question is considered in the following sections, first, in the traditional
sense, and then under a contemporary light. These sections will be considered in
layman terms without strict definition as this will suffice to highlight the directions of
irrigation scheduling. The subject however is inundated with terminology, notation and
highly integrated concepts. Such terminology will be detailed in Chapter II and

subsequent chapters.

1.2 CONVENTIONAL IRRIGATIO HEDULIN
The conventional view to irrigation scheduling is to recharge the effective rooting zone

(i.e. the zone throughout which roots extract water) to field capacity' (the water

! There is a degree of dissension as to whether field capacity is an intrinsic property
of a given soil. Hillel. 1980. pp.67-72.



content of the soil 1-3 days after water has been applied and drainage has largely
ceased) after a time of water extraction by the roots and extraction due to evaporation.
The maximum allowable deficit is calculated so the water content does not fall under a
certain ’critical point’ below which was the permanent wilting point of the particular
plant. The timing of irrigation was accordingly dependent on meteorological conditions
(which influenced the rate of evapotranspiration), soil properties (which influence how
easily water is given up for evaporation or drainage), and plant properties (which
dictate the ’critical point’). The traditional irrigation cycle consequently consisted of a
brief period of infiltration followed by a time of waiting for evapotranspiration to run
its course, over which time the soil water status was monitored to determine the time
and quantity of the next irrigation event. Various methods are used to determine the

soil-water availability to plants.

1.2.1 Soil Water Availability

Soil-water availability may be monitored in-situ by determining soil-water status or
plant status or it may be deduced by estimating evapotranspiration and measuring
precipitation, thus keeping check on water budgets. Consider firstly, these book-

keeping methods:

Book-Keeping Methods.

In the case of book-keeping methods the critical point is predetermined and the root
zone is estimated. A book is kept indicating estimated evaporation together with any
rainfall thus revealing the accumulated deficit. Once the critical point is reached water
is applied in quantities to bring the root zone up to ’field capacity’. Clearly the
problem here is the lack of uniformity - the soil conditions and drainage are unlikely to

be uniform not only in space but also in time (Van Bavel and Hanks, 1983) and so too



the application of the irrigation may not be homogeneous across the entire area.
The subject of estimating evapotranspiration is indeed broad and many methods are

available. Three such methods are briefly outlined below.

(2) Evaporation Pans.

The evaporation pan is a popular method of determining the evaporative
demands that the atmosphere places on the soil water. Here an open pan of
specified size (of which there are several ’standard’ types) is used to measure
the loss of water from a free water surface in a particular locality. This may be
done by the local Primary Industries Authority. To allow for age and type of
crop, the particular crops’ estimated water use is calculated by adjusting the pan
evaporation by a crop factor, that is, E, = kE,, where E, is crop evaporation,
E, is pan evaporation and k is the crop coefficient.

These crop factors need to be determined for a particular pan, crop and locality

over a period of years.

(b) Empirical Approaches.

These include the Thornthwaite method (1948) and the Blaney-Criddle method
(1947). These methods have arisen from curve fitting procedures in an attempt
to find a functional dependency of evapotranspiration with some easily
determined or measurable quantity.

Quite clearly the atmospheric evaporative demands result from a complex
combination of temperature, wind humidity and colour and roughness of the
evaporative surface (and possibly others). The "Catch 22" in wanting accurate
evaporation data is that, to be used in the field it must necessarily be easy to

calculate but to be comprehensive in its accurate determination, the



intermingling factors lead to a very complicated system.
Empirical methods try to strike a balance between accuracy and ease-of-use. The

Thornthwaite method for example is based only on one atmospheric factor -

temperature, that is,
E = 16.0 (107/I)* mm/month,
where E = potential evaporation,
T = mean monthly temperature (Celsius),
I = empirical heat index for 12 months (depends on latitude), and
a = empirical parameter based on I.

An example of an application of the Thornthwaite method is found in Withers and

Vipond, 1974, pp 93-95.
The Blaney-Criddle method is also dependent on temperature and also relies on long
term temperature records for specific locations, that is,
U = 0.46 kp(t + 18),
where U = predicted monthly consumptive use (mm),
k = monthly empirical crop-factor.

P = mean monthly percentage of the annual day-time hours (dependent on

latitude), and

t = mean monthly air temperature (Celsius).
Consumptive use is another term for actual evapotranspiration in mm/day. A simple
example of the use of the Blaney-Criddle equation is found in Benami and Offen

(1984) pp 18-20.

(c) Mechanistic Approaches.
The two methods briefly outlined above are strictly empirical and make no
claims to fundamentality. They are simple, but not entirely accurate

methods



that rely on data accumulated over the years. Penman’s method (1963)
contrasts strongly with these as it embodies some of the mechanism underlying
the process of evapotranspiration. This method is a comprehensive model
involving air temperature, humidity, windspeed, radiation rate and reflectivity of
the surface. It is physically based in terms of its combination of energy balance
considerations and aerodynamic transport factors. Penman’s method is used to
calculate the potential evapotranspiration and is then adjusted to obtain actual
evapotranspiration. Due to the mechanistic base of this method, it has inherent
appeal for general application as opposed to the locality dependent empirical

formulae and subsequently is considered in greater detail in Chapter II.

In-Situ Methods.

Water availability may be monitored using a variety of tools such as gypsum blocks,
neutron probes, pressure bombs, tensiometers and infrared thermometers. These direct
measurement methods may be classified according to the aspect of the Soil-Plant-
Atmosphere system they are designed to measure. The monitoring methods are

summarised in Figure 1.1. Some of the common methods are outlined briefly below.

(a) Soil Moisture Methods - Water Content Evaluation.
The moisture level of the soil is an obvious indicator of water availability to
plants. There are various methods available for its determination - some
destructive, some non-destructive and all requiring a number of samples to
overcome the spatial variability problem.
(i) ’Feel’ method.
The appearance and ’feel’ method is a ’rule of thumb’ method that

requires no other equipment other than experience. One question that



arises concerns the farmer with much experience in irrigating his sandy-
loam soil by this method, whereupon the farmer sells that farm and buys
another on more clayey soil. The water contents may be the same and
this may be detected by feel but because of anionic attractions the water
is bound more tightly to the clay and whereas this ’feel’ was suitable for

sandy-loam, it is not equally suitable for the clayey soil.

SOIL WATER MONITORING
Measured In-Situ Deduced
(Plant - Soil Indicators) (Atmospheric Factors)

Bvaporation Pan ~ Empirically ~ Physically
Based Equations Based Equations

* Blaney-Criddle * Penman
* Thomthwaite

Soil Water Content Soil Water Suction ~ Observation
* ‘fee]’ method * tensiometer * growth measurements * potomelets
* gravimetric method * plnt colowr * infrated hermometers
* electrical resistance * leaf movement and growth  + peychrometers
* neutron scattering * dendrometers
* pressre *bombs’

FIGURE 1.1 Summary of methods of assessing water availability to plants.

(ii) Gravimetric Determination.
The ’wetness’ of the soil in its most traditionally simple yet impractical
sense may be measured "gravimetrically". That is, to sample soil, weigh
it, dry it, reweigh it and express the result as a percentage of water mass

to dry soil mass. This water content on a mass basis may be converted



to volumetric wetness if the bulk density of the soil is known by using the
relation
0 = 6ulo, /pu)s
where 6, = wetness by mass (kg/kg),
p, = dry bulk density of soil (kg m;3), and
p. = density of water (kg m?).
Time and labour costs as well as inaccuracy lead to the impractical
nature of this method (Hillel, 1971; Marshall and Holmes, 1988). This
method is destructive.
(ii1) Indirect Methods.
The preceding two methods directly monitored the wetness of the soil.
Several indirect methods are available which have the advantage that
frequent or continuous monitoring may take place at the same points.
One such method is that of determining the electrical resistance of a
volume of soil. This method is considered in Hillel, 1971 and in
Campbell and Campbell, 1982 and uses a gypsum block to measure
electrical resistance and to infer water content. This method suffers from
a problem with uncertainty of calibration. Another method that is
considered most satisfactory (Hillel, 1980) at the present time, is that of
neutron gauging. Indeed, Campbell and Campbell (1982), state that the
neutron probe offers the best combination of features for irrigation
scheduling. Neutron gauging is a non-destructive method that functions
by effectively counting the hydrogen atoms in the soil. The probe emits
fast neutrons which lose maximal energy upon collision with hydrogen

nuclei. In practise, it is found that the loss of energy of the fast neutrons



is proportional to the hydrogen atom content of the soil. Since water is
the only variable source of hydrogen in the soil, the probe readings
correspond to soil wetness changes. Dr. Peter Cull, as reported in the
4th National Conference of the National Association of Teachers of
Agriculture, 1986, evaluated all of the tools available and used in other
countries for irrigation scheduling. He concluded in his PhD thesis that
the neutron probe was found to be the most appropriate tool in order to
accurately schedule irrigations. These finding are given support by the
fact that in 1986 there were 26 neutron probe consultants in eastern
Australia and that 45% of the national cotton crop (180,000 acres) was

irrigation scheduled by using the neutron probe.

(b) Soil Water Potential.

So far the state of water in soils has been discussed only in terms of the amount
of water in a given volume, with no consideration given to the energy state of
the water in the soil. The fundamental question here is "just how ’available’ is
the available soil water?" The water content or wetness is only part of the
story. Water molecules in one type of soil may be bound more or less tightly
than in another soil type. Therefore some method is required to determine how
easily that water may be extracted rather than determine how much is present.
The use of a tensiometer is such a method. Tensiometers are practical
instruments and are commercially produced and as such, a great deal of
information is available about them. The Queensland Department of Primary
Industries has information pamphlets and has produced a video on their correct
installation and use.

The preceding section provided only a brief outline of some of the methods available to

9



determine soil water availability. A more detailed description may be found in Soil
Physics and Irrigation texts. A useful summary of methods was found in the report of

the 1987 seminar of the Irrigation Association of Australia in a session conducted by

R.A. Stephenson. A copy has been reproduced below in Table 1.1.

Component of Type of Instrument(s) Comments
the system Measurement used
measured
Soil "total” water content weighing simple, very time consuming
(gravimetric) difficult to characterise all root
zone, research technique only
neutron moisture expensive, accurate, needs
probe careful calibration to each soil
and crop
"available" water tensiometer simple, cheap, convenient, good
for farm use
soil conductivity meter soil solution concentrates with
drying, complex and prone to
errors
Stem water flow up stem dendrometer research technique, measures
stem expansion and contraction
heat pulse for research, measures rate of
flow in xylem
Leaf water content weight (relative research, simple, meaningful in
water content) terms of plant function
water potential pressure "bomb” simple, accurate, robust
psychrometers complex, for research, prone to
contamination errors
stomatal potential porometer stomata close when tree is
stressed
infra red water stress: stomata close, leaf
thermometer temperature rises (no cooling by
transpiration) - needs careful
calibration
Atmosphere rainfall, evaporation, weather stations construct models on potential
humidity, wind water use eg. Penman, Bowen
Ratio, complex, must calibrate to
soil, crop
Whole System | actual water use lysimeters research, measure weight or
(evapotranspiration) (weighing or volume of water used
through draining)

TABLE 1.1 Monitoring Water Status for Irrigation Scheduling.
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1.3 RECENT CONTRIBUTIONS TO IRRIGATION MANAGEMENT

The classical questions in irrigation management are: *When does one irrigate?’ and
"How much water does one apply?”. The conventional answers, as stated by Hillel,
1980, are: Irrigate when the available moisture is nearly depleted by using the
appropriate instrument or observation and apply sufficient moisture to bring the
moisture reserve of the soil root zone to field capacity, plus a "leaching fraction" for
salinity control. However, as Hillel points out, recent contributions have shed a new
light on this area. The focal change is a movement away from the view of soil water
as a static entity. Terms such as "Field Capacity"”, "Wilting Point" and even "Rooting
Zone" give a sense of unchangingness and of being well defined. Figures put to these,
like 15 bars for permanent wilting point reinforce this notion. Technology has opened
the way for the realisation that soil water is far from static and indeed is extremely

dynamic.

It is little wonder that the focus is changing. With the massive experimentation that has
taken place in this area and the subsequent empirical relationships that rose out of
them, it was only a matter of time that the emphasis would change to that of ’what
forces cause this flow of soil water?’ and ’how does the plant regulate uptake?’, that
is, a shift to mechanism. The physical basis of the movement of water through soils
was considered in the late 1950°s and 1960’s. This paralleled the development of the
thermocouple psychrometer (1951) and the pressure bomb (1965), thus allowing more
accurate and detailed measurement of soil and plant attributes. Thornley and Johnson
(1986), state that traditional empirical approaches "have little further to contribute" to
our quantitative understanding of plants and how they function. This move towards a

mechanistic paradigm was, and still is, not without problems. Powell and Thorpe,

11



(1975) highlighted this by stating that there was a "scant understanding by many
workers of the physics involved, as the plethora of inexact terminology in the literature
bears witness". Furthermore, the broad knowledge base required by workers in diverse
areas such as soil physics, plant physiology, statistics and mathematical modelling
inhibits speedy and reliable progress. Presently, mechanistic approaches still suffer

from a lack of physical understanding of some of the processes involved.

By the very nature of the processes involved, any truly mechanistic mathematical model
will be necessarily complex. Clearly, the major process that drives the soil-plant-
atmosphere system is evapotranspiration. Evapotranspiration firstly depends on
meteorological conditions such as radiation, wind, humidity, etc. This places a demand
on the plant to maintain sufficient flow of water from the sbil, through the roots so
that it may be sufficiently hydrated for normal functioning. This in turn depends on
the soil properties such as its pore size, tortuosity and the charge of the individual soil
particles, to name obvious properties. Plant properties are important here also.
Rooting depth, ’ability’ of the individual roots to draw water from the soil matrix,
rooting density and the rate of root extension all play their part in the uptake of water
from the soil to maintain the evaporative demand. Thus, irrigation policy based on a
comprehensive set of parameters such as described above would require a suitable
vehicle to put them into perspective. Such a vehicle could be mechanistic

mathematical models.

In summary, traditional methods are concerned with soil-water budgets and static
characteristics of the soil water. It is evident that whilst both conventional and more
modern scheduling are based on conservation of matter, conventional scheduling is
concerned with the volume of water required to restore the root zone to field

capacity

12



and not to allow the wetness to drop below some critical point. There is little regard
given to the actual movement of the water in relation to the root system. Mathematical
modelling can take this rather finer view of water movement and takes into account
what happens to water after it disappears from view beneath the soil surface. In the
chapters that follow, mathematical models and their solutions will be considered with
the aim of using such models to aid in decision making with regards to irrigation

scheduling and other related agricultural problems.

About 200 million hectares of land are irrigated through the world, half of which is in
China and India. To these countries in particular, savings in the form of water,
leached applied nutrients and irrigation expenses in return for an economically optimal
yield would be valuable savings indeed. The 1000 km* of water required annually for
irrigated land effectively can be translated into lives. By optimising its use in terms of
increased yield can therefore improve quality of life for many people, it may well

represent a saving of life, particularly in the third world countries.
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CHAPTER II

THE STATE OF WATER IN SOILS - SOME BACKGROUND

2.1 AN OVERVIEW OF THE PROCESSES

The terminology and concepts in this area are extensive. The aim of this chapter is to
elucidate on the various processes involving water movement, principally through soil, but
also through the atmosphere and plant. Further to this it is intended to provide definitions
where appropriate and to introduce the various models and notation and therefore provide
the necessary background to underpin later chapters. This is done by surveying the

literature dealing with the mathematical modelling of the various processes.

The system under consideration is extremely dynamic with energy of the water in a
continual state of flux. The varying processes are highly interrelated but for clarity of
description they will first be considered as individual and independent and then in a

holistic sense in Chapter III.

The interdependence of these processes were acknowledged by J.R. Philip (1966), calling
the whole system SPAC (Soil-Plant-Atmosphere Continuum). The underlying principle
of SPAC is the same as that of the Universe, and that is (a) Matter and Energy are
conserved and (b) water flow moves according to the direction of the lowest potential

energy.

Consider the "continuum" for a single plant and a volume of soil in its immediate vicinity.
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The source of water may be rainfall, irrigation or the often underestimated upward
capillary flow. The rainfall or irrigation may be applied at a rate whereby the entire
quantity of water infiltrates the soil. If the rate of input however, is greater than the
penchant of the soil to absorb it then runoff may occur to an adjacent surface and
similarly, water may flow into the area under consideration. If the surface contains
pits, then ponding may occur, the ponded water later to be subjected to evaporation
or infiltration. The infiltrated water then redistributes itself through the soil profile,
some being taken up by the roots of which less than 1% plays its part in photosynthesis
and thus becomes assimilated as part of the plant, whilst the greater remainder is
transpired up the stem and out the stomata of the leaf and into the atmosphere. The
remainder of the redistributed water is directed towards two fates - to be stored in the
soil profile (later to either move up to the soil surface and evaporated to the
atmosphere or drawn into the roots) or to drain further down the soil profile away
from the root zone either to later be drawn upward by capillary flow or further
downward to join the underground water. This latter flow may constitute 10% or more

of the total water input (Rose and Stern, 1967).

Consider these various processes affecting the state of water in soils as depicted in
Figure 2.1. These processes are driven by:

® the evaporative power of the atmosphere,

® gravity,

® matric potential of the soil and

® regulatory powers of the plant.
This section considers each of the processes illustrated here and outlines modelling
approaches. For simplicity, they are considered as independent processes first, then

they are treated in an integrated fashion.
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FIGURE 2.1 Processes affecting the state of water in soils.

2.2 THE SPECIFIC PROCESSES

2.2.1 Redistribution

The process whereby water, after its entry into the soil, moves through the soil profile is
called redistribution. This process will be considered first because within the development
of models relating to it, many broader concepts of water flow in soils can be introduced,

as these are necessary for the analysis of the other processes.

The discussion that follows will be based on a homogeneous soil profile with a sufficient
degree of uniformity of individual pores to neglect processes such as preferential
movements of water along cracks and fissures and to avoid the complication of Aysteresis.

The hysteresis effect is considered in detail in Hillel (1980) and will not be considered
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here, other than the following brief description. Hysteresis involves the relationship
between water content and matric suction. As the soil wets (sorption) the suction is
reduced, as the soil dries (desorption) the suction increases. Hysteresis is the phenomenon
whereby this relationship is not single-valued and there is no unique relation between water
content and matric suction. The curve déscribing the water content (8) / matric suction

() relation in desorption does not superimpose the sorption curve as shown in Figure 2.2.

Matric

Suction

Water Content

FIGURE 2.2 The dual valued suction/water content curve under Hysteresis.

To describe the physical basis of redistribution one must consider the energy status of
water and soil. The following discussion takes this perspective with the aim of laying a

physical foundation for the subsequent mathematical discussion.

The entropy of the earth increases or in other words, the direction of change for an
isolated system is always towards equilibrium. From the moment water strikes the ground
it begins its inevitable movement in accordance with the unavoidable rules of nature.
Consider its movement from an energy state viewpoint. Soil water movement is under the
influence of kinetic and potential energy. Since the magnitude of kinetic energy depends

on the magnitude of the velocity and that soil water movement is slow, then its kinetic
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energy is small. Hence the first of the many simplifying assumptions in the effort of
describing water movement through soil - that kinetic energy is negligible. For this reason

potential energy becomes of primary importance. This potential is called soil-water

potential.

This energy is due to:
® the effects of gravity (gravitational potential),
¢ the effect of the attraction by the soil matrix (this is called matric potential, matric

suction or soil-water suction) and

® the effect of dissolved salts (osmotic potential).

There are other potentials here such as submergence and pneumatic (Rose, 1966) and these
together with matric potential comprise pressure potential. Pressure potential is the larger
category and subsumes the others, however, the terms *matric’ and ’pressure’ will be used
interchangeably here, since in the zone of interest (soil above the water table, in the root

zone) matric potential is dominant.

When hydrostatic pressure of the soil-water is above atmospheric pressure, the pressure
potential is considered positive (this will become evident from the definition which
follows). This is the case when considering water under a free-water surface since the
surface of the water would be subject to one atmosphere and a hydrostatic pressure of zero
and subsequently a pressure potential of zero. Beneath this surface, the single atmosphere
would be compounded with the pressure due to the depth of water leading to a positive
pressure potential. A negative pressure potential is commonplace within the zone of
interest since water can rise above a free-water surface due to capillary rise (and adhesive

forces with the soil matrix) and this would lead to sub-atmospheric potentials. Negative
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pressure potentials are called suctions or tensions.

Pressure potentials are grouped with gravity potentials in a category called hydraulic
potentials (Rose, 1966). Osmotic pressure is placed outside this group probably because
it does not directly cause movement of soil-water in the soil matrix other than when water

is in the vicinity of a semi-permeable membrane, the plant root being such a membrane.

As indicated in Rose 1966, the International Soil Science Society defined the total potential
of soil water as "the amount of work that must be done per unit quantity of pure water in
order to transport reversibly and isothermally an infinitesimal quantity of water from a
pool of pure water at a specified elevation at atmospheric pressure to the soil water.” In
ascertainment of total potential energy however, water is not transported and its work done
not calculated, but rather these ideas form the basis of a rather theoretical definition

where in fact, total potential is obtained from other directly measurable quantities.

Therefore, the potential gradient constitutes the driving force of the soil-water by virtue
of the position of the soil water in relation to some reference state. To illustrate this,
consider the movement of water in one dimension, that of the direction perpendicular to
the direction of gravity. The change in total potential (¢), is the product of the driving
force (F), and the change in distance (Ax). That is,

Ap = FAx or F = A¢p/Ax.
Here, total potential is the sum of gravitational potential (¢,..), pressure potential (@)

and osmotic potential (Poumec)-

It is appropriate at this point to clarify what is meant by the term ’a quantity of water’ in
the above definition of total potential of soil water. The quantity’ could either be mass,
weight or volume which, of course are related by the functions: weight equals the product
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of mass and gravitational acceleration and mass equals the product of density and volume.
As such, water content may be determined on a volumetric basis or on a mass basis.

Similarly, as will become evident, potentials may be expressed per unit mass, per unit

weight or per unit volume.

In much of the literature concerned with the movement of water in the root zone the term
"hydraulic head’ is frequently used in describing potentials due to gravity and pressure
combined. To provide some background, consider the gravitational component of the total
soil water potential. From the definition, work is done in elevating a quantity of water (z
metres, say) from a reference level (z=0). Consider the work done (W) on an
infinitesimal mass of water (dm): W = (dm)gz = (dv)ogz = (dw)z,
where m, v, p, w, g are mass,volume, density, weight and gravity respectively. Therefore,
Pot. energy/unit mass = gz (J kg™),
Pot. energy/unit volume = p.gz (N m?),

Pot. energy/unit weight = z (m).

It can be seen from the latter equation that potential energy per unit weight has units
metres and a magnitude equal to that distance that the infinitesimal weight of water must
have been transported from the reference level. A similar analysis conducted on the other
components of the pressure potentials clearly gives the same units for energy per unit
weight. Thus it is found that hydraulic potential (gravity plus pressure) per unit weight can
be expressed in terms of an equivalent height of a liquid column corresponding to the
particular pressure. This column of water may be termed hydraulic head. Of course each
of the ways of expressing the energy state of soil-water are easily converted to one another

and are basically equivalent.

Hydraulic head (H), as is hydraulic potential, is made up of the two components,
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gravitational head (H,) and pressure head (H,),

H=H,+H,.
The mathematical model that embodies the principles of potential gradients and the
subsequent flow of water through the soil matrix i.e. redistribution, is the flow equation.

A derivation of the flow equation is given in Appendix A. For vertical flow,

0z 0z

30 _ 3 gy 3 oK 9y 2.1
o (zﬁ)[ } — a[K(;/,) K(\p)] (2.1)

where ¢ is time (s),
6 is the volumetric water content (m*/m?,
¥ is the matric potential (N m?),
K is called the hydraulic conductivity (kg* m® s) and
z is depth, positve in the direction of gravity (m).
This is one of the two major forms of the flow equation and is commonly called the

potential form of the Richard’s Equation.

The other form to be described below is called the *Diffusivity’ form and is so named since
it parallels the equations of diffusion for which solutions are available. The term diffusion
is not the most appropriate name since the water does not move by diffusion at all but
rather by mass flow. This form is simply a device to tap into already solved differential

equation types.

Recognising a'dependence of ¢ upon 6, and assuming a single-valued relation (no

hysteresis), the following form of the flow equation is obtained
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the diffusivity form or water content form of Richard’s equation is obtained.
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The parameter c is termed the specific water capacity and is the slope of the soil-moisture

characteristic curve, this being a plot of soil-water suction versus soil-water content. D

is called the soil-water diffusivity function.

Since the water content under consideration here is the volumetric water content, then a
volumetric water uptake term (these will be considered in detail later in this chapter) by
roots may be included to model the water movement in cropped soils. Introducing this

term the flow equation becomes:

e
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where S(0,) is the water uptake function.

The flow equation states that the time rate of change of volumetric water content in a
profile of soil is dependent not only upon the hydraulic head drop with depth into the
profile but also upon the ease with which water can pass through the soil pores as effected
by size and tortuosity of capillaries. Furthermore, the head drop is not usually constant

and neither is the effect of size and tortuosity of the capillaries (hydraulic conductivity).

2.2.2 Infiltration and Runoff
For the water to become part of the redistribution process, the water must first penetrate

the soil surface. Infiltration is the name of this passage of the water through the surface

22



and occurs as a result of rainfall, irrigation or the flow of water across the surface. The
infiltration rate is the maximum rate that water can enter the soil through the soil surface.
In the case of irrigation, it would be preferable if the rate of applied water did not exceed
the infiltration rate, in which case water would be lost to the local soil profile due to the
surface runoff. Depending on the depressions on the soil surface, some water may accrue

in a ponded fashion whereupon it will be acted upon by evaporative forces or in time may

infiltrate the soil surface.

It has been found that as wetting time increases, the infiltration rate decreases usually until
some limit is reached. Suppose the infiltration is into an initially dry soil. The water
enters the soil as a result of matric suction and gravity. As the upper layers wet, the
matric gradient becomes less steep and the subsequent force drawing water into the soil
reduces and consequently the infiltration rate decreases until it approaches its limiting value
(due to the constant effect of the gravitational gradient). It is clear from the preceding
information that the infiltration rate depends on the initial wetness of the soil surface layers
and the time since infiltration began. These factors may be coupled with the soil structure

and its subsequent hydraulic conductivity.

Infiltration Equations.

Bodman and Coleman (1944), described a typical moisture profile during infiltration which
provides a useful foundation for the forthcoming discussion. The profile is illustrated in

Figure 2.3.

As previously stated, infiltration rate reduces to some asymptotic value as time increases.
This is reflected in the early empirical formulae, that is, i = Br" where B and n are

empirical constants and i is the infiltration flux (the volume of water entering a unit area
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of soil per unit time). In this equation of Kostiakov (1932) in Aoda er al. 1988, the
asymptotic value is zero rather than the constant infiltration rate that is known to occur.

Further empirical formulae adjusted for this fact, Horton,1940 and Holtan, 1961 (in Aoda

et al. 1988).
Ponded surface
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Figure 2.3. The moisture profile in an infiltration event as described by
Bodman and Coleman (1944). The diagram on the left is a typical profile,
on the right, the water content versus depth curve.

Theoretically derived formulae where the equations are based on the mechanisms of
infiltration were developed by Green and Ampt (1911) and Philip (1957). Aoda et al

(1988), stated that the Green and Ampt model is most widely used.

Philip (1957) predicted vertical infiltration by solving the flow equation with the following

boundary conditions; at t =0 and z > 0,6 =0, and for t > Oandz =0, 6 = 6,.
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Philip (1957) found that the cumulative amount of infiltration water entering a porous
media follows a power series in the square root of time (:*). In practice, this infinite,
converging power series may be approximately be described by the first two terms as
follows: I(t) = St* + Ar. (2.4)
where / is the cumulative infiltration, S was termed the sorptivity of the soil and 4 is a
constant reflecting an ’essentially steady rate at long time’ (Aoda er al. (1988)). It is to
be noted that the derivative of (2.4) yields the infiltration rate, that is,
i(t) = hSr* + A.

The two term equation is inappropriate as time approaches infinity. This is because, as
was pointed out by Philip (1957), at large ¢, i(t) = A. However, it is known that the
infiltration rate approaches the value of the saturated conductivity of the soil (K,), but 4
does not equal K| at small values of time. Aoda er al. (1988) indicate that the adopting the
first three terms of the Philip solution would remedy this. This equation is as follows:

I = St* + At + Br?, where B is another constant.

Infiltration Approaches Compared.

The Green and Ampt approach has been found accurate when considering infiltration into
an initially dry soil that has characteristics that lead to a sharply defined wetting front
(Hillel (1980)). Green and Ampt made several assumptions such as the existence of a
definite plane behind which was uniformly wet and the zone in front of this plane was
totally uninfiltrated. These assumptions simplified the flow equation so that it may be
solved analytically. Aoda et al. (1988) conducted an experiment to test the goodness of
fit of predictions made by the equations of the Philip two term equation, the Philip three
term equation, the equations of Green and Ampt and that of Knight (1976), as reported in
Aoda er al. 1988, with those obtained in laboratory experiment.

In this comparative study, it was found that, whilst all were generally a good fit,
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the Philip three term was the best, followed by that of Green and Ampt.

Whilst Philip was the first to provide a mathematically rigorous solution to the flow
equation as applied to vertical infiltration, other workers have since produced physically
based infiltration equations from the solution of the flow equation. Parlange (1971)
introduced a quasi-analytical technique to solve the flow equation under gravity and
Parlange et al. (1985) presented a general analytical solution to the water content form of
the flow equation which approximated the surface water content and the time to surface
saturation. Several workers have continued developments in these areas, Broadbridge and
Knight (1988), Broadbridge et al. (1988), Hogarth ez al. (1989a), Hogarth et al. (1989b),

Philip (1990), Philip (1991), Hogarth et al. (1991). A major aim of some of these papers
is concerned with modelling the rapid changes in surface water content during infiltration
and involve time to ponding. Further details of these solutions to the flow equation are

considered in section 4.4.

From the definitions of infiltration and redistribution it is clear that infiltration is the
process whereby water enters the soil surface and redistribution is the process whereby the
infiltrated water makes its way through the soil profile. From a modelling perspective the
distinction is not so clear. Whilst many researchers use the flow equation for
redistribution (as detailed in the next chapter), not all share a common approach to
infiltration. The model of Feddes et al., (1974) typifies one group of researchers that use
the infiltration rate (as a function of time) as a boundary condition for the flow equation.
In the contrasting treatment, the soil is considered as a stack of layers with the infiltrating
volume of water "filling" the first layer before it cascades to the lower layer and so on.
The model of Rowse and Stone (1978) makes use of this method, because they state that

modelling infiltration using the solution to the flow equation does not handle hysteresis.
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It is also stated that the solution to the flow equation would result in large amounts of
computer time which would not appear to be the concern now as it was then. In their
model, it is considered that each soil layer has a soil water deficit equal to the difference
between its actual water content and that of nominal field capacity. Water infiltrates the
layer from the surface until half the deficit is replaced before progressively moving
downward. This continues whilst water is infiltrating the surface and then gives way to

redistribution as described by the flow equation after infiltration ceases.

A similar treatment of the infiltration process is given by Saxton et al., (1974) whereby
excess water drains to succeeding lower layers once the upper layer has reached 90% of
saturation. That same condition held for each of the lower layers. Baier and Robertson
(1966), whilst not concerned with the mechanism of redistribution, used a totally empirical
formula to determine the volume of infiltrating water and then assumed that this water
would bring the moisture content of the top zone to field capacity and the remainder
draining to the next zone and so forth until no more water infiltrates or all layers were at

field capacity with the surplus draining away (deep percolation).

2.2.3 Water Uptake by Roots

Water uptake by roots is a difficult area because the process is not fully understood. Hillel
(1977) points out the some of the problems in giving an exact physical description of soil-
water uptake by plant roots. Uncertain areas such as the variation of root growth in terms
of differing directions, spacings and rates together with the variations in root uptake as
determined by age underscore the problem. As Hillel puts it, "How the root system of a
plant senses the root zone as a whole and integrates its response so as to utilise soil

moisture to best advantage has long been a subject of great interest" (Hillel, 1977,p. 155).

Whilst many processes are uncertain, it is a fact that water flows according to potential
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gradients. The following discussion considers the origin of these gradients.

As the water molecules leave the leaf through the stomata due to the evaporative powers
of the sun, the air spaces in the leaf interior adjacent to the stomata becomes momentarily
devoid of the equivalent water pressures that exist in the xylem vessels which supply water
to the leaves. This water pressure incongruence is dynamically corrected with water
molecules supplied by the xylem. Thus the evaporative forces of the sun are responsible
for creating the water pressure gradient that results from the domino-type effect as the
water pressure reaches equilibrium xylem vessel by xylem vessel, down the stem, to the
roots. The actual structure of the xylem vessel assists in the maintenance of this
transpiration stream and is a topic of Plant Physiology texts. It is clear then that a pressure
difference will develop at the soil-root interface and the flow of water into the root will
then depend on the permeability of the root membrane, the magnitude of this pressure
difference and the water supplying ability of the soil. This water supplying ability is
dependent on the resistances to flow in the soil as related to the hydraulic conductivity of

the particular soil.

Two main approaches have been taken in the mathematical modelling of this process. The
microscopic approach considers the radial flow of soil water to a single root, whereas the
macroscopic approach considers the root system as a whole and disregards the flow of soil

water to individual roots.

Microscopic Approach.

In this situation an individual root may be seen as a cylindrical sink of infinite length. The
flow equation is written in cylindrical coordinates by using Darcy’s law in radial form i.e.
g = -K dH/dr, (g is the volume of water per unit area per second or volume flux, H is
hydraulic head and r is the radial distance from the root) and solved for the distribution

of potentials, water contents and fluxes from the root outward. Here it is assumed that the
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water content is spatially dependent only on the radial coordinate. Along the length of this
sink the properties are considered to be constant, with a collection of such equally spaced
cylindrical sinks comprising the entire root system. Herein lies a shortcoming of this
approach - this approximation denies the complexity of the structure and geometry of plant
roots. However, once the flow to a single "typical" root is determined the results are then

multiplied by an average root density to project the entire plant-soil system.

The microscopic approach to modelling has been employed by Gardner (1960), Hillel ez

al. (1975), Taylor and Klepper (1975), and Herkelrath er al. (1977). These are

considered in more detail below.

Gardner (1960) assumed:
® 3 stationary cylindrical root,
® a constant initial water content,
® constant diffusivity and conductivity and
® a constant flux at the root.
Gardner considered the one dimensional (vertical) transient state or unsaturated flow

equation to treat the radial flow to a line sink such as an individual root, that is,

where 6 = water content on a volume basis,
D = diffusivity,
¢t = time and
r = radial distance from the axis of the root.
By using the appropriate initial conditions and boundary conditions, Gardner solved this

equation for constant D. For ¢ sufficiently large,
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where ¢, and ¢, are the matric potentials in the bulk soil and at the root surface
respectively,
q is the uptake volume of water per unit length of root, per unit time,
K is the hydraulic conductivity and
v = 0.57722 (Euler’s constant).
Calculations performed by Gardner on the suction distributions as a function of distance
from the root based on the above solution indicate that the equation is realistic for only
short periods of time or for low values of conductivity.
As a result, the solution of this equation for transient flow was further facilitated by
Gardner, in approximating this flow as a series of steady states. This approximation

permitted an analytical solution. The steady-state solution to the radial flow equation is:

r2
g-y = 2 ]

where r, and r, are radii of the root and half the average distance between neighbouring

roots respectively.

Hillel et al. (1975) avoided these possibly restrictive assumptions by using a numerical
solution to the flow equation cast in the radial coordinates. This model further attempted
to take into account the possible effects of solute convergence toward the root and their
subsequent osmotic effects. This was done by introducing a water extraction flux
analogous to Ohm’s law:

_(§m+Q°—§°)
T R+B

9

where g., is the volume of water extracted per unit time,
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®,, is the matric potential of some finite ring of soil immediately
surrounding any particular root,

®, is the osmotic potential of the soil solution in that same ring which has
hydraulic resistance R,, and

R, is the hydraulic resistance of the root.

Hillel ez al. (1975), introduce the parameter ®, termed "crown potential”. This is the
singular potential at the base of the stem where all roots converge and where the plant
emerges from the ground. It was stated that the main intention of this model was not
to simulate field conditions directly but rather to investigate the localised microscale
effects of both matric and osmotic components and thus avoid the various problems
of underestimation of water stress evident in the macroscale approach that neglects

these effects. The model was not tested experimentally.

Taylor and Klepper (1975) indicate that it is difficult if not impossible to measure the
water potentials at the soil-root interface and therefore it is difficult to test these
microscopic models experimentaily. Since the potentials may be measured with more
certainty at the outer edge of the root xylem, then Taylor and Klepper suggest
restating the solution to the model of Gardner (1960) in the analogous form but with

different boundaries:

q = —ZEKay:(luoorxylem - 1‘!‘)
' In_ 9" ’
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where g, is the rate of water uptake per centimeter of root,
K, is the hydraulic conductivity of the combined soil-root radial pathway,
Wroot xylem 1S the value obtained from root xylem measurements,

¥, is the pressure potential of the water at ry (with 1, being the same as
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Gardner’s 1)), and

I is the radius of the root stele (the root xylem).

The results of the subsequent experiment indicated that plant resistance is much greater
than soil resistance to radial water flow throughout a wide range of soil-water contents,

and that water uptake is proportional to rooting density and to the water potential

difference between bulk soil and plant xylem.

Herkelrath et al. (1977) found that the standard theory of root water uptake as presented
by Gardner (1960) did not compare favourably with experiment, specifically in an
experiment conducted by Herkelrath er al. (1977), the extraction rates predicted by
standard theory were as much as eight times larger than the measured values. It was
found that a reasonable fit between experiment and theory could only be made by assuming
a rooting density 100 times smaller than that measured in experiment. This suggests that
not all of the surface of the root contributed to the uptake of water and this gave rise to
the Root Contact model whereby as the soil dries, the surface area of the roots in contact
with the soil decreases. This assumption would attribute the water uptake to a lesser
proportion of the surface area of the root system and subsequently this would manifestly
be equivalent to the average root resistance increasing. This is consistent with the results
of Taylor and Klepper (1975) who also found the major resistance to radial water flow was
in the roots and not the soil. Herkelrath et al. (1977) introduce a root permeability
parameter per unit length (p), presumably inversely proportional to the combined

resistances of both soil and root membrane, that is,

q=p(‘p1-‘|’,)’

where ¥, is the soil water potential at the root surface and , is the water potential inside
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the root membrane. This equation was then modified to allow for root contact by
assuming that the effective conductivity of a root segment is proportional to the wetted

fraction of the surface area of that segment. The wetting fraction factor (f) was introduced

with
q =fe(d, - ¥) .

Herkelrath et al. found that by using this root contact theory as a modification to the
microscopic approach, a possible solution to the dilemma of why the total resistance to
flow in the soil-plant system increases with soil dryness when theory implies that soil

resistance should be negligible may have been provided.

The preceding survey of microscale approaches to water uptake was certainly not
exhaustive. It was intended to provide a cross-section of such approaches to contrast with

the forthcoming discussion on macroscopic approaches.

Macroscopic Approach.

If the flow of soil-water to individual roots were not so important as the amount of water
taken in and the distribution of this intake in relation to the root system, then it would be
reasonable to model the root system as a diffuse sink (as opposed to a series of line sinks)
that permeates the entire soil profile to the depth of the root system. This macroscale
approach avoids the geometrical complexity of the microscale model and is represented
mathematically by adding a volumetric sink term (S) to the conservation equation so that
the rate of change of water content of a volume of soil balances with the flux through the
volume and with the water that is withdrawn by the roots:

B _ A 50 .

R
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The driving force of the water passing into the root is the pressure head difference between

the soil and the root interior.

The sink term is generally expressed as an extraction rate per volume of soil and, as such,

the sum of all these extraction rates over the entire root system equals the transpiration

rate, that is,
[OVS(z)dz =T,

where S(z) = the moisture extraction rate per unit volume of soil,
z = the vertical distance positive downwards,
v = the vertical length of the root system, and

T = the transpiration rate per unit area of soil surface.

Many researchers have employed various macroscopic models i.e. Gardner (1964), Molz
and Remson (1970), Feddes and Rijtema (1972), Nimah and Hanks (1973a), Feddes ez al.
(1974), Hayhoe (1981), Hayhoe and Dejong (1988) and many more. The following

discussion considers the major schools of thought in this field.

The microscopic approach was concerned with the flow of water to the individual roots,
i.e. the volume of water entering unit length of the root per unit time (this flux was
previously denoted by g), whereas the macro approach is more concerned with the volume
of water taken up by roots in a volume of soil per unit time. The latter approach does not
consider individual roots but rather treats the root system as if it were a diffuse sink
distributed evenly throughout the volume of soil. Therefore the microscopic model may
be extended to the macroscopic model by introducing a parameter representing the

effective root length per unit volume of soil. The term ’effective’ meaning the portion of

34



roots effective in absorbing moisture. Gardner (1960) did this to account for flow into a

nonuniform root system and derived the equation:

* _ mi(y-¥) 2.6)
& “RGD

where ¢ is the suction at the plant leaves,
Y, is the average soil suction,
L is the effective root length per unit volume of soil,
m is a constant which lumps together constant factors from his earlier
microscopic equation (2.5) and
R is the sum of the resistance to the water movement in the soil and resistance to

entry into the plant.

This equation neglects the soil-water flow. Gardner (1964) continued this work with the

following equation resulting from (2.6):

U
L]

S , 2.7

where ¥, and ¢, represent suction of roots and average matric suction of soil respectively
and I, and I, are impedance to water movement in plant roots and soil respectively.
Arguing further that root impedance may be small compared with soil impedance and that
I, = 1/BKL where B is a constant, K is unsaturated conductivity and L is the length of root
in the unit volume of soil, Gardner arrived at a finite difference form for water uptake
with the aim that the effect of root distribution on water uptake and availability could be

analysed. The finite difference form is as follows:
S, =BW,-v,-z)K.L,
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where §; is the rate of water uptake per unit cross section of the izh layer of soil, z; is the
distance from the soil surface to the centre of the itk layer and K, and L; are conductivity

and length of root per volume respectively, evaluated in the ith layer.

The idea that plant resistance is not negligible compared to soil resistance, (Taylor and
Klepper (1974)), casts some concern over the assumptions used in the derivation of the
equations of Gardner. As stated previously the root contact model of Herkelrath er al.

tends to support the notion of the importance of plant resistance in relation to soil

resistance.

Molz and Remson (1970) recognised that a serious problem with the microscopic approach
is the difficulty of specifying the boundary conditions at the root surface and that the
macroscopic approach has significant advantages. Among these, Molz and Remson list that
the boundary conditions (usually at the soil surface) are easier to apply and are quite
realistic in that they allow for phenomena such as rainfall and evaporation (and no doubt,
irrigation) to be included. Unlike Gardner (1964), Molz and Remson (1970) did not
extend the micro model into a macro model but rather they began at the macro level with
the flow equation (diffusivity form) including a volumetric sink term and then considered
what form this term should take to model reality. The first of the two extraction terms
presented depends only on depth and transpiration rate. This is an empirical term fitted
to the commonly used extraction pattern of 40%, 30%, 20% and 10% of total transpiration

coming from each successive deeper quarter of the root zone:

S@) = . 0

v
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<
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where variables are as described above and v is the length of the root system.
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It can be shown that when (2.8) is summed over the entire root zone that the total
transpiration results. A derivation of this model equation is given in section 5.1. The
growing root can be easily incorporated here by substituting v(z) for v. It is pointed out
in this paper that the shortcoming in these simple models occur when the upper layers dry
and cannot supply sufficient water to maintain the percentage extraction ratio. Molz and
Remson (1970) then introduced an extraction term that depends on moisture content,

depth, and transpiration rate:

8$zZ,0) =T

R@D®) |
LVR(z)D(B)dz}

This more mechanistic approach leads to the proposal of the term "effective rooting
density", which refers to that portion of roots effective in absorbing moisture. Whilst this
extraction term was derived in a "somewhat arbitrary manner", the "fraction" of
transpiration rate allotted to the various depths is realistically greater if the amount of
absorbing roots is great in a given volume as well as the ease of transport of water through
the soil matrix is also great. It was found that this model fitted reasonably with
experiment. This paper goes further to describe the numerical solutions to the flow
equation incorporating extraction terms of the types outlined and these will be considered

in detail in Chapter IV.

From the earlier discussion of the microscopic approach by Gardner (1960) it was evident
that the flow of water into a single root under steady state conditions depended on the
conductivity (or inversely, the resistance) and the head (or suction) drop. Gardner pointed
out that this result may be extended to the entire root zone. An analogous equation to

(2.7), extended to the entire root zone, assumes that the rate of uptake is proportional to
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the soil hydraulic conductivity K and to the head drop. Thus the sink term can be

represented as:

2.9

where § = volumetric rate of water uptake per unit volume of soil,
h, = pressure head at the root-soil interface,
= pressure head in the soil, and

1/b is a coefficient of proportionality.

In a review by Feddes er al. (1974) it is pointed out that most authors had used
expressions similar to (2.9) for the volumetric uptake term and that the 1/b term has been
assigned various meanings. The reason given for the variations on the meaning of the 1/b
term is that there is a lack of understanding of the physics involved in this process and this
empirical entity lumps the finer physical detail into a solitary, workable term. This 1/b
term is basically equivalent to Gardner’s (1964), BL which, in Gardner’s equations
accounted for root activity, root density and root geometry. Feddes er al. speculate that
the 1/b term is proportional to the specific area of the soil-root interface and inversely
proportional to the impedance of the soil-root interface. Contending that advantages of the
simple simulation model that includes 1/b outweigh the disadvantage of gross
oversimplification, Feddes et al. adopted this form of the uptake term and substituted it

into the conductivity form of the flow equation:

» _ 3 [K(B) ah +z)] , KO)h-h@)]
a X

az b@) ’

where h = matrix pressure head,
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h, = (assumed uniform) pressure head at the root-soil interface.

Osmotic pressures are neglected. It was found that 1/b was proportional to root mass and
that both varied nearly exponentially with depth, and since the root distribution varies with
both depth and time, 1/b would need to be carefully calibrated for each application. This

model is considered in greater detail in Chapter III.

The preceding water uptake model was modified from the model of Nimah and Hanks
(1973a) whose objective was to propose and test the model under field conditions. The
root extraction term in this case was defined as:

[H_, +(RRESZ)-h(z,!) -5(z,t)] ‘RDF(z) -K(0)

Az,0) = A A

where H,, is an effective water potential in the root at the soil surface (z = 0),
RRES is a root resistance term equal to I +Rc,
(Rc is a flow coefficient in the plant root system assumed to be 0.05),
h(z,t) is the soil pressure head,
$(z,t) is the osmotic potential,
RDF(z) is the proportion of total active roots in depth increment Az, and
Ax is the distance between the plant roots at the point in the soil where potentials

are measured and is assumed to be arbitrarily one.

Hydraulic conductivity and pressure head-water content relation are considered constant
with time. Comparing this with that of Feddes et al. (1974) it can be seen that they are

effectively the same with 1/b(z) corresponding to RDF(z)/AxAz.

Whilst Gardner (1964) was not concerned with the flow of soil-water other than that
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which flowed to the roots, Hillel e al. (1976) found it of interest to establish how the
pattern of soil water extraction by roots related to the flow of water within, through, and
below the root zone. Considerations such as insufficient drainage causing accumulaﬁon
of salts and excess drainage leading to unnecessary loss of water and nutrients led to such
interest. The model of Hillel er al. (1976) sought to embrace the basic physical
mechanisms of transport of soil and solutes through soil and into roots. With this model
came a direction to achieve some practical goal - in this case the hope that such a model
will contribute to an improvement in the optimisation of "agronomic, hydrologic, and

environmental aspects of soil-water management". The extraction term was similar to that

of Gardner (1964), that is,

S = ¢soil - plant
R -R _°

soil TR s
where ¢, is the total potential of soil water including matric, gravitational and osmotic
potentials,

$pam 18 the "crown potential” as described earlier,

R

soil

was as defined in Gardner (1964),and
R.... is the sum of resistance to absorption and conduction of roots (the resistance
to conduction is considered to be a function of the depth of any particular group of

Toots).

Rowse, Stone and Gerwitz (1978) use a similar uptake term to this except the plant
potential is considered to be a constant value throughout the root xylem and not just at the
"crown" of the plant root. This group of models differ to those of Molz and Remson
(1970) in two ways:

® they are more mechanistically based and
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® they incorporates several parameters that vary as functions of time and depth.

The macroscopic model of Feddes et al. (1976) moves away from the earlier sink term
which included the product of the difference in pressure head between soil and root-soil
interface, the hydraulic conductivity of the soil and some empirical root function, in an
attempt to define a more simple expression. The sink term that was defined was a
function of soil-water content which varied according to whether water was plentiful (but
not excessive) or not easily available or somewhere in between. Water uptake was
considered to be at a premium when soil-water pressure head was between -400cm and
-50 cm. The lower limit corresponded to a point where water begins to limit plant growth
(as determined in the Thesis of Feddes (1971)), whereas the upper limit of -50 cm
corresponded to anaerobis point where oxygen is denied to the roots because the water
occupies the air spaces in the soil matrix. The water uptake maximum falls to zero above
anaerobis point. Water uptake was also considéred to be zero below "wilting point" (-15
000 cm). Of course, these figures vary according to the soil type. The water uptake for
the plant, S, is assumed to decrease linearly with time with 6 between h = -400 cm and
h = -15 000 cm. Certainly the mechanistic modeller would argue that these static soil
indicators are not intrinsic soil properties. With further approximations the sink term was
defined to be
5 = a®) 2L,
where a(0) is the dimensionless variable S(6)/S...,,
T is the actual transpiration rate, and

Z is the rooting depth.

The conclusions drawn by Feddes er al. to results of the experiment used to verify this
model were that it did not predict the distribution of soil-water content with depth very
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accurately but it did simulate the cumulative effect of uptake over the entire root zone

properly.

The model of Hoogland ez al. (1981) was an extension of Feddes et al.(1976) whereby the
maximum root extraction is taken to be a decreasing function with depth rather than
constant with depth as in the earlier paper. The modification was based on observations
of an experiment carried out by Feddes, (1971) where it was found that the magnitude of
root extraction was generally small at the top of the profile, increasing to a maximum zone
then decreasing to zero at the bottom of the zone. In the modified model it was assumed
that S, varies linearly with depth from some surface value found from the literature data:
Sex = a - bz, 252,
where a and b are constants; and z, is the rooting depth. The modified sink term then

became:

S = ah).S..(2).

Hoogland er al. (1981) could not determine from their experimentation whether the

modified sink term had any advantage over the original one.

Some of the models outlined to this point have either included a root surface area
parameter or a root length density parameter. As pointed out by Klepper and Taylor
(1979), these characteristics of roots are more useful for inclusion with uptake terms rather
than root dry weight, which, although can be determined more easily, are overly
influenced by larger, older, woodier and less absorptive commonly found near the surface.
It could be concluded that root effectiveness distribution, is not directly proportional to
root dry weight distribution. Nevertheless, Hayhoe (1981), Dejong and Hayhoe (1984)

and Hayhoe and Dejong (1988) all use a root sink term incorporating a root weight
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function, that is,
5(0,2,7) = CKO)(¥, - W(O)W(2)
where W(z) is the root weight function in grams per cubic centimetre,
C(z) is a root activity function,
Y, is the suction head at the root-soil interface, and

P (0) is the soil-water suction head function.

This model is similar to that of Feddes er al.(1974) in that the 1/b of Feddes now
manifests itself as C(z)W(z) (recalling that Feddes et al. (1974) found 1/b to be
exponentially related to root mass). This model, as do many others, uses empirical
relations of Clapp and Hornberger (1978) to specify K(6) and ¢(6) for various values of
water content. The model as described by Hayhoe (1981) differed slightly from the other
two in that the root activity parameter was considered a constant and not a function of
depth as in the later two. One suggestion made for improvement of the root activity
constant in Hayhoe (1981) was that to make it a function of root age and therefore account
for the decreasing effectiveness of roots with age. The model of Hayhoe (1981) was tested
by Dejong and Hayhoe (1984) on native grassland conditions where it was found that a
better fit with measured data could be obtained by decreasing the lower limit of water

availability to plant roots during dry periods.

Hayhoe and Dejong (1988) compare the model just described with another macroscopic
sink term based only on a knowledge of rooting depth. The second sink term was limited
by a maximum uptake rate which is a function of potential transpiration which was

assumed to decrease linearly with depth. This maximum rate was defined by:
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where M(z) is the maximum uptake, Z is the rooting depth and 7 is the potential
evaporation. This results in the new sink term:
8(6,z) = C@)K(O)(y.- ¥(6)), S®6,2) < M(2),

and §(6,7) = M(z), otherwise.

The measured data indicated that the second uptake term estimates the actual
evapotranspiration better than the one based on root weight distribution. A second
advantage was that whilst the uptake term based on the weight function may estimate
cumulative uptake quite well, it may not estimate the uptake distribution over time with
any accuracy, whereas the uptake term specified with the linearly decreasing function is
regulated such that at any depth the entire demand cannot be met, which is not realistic

anyway.

The preceding discussion was designed to provide an overview of the types of models both
microscopic and macroscopic, that have been developed. It has been evident that the
models vary in degrees of empiricism and are largely a result of the balance between
oversimplification in an effort to be reasonably practical and overmechanisation whereby
parameters would be not readily available. In any case the mechanisms are not well
known as acknowledged by Hillel e al. (1976), Hayhoe (1981) and Feddes and Zaradny
(1978), thus there is a necessity for some degree of empiricism as borne out in the models
of Feddes et al. (1974) and all the models based upon it (Hayhoe (1981), Dejong and
Hayhoe (1984) and Hayhoe and Dejong (1988). Indeed Feddes and Zaradny (1978) stated
that "A complete and physically - mathematically sound description of water uptake and
transport by living root systems seems to be hardly possible”. A more optimistic Klepper
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and Taylor (1979) contend that "The day will surely come when, with appropriate
identification of soil, climate and plant characteristics, we can predict the time courses for

transpiration and for water content changes within a profile."

2.2.4 Evaporation, Transpiration and Drying

For a bare uncropped soil, water losses by evaporation could amount to 50% or more of
total precipitation, Hillel (1980). In a cropped soil, water can also evaporate from the leaf
surface, this process being called tramspiration. The two processes, evaporation and
transpiration, are closely related, this being emphasised by the fact they are usually
grouped together in the process evapotranspiration. Just how the total evaporative losses
are apportioned between the two component processes depends on the stage of
development of the crop. If the crop is just emerging, clearly there is not much difference
between that situation and bare soil. If the crop is in advanced stages and with much
canopy cover shading the ground then evaporation from the soil surface is decreased and
the transpiration, by virtue of the large leaf surface area, is increased. In modelling the
soil-plant-atmosphere water movement, the processes therefore will have changing

prominence as the crop grows. Consider now the two processes individually.

Evaporation From The Soil Surface.

This section will consider only the case of evaporation from bare soil where there is no

high water-table that will permit rewetting of the soil profile in the case of loss of water

due to evaporation and redistribution. This soil drying process consists of three
identifiable stages:

® The initial constant rate stage where the soil is wet and evaporation is restricted

only by the amount of energy supplied to the surface. For this reason this stage

may also be called the energy-limiting stage. Thus the soil properties have little
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to do with the rate of evaporation, but rather meteorological conditions dictate the
rate. Hillel (1977) states that the end of this stage is considered to have occurred
when the surface of the soil has desiccated to the point of "air-dryness".

®  When moisture becomes limiting, the evaporation is controlled by the conductivity
of the soil in restricting the rate of upward flow of water to the surface. This
Jalling-rate or soil-limiting stage is where the rate of evaporation falls below its
potential rate.

®  The slow-rate or vapour diffusion stage is the third stage and it may persist for long
periods of time. In this stage the upper layers are dry and will not permit the
upward flow of liquid water and so water traverses these layers by the process of

vapour diffusion.

So far as the relationship between evaporation and redistribution, experimentation of
Gardner er al. (1970b) indicates that evaporation has little effect on redistribution. This
gives some credence to the simplifying assumption of Saxton ez al. (1974) who considers
that the soil evaporation portion of total evapotranspiration comes only from the top 15 cm
of soil. In the experiments of Gardner ef al. (1970b), it was found that redistribution
greatly detracted from evaporation. Cumulative evaporation was reduced by about three-

fourths of what it would have been had redistribution not taken place.

Evaporation From The Plant Surface -Transpiration.

An outline of the process of transpiration was given in section 2.2.3 when dealing with
water uptake by plant roots. The root uptake of water is driven by the energy supplied to
leaf by the sun and not as a process of active transport of water by the roots. As such,

the process of transpiration does not require an expenditure of energy by the plant itself.
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Some water may indeed enter the plant root due to osmotic gradients but this is small in
comparison with the sun-induced movement. The plant does have some regulatory powers
over water loss in that the stomata will close as the plant loses water thus severing the
connection between internal leaf air spaces and the external atmosphere hence halting the

need to correct potential gradients between the two and stopping the loss of water.

Modelling Evapotranspiration.

The various approaches to modelling the consumptive use of crops or evapotranspiration
has been introduced in Chapter I to demonstrate methods used in determining the soil-
water availability to plants and how it is monitored. Two empirical models were outlined,
that is, the models of Thornthwaite and of Blaney-Criddle. They will be considered no
further in preference to the classic mechanistic model of Penman (1948).

Just as the discussion on redistribution and subsequently the development of the flow
equation formed a useful perspective for further discussion of current work in that area,
similarly, the following development of Penman’s equation also provides useful

background.

The Penman equation was designed to calculate the evaporative power of the atmosphere.
This would permit the determination of the evaporation from the soil surface and since
transpiration (the water uptake and loss of water by plants) is also driven by atmospheric
demand, it too could be calculated as the collective term - evapotranspiration. Since the
equation was designed to calculate the maximum possible rate at which the atmosphere is

capable of extracting from a field, it yields potential evapotranspiration.

Penman defined potential evapotranspiration as "the amount of water transpired in unit

time by a short green crop, completely shading the ground, of uniform height and never
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short of water." This definition requires some elucidation.

For a surface to give up its water at its potential rate, two conditions need to be met.
Firstly, energy must be supplied (by the sun, say) to the water surface to separate the
molecules from liquid phase, and in doing so, work is done against internal cohesive
forces. As the molecules leave the water surface, further work is done against surrounding
molecules as the now water vapour expands outwards. It is to be noted that the energy
absorbed by these water molecules now in vapour state is stored as Latent Heat (or

Potential energy) leading to no rise in temperature.

Secondly, the equilibrium of the water vapour immediately above the water surface must
constantly be disturbed by sweeping the particles away else the molecules returning to the
surface and those breaking away will be in equal numbers with no resultant
evapotranspiration. With the sweeping away of the particles as they break away from the
liquid phase, partly dry air remains and as the new equilibrium is established,
evapotranspiration is at a premium. It is to be pointed out that these two processes are not
wholly independent since the incoming air may be warm thus suppling further energy with

the transformation of this sensible heat into latent heat of vaporisation as before.

So it is clear that external energy is required as well as convection of air over the surface
(advection if we consider the simultaneous transport of heat with the air movement). These
two components are external and for potential evapotranspiration to be maintained the
surface must keep up the supply of water for the subsequent conversion to water vapour
and this is therefore a condition of the surface. Hence, the 'never short of water’ clause
ensures the definition of potential evapotranspiration is independent of the state of wetness

of the surface and, as such, a point of reference has been established.

48



The clauses ’short green crop’ and *completely shading the ground’, standardise the affects
of external components already mentioned. Hot winds have been shown to cause
evapotranspiration in stalky rough open vegetation to far exceed that for smooth, close
vegetation by virtue of the greater transpiring surface area that the hot winds come in
contact with. The ’short green crop’ seeks to standardise this ’clothesline effect’ as it has
been termed by Tanner, 1957. One would reason however if the definition of potential
evapotranspiration might not be improved by extending the clause to ’an extensive
uniform green crop’ since if the cropped area is small, the advective heat inflow from the
surrounding area may be large (or at least quite different) leading to greater
evapotranspiration than if the advection was indeed from a similarly cropped area also
freely transpiring. The example given in Hillel, 1980, is that of arid lands where small
irrigated fields are often surrounded by an expanse of dry land and it is a common sight
for poor growth of the plants near the windward edge of the field where penetration of
warm dry winds contributes energy for evapotranspiration. Finally, ’completely shading
the ground’ indicates that the crop cover must be uniform thus completing the definition
of potential evapotranspiration to form a reference by which to gauge the level of

evapotranspiration.

As previously stated, two external conditions need to be met if a surface is to give up its
water at its potential rate. The Dalton equation largely represents one of these conditions

-that of convection of air over the surface.

The Dalton equation for evaporation from a saturated surface is
LE = (e, - e)f(u), (2.10)
where e, is vapour pressure related to the state of the surface,
e is the vapour pressure of the air at two metres above the surface,
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LE is the energy absorbed as latent heat, and

J(u) is a function of wind speed.

If this is to be solved then the humidities of the surface and above the surface need to be
known. Since surface saturated vapour pressure (e,) requires knowledge of the surface
temperature (7)), which is a quantity rarely available from routine measurements and
subject to errors from complex instrumentation, this equation is not practical in assessing
evaporation. This equation on its own may be not sufficient but as will be shown further

analysis incorporates this ’convection’ mechanism to finally lead to the Penman equation.

Solar radiation provides the energy necessary to drive evaporation from a wet surface,
herein lies the second condition. The atmosphere scatters a large proportion of incoming
radiation with the remainder absorbed by the earth’s surface or involved in other heat
processes. These processes may be the absorption of energy as latent heat, the increment
of sensible heat (that is, heat detected by our senses) of the atmosphere and a major
process is the re-emission as long wave radiation. These processes may be summarised
in the following equation:
J.=LE+A+S+M, (2.11)

where J, is the net radiation,

LE is the energy absorbed as latent heat,

A is the sensible heat flux (heating the air),

S is the stored heat, and

M is the miscellaneous component encompassing photosynthesis, respiration

etc.
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It must be elaborated here that LE is comprised of two terms as follows, L, which is the
latent heat of vaporisation (Joules/kg) and E, which is the rate of water evaporation
(kg/m’.s). The term LE incorporates these two with a resultant meaning of the rate of

energy utilisation in evapotranspiration, that is to say, the heat used to evaporate water per

unit area and per unit time. (Joules/m?.s).

Due to the previously expounded problems associated with an equation for evaporation
containing surface temperature (7,) as a parameter, Penman eliminated this quantity in the
derivation of the Penman equation. A derivation of the Penman equation to illustrate this

point is given in Appendix B. The resulting Penman equation is:

[é] J - LE,
LE = 1X ,
é + 1
Y
where L.E, = 0.35(e, - €)(0.5 + 5U,/800),

U, = mean wind speed in kms/day at 2m above the surface,

e, is the saturated vapour pressure of air,

v is the psychrometric constant and

A is the slope of the saturated vapour pressure - temperature curve.
The equation above is one form of the Penman equation and it is to be noted that whilst
T, does not appear explicitly it is implicit within A. In practice A is evaluated at T,, the
temperature of the air some distance above the surface. The error due to this
approximation is small since A appears in both the numerator and denominator and errors
would divide out to be negligible. It is a fact that Penmans equation is physically based
and this is borne out in that the inputs are net radiation, air temperature, vapour pressure
and wind velocity at one level above the field. Since this equation was derived from a
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combination of the energy balance and water vapour transport equations it is often referred

to as the Penman combination equation.

Penman’s equation defines a mechanistic model for evapotranspiration and can be evaluated
from readily available data in any locality. It was seen that since surface temperature was
not easily obtainable, the surface was effectively raised an arbitrary distance to eliminate
that unknown, by introducing the Dalton equation on two occasions and that end was

achieved.

The Penman equation, either in the form to determine potential evaporation from a open
water surface (Penman 1948), potential evapotranspiration from a short green crop with
abundant water supply (Penman 1948), or evaporation from a drying soil and transpiration
from a crop with restricted water supply (Penman 1949), has been used by many workers.
Stern (1965) uses the potential open water evaporation form to calculate potential
evaporation as a standard by which to compare evapotranspiration on safflower as deduced

from the water balance equation.

Ritchie (1972) introduces semiempirical relations to Penmans equation in order to calculate
daily evaporation rates from soil surfaces and plant surfaces from a soil with row cropped
canopies. These equations of Ritchie (1972) have been subsequently used by Feddes ez
al. (1974), Feddes et al. (1976), and Saxton ez al. (1974) to enable these workers to
apportion potential evaporation to soil and plant fractions and, in the latter case to calculate
evaporation from the soil in both constant rate and falling rate stages. Ritchie (1972)
incorporates a factor called Leaf Area Index (LAI) defined as leaf area per unit ground area
that would indicate to what extent the ground would be shaded and soil evaporation

reduced.
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A modified Penmans equation was employed by Wright and Jensen (1978) to compute a
reference potential evapotranspiration that was used to incorporate empirical factors which
enabled improved evapotranspiration estimates to be made as a basis for an irrigation
schedule. Nimah and Hanks (1973a) calculated potential evaporation from a free water
surface using Penmans equation to which they multiplied a crop factor thus obtaining
potential evapotranspiration. The resulting evapotranspiration was apportioned between
potential transpiration and potential evaporation from the soil surface in a ratio of 9:1.
This crude division is to be contrasted with the method of Feddes er al. (1974) as
described earlier and of Hayhoe (1981) who used the same method of Feddes er al. (1974)
in partitioning the evaporation between the plant and soil surface as determined by crop

COver.

As may be deduced from the foregoing short survey of the modelling approaches to
evapotranspiration, the Penman equation forms the basis for many and is testimony to the

appeal of such a mechanistic approach.

The diversity of the mathematical modelling approaches to the individual water movement
processes in the foregoing sections is evident. The phrase ’Soil-Plant-Atmosphere
Continuum’ is indeed an apt one to expose the interrelatedness of this complex system.
The modelling of such a system is inherently difficult particularly when mechanisms are

incorporated. The next chapter considers mathematical models of the entire system.
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CHAPTER III

WATER IN SOILS - MATHEMATICAL MODELS

In the previous chapter, the individual processes together with modelling approaches were
considered. In this chapter the entire system in terms of water relations with soil and
plants will be considered. The models presented here are not exhaustive but rather are
tendered as representing the major schools of thought in the area. It will be seen that the
models vary greatly in complexity and practicality. Some are primarily research models

with others more useful for management purposes.

Rather than present these models in an isolated sense, they will be described within the
framework of which category they belong. Classifying the models provides insight into
the reason for a models development, provides a historical perspective, and tenders a niche

for the development of further models. The classification system is described below.

3.1 GENERAL TYP F MATHEMATICAL MODE
A mathematical model is an equation or set of equations which is used to represent a
system with the aim of emulating its behaviour with a degree of accuracy, often with the
intent of predicting future behaviour of the system. Models may be classified as :

® DYNAMIC or STATIC

® DETERMINISTIC or STOCHASTIC

e MECHANISTIC or EMPIRICAL
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As pointed out by Hillel (1977), these groups are not mutually exclusive and a complex

model may encompass features of several of these.

Consider the distinction between dynamic and static models. Static models do not contain
the time variable explicitly but may capture the nature of a system at an instant. In
contrast, dynamic models are specifically concerned with changes over a period of time
or of instantaneous changes. Clearly, dynamic models usually include differential
equations.

Stochastic models acknowledge the random eiement of a system so that an outcome of such
a model will produce some probability distribution and associated variances. Deterministic
models, on the other hand, produce a definite outcome for a given set of inputs. It would
seem that a system would need to be fully understood in order to be modelled
deterministically and that any departure from a full understanding would necessitate a
stochastic element. Without certain simplifications, any modelling would soon become
over-burdening if a stochastic element were introduced each time. For what is the reason
one models if it is not to simplify a complex system in order to provide insights into such

a system.

The distinction between mechanistic modelling and empirical will be considered in greater
detail in section 3.2.1. as it is central to later discussion on water-movement models.

Thornley and Johnson (1986) use this system of classification but since they are
fundamentally concerned with the mechanism/empiricism contrast, they do not use the
respective methods of solution of models as a further means of categorisation. Hillel
(1977) and Addiscott and Wagenet (1985) attach the distinction between analytic and
numerical solution to more finely characterise models, in particular, models involving

water movement. Analytical models, of course, are those that can be solved by the
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classical methods of analytical mathematics whereas numerical models make use of

numerical analysis to home in on a solution and usually require the use of a computer to

be effective.

3.2 CLASSIFYING WATER MOVEMENT MODELS

The general classification system described above will be used as the basis of classifying
the water movement models. The broadest division is that between deterministic models
and those that are stochastic. The deterministic models lead to unique outcomes for any
given set of input parameters whereas water distribution models such as Feinerman et. al.,

1989, contain random variables that attempt to account for the uncertainty of an outcome.

Within the deterministic models the division is due to how physically based the model may
be. Models that incorporate the actual mechanism by which water moves within the plant
or soil are called mechanistic. Those that are less physically based tend towards being
empirical whereby simplifications ate made that effectively reduce the input requirements.
Another characteristic distinction between mechanistic and empirical models is that
mechanistic models usually contains a rate of change of water content term. The empirical
models do not include this but rather involve the change of water content from field
capacity. As such, mechanistic models involving a rate of change term are driven by time
whereas an empirical model including a volumetric water content term are more driven by
events that change that volume such as inputs of water such as rainfall and irrigation. As
will be expounded later, not all models fit neatly into these two seemingly polarised
groups, but rather are spread by degrees from one extreme to the other. Figure 3.1
emphasises this by diagrammatically depicting the models considered later in this chapter

along the 'empiricism-mechanism continuum’.
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MODEL TYPES
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Figure 3.1. Models of water movement in soils on an arbitrary scale from
empirical models to mechanistic models.
3.2.1 Mechanism vs Empiricism
As stated above, a mechanistic approach is where the modeller attempts to embody the
actual physical processes that drive the system within the model. Another way to stress
this distinction is by considering mechanistic models as explanatory models and empirical
models as descriptive models whereby no attempt is made to explain a system, only to

describe it with some accuracy.

In the case of water movement, the mechanism may be described in terms of energy
gradients. The empirical approach, on the other hand, incorporates none of this
mechanism but simply describes the system based on curve-fitting procedures derived from

previously gathered statistical data. For example consider potential evaporation from a
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surface. Various methods (Thornthwaite 1948, Oliver 1963) sought to find empirical
relationships between potential evaporation and temperature of the air, humidity and wind
using data collected over long periods. The problem with such empirical methods is that
they are specific to the conditions from which the data was collected. Problems are
certainly not confined to empirical modelling, however. Mechanistic approaches have
problems of their own particularly when the mechanism that is to be modelled is not well
understood. Hillel et al., (1976) states that this is the case with water uptake by a root
system. Whilst the uptake surely is in response to potential gradients, just how the root
system detects the spatial variability of the water over its entire root zone and alters uptake
patterns and coordinates the ’efforts’ of individual roots in response to this is quite a

mystery.

Whilst it is possible for a model to be entirely empirical, no model involving the movement
of water through soils and uptake into roots can be fully mechanistic. Mechanistic
approaches must therefore include statistical or empirical components that arise due to the
various simplifying assumptions that must be used to overcome those processes that are not
well understood. As stated earlier, there would be no need to model any system that was
fully understood. Herein lies the dilemma: a modeller who seeks to develop a fully
mechanistic model cannot do so since any system worthy of modelling can not be
comprehensively described and subsequently its mechanisms are not adequately known.
So does the modeller concede that the system is to complex to model with any fidelity?
The answer to this question specifies the final level of organisation of the water-movement
models. If a modellers intention was to fully mechanistically model the water regime with
the aspiration that the model will be simple enough to be accepted and used by the
agricultural community to practically schedule irrigations, the modeller would most

certainly concede that the two objectives conflict. On the other hand if the modeller
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set out with the intention that the model would be primarily a research tool and that by its
development some advance would be made toward a greater understanding of the
mechanisms involved then this modeller would continue unabated. Thus, the final level
of classification could be based on the reasons for the development of the model. These
may be for research or for water management purposes. It is to be noted that Addiscott
and Wagenet (1985) found that the distinction between research and management models

broadly corresponded to mechanistic and empirical-type models.

3.3 THE MODELS IN DETAIL

A useful way to classify the various models involved in the movement of water through
soils is to consider the various component processes of water movement and determine the
degree of mechanism used to model each of these. The processes as described in an
earlier chapter are : infiltration, redistribution, evaporation, transpiration and water uptake

by roots.

The models of primary concern here are those deterministic models that range from largely
empirical to largely mechanistic. Stochastic models will not be included.

In modelling water redistribution through soils, a large number of models are based on
Darcy’s Law for water flow together with the Law of Conservation of Matter. Darcy’s
Law stated in words is that ’if the change in potential is increased per unit distance then
the discharge rate of water through an area (perpendicular to the direction of the increased
gradient) will be increased’. These laws form the basis of some of the fundamental
mechanisms of water movement in soils. For this reason any model based on the Flow
equation will be considered basically mechanistic. This will be despite the fact that the
solution of the Flow equation in unsaturated soil requires relationships between K, 6 and

¥ and these are found empirically.
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The summary for each of the selected models follows. The variables will only be defined
if they have not been encountered before. The variables are not necessarily the same as
used in the papers where they were published because an attempt has been made here to
standardise the notation to allow easier comparison. The notation is largely consistent with
that used in Chapter II. In each summary the classification of the model will be given
according to how each of the processes are modelled. A general description will also be
given detailing the purpose of the development of each model, outlining various

assumptions made and the method of solution will be briefly described. Verification of

the model in field tests will also be considered.

MODEL TYPE: Mechanistic with regards to redistribution with an empirical, macroscopic

sink term. Infiltration and soil evaporation are forced to be zero. Steady state assumed.

Numerical solution.

GENERAL DESCRIPTION: It was the purpose of these authors to develop a reasonable
model for macroscopic moisture extraction. The model incorporated an early macroscopic
sink term and was based on the diffusivity form of the flow equation, where it is assumed
that conductivity and diffusivity are single valued functions of water content. As described
in Chapter II, the sink term was developed by fitting a function to the well-known

empirical approximate extraction pattern for roots i.e. 40%, 30%, 20% and 10%



extraction for successively deeper quarters of the root zone. It is empirical because there
is no physical significance attached to the proportions. It was pointed out that the water
uptake model fails where the surface layers dry and therefore cannot sustain their
contribution to the total uptake. This problem was avoided by making the further
assumption that the system was in a steady state i.e. 80/t = O (this means that water
content does not significantly change with time). Since one of the independent variables
has now effectively been eliminated, the partial differential equation has been reduced to
an ordinary differential equation that was solved using an Adams predictor-corrector
method started by a Runge-Kutta procedure. This procedure could only be applied to an
initial value situation so to solve the equation with the boundary conditions (as assumed

here) of zero surface flux (no infiltration, no soil surface evaporation) and constant water

content at the lower boundary, a shooting method was used.

MODEL TYPE: Mechanistic, in terms of redistribution and evapotranspiration.

Macroscopic sink term. Transient water regime. Numerical solution (finite difference

method).

o0 _ d oH| |
| 2 3o ). s |

[H _, +(RRES<z)-H(z,)-5(z,t)]-RDF(z)-K(0)

where Sz, = A

and RRES is a root resistance term, H is the soil pressure head, s is the osmotic potential

and RDF(z) is the proportion of total active roots in a depth increment.
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GENERAL DESCRIPTION: The model was based on the conductivity form of the flow
equation and was solved numerically using finite differences (Crank-Nicholson method as
discussed in Chapter IV). The model was developed to predict water content profiles,
evapotranspiration, water flow from or to the water table, root extraction and root water
potential at the surface under transient conditions. The sink term is mechanistic to the
extent that it includes pressure and osmotic potentials as the driving force of the water
extraction as well as a root resistance factor. H,, could be compared with the >crown’
potential of Hillel et. al. 1976, which may well be related to leaf stomatal resistance as
described be van Bavel and Hanks, 1983. Potential evapotranspiration was calculated using
the Penman equation. A degree of empiricism is evident here as the potential
evapotranspiration was partitioned between soil evaporation and transpiration in the ratio
1:9. The surface flux condition permitted evaporation at potential rate from the soil until
the surface was air-dry and also permitted infiltration to occur at maximum rate until
saturated surface conditions prevailed.

The model assumes that Hydraulic conductivity and pressure head-water content relations
do not change with time and that the root density function is invariant with time.

This model was field tested (Nimah and Hanks (1973b)), with findings being that water
content-depth profiles were in poor agreement directly after irrigation but good agreement
48 hours after irrigation.

This model was further modified by Feddes et al. (1974), to exclude osmotic pressures but
to include a more physically based method for partitioning evapotranspiration into
transpiration and soil surface evaporation to include certain properties that effect

transpiration as described in Chapter II.
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MODEL TYPE: Mechanistic with regards to redistribution and the macroscopic sink term
analogous to Ohm’s law. No infiltration considered and the regime is transient.

Numerical solution.

® _ 9 0H, -2 H,-H
‘5:“52[’“‘” 5 ]

where H,_, H,; and H,,,. are the matric, total soil and "crown" potentials respectively.
The "crown" potential is the xylem water potential at ground level. R, and R, are
resistances due to water flow in soil towards the root (as given by Gardner (1964)), and
the hydraulic resistance of the roots, including resistances to absorption and conduction in

the root respectively.

GENERAL DESCRIPTION: This model attempts to formulate a water uptake term in
terms of the basic physical mechanisms énd in doing so claims to be more mechanistic
than those macroscopic terms of Molz and Remson (1970) and Nimah and Hanks (1973).
Confirming the lack of understanding of the root uptake mechanism, a degree of
empiricism is still evident in the root resistance term where an empirical constant
representing root-length activity is introduced i.e. R, = 1/BKL. (K is hydraulic
conductivity, L is total length of active roots in a unit volume of soil). The B term was
introduced by Gardner (1964) and discussed critically by Taylor and Klepper (1975).

This model was designed to produce as output, the patterns of soil moisture depletion as

well as the leaching of salts below the root zone. The model was not field tested and was
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used as a research tool to investigate how changes in root density and depth, root
resistance, initial soil wetness and differing evaporative regimes effect water uptake
patterns. Transpirational demand was considered to fluctuate diurnally according to a
sinusoidal function and evaporation rate was considered to be 2% of transpiration rate (an
empirical judgement). Infiltration is not considered to be a surface flux possibility but
rather the simulation is commenced by using an initial soil moisture profile, constant
throughout the root zone (the constant being roughly field capacity for their given soil).
In the root extraction term, (which needs to be determined at each depth layer) the only
unknown is "crown" potential. Since the root extraction term may be summed over the
root zone to give transpiration rate, the value of H.., can be obtained at successive times.

This model does not allow for a growing root system.

MODEL TYPE: Mechanistic in terms of redistribution, water uptake and the apportioning
of evapotranspiration into transpiration and soil evaporation components. Infiltration is

modelled empirically. Numerical solution by finite difference method.
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where L is the root Iength per unit volume of soil, and all other variables as defined in this

chapter.

GENERAL DESCRIPTION: The model was developed to enable the flow of water, the

water content and the matric potential to be calculated at any depth for a cropped soil. It
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is based on the numerical solution to the flow equation in diffusivity form. Unlike those
models of Nimah and Hanks (1973) and Feddes ez al. (1974), in this model transpiration
and evaporation are considered independent processes and are apportioned in a different
manner. Transpiration is calculated to be the sum of all uptake rates and is considered to
be equal to f.E at the energy limiting rate, where fis the fraction of plant ground cover
and E is the Penman potential transpiration or equal to a rate at which water can be
extracted from soil at a critical plant water potential, whichever is lesser. This critical
potential is where stomatal closure is assumed to occur. The rate of evaporation from the
surface is calculated to be that of an open water surface in energy-limiting phase (Fg) or
as in soil-limiting phase (Fy) as described in Chapter II (such evaporation being considered
to follow a half sine wave during daylight hours and zero at night). This potential
evaporation is then adjusted by multiplying by (I-f) where fis the fraction of plant ground
cover. Infiltration rate is considered to be the smaller of Fy, (rainfall/irrigation rate) or
Fy. During an infiltration event this water is assumed to be distributed in the empirical
manner or saturating the top layer before moving down to the next layer as described more
fully in Chapter II. The root water extraction term is analogous to Ohm’s law but differs
from the uptake rate of Hillel ez al. (1976) in that H,, is considered to be constant
throughout the root xylem and not thought of as a "crown" potential.

The model was field tested with the outcome of good agreement with field measurements
and the conclusion that such models will be useful to help understand the effect of factors

such as weather,soil type and root distribution on water and nutrient uptake.
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MODEL TYPE: Hybrid type in terms of basing redistribution on the flow equation and

using reasonably strong empirical approaches to all other processes. Numerical solution.

GENERAL DESCRIPTION: This model was designed to strike a balance between the
complexities of the largely mechanistic models and the lack of generality of the wholly
empirical approaches and to estimate daily actual evapotranspiration and soil moisture
profiles. The energy for evapotranspiration is considered the principal driving force for
the water movement with soil water potentials playing a secondary role. This tends to lean
towards the conventional approach to irrigation scheduling as described in Chapter I. In
this so-called Soil-Water-Plant-Water (SPAW) model, the soil water balance is considered
by modelling the processes as occurring sequentially. The evapotranspiration is firstly
calculated (from a modified Penman equation), infiltration is then added and finally water
is redistributed among the soil layers.
Potential evapotranspiration is apportioned between transpiration and soil evaporation
according to canopy cover (using a canopy % graph from previously collected data).
Potential transpiration is sequentially reduced by :

e the crop’s phenological stage (empirical data),

e distribution to each soil layer depending on the root distribution and

e effect on potential evapotranspiration due to the plant suffering moisture stress and

closing its stomata.

The actual evapotranspiration is then calculated by adding soil evaporation and reduced

crop evapotranspiration. Soil evaporation was considered to come from the top 15c¢m of
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soil and is calculated using the two-stage method of Ritchie (1972). Daily infiltration is
as described previously in Chapter II and is similar to that of Rowse and Stone (1978).
After infiltrated water was added, redistribution is initiated by using the flow equation and
using empirical moisture-tension and moisture conductivity relationships.

The model is best described using the flow chart of actual evapotranspiration calculations
and soil moisture movement as presented in Saxton, Johnson and Shaw (1974) or Hayhoe

and De Jong (1988). The model was tested and calculated and observed soil moisture

profiles were in good agreement.

MODEL TYPE: Simple water budget approach using empirical algorithms.

n
A_E = E J(i 1) %PE —W(PEj PE )
i
Jj=1 5

where AE; = actual evaporation for day i ending at the morning observation of day i+1,
E = summation from zone j=1 to zone j=n,
k. = coefficient accounting for soil and plant characteristics in the jth zone,
S “en= available soil moisture in the jth zone at the end of day i-1,
S, = capacity for available water in the jth zone,
Z, = adjustment factor for different types of soil dryness curves,
PE, = potential evapotranspiration for day i,
w = adjustment factor accounting for effects of varying PE rates on AE/PE ratio,

PE™ = average PE for month of season.
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GENERAL DESCRIPTION: This model estimates daily soil moisture using standard
meteorological data and is designed to monitor soil moisture without having to resort to
soil sampling. The model has been termed the Versatile Budget (VB). The VB claims to
be superior over direct measurement of soil moisture since such measurements provide
readings for a specific area at a particular point in time. The model makes use of the
potential evapotranspiration concept as the major driving force of soil-water depletion.
The empirical assumption that all moisture from an upper zone is "evapotranspired" at the
potential rate until all available moisture is withdrawn before any extraction occurs in the
layer immediately below was a feature of earlier budget approaches and was abandoned
in the VB. Also abandoned was the idea that if daily potential evapotranspiration rate is
such that all cannot be accommodated by the topmost layer then the water in the next layer
down is drawn upon and so on until the rate has been attained. In its place the VB
considered water to be withdrawn simultaneously from different depth zones (in the root
zone), in proportion with the available soil moisture in each zone until the transpirational
demand is met. As such this model aimed to reflect a more accurate distribution of soil
moisture.

A standout feature of the equation for estimating daily AE , above, is the number
adjustment type factors: k , Z and w, - a feature of empirical rhodels. These must be
determined for a particular location and crop. The method by which infiltrating water
enters the system is as described in section 2.2.2, with the infiltration equation being
empirically based. The model achieved good agreement with measured values during field

testing.
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CHAPTER IV

METHODS OF SOLUTION OF ROOT-SOIL-WATER MODELS

4.1 THE GENERAL MODEL

The previous two chapters have presented a wide range of modelling approaches to both
individual soil-water-root processes and the overall process of water movement throughout
the so-called Soil-Plant-Atmosphere-Continuum. It is one thing to develop a ideal
mathematical model and it is quite another to have the resources to solve it. This chapter
outlines methods of solution both analytical (where possible) and numerical. It will also
consider any assumptions that were used to simplify or otherwise change the model to aid
in solution. The discussion will focus directly on models based on the flow equation as

such a mechanistic approach will be targeted here.

Consider firstly, the most general situation to be encountered in the field, that of vertical,
unsaturated subsurface flow of (liquid) water with cropped, homogeneous soil under
isothermal conditions, where osmotic effects are negligible and with periods of infiltration
and evaporation. The presence of a high water table and hysteresis will be neglected in this
situation. With hysteresis neglected, a unique, single valued relation between matric
potential and soil wetness can be assumed. Furthermore, the arguments of Van Bavel and
Hanks (1983) support that liquid flow under anisothermal conditions and vapour flow of

water under any conditions are of little practical significance.
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The general model as detailed in Chapter II is
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4.1
where all variables are defined as in Chapter II. It is to be noted that the hydraulic
conductivity may be expressed as a function of suction (as it is here) or of water content.
The above conductivity form can be cast in a basically equivalent diffusivity form as
detailed in Chapter II. In making this change, there is a gain in mathematical
simplification but a loss of generality since the diffusivity equations fail if the hysteresis
effect if appreciable or when soil is layered, or in the presence of thermal gradients (Hillel
(1971)). As these conditions were precluded in the base assumptions of this section, the

diffusivity form will be pursued.

The diffusivity form is

% . _"’_[D(o)ﬁ] - [M]?fl _
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(4.2)
The computational advantages of the diffusivity form of the flow equation are at least
threefold. Whereas the conductivity form contained both 0 and ¢, the diffusivity form takes
advantage of a single-valued relationship between the two (under current assumptions) to
eliminate one of these dependent variables. Secondly, Hillel (1971), indicates that the
range of variation of diffusivity is smaller (by a factor of one thousand) than that of
conductivity (although this is only an advantage in the absence of gravity).
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The third advantage is dependent on the method of solution. Rowse and Stone (1978) who
used a numerical method of solution, found that the diffusivity form enabled the same
degree of accuracy to be achieved by dividing the soil into a smaller number of layers.

The limitations of the diffusivity form will be considered in the last chapter.

Despite which equation is used, both are nonlinear because of the dependencies of K, ¥,
and D on 6. Furthermore the sink term is, in general, nonlinear. To solve these
equations the functional dependencies need to be determined, often by empirical means.
Many papers use the data of Clapp and Hornberger (1978) to ascertain these dependencies.
Clapp and Hornberger (1978), acknowledge that not all workers wish to undertake direct
experimental determination of 6-K-¢r relationships and therefore have developed power

curves relating the parameters.

Further complicating the solution of the Richards’® equation is the fact that the initial and
boundary conditions may be derivatives. These considerations dictate that analytical
solution would be difficult and that the solution would be specific for the boundary
condition used. Indeed, Van Der Ploeg and Benecke (1974), when referring to the flow
equation without the sink term, state that no general analytical solution is known. This
was indeed the case until Knight and Philip (1974) produced an analytical solution for the
flow equation for redistribution in the absence of gravity. An analytical solution for the
model would have the advantage that the solution would be exact and the approximations
made in any numerical solution could be avoided. The next section outlines a brief history
of the solutions, both analytic and numerical, and which would be most appropriate for the

solution of the model in this case.
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4.2 METHODS OF SOLUTION FOR THE RICHARDS’ ATI

As already outlined earlier this chapter, this equation is complex and nonlinear thus
making solution difficult. In 1967, Remson ef al. indicated that analytical solutions had
been successfully achieved for only a limited number of cases. Van Der Ploeg and
Benecke (1974) stated that for simple initial and boundary conditions and one-dimensional
flow, some analytical or quasianalytical solutions existed. Numerical techniques such as
finite difference solutions, as indicated by De Smedt and Wierenga (1978), were not
| limited by restrictive initial and boundary conditions and may be applied in a variety of
situations. On the same token, in 1977 Wierenga, claimed that numerical solutions need
more input information such as K-y~8 relationships which are seldom available for field

situations.

Philip (1969), as reported by Parlange (1971), "emphasised rightly the value of analytical
over numerical results to grasp the fundamental structure of solutions", thus indicating a
preference for analytical solutions to the Richards’ equation by that author. Despite the
fact that these are earlier references relative to the amount of work recently done in this

area, the two sides of the story with respect to solution methods is apparent.

One side involves the numerical solution and the other, analytical solution. Both sides
have their positive and negative points. Analytical methods "advance understanding of the
mathematical shape and the physical structure of the infiltration process”, Philip (1988).
Also, "analytical-type methods enable an understanding of the physics of the problem to
be well developed”, Hogarth and Watson (1991). These methods did, and still to the
present, suffer from the problem that for realistic initial and boundary conditions the
solutions became increasingly complex.
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Haverkamp et al. (1977), state that quasianalytical solutions by Philip (1957) and Parlange
(1971) were subject to fairly restrictive and simple initial and boundary conditions.
Further indicating that these initial and boundary conditions did not represent usual
conditions Haverkamp ez al., justified their interest in presenting a review of the numerical

approaches up till that time.

Perroux et al. (1981), indicate that numerical methods met with greater success in the
early search for solutions to the flow equation with constant boundary flux with the
pioneering works of Rubin and Steinhardt (1963). Perroux ez al. went on to report that
White ez al, (1979) developed a gravity-free analysis of the flow equation and that they
extended the White ef al., analysis to include the effect of gravity and constant-flux
infiltration based on the flux-concentration relation where similarity methods reduce the

number of independent variables to one.

Analytic solutions continued to become more generalised to include other initial and
boundary conditions after this time. Parlange et al. (1985) present a solution that allows
water content at the surface to be a function of time rather than constant. The analytic
solution in this case had the advantage over numerical methods of that time since it was
the most reliable method in predicting time till ponding even under high intensity rainfall.
Broadbridge et al. (1988), developed a new exact solution during constant rate rainfall in
a finite soil profile. These authors explain that the Richard’s equation can be reduced to
a linear convection-diffusion equation using nonlinear transformations which in turn
increases the difficulty of solving the linear equation. Hogarth ez al. (1989) found middle

ground by reducing the flow equation to an ordinary differential equation by using first
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integral techniques. The reduced equation, which allowed for realistic soil properties, was
then able to be solved numerically with a shooting technique. The authors explain that the
solution has an advantage over the full numerical solutions of Richard’s equations (which
has precision problems in the initial stages of infiltration) and may be used to validate

numerical methods for arbitrary soil properties and boundary conditions.

Sander et al. (1991) derived the first exact analytical solution for nonlinear, nonhysteretic
redistribution of water in a bounded soil column under gravity. The solution allows for

a description of both infiltration and redistribution for arbitrary soil properties.

It appears that the ongoing co-evolution of both analytical and numerical methods is
mutually beneficial since new exact methods can be used as validation tools for existing
numerical techniques and that the less restrictive requirements of initial and boundary
conditions on numerical methods allows a more generalised solution which provides a
perpetual challenge to the analysts. Furthermore, Hogarth er al. (1991) report that
validation of the various numerical techniques by analytical solutions generates a
confidence to enable the numerical solutions to be used as the intermediary means of

checking approximate theoretical approaches against exact approaches.

Chapter I outlined the rationale for this study was to apply a mathematical model for the
movement of water in an agricultural system to the problem of irrigation scheduling. As
such all processes in a typical irrigation cycle need to be modelled for a variety of soils.
This would include infiltration, evaporation, transpiration and redistribution. Furthermore,
the condition at the boundary may change from evaporative flux to infiltrative flux to zero
flux to constant water content. At this point in time no analytical solution of the Richard’s
Equation can provide determination of the changing water content profile under all such
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processes at the boundary and for universally realistic K/D/0/y relations. To maintain the
flexibility required in this application a numerical solution is pursued. The search for a
suitable method begins with consideration given to the general class of equation and

subsequent techniques for its solution.

4.3 PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

The broader class of problem is the partial differential equation since there are two
independent variables in the flow equation namely, depth (z) and time (). Furthermore,
since the order of the equation is greater than one, two or more values must be known to
evaluate the constants of integration. Since, in the case of the flow equation, these values
of the function (or its derivative) are usually given at the boundaries of the domain (surface
or rooting depth), the problem may be classed as a boundary-value problem. Added to
this, these boundary-values are usually in the form of a derivative of the function. In the
solution of the flow equation, initial values may also be required (the initial wetness
profile). The class of p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>