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Abstract 

A machine vision based system is proposed to replace the current in-orchard manual estimates of 

mango fruit yield, to inform harvest resourcing and marketing. The state-of-the-art in fruit detection 

was reviewed, highlighting the recent move from traditional image segmentation methods to 

convolution neural network (CNN) based deep learning methods. An experimental comparison of 

several deep learning based object detection frameworks (single shot detectors versus two-staged 

detectors) and several standard CNN architectures was undertaken for detection of mango panicles 

and fruit in tree images. The machine vision system used images of individual trees captured during 

night time from a moving platform mounted with a Global Navigation Satellite System (GNSS) 

receiver and a LED panel floodlight. YOLO, a single shot object detection framework, was re-

designed and named as MangoYOLO. MangoYOLO outperformed existing state-of-the-art deep 

learning object detection frameworks in terms of fruit detection time and accuracy and was robust 

in use across different cultivars and cameras. MangoYOLO achieved F1 score of 0.968 and average 

precision of 0.983 and required just 70 ms per image (2048 × 2048 pixel) and 4417 MB memory. The 

annotated image dataset was made publicly available. Approaches were trialled to relate the fruit 

counts from tree images to the actual harvest count at an individual tree level. Machine vision based 

estimates of fruit load ranged between -11% to +14% of packhouse fruit counts. However, 

estimation of fruit yield (t/ha) requires estimation of fruit size as well as fruit number.  A fruit sizing 

app for smart phones was developed as an affordable in-field solution. The solution was based on 

segmentation of the fruit in image using colour features and estimation of the camera to fruit 

perimeter distance based on use of fruit allometrics. For mango fruit, RMSEs of 5.3 and 3.7 mm were 

achieved on length and width measurements under controlled lighting, and RMSEs of 5.5 and 4.6 

mm were obtained in-field under ambient lighting. Further, estimation of harvest timing can be 

informed by assessment of the spread of flowering. Deep learning object detection methods were 

deployed for assessment of the number and development stage of mango panicles, on tree. 

Methods to deal with different orientations of flower panicles in tree images were implemented. An 

R2 >0.8 was achieved between machine vision count of panicles on images and in-field human count 

per tree. Similarly, mean average precision of 69.1% was achieved for classification of panicle stages. 

These machine vision systems form a foundation for estimation of crop load and harvest timing, and 

for automated harvesting. 
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Chapter 1. Introduction 1 

1.1 Introduction to the mango industry 2 

Mangoes are popular summer fruit in Australia. Northern Territory, northern and central 3 

Queensland and Western Australia are the major mango production areas in Australia, with 4 

Queensland and NT accounting for 95% of the crop (Margetts 2014). The seasonal harvest starts 5 

from September to March for different regions. Approximately 92% of the Australian mango 6 

produce is consumed domestically, while about 8% (4,500-5,000 tonnes) is exported annually to 7 

other countries (Margetts 2014).  8 

Many orchards are in remote areas far from markets and sources of labour supply. Further, because 9 

of the seasonal variations and irregular fruit bearing properties of the crop, mango fruit timing and 10 

yield is highly variable between seasons. This creates problems in organising labour and transport. 11 

Predictions of harvest timing and volume can guide agronomic treatments, labour resource 12 

management, and support market planning. 13 

On farm yield estimation is typically performed based on weather data, previous yield history, and 14 

manual estimation of flowering and fruit numbers on the trees. The timing of flowering events is 15 

recorded to inform estimates of harvest timing, and of the volume spread fruit numbers through the 16 

harvest period. The fruit count is made soon after ‘stone-hardening’ stage, some six weeks before 17 

harvest.  At this time fruit drop effectively halts and the fruit will persist to harvest.  18 

 The Australian Mango Industry Association attempts to collate industry wide harvest data on a 19 

weekly basis, to inform member marketing decisions.  The latest 2019/20 mango crop forecast from 20 

the Australian mango industry is available at https://www.industry.mangoes.net.au/resource-21 

collection/2019/7/30-crop-forecast (also Fig. 1-1).  Information is presented for all major mango 22 

production regions, with data on actual weekly volume of trays dispatched from each region and 23 

varieties presented to the current week, and forecast presented for future weeks.  24 

https://www.industry.mangoes.net.au/resource-collection/2019/7/30-crop-forecast
https://www.industry.mangoes.net.au/resource-collection/2019/7/30-crop-forecast
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Figure 1-1. 2019/2020 mango crop forecast - dispatch to the markets 26 
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1.2 Motivation for application of machine vision to the mango crop 28 

The current manual estimates of flowering level and fruit load are recognised to be error prone, and 29 

highly operator dependent (pers. comm. Ian Groves, mango producer).  A machine vision based 30 

system that offers better accuracy and precision in an easy to operate format should have good 31 

adoption ‘pull’ for this application. Australian mango growers in partnership with Department of 32 

Agriculture and Fisheries (DAF) have semi commercial trials underway on high density planting 33 

in parts of Queensland and Northern Territory.  These high-density small tree plantation systems 34 

have promise to significantly improve productivity and profitability of the mango industry and suit 35 

the adoption of in-field machine vision and the implementation of automation in harvesting. These 36 

trends provides motivation to research the use of machine vision to in-field applications in the 37 

mango orchard.  38 

1.3 Thesis Objectives 39 

The common challenges for machine vision to detect and recognize objects in a real-scene are- 40 

varying illumination, occlusions, object-background colour overlap and changing object orientation. 41 

To overcome these problems a well-generalised model that is illuminance and position invariant is 42 

sought. The proposed research is inspired by the discriminative and low-level feature extraction 43 

capabilities of deep neural networks and its success in many machine vision challenges, as seen in 44 

recent years.  45 

This thesis reviews several machine learning and deep learning methods of object detection for 46 

application to mango flower and fruit detection, to support estimation of crop timing and volume. 47 

The primary application area is an assessment of mango flowering stages and green fruit (at the 48 

stone-hardening stage prior to harvesting) number and size. The overall aim of this thesis is to 49 

provide management tools to the grower to assist in timing and resourcing of harvest and reduction 50 

of labour, contributing to the development of a decision support system based on machine vision 51 

technologies that is effective in terms of cost and complexity.   52 

The thesis is focussed to the development of machine vision algorithms specific to the application of 53 

interest while reducing hardware complexities as much as possible. For example, some researchers 54 

have used high intensity Xenon strobe lights to allow day-time imaging. This requires additional cost 55 

in hardware, and the microsecond exposure time requires more sophisticated interfacing between 56 

strobe and camera triggering. Night time imaging with LED flood lighting allows for lower cost 57 

hardware, with the added benefit that the machine vision model can be less complex, i.e., 58 

background noise is greatly reduced with night images There is also potential to couple a night 59 

imaging task to other farm tasks that can occur at night, such as spraying. 60 

In summary, as set at the start of activity in 2016, the objectives of this thesis were to: 61 

- Define applications for machine vision in mango culture for precise estimation of crop yield 62 

- Contribute to the design of a low-cost imaging system for use on mango orchards  63 

- Establish a database of images with different mango varieties and associated actual 64 

flowering/fruit count collected at different times of season and from different orchards.  65 

- Compare and benchmark the state-of-the-art machine learning methods for estimation 66 

mango flower and fruit detection and yield estimation 67 

- Contribute to the building of a decision support tool using output of the machine vision 68 

analysis 69 



Introduction 
 

P a g e  | 4 

1.4 Publications associated with this thesis 70 

Journal articles 71 

The following papers were published in refereed journals. 72 

Appearing as chapter 2 -  73 

Koirala A, Walsh KB, Wang Z, McCarthy C (2019a) Deep learning – Method overview and review 74 

of use for fruit detection and yield estimation. Computers and Electronics in Agriculture 162:219-75 

234 doi:https://doi.org/10.1016/j.compag.2019.04.017 76 

I was the  main author for this journal paper (Koirala et al. 2019a). The manuscript was written 77 

by me with guidance from my supervisors, Zhenglin Wang, Kerry Walsh, and Cheryl McCarthy. 78 

Kerry Walsh and Zhenglin Wang reviewed and edited the manuscript. This paper forms 79 

Chapter 2 of this thesis. 80 

Appearing as chapter 3 -  81 

Koirala A, Wang Z, Walsh K, McCarthy C (2019b) Deep learning for real-time fruit detection and 82 

orchard fruit load estimation: benchmarking of 'MangoYOLO'. Precision Agriculture 20:1107-1135 83 

doi:https://doi.org/10.1007/s11119-019-09642-0 84 

I was the main author for this journal paper (Koirala et al. 2019b), driving the image data 85 

acquisition, experimental design, framework development, data analysis, manuscript writing 86 

and editing. I received guidance from my supervisors, Zhenglin Wang, Kerry Walsh, and Cheryl 87 

McCarthy. Kerry Walsh and Zhenglin Wang reviewed and edited the manuscript.  This paper 88 

forms Chapter 3 of this thesis. 89 

Appearing as Appendix A -  90 

Wang Z, Walsh K, Koirala A (2019) Mango Fruit Load Estimation Using a Video Based 91 

MangoYOLO—Kalman Filter—Hungarian Algorithm Method. Sensors 19:2742 92 

doi:https://doi.org/10.3390/s19122742 93 

I was the secondary author of this journal paper (Wang et al. 2019), developing the 94 

MangoYOLO fruit detection algorithm, model training and testing, conducting preliminary 95 

tracking experiments, data acquisition, analysis and manuscript editing. The majority of the 96 

framework implementation and experimental analysis and software development was 97 

performed by the primary author, Zhenglin Wang.  Kerry Walsh who also wrote the 98 

manuscript and provided supervision. This paper forms Appendix A of this thesis. 99 

Appearing as Appendix B -  100 

Koirala, A.; Walsh, K.B.; Wang, Z.; Anderson, N. Deep Learning for Mango (Mangifera indica) 101 

Panicle Stage Classification. Agronomy 2020, 10, 143. Doi: 102 

https://doi.org/10.3390/agronomy10010143   103 

I was the main author for this journal paper (Koirala et al. 2020), driving the image data 104 

acquisition, experimental design, framework development, data analysis, manuscript writing 105 

and editing. I received guidance from my supervisors, Zhenglin Wang, Kerry Walsh, and Cheryl 106 

McCarthy. Nicholas Anderson helped in image data acquisition and annotation. Kerry Walsh, 107 

Nicholas Anderson and Zhenglin Wang reviewed and edited the manuscript. This paper forms 108 

Appendix B of this thesis. 109 

https://doi.org/10.1016/j.compag.2019.04.017
https://doi.org/10.1007/s11119-019-09642-0
https://doi.org/10.3390/s19122742
https://doi.org/10.3390/agronomy10010143
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Appearing as chapter 6 -  110 

Wang Z, Koirala A, Walsh K, Anderson N, Verma B (2018) In Field Fruit Sizing Using A Smart Phone 111 

Application. Sensors 18:3331 doi:https://doi.org/10.3390/s18103331 112 

I was the secondary author of this journal paper (Wang et al. 2018a), driving the image data 113 

acquisition, part of method development and implementation, experimental design, data 114 

analysis and manuscript editing and reviewing. Most of my work was on image processing 115 

for fruit segmentation in images- trailing several color spaces, thresholding methods and 116 

morphological operations. Zhenglin Wang was mostly involved in mobile app software 117 

programming and developing method to relate object size in images to the actual fruit size. 118 

Kerry Walsh provided supervision and guidance during all phases of the experiments- from 119 

conceptualization to final edits of the paper. Zhenglin Wang and Kerry Walsh wrote the 120 

manuscript, proof-read and edit. Nicholas Anderson was involved in recording the fruit 121 

measurements in-field and in lab and establishing the lineal relationships for several mango 122 

cultivars. Nicholas was of assistance in data analysis and reviewing draft papers. Brijesh 123 

Verma reviewed and edited the manuscript. This paper forms Chapter 6 of this thesis. 124 

Conference publications 125 

The following publication was associated with a conference: 126 

Appearing as appendix C -  127 

Koirala A, Walsh K, Wang Z, McCarthy C (2017) Mobile device machine vision estimation of mano 128 

crop load. In: International Tri-Conference for Precision Agriculture, New Zealand, 2017. 129 

doi:https://doi.org/10.5281/zenodo.895382   130 

I was the primary author for this conference paper (Koirala et al. 2017), driving the image 131 

data acquisition, experimental design, framework development, data analysis, manuscript 132 

writing and presentation of the paper at the conference. The mobile software was written by 133 

Zhenglin Wang. I received guidance from my supervisors, Zhenglin Wang, Kerry Walsh, and 134 

Cheryl McCarthy. Kerry Walsh and Zhenglin reviewed and edited the manuscript. This paper 135 

forms Appendix C of this thesis. 136 

Appearing as appendix D -  137 

Underwood JP, Rahman MM, Robson A, Walsh KB, Koirala A, Wang Z (2018) Fruit load estimation 138 

in mango orchards - a method comparison. Paper presented at the ICRA 2018 Workshop on 139 

Robotic Vision and Action in Agriculture, Brisbane, Australia.  140 

I was involved in the data acquisition, method implementation, and data analysis and poster 141 

presentation at the workshop for the MangoYOLO method included in this paper 142 

(Underwood et al. 2018). Andrew Robson and Moshiur Rahman contributed to the satellite 143 

imagery method in the paper. James Underwood contributed to the Faster-RCNN based 144 

method in the paper. Kerry Walsh, Zhenglin Wang, and James Underwood prepared the 145 

manuscript and all authors contributed to editing.  This paper forms Appendix D of this 146 

thesis. 147 

Appearing as appendix E -  148 

https://doi.org/10.3390/s18103331
https://doi.org/10.5281/zenodo.895382
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Wang Z, Verma B, Walsh KB, Subedi P, Koirala A (2016) Automated mango flowering assessment 149 

via refinement segmentation. In: International Conference on Image and Vision Computing New 150 

Zealand (IVCNZ) 2016 IEEE, pp 1-6. doi: https://doi.org/10.1109/IVCNZ.2016.7804426 151 

I was the secondary author of this publication (Wang et al. 2016) conducting image data 152 

acquisition, part of data analysis and manuscript editing. Most of the work on image 153 

processing framework development experimental analysis and manuscript writing was 154 

performed by the primary author Zhenglin Wang. Kerry Walsh, and Brijesh Verma, helped in 155 

manuscript preparation providing appropriate supervision and guidance. Phul Subedi, 156 

provided field arrangements for image data acquisition and helped in manuscript reviewing. 157 

This paper forms Appendix E of this thesis. 158 

 159 

1.5 Thesis Structure 160 

The thesis is presented as seven chapters and four appendices.  The first chapter is a general 161 

introduction to the topic of the thesis, while the second is a detailed review of the use of deep 162 

learning in object recognition (published as Koirala et al. 2019a). The next four chapters present 163 

experimental work. The third chapter presents the development of ‘MangoYOLO’ for fruit detection 164 

(published as Koirala et al. 2019b), the fourth, the use of deep learning frameworks in panicle 165 

detection, the fifth a consideration of estimation of the proportion of totally occluded fruit from a 166 

tree image, and the sixth presents on the development of a machine vision based system for in-field 167 

fruit sizing.  The final chapter presents a summary and future directions for the use of machine vision 168 

in estimation of timing and volume of the mango crop.  The following text expands on this 169 

description.  170 

Chapter 1 provides the overview on the contents of the thesis and details on the background and 171 

motivation for the research. The aims and objectives of the thesis are outlined.  172 

Chapter 2 presents a review of developments in the rapidly developing field of machine learning 173 

with emphasis placed on practical aspects of deep learning for the task of fruit detection and 174 

localization, in support of tree crop load estimation. This chapter provides the background 175 

on various standard convolutional neural network (CNN) classifiers and several one-stage detection 176 

and two-stage detection frameworks. Several examples and figures are presented in support of the 177 

use of CNN for fruit detection and localization tasks and comparison is made with traditional 178 

methods of image processing and object segmentation.  179 

Chapter 3 forms the core of this thesis. This chapter compares the performance of several single and 180 

double staged object detection frameworks and various CNN architectures on a common image 181 

dataset created during this research for the task of fruit detection. This technology can be applied in 182 

real time for orchard fruit detection and automated harvesting. 183 

Chapter 4 extends the deep learning methods of object detection to the application of flower 184 

assessment. Two different deep learning object detection frameworks are compared on a common 185 

dataset produced during this research for the task of mango panicle detection and panicle 186 

development stages classification. Methods to deal with different orientations of flower panicles in 187 

tree images are implemented. Some example applications of this system are also presented in the 188 

chapter. This technology can provide information on the number of panicles and spread of flowering 189 

which forms a foundation for estimation of crop load and harvest timing, and for automated 190 

harvesting.  191 

https://doi.org/10.1109/IVCNZ.2016.7804426
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Chapter 5 deals with the issue of hidden/occluded fruits (fruits that are not captured in images of 192 

trees because of occlusions from the camera view point). This chapter explores several machine 193 

learning algorithms and deep learning CNNs, separately and in combination, to automatically 194 

accommodate the occlusion factor within the model itself. Image processing methods to segment 195 

canopies and fruits in images and shape fitting techniques to extract partially occluded fruits are also 196 

considered.   197 

Chapter 6 reports on the development of an on-tree mango fruit sizing mobile phone app as a 198 

component of the yield estimation framework. A simple method of image processing object 199 

segmentation and morphological operation is presented for fruit segmentation. Similarly, 200 

fruit allometrics and thin lens formula is applied for accurate measurement of fruit lineal dimension 201 

and relating to the fruit weight. This technology provides an affordable solution that allows 202 

estimation of fruit size distribution which can provide information on fruit maturity and yield 203 

estimates.  204 

Chapter 7 concludes this thesis by summarizing on the achievements and contributions from this 205 

work. Key limitations on practical implementation of current methods and technologies are 206 

identified, future possibilities on adoption of related technologies are outlined, and suggestions for 207 

future research are made. 208 

 209 

 210 
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Chapter 2. Deep learning – method overview and review of 211 

use for fruit detection and yield estimation  212 

 213 

This chapter was published as a journal paper on April 2019 in Computer and Electronics in 214 
Agriculture as: 215 

 216 
Koirala A, Walsh KB, Wang Z, McCarthy C (2019a) Deep learning – Method overview and review of 217 

use for fruit detection and yield estimation Computers and Electronics in Agriculture 218 
162:219-234 doi:https://doi.org/10.1016/j.compag.2019.04.017 219 

 220 

Responses to minor revisions as requested by the thesis examiners can be found in the Errata 221 

section. 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

https://doi.org/10.1016/j.compag.2019.04.017
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Abstract 243 

A review of developments in the rapidly developing field of deep learning is presented. 244 

Recommendations are made for original contributions to the literature, as opposed to formulaic 245 

applications of established methods to new application areas (e.g., to new crops), including the use 246 

of standard metrics (e.g., F1 score, the harmonic mean between Precision and Recall) for model 247 

comparison involving binary classification. A recommendation for the provision and use of publicly 248 

available fruit-in-orchard image sets is made, to allow method comparisons and for implementation 249 

of transfer learning for deep learning models trained on the large public generic datasets. Emphasis 250 

is placed on practical aspects for application of deep learning models for the task of fruit detection 251 

and localisation, in support of tree crop load estimation. Approaches to the extrapolation of tree 252 

image counts to orchard yield estimation are also reviewed, dealing with the issue of occluded fruit 253 

in imaging. The review is intended to assist new users of deep learning image processing techniques, 254 

and to influence the direction of the coming body of application work on fruit detection. 255 

2.1 Introduction 256 

In any given discipline there are periods of rapid advance and periods of incremental progress.  257 

Machine vision and machine learning is in a period of rapid advance. Typically, step advances are 258 

catalysed by some combination of expertise, resources and application need, and then diffuse into 259 

other application areas.  Advances can originate in the agricultural area, e.g., the discipline of near 260 

infrared spectroscopy was born from the need to assess forage and grain quality (Norris 1996), but 261 

more often advances occur in better resourced sectors (e.g., medical and security) and diffuse into 262 

the agricultural sector.  The latter is true of deep learning (multiple layer neural networks) in 263 

machine vision, which represents a step advance from algorithms based on hand crafted features 264 

such as colour, shape and texture.   265 

Application of deep learning techniques to agricultural applications is nascent, with the 2018 review 266 

of Kamilaris and Prenafeta-Boldú (2018) reporting just 40 published studies (taking a broad 267 

definition of deep learning), with four reports on the topic of in-field fruit counting.  Subsequent 268 

progress has been rapid, both in the field of deep learning, and in application to the task of fruit 269 

counting. In the current review we seek to extend the review of Kamilaris and Prenafeta-Boldú 270 

(2018) in context of developments in deep learning, broadening the topic focus to provide 271 

background on the techniques, and narrowing the application topic to that of fruit detection and 272 

localisation. 273 

Previous reviews of the task of in-field fruit detection, e.g., Gongal et al. (2015), Kamilaris and 274 

Prenafeta-Boldú (2018), Naik and Patel (2017) and Syal et al. (2013), have reinforced the choice of 275 

the RGB camera as the detector of choice (based on the practicality of cost and ease of 276 

implementation) and discussed use of handcrafted features such as colour, texture and shape in fruit 277 

detection. However, these techniques require re-design when used outside of a set of conditions 278 

particular to the calibration conditions, e.g., variation in fruit or foliage colour, illumination, camera 279 

viewing angle and camera to fruit distance. Gongal et al. (2015) noted that supervised methods 280 

based on machine learning yield better results than simple image processing techniques but require 281 

greater computational resources and a greater resource of labelled data for training was required. In 282 

recent years, however, high performance GPU has become available, and the task of labelling object 283 

in images has become easier with the advent of freely available graphical annotation tools (e.g., 284 

LabelImg https://github.com/tzutalin/labelImg). Moreover, many state-of-art deep learning 285 

frameworks such as Faster Regional Convolutional Neural Network (Faster R-CNN) (Ren et al. 2015), 286 

Single Shot multibox Detector (SSD) (Liu et al. 2016), and You Only Look Once (YOLO) (Redmon and 287 
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Farhadi 2018) have scripts to parse the commonly used PASCAL-VOC (Everingham et al. 2010) 288 

annotation format for training the network. Thus, constraints to practical adoption of the deep 289 

learning methods have recently fallen away. 290 

Naik and Patel (2017) briefly reviewed some popular feature extraction methods e.g., Speeded Up 291 

Robust Features (SURF) (Bay et al. 2006), Histogram of Oriented Gradients (HOG) (Dalal and Triggs 292 

2005) and Linear Binary Patterns (LBP) (Ojala et al. 1996) and machine learning algorithms e.g., K-293 

Nearest Neighbour (KNN), Artificial Neural Network (ANN) and Convolutional Neural Network (CNN) 294 

for use in fruit classification and grading. Liakos et al. (2018) presented an overview of machine 295 

learning (including ANN and deep learning) and its application in the agriculture domain including its 296 

use in yield prediction and detection/classification of weed, crop quality and disease. It was noted 297 

that the majority of published papers target applications of machine learning in crop management 298 

with the most popular models being ANNs. In a more extensive review, Kamilaris and Prenafeta-299 

Boldú (2018) reviewed the use of deep learning methods in agricultural applications in general, 300 

concluding that the deep learning methods provide improved detection accuracy than previous 301 

image processing techniques.   302 

However, other deep learning techniques have become available since the 2018 reviews were 303 

undertaken, particularly the so called ‘single shot detectors’ that offer improvements in speed (and 304 

thus potential for real time application). Further reports on the use of deep learning approaches for 305 

fruit detection have also appeared, noting the techniques to generalize very well in real orchard 306 

scenes and to be robust to issues such as fruit occlusion and variable lighting conditions for the 307 

object detection task (Koirala et al. 2019b). 308 

Given the success of the deep learning technique in other application areas and the increasing ease 309 

of use, there will be a flood of application reports in the agricultural domain. In an attempt to guide 310 

such work, this review has three areas of recommendation that shape its outline: 311 

Applying deep learning: This paper is intended to provide a background on machine vision concepts 312 

and terminology, an insight of object detection framework and a review of deep learning approaches 313 

for fruit detection based on deep learning. An evolution of both frameworks and detectors can be 314 

traced in which detection speed and accuracy has markedly improved over a few years.  Object 315 

detection frameworks include Faster R-CNN, SSD and YOLO, while detectors include Oxford Visual 316 

Geometry Group Network (VGGNet) (Simonyan and Zisserman 2014), Residual Network (ResNet) (He 317 

et al. 2016), Zeiler and Fergus Network (ZFNet) (Zeiler and Fergus 2014). Emphasis is placed on 318 

practical aspects that require consideration when adopting standard deep learning models for the 319 

fruit detection task. Recommendations are made on what is required to make original contributions 320 

to the literature, as opposed to formulaic applications of established methods to new application 321 

areas (e.g., to a new commodity), including the use of standard metrics for model comparison 322 

involving binary classification. 323 

Common image sets: The deep learning community has benefited from publicly available annotated 324 

image datasets such as PASCAL Visual Object Classes (PASCAL VOC); Microsoft Common Objects in 325 

COntext (COCO) (Lin et al. 2014), and ImageNet (Deng et al. 2009) which contain thousands of 326 

common object classes and millions of images, and are available to developers for model training or 327 

for benchmarking object recognition algorithms. Unfortunately, these datasets do not contain 328 

orchard images. Kamilaris and Prenafeta-Boldú (2018) also commented on the paucity of publicly 329 

available data sets for agricultural applications.  The deep learning models trained on the large 330 

public generic datasets can be fine-tuned for fruit detection with addition of training data through 331 

transfer learning. To facilitate such development, and for benchmark comparison, it is 332 
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recommended that fruit-in-orchard image sets be made publicly available for all major fruit tree 333 

commodities. 334 

Orchard yield estimation: Much published work has focused on improving the accuracy of algorithms 335 

to accurately predict the number of fruits within images of tree canopies. Less work has been 336 

reported that relates image fruit counts to actual yield of an orchard block. Therefore, approaches to 337 

the issue of occluded fruit are also reviewed.   338 

The following detail is therefore intended to assist new users of deep learning image processing 339 

techniques, and hopefully, if in some small way, influence the direction of the coming body of 340 

application work, particularly in context of fruit detection. 341 

2.2 CNN and deep learning – a background 342 

Deep learning with convolutional networks (convNets) are widely used for image processing tasks as 343 

convNets can learn translational invariant patterns, allowing detection of objects wherever 344 

positioned in an image, and can extract complex visual concepts through detection of a hierarchy of 345 

increasingly complex patterns (early layers learn simple local patterns, e.g., edges, while later layers 346 

capture more semantic representations of the object, e.g., shape).  347 

A deep learning revolution started when AlexNet (Krizhevsky et al. 2012) won the 2012 ImageNet 348 

Large Scale Visual Recognition Challenge (ILSVRC) (http://image-net.org/challenges/LSVRC/) by a 349 

large margin (85% accuracy compared to 74% for the runner up model which was based on 350 

traditional Support Vector Machine classifiers (SVM) (Cortes and Vapnik 1995). The winning entries 351 

in subsequent years (ZFNet, VGGNet, GoogleLeNet, GBD-Net, SENet; 2013-17) have all involved deep 352 

learning. The top-5 classification error rate decreased for 2015, 2016 and 2017 ILSVRC challenges, to 353 

3.6, 3.1 and 2.3%, respectively, while the average human error rate was 5% (He et al. 2015). The 354 

improved accuracy is in general associated with increased model depth, tempered by use of 355 

connections between layers.  However, training and testing error increase with depth, making 356 

deeper models more difficult to train (e.g., ‘vanishing gradient’ problem; He et al. 2016). This issue 357 

has been addressed in newer architectures that use skip connections and residual networks (He et 358 

al. 2016). 359 

ZFNet used an architecture similar to AlexNet but with more convolution filters of smaller sizes. A 360 

smaller filter size allows capture of information that is more locally distributed in the images, which 361 

can lead to more accurate classification/detection results. VGGNet, used even smaller filter sizes and 362 

more convolution layers (16-19 layers) but a huge memory requirement rendered it computationally 363 

expensive. The use of more layers (deeper model) sacrificed computation speed for accuracy. 364 

GoogLeNet (Szegedy et al. 2015) introduced inception modules and was deeper (22 layers), but 365 

computationally efficient. A basic inception module consists of filters of multiple sizes operating on 366 

the same level. ResNet used a residual learning framework to achieve efficient training of even 367 

deeper (up to 152 layers) networks. ResNet used residual blocks that featured ‘identity shortcut 368 

connection’ which allowed the information to flow without being lost (‘vanishing gradient’ problem) 369 

in the deeper networks. Gated Bi-Directional Network (GBD-Net) (Zeng et al. 2018) is a CNN 370 

architecture which utilizes the relationship among the features of different resolution and candidate 371 

support regions to detect objects in image. GBD-Net is an attempt to integrate local and contextual 372 

visual information for more accurate object classification. In the Squeeze-and-Excitation Network 373 

(SENet) (Hu et al. 2017) a squeeze-and-excitation (SE) block was added to convolution layers to 374 

boost representational (classification) power. The SE block dynamically models the 375 

http://image-net.org/challenges/LSVRC/
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interdependencies between convolutional feature maps by exciting relevant features while 376 

suppressing irrelevant features.  377 

Object detection frameworks, which combine both classification and localization into a single system 378 

to detect and draw boxes around objects in images, have also evolved markedly in recent years. 379 

Region-CNN (R-CNN) (Girshick et al. 2014), released in 2012, combined heuristic region proposal - 380 

selective search (Uijlings et al. 2013) with Convolutional Network (ConvNet) feature extractors for 381 

object detection. OverFeat (Sermanet et al. 2013) implemented feature extraction from multiple 382 

square grid cells over multi-scale input image, without the need of separate region proposal. Thus, 383 

OverFeat was faster than R-CNN but was less accurate in object localization. Spatial Pyramid Pooling 384 

net (SPPNet) (He et al. 2014) introduced adaptively-sized pooling  to extract features from a 385 

common global feature volume, reporting SPPNet to operate faster than R-CNN. MultiBox (Szegedy 386 

et al. 2014) proved that ConvNets are more efficient for region proposals. In Fast R-CNN (Girshick 387 

2015), the SPP layer was replaced by a fixed size region of interest pooling (ROIPooling) layer, 388 

enabling a speed increase over R-CNN. In 2015, Faster R-CNN replaced the selective search (heuristic 389 

region proposal) in Fast R-CNN with a region proposal network (RPN) and was end-to-end trainable 390 

(i.e., all model parameters were simultaneously trained using a multi-task loss function). In 2017, He 391 

et al. (2017) introduced Mask-RCNN as an extension to Faster R-CNN for instance segmentation (i.e., 392 

location of exact pixels followed by masks for each object inside the bounding box). 393 

While previous object detection framework were 2-stage methods (region proposal stage followed 394 

by classification stage), YOLO was developed as a one stage (single shot) unified object detection 395 

model. In YOLO, a single CNN is able to simultaneously predict multiple bounding boxes and their 396 

class probabilities. The ‘single shot detector’ SSD implemented prior boxes (subsets of fixed sized 397 

anchor boxes) at different resolutions of feature maps at different levels inside the network for 398 

multiscale training, making it a very fast (faster than Faster R-CNN) yet accurate framework for 399 

object detection. YOLOv2 (Redmon and Farhadi 2017) gave a speed and accuracy improvement on 400 

YOLOv1 (Redmon et al. 2016)  through introduction of a pass-through layer, higher resolution 401 

classifier and anchor boxes, and achieved nearly the same mean Average Precision (mAP) as Faster 402 

R-CNN and SSD on the PASCAL VOC  dataset. In 2017, RetinaNet (Lin et al. 2017b), a one-stage 403 

detector, outperformed all the previous one-stage and two-stage detectors available at that time in 404 

terms of both speed and accuracy. YOLOv3 (Redmon and Farhadi 2018), released in 2018, is deeper 405 

than the previous YOLO variants. This architecture achieves an accuracy similar to SSD and 406 

RetinaNet, at three and four times the speed, respectively (Redmon and Farhadi 2018). The various 407 

YOLO architectures offer a trade-off between speed and accuracy.  Pre-trained YOLO models are 408 

available from the github repository https://github.com/AlexeyAB/darknet.  409 

2.2.1 Object (fruit) detection in images  410 

Tree fruit yield estimation by machine vision typically involves the steps of classification of possible 411 

regions as fruit objects (using, e.g., colour thresholding, key-point extraction or convolutional 412 

filtering) followed by location of individual object (e.g., blob segmentation, shape fitting and 413 

bounding box regression). The segmented blob or bounding boxes can then be counted to provide 414 

the fruit number in images. Object detection represents one of the most important steps towards 415 

yield estimation of fruits. The following section provides the information on what constitutes an 416 

object detection framework and details the feature extraction methods. 417 

https://github.com/AlexeyAB/darknet
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2.2.2 Framework steps 418 

An object detection framework (object classification plus localization) generally follows the following 419 

steps. 420 

• Image pre-processing (image resizing, change of colour space, image data normalization 421 

etc.) 422 

• Generation of hypotheses (generate possible regions containing objects e.g. test patch at 423 

each location of sliding window, voting from patches or key-points, and region-based 424 

proposals using selective search algorithms) 425 

• Score hypotheses (assign level of probability/confidence for an object to belong to a 426 

particular class/category using classifiers) 427 

• Resolve detection (remove low scoring hypotheses, e.g., using class confidence threshold, 428 

and suppress multiple redundant detection, e.g., using Non-Maximal Suppression (NMS), 429 

with a goal to assign one box per object). 430 

2.2.3  Feature extraction 431 

In traditional feature extraction, ‘handcrafted’ features (e.g., colour, shape, texture, intensity) are 432 

used to compute class membership. As colour of fruit can vary, segmentation should be based on a 433 

wide colour window, and additional features such as shape and texture should be used (Gongal et al. 434 

2015).  435 

The modelling of object class is made difficult by variation in illumination, viewing angle, pose of the 436 

object (orientation) and position of object (tight clustering, occlusions). Traditional image 437 

segmentation techniques that rely on morphological operations in binary images are affected by 438 

strong shadows and occlusion from stem and leaves which split the fruit image into smaller 439 

segments (e.g., Payne et al. (2013) and Annamalai et al. (2004)). These techniques also tend to count 440 

fruit clusters as a single blob (fruit) because of pixel connectivity (Annamalai et al. 2004). Algorithms 441 

such as Circular Hough Transform (CHT) for apple (e.g.,(Bargoti and Underwood 2017b; Sengupta 442 

and Lee 2014; Stajnko et al. 2009)) and citrus (e.g., Choi et al. (2015)) and Random Hough Transform 443 

(RHT) for mango (e.g., (Kadir et al. 2015; Nanaa et al. 2014)), have been widely used to fit circular 444 

and oval shapes around possible regions in an image to segment fruits.  445 

Features such as HOG (Dalal and Triggs 2005), LBP (Ojala et al. 1996), Scale-Invariant Feature 446 

Transform (SIFT) (Lowe 1999), SURF (Bay et al. 2006) and Haar-like features (Viola and Jones 2001) 447 

have been widely used in traditional object detection/classification methods in computer vision.  448 

HOG features (Fig. 2-1) have been used in fruit detection by a number of authors. For example, 449 

Pothen and Nuske (2016) used a modified HOG feature extractor for detecting apple and grape fruit 450 

in images. Sa et al. (2015) compared HOG and LBP texture features for capsicum fruit detection.451 

 452 
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 Figure 2-1. HOG features, using different block and cell sizes, overlaid on the fruit image. 453 

Cascade classifiers with Haar-like features (Fig. 2-2) have also been adopted for fruit detection tasks. 454 

For example, Zhao et al. (2016) attempted detection of ripe tomatoes in a greenhouse setting with a 455 

cascade classifier using Haar-like features followed by average pixel value (APV) based colour 456 

analysis. Similarly, Wachs et al. (2009) implemented the Viola Jones cascade classifier with Haar-like 457 

features for real time detection of green apples within a tree canopy using RGB-IR images. 458 

 459 

Figure 2-2. Visualization of some Haar features (left panel) and some LBP features (right panel) used by a 460 
cascade classifier for mango fruit detection. 461 

Other feature extractors are also available. For example, for green citrus fruit detection, Kurtulmus 462 

et al. (2011) used the eigenface (Turk and Pentland 1991) (‘eigenfruit’) approach in combination with 463 

color and a circular Gabor filter.   464 

2.2.4 CNN as a feature extractor 465 

With deep learning methods there is no requirement for manual handcrafting of features, although 466 

such features can be used as a pre-processing input.  During training, the CNN automatically 467 

undertakes the task of feature selection and classification, and models can be developed to detect 468 

many object classes in images. For example, Redmon and Farhadi (2017) reported a YOLOv2 model 469 

recognizing 9,000 common object categories. The tasks involved in use of the traditional 470 

segmentation (handcrafting) method to detect such a large number of classes would be daunting.  471 

A basic CNN consists of an input and an output layer, with intervening convolution and pooling/sub-472 

sampling layers (Fig. 2-3). Image data fed to the input layer passes through the intermediate layers 473 

to produce a vector of distinct features at the output layer. During training, a CNN develops filters in 474 

the convolution layers that extract useful information for different object classes. Feature extraction 475 

occurs in the convolution layers, the output of which can be visualized in an attempt to understand 476 

the features utilised in the model. Each layer down-samples the image data.  Thus, in general, more 477 

complex and semantic features such as shape and patterns are learned in deeper layer while basic 478 

features such as colour, edges and lines are learned in the early layers.  479 
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 480 

Figure 2-3. The LeNet (LeCun et al. 1998) CNN classifier accepts 28x28 pixel images and processes through 481 
five layers. Multiple feature maps are created in each convolution layer. Pooling layers subsample data from 482 
the convolution layers. Example input training images are provided in the top left of the graphic, and 483 
visualization of the output of example convolution filters (feature extraction) after training is provided in 484 
the top right. 485 

The class activation map from the final convolutional layer can be visualized (Fig. 2-4) using methods 486 

such as Gradient-weighted Class Activation Mapping (Grad-CAM, Selvaraju et al. (2017)). 487 

Visualisation allows for some interpretation of the model function. In the case of Figure 2-4, the 488 

model visualisation indicates weighting of the fruit regions of the images. 489 
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 490 

Figure 2-4. Grad-CAM visualization of activation map of the final convolutional layer of a deep learning 491 
‘Xception’ (Chollet 2017) model (trained to directly predict fruit count from input images) as heat-map (left) 492 
and a heat map superimposed on input image (right). 493 

The CNN feature extractor is used by object detection frameworks for classification tasks, using box 494 

regression for object localization. For example, AlexNet has been implemented in RCNN and 495 

Overfeat and ZFNet is used in SPPNet, VGG-16 is used in Fast R-CNN, Faster R-CNN and SSD, Darknet-496 

19 is used in YOLOv2, and Darknet-53 is used in YOLOv3. However, depending upon the application, 497 

feature extractors can be used interchangeably. For example, ZFNet could be used in a Faster R-CNN 498 

framework. 499 

2.3 Deep learning object detection framework 500 

The short developmental history of deep learning frameworks for image object detection are 501 

reviewed in the following sections, finishing with consideration of the ‘state of art’ one stage 502 

detectors. 503 

2.3.1 CNN Sliding window detectors 504 

Early CNN based object detection frameworks such as Overfeat used a sliding window approach 505 

where the classifier is run at evenly spaced locations over the image. A large number of patches are 506 

generated at each position of the sliding window, with each patch classified as containing an object 507 

or not. For multi-scale detection, patches are generated at each scale. Feeding all available patches 508 

to a CNN slowed down the object detection framework.  509 

R-CNN replaced the sliding window method with relatively faster heuristic Selective Search 510 

algorithm (Uijlings et al. 2013) to filter out some regions, feeding only the potential region proposals 511 

into the CNN. Fine-tuned CNN was used to extract features from each region proposal for a SVM 512 

classifier. However, the feeding of nearly 2,000 region proposals per image through a CNN rendered 513 

this method slow. 514 

2.3.2 Two stage detection  515 

To decrease detection time, it is desirable to feed the whole image to the CNN model in one pass to 516 

generate a final feature map. A two-stage approach (region proposal stage followed by 517 

classification/detection stage) can deliver this goal, as achieved in Fast R-CNN and Faster R-CNN. 518 
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Fast R-CNN was developed to improve on the detection speed of R-CNN. Feature extraction was 519 

performed on the whole image, and region proposals were generated on the final feature map (Fig. 520 

2-5). Region of Interest (RoI) pooling was implemented to obtain a fixed sized feature vector from all 521 

cropped feature maps for classification. Detection speed was increased by use of a single Softmax 522 

layer, which was sufficient for prediction instead of training several SVMs. However, the generation 523 

of region proposals using Selective Search remained as a bottleneck to further speed improvement. 524 

 525 

Figure 2-5. The fast R-CNN object detection framework.  526 

Faster R-CNN replaced the heuristic selective search method of Fast R-CNN with a Region Proposal 527 

Network (RPN), which uses CNN and anchor boxes for speed improvement. RPN slides a 3x3 528 

convolution window on the final feature map and at each window location considers 9 different 529 

anchor boxes (composed of 3 scales and 3 aspect ratios) to generate region proposals (Fig. 2-6). 530 

These proposed regions are filtered based on an objectness score (probability the proposed region 531 

contains object) and passed to next stage (essentially a Fast R-CNN) for object detection. However, 532 

despite the improved detection speed achieved in Faster R-CNN compared to Fast R-CNN, the 533 

pipeline was still too slow to apply on real-time videos/streaming.  534 
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 535 

Figure 2-6. The Faster R-CNN object detection framework (RPN plus Fast R-CNN). Output image shows 536 
bounding boxes (Bboxes) on detected objects of class ‘m’ (mango), with associated probability of correct 537 
classification. 538 

2.3.3 One stage detection (Single shot detectors) 539 

To achieve further improvement in speed, SSD and YOLO removed the region proposal stage and the 540 

CNN was designed to consider dense sampling of possible object locations for object detection.  541 

Single Shot MultiBox Detector (SSD) simultaneously predicts the object class and bounding box on 542 

the image making it faster than Faster R-CNN. SSD feeds the input image through series of 543 

convolution and pooling layers to generate feature maps at different scales (Fig. 2-7). A 3x3 544 

convolutional window at each location of feature maps evaluates a small set of default anchor boxes 545 

(separate set of boxes of different aspect ratios at different resolution of feature maps) for which 546 

SSD simultaneously predicts the class probabilities and bounding box offsets for different scales. 547 

There can be different number of detections at each scale. Due to the multiscale detection 548 

approach, SSD is very effective in detecting objects of different sizes in the image.  549 
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 550 

Figure 2-7. SSD object detection framework. ‘Conv’ refers to ‘convolution layer’. Output image displays 551 
bounding box on ROI, classification result (‘m’ for mango) and probability score. 552 

YOLO (You Only Look Once) or YOLOv1 is a single shot detector in which a fully convolution neural 553 

network converts the input image to a tensor of scores for object detection. The prediction of class 554 

probabilities and bounding box coordinates from the final feature map in a single forward pass 555 

through the CNN makes YOLO one of the fastest object detection methods. YOLO divides the input 556 

image into grid cells (each grid cell is 1/32 times the network input resolution), and each grid cell is 557 

responsible for detecting object. 558 

YOLOv1 does not use anchor boxes like Faster R-CNN and SSD, but instead directly predicts two 559 

bounding boxes and one class per grid cell. Since YOLOv1 learns to predict boxes directly from the 560 

image data it produced many localization errors (for small objects and objects in groups). YOLOv2 561 

provided an accuracy and speed improvement on YOLOv1. YOLOv2 achieved nearly the same mean 562 

Average Precision (mAP) as Faster R-CNN and SSD on PASCAL VOC dataset and was still the fastest 563 

detector. Redmon and Farhadi (2017) reported the object detection speed of Faster R-CNN (VGG-564 

16), SSD-300 and YOLOv2-288 at 7 fps, 46 fps and 91 fps respectively.YOLOv2 introduced anchor 565 

boxes, with prediction of more than 1000 boxes per image, compared to just 98 for YOLOv1. YOLOv2 566 

also implemented a pass-through layer that concatenates the features from a higher resolution layer 567 

to lower resolution layer, providing the advantage of small object detection from the finer grained 568 

features (Redmon and Farhadi 2017) (Fig. 2-8). The backbone feature extractor for YOLOv1/v2 was 569 

the Darknet-19 framework which has 19 convolution layers, mostly 3x3 filters similar to VGG net.  570 
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 571 

Figure 2-8. YOLOv2 object detection framework. ‘Conv’ refers to ‘convolution layer’, ‘concat’ to 572 
‘concatenation layer’ and ’reorg’ refers to ‘reorganize/route’.  Output image displays bounding box on ROI, 573 
classification result (‘m’ for mango) and probability score. 574 

YOLOv3 was an improvement over YOLOv2 in terms of detection accuracy. According to Redmon 575 

and Farhadi (2018), YOLOv3 is as accurate as SSD and RetinaNet, but 3.0 and 3.8 times faster, 576 

respectively. YOLOv3 implements similar concept to feature pyramids (Lin et al. 2017a) for 577 

multiscale box prediction. The backbone feature extractor for YOLOv3 is Darknet-53, which has 53 578 

convolution layers (successive 3x3 and 1x1 convolutional layers with skip connections similar to 579 

ResNet) (Fig. 2-9).  580 

 581 

Figure 2-9. Block diagram of YOLOv3 architecture. ‘Conv’ refers to ‘convolution layer’ and‘concat’ to 582 
‘concatenation layer’.  Output image displays bounding box on ROI, classification result (‘m’ for mango) and 583 
probability score. 584 

2.4 Network and model training 585 

The following sections cover the typical steps involved in developing and testing a deep learning 586 

model.  Emphasis is placed on appropriate data set structure, determination of the appropriate size 587 

of the training set, the use of pre-existing models and the image size. 588 

2.4.1 Training and testing requirements 589 

The creation and validation of a model requires (i) training, (ii) validation (tuning) and (iii) test sets of 590 

images and associated annotation files containing bounding box co-ordinates and the class of the 591 
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object. Manual bounding box annotation is tedious and prone to user bias in ground truth labelling, 592 

especially for images having a large number of objects and clusters with a high degree of occlusion 593 

(Bargoti and Underwood 2017a). The quality of annotated training image sets can thus be an issue, a 594 

factor which should drive the use of shared image sets.  595 

The validation set is used for tuning of model parameters such as confidence and overlap thresholds 596 

before the model is applied on the test set, e.g., Bargoti and Underwood (2017a) and  Koirala et al. 597 

(2019b). The test set should be “independent” of the training and validation sets, where 598 

independence refers to different orchards or seasons for the machine vision task of detection of fruit 599 

on canopy. Unfortunately, many published papers used an image set collected in one event for these 600 

three functions.  It is a common practice to reserve a randomly selected 10 to 20% of an initial set 601 

for use as a validation set.  The reservation of images from one row of trees as the test set is better 602 

practice, but ideally the test set should involve images of another orchard or season, to emulate the 603 

real-world condition for model use.  604 

Various object detection methods require different data formats for processing image data during 605 

training. Many object detection systems include the scripts to parse the annotation files in PASCAL 606 

VOC format to their own formats. For example, the online code repository of Faster R-CNN, YOLO 607 

and SSD have scripts to parse PASCAL VOC annotation files. Therefore, structuring dataset and 608 

directories similar to PASCAL VOC dataset format can avoid the need to change the scripts that are 609 

ready to parse annotations to framework specific format. The following recommendations are 610 

offered as practical advice in the creation of models: 611 

 Object detection frameworks train object classes against background while trying to match the 612 

detected box to the ground truth box for maximum overlap. Therefore, ground truth boxes should 613 

be tight enough to cover the object and some background around the object perimeter (Fig. 2-10). 614 

For overlapping (clustered) fruit, emphasis should be put on reducing the box overlaps among 615 

neighbouring fruits as much as possible to avoid merging into single detection from NMS (Koirala et 616 

al. 2019b).  617 

 618 

Figure 2-10.  Examples of ground truth labelling of individual fruit using LabelImg software in scenes with 619 
varying levels of occlusions by other fruits or leaves. 620 

To enable another user to replicate the development of a deep learning model, it is necessary to 621 

detail the process followed in organizing data and in pre-processing of data (e.g., colour space 622 

conversion, histogram normalization, image resizing/cropping etc.). This includes consideration of 623 

the number of training/test/validation images used.  624 
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2.4.2 Number of training images 625 

The minimum number of images required for training a deep learning model depends on the visual 626 

complexity of the image for object detection and the deep learning models used for learning. An 627 

assessment of minimum number of training images sufficient to capture the variation in the test set 628 

can be done as described by Bargoti and Underwood (2017a) and Koirala et al. (2019b) for mango 629 

detection in day-time and night-time images, respectively. In this approach, AP is calculated for 630 

models developed using an increasing number of images sampled from the training set. Bargoti and 631 

Underwood (2017a) report that for the image set used, AP asymptoted with use of ~729 apple fruit 632 

images, while AP for models for detection of almond and mango did not stabilise with full available 633 

set of 385 and 1154 training images, respectively. Koirala et al. (2019b) imaged the same mango 634 

orchard as Bargoti and Underwood (2017a), but used different imaging hardware, with images 635 

collected at night under artificial light.  An AP plateau was achieved with fewer (approximately 400) 636 

training images, a result attributed to a lower level of variation and background noise in the images. 637 

Data augmentation techniques (e.g., random crop, flips, zoom, change in hue, saturation etc.) can be 638 

used to expand the variation in training images. This augmentation helps to increase generalizability 639 

of the model and to reduce the chance of data overfitting. Bargoti and Underwood (2017a) reported 640 

that an AP score of 0.86 was achieved for apple detection in images with just 100 training images 641 

when data augmentation was used, compared to 300 images without data augmentation. Large 642 

numbers of artificial synthetic images can be generated for training neural networks, as 643 

demonstrated for a fruit detection application by Rahnemoonfar and Sheppard (2017). All deep 644 

learning object detection frameworks provide some level of data augmentation which can be 645 

selectively turned on or off.  646 

In summary, different numbers of training images are required for different crops and different 647 

lighting conditions, in consequence of the amount of image variation in each case. Therefore, 648 

training data should be carefully chosen such that it is relevant to the problem space and has enough 649 

variation in relation to the production scope or context of deployment. The availability of labelled 650 

training data can limit the choice of network architecture to be used. Larger networks can be more 651 

accurate but will require more training data. However, lack of data should not be a defence for the 652 

lower performance of a deeper model. 653 

Publicly available annotated fruit image datasets would facilitate comparison of models, with use of 654 

the same training and validation data. Some annotated fruit datasets are publicly available. For 655 

example, the 575 images at various resolutions of avocado, orange, apple, mango, strawberry, 656 

rockmelon and capsicum fruits acquired in glasshouse and through Google image search is available 657 

at http://enddl22.net/wordpress/datasets/deepcrops-datasets-and-annotation-tool (accessed on 658 

3/01/2019), as reported by Sa et al. (2016)). The image data used by Bargoti and Underwood (2017a) 659 

(1120 apple fruit images at 308x202 pixels, 1964 mango fruit images at 500x500 pixels and 620 660 

almond fruit images at 308x202 pixels) is available at 661 

https://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit (accessed on 3/01/2019). Koirala et al. 662 

(2019b) (http://hdl.cqu.edu.au/10018/1261224) provides 1,730 mango fruit on canopy images (at 663 

612x512 pixels). These images were collected at night. The Fruit-360 dataset by Mureşan and Oltean 664 

(2018) (https://github.com/Horea94/Fruit-Images-Dataset: accessed on 1/03/2019) contains 6,5429 665 

images (100x100 pixels) of popular fruits (95 fruit classes) and is intended for fruit recognition 666 

applications. The MangoNet semantic dataset by Kestur et al. (2019) 667 

(https://github.com/avadesh02/MangoNet-Semantic-Dataset: accessed on 28/02/2019) contains 49 668 

daytime mango fruit on canopy images (at 4,000x3,000 pixels). 669 

http://enddl22.net/wordpress/datasets/deepcrops-datasets-and-annotation-tool
https://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit
https://github.com/Horea94/Fruit-Images-Dataset
https://github.com/avadesh02/MangoNet-Semantic-Dataset
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2.4.3 Transfer learning 670 

For efficient and more stable training of deep learning models, it is common practice to employ 671 

transfer learning (also referred to as or fine-tuning) on a network pre-trained on a large dataset (e.g., 672 

ImageNet). Transfer learning allows the re-use of existing parameters (convolution weights) from a 673 

model trained on large datasets for training new models from relatively less number of training 674 

images. Publically available datasets such as ImageNet (450k images, 200 classes), PASCAL VOC (12k 675 

images, 20 classes) and COCO (120k images, 80 classes) provide labelled data of common objects in 676 

images, free for training and benchmarking object detection models.  During transfer learning, the 677 

weights from the earlier layers of pre-trained model are copied to a new model.  These weights 678 

contain information about the basic features found in common objects, such as colour, shape, 679 

edges, and lines.  The final classification layer, which is responsible for high level classification of the 680 

object into class categories, is not transferred.  The model is then trained further on new classes.  681 

If there is a sufficient number of training images available for a particular application, the transfer-682 

learning process holds no advantage.  Bargoti and Underwood (2017a) reported that there was no 683 

significant performance difference between weights initialized from ImageNet and from other 684 

orchards (almond and mango) for training a Faster R-CNN model to detect apple on images. Koirala 685 

et al. (2019b) also reported no significant performance gain for a mango fruit detection model 686 

(MangoYOLO) trained with over 1,000 image tiles when initialized with the COCO pre-trained 687 

weights. 688 

2.4.4 Image and object sizes 689 

The optimum image/tile size should be established for the imaging conditions (camera resolution, 690 

lens, camera to canopy distance, fruit size, etc.) and the machine vision model architecture used. A 691 

larger object size (pixel number) in images is desirable for proper object detection and localization, 692 

but higher resolution incurs greater computational time and memory. Zhao et al. (2016), Cheng et al. 693 

(2017b), Hung et al. (2015) and Sengupta and Lee (2014) down-sized images for computational 694 

efficiency in fruit detection applications. 695 

Image resizing (subsampling) is inherent in most deep learning architectures. The CNNs have a 696 

predefined input size (network input resolution). All input images will be resized to the network 697 

input resolution before feeding through the network. For example, SSD-300 resizes all input images 698 

to 300 x 300 pixels before further processing inside the network. This step reduces the size of the 699 

objects in the image, which can impact the performance of object detection models. Moreover, 700 

there are several subsampling layers inside a CNN which cause further resizing of the input image. 701 

For example, CNN feature extractors such as ZF and VGG, as used in the object detection 702 

frameworks of Faster-RCNN and SSD, use a subsampling factor of 16. Thus, object pixel size is further 703 

decreased in the final feature map, providing little pixel information for detection. Network 704 

architecture can be changed to accept images of higher resolution, but at the cost of higher 705 

computation and training memory requirement. 706 

Close-up views of fruit from Google Images or from imaging of fruit in glasshouses, e.g., as used by 707 

Sa et al. (2016), provide high resolution detail of the fruit. Such images can tolerate a subsampling 708 

factor of 16 and still have objects (fruit) of a reasonable pixel dimension. In comparison, canopy 709 

orchard imagery provides relatively less resolution for fruit in the image, unless a very high-710 

resolution camera is used. Use of tiles from the image rather than the whole image is useful in 711 

decreasing the effect of downsizing. Splitting of large images into sub-images also decreases the fruit 712 

count per image, helping to reduce human labelling errors. Moreover, object detection frameworks 713 
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trained on tiles (e.g., 500 x 500 pixels) can be used for inference on whole images (e.g., 2048 x 2048 714 

pixels) without need for further training (Koirala et al. 2019). Alternatively, to reduce memory 715 

requirement, a tiling approach can also be followed during detection, as used by Bargoti and 716 

Underwood (2017a). In this process, detections are performed using a sliding window on sub-717 

sections of the image, with thresholding and NMS applied over fused output on large images.  718 

2.5 Performance assessment 719 

The algorithm of a new deep learning based machine vision system should be appropriately 720 

documented to enable a skilled practitioner to replicate the work, and the performance of the 721 

model must be evaluated relative to existing best practice. There are a set of parameters and 722 

metrics that are commonly used in machine vision evaluation that should be reported in any 723 

published study.  724 

2.5.1 Parameters 725 

2.5.1.1 IoU 726 

For the object detection task, the Intersection over Union (IoU, also known as the ‘Jacard index’ is 727 

the ratio of the area of overlap to the area of union between detected and the ground-truth 728 

bounding boxes (Fig. 2-11). IoU can vary from 0 (no overlap) to 1 (full overlap). This metric is set for 729 

use in model training, with use during testing by the NMS to suppress multiple redundant 730 

detections. The object detection challenges of PASCAL-VOC and ImageNet both set an IoU of 0.5 of 731 

detection on ground-truth bounding as valid detections. Any detections with an IoU between 732 

detected box and ground truth annotation greater than the set IoU threshold is considered as a 733 

positive detection. Detections with an IoU less than threshold value are false detections.  734 

 735 

Figure 2-11. Definition of IoU in the object detection task using bounding box annotations. 736 

Research reports should report the IoU used in their work and may seek to optimise the value used. 737 

For example, for pepper fruit detection, Song et al. (2014) considered a detection to be a true 738 

positive when IoU > 0.5 (between predicted and ground truth boxes). In contrast, Bargoti and 739 

Underwood (2017a) used an IOU > 0.2 to better detect small fruit. Sa et al. (2016) also justified use 740 

of an IOU>0.4 as the threshold for detection of relatively small fruit size in their image dataset. 741 
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Similarly, the non-maximal suppression (NMS) threshold value (the IoU used to remove the 742 

redundant overlapping detections in output images) should be reported for replication of the work. 743 

2.5.2 Evaluation metrics 744 

2.5.2.1 Useful metrics 745 

There are a range of metrics useful for the characterisation of model performance in the application 746 

of tree fruit detection in canopy images.  For example, the review by Kamilaris and Prenafeta-Boldú 747 

(2018) tabulates values for classification accuracy, Precision, Recall, F1 score, L2 error, IoU, ratio of 748 

estimated to actual fruit count per image and root mean square of error (RMSE) and mean residual 749 

error (MRE) on estimated compared to actual fruit count per image.   750 

2.5.2.2 Precision and Recall 751 

The fruit detection task is a binary classification problem with the following results:  752 

• True positive (TP): Fruit detected as fruit 753 

• True negative (TN): Background detected as background. This is not applicable for deep 754 

learning object detection frameworks like (Faster R-CNN, SSD and YOLO) which do not 755 

require labelling of the background class. 756 

• False positive (FP): Background detected as fruit 757 

• False negative (FN): Fruit not detected 758 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
          (1) 759 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
          (2) 760 

The term Precision gives the number of true detections out of total detections, while Recall gives the 761 

number of true detections out of total ground truth annotations (Fig. 2-12). 762 

 763 

Figure 2-12. Interpretation of Precision and Recall for object detection task using bounding box annotation. 764 
Precision is the proportion of detected boxes that matched the ground truth boxes. Recall is the proportion 765 
of detected boxes that matched the ground truth boxes on all ground truth boxes. 766 

Both Precision and Recall measures are essential to characterisation of the performance of an 767 

algorithm on an image set. A high Precision is sought when there is high cost associated with false 768 

positives. A high Recall is sought when there is high cost associated with false negatives. Precision 769 

and Recall values are affected by the IoU threshold between the predicted and ground truth box 770 

(Fig. 2-13). Precision and Recall values can be optimized by changing the IoU threshold or limiting 771 
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number of detections (changing confidence threshold and NMS threshold). For a good model, 772 

Precision remains high as Recall increases, i.e., the model is able to detect a high proportion of true 773 

positives before it starts collecting false positives.  774 

 775 

Figure 2-13. Precision-Recall curves for a Faster R-CNN with ZFNet model used to detect mango fruit in 776 
whole tree images, obtained for varying IoU thresholds (0.1-0.7) at a NMS threshold of 0.5. 777 

2.5.2.3 Average Precision 778 

The area under the P-R curve (known as Average Precision, AP) can be used as a single metric to 779 

summarize the performance of the object detection model (Fig. 2-13). For example, Bargoti and 780 

Underwood (2017a) and Koirala et al. (2019b) used AP in assessment of performance of deep 781 

learning models in context of the number of training images. A model with high Precision at all levels 782 

of Recall will have a high AP score, while methods that return a high Precision with a subset of 783 

detections will not. 784 

Multi class object detection challenges (like PASCAL VOC) commonly use mean Average Precision 785 

(mAP) as metric to evaluate model performance. mAP is the mean of AP computed over all classes. 786 

2.5.2.4 F1 Score 787 

For any classifier (object detection model), there is a trade-off between Precision and Recall, and a 788 

model can be optimised (e.g., through change in class confidence threshold and NMS threshold) for 789 

either higher Precision or Recall, depending on the detection task.  790 

F1 is the weighted average (harmonic mean) of Precision and Recall (eqn. 3), calculated from the 791 

point on the P-R curve where P and R have higher and identical values. The F1 score varies between 792 

0 (worst) and 1 (best). If the model is tuned in favour of either Precision or Recall, the F1 score will 793 

decrease. 794 
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𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (3) 795 

2.5.2.5 Fruit detection evaluation 796 

The similarity of fruit and foliage features can cause many false positives detections, while false 797 

negatives can result from partial occlusion and poor illumination. The success of a model for fruit 798 

detection in orchard scenes can thus be evaluated in terms of Precision, Recall, AP and F1 score.   799 

A recommendation is made for use of F1 score as an overall performance measure, allowing fruit 800 

detection models/methods to be compared and benchmarked with a single metric.  The metric is 801 

already in common use to compare fruit detection models, e.g., Bargoti and Underwood (2017a), Sa 802 

et al. (2016), Pothen and Nuske (2016) and Koirala et al. (2019b).  803 

2.6 Architecture and model optimization 804 

A ‘network architecture’ is defined by its structure in terms of number of layers, filters and 805 

connections. The network also contains several hyper-parameters (e.g., learning rate, momentum, 806 

weight initialization and activation function) which determines the performance of a trained model. 807 

A model is created through the process of training a network using a training image set.  Both the 808 

network and the model can be optimised for a given application. 809 

2.6.1 Architecture optimization 810 

Many published works in precision agriculture compare established network architectures for a 811 

particular application.  In general, a deeper network architecture with more layers in CNN will 812 

improve prediction accuracy and achieve higher accuracy compared to a shallower network. For 813 

example, VGG is a deeper model with higher accuracy but requires greater memory and 814 

computation time than ZF-Net, as demonstrated for a fruit counting application by Koirala et al. 815 

(2019b) and Bargoti and Underwood (2017a). Such comparisons have practical merit, but to advance 816 

the discipline some optimisation of the model architecture should be attempted. Of course, new 817 

architectures should be benchmarked to an existing, well reported one, with Faster R-CNN(VGG) 818 

acting as the current ‘standard’. 819 

Existing CNN architectures can be modified depending upon the application task to optimise 820 

performance in context of speed, accuracy and memory requirement. For example, Sa et al. (2016) 821 

altered the VGG structure to accept four channels (RGB and NIR). Rahnemoonfar and Sheppard 822 

(2017) modified Inception-ResNet model, achieving an accuracy of 91% compared to 76% with the 823 

original inception-ResNet. Koirala et al. (2019b) modified the YOLO architecture to create an 824 

architecture deeper than YOLOv1 but shallower than YOLOv3, for memory and speed optimization in 825 

the task of mango fruit detection.  826 

To advance the common scientific base, a published report on performance of a new architecture 827 

should be accompanied by a clear description of the algorithm, and a performance comparison to an 828 

existing standard architecture. If an existing architecture is being used, the report should detail the 829 

source of the open-source code used for compiling the deep learning models. Ideally, the officially 830 

released algorithm codes from published papers should be implemented, to allow for replication of 831 

work. 832 



Deep learning- review 
 

P a g e  | 28 

2.6.2 Model optimization 833 

In the process of training a given architecture, a model is created with weightings unique to the 834 

training set used.  Parameters such as learning rate and momentum of the network and the number 835 

of filters in each layer can be varied, depending on the visual complexity of the object class to be 836 

modelled, while NMS and class confidence thresholds can be varied to obtain the desired detection 837 

output (Koirala et al. 2019b).   838 

2.6.2.1 Class confidence scores 839 

The class confidence (or probability) score is a numeric value (0-1) assigned to each detection 840 

describing the confidence or probability of a detected object belonging to a particular class (Fig. 2-841 

14). If the confidence score threshold is relaxed (set low) many detections will be accepted 842 

(increasing TP and FP) (Fig. 2-15). The confidence cut-off (threshold) must be selected for the 843 

application.  844 
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 845 

Figure 2-14. An example display of class label ‘m’ (mango fruit) and associated confidence scores for an 846 
image of mango fruit on tree, produced by Faster-RCNN using ZFNet (left panel) and VGGNet (right panel). 847 

 848 

Figure 2-15.  Object detection with no suppression (NMS=1.0) and an increasing level of confidence 849 
threshold values (0.1, 0.8, 0.95, for left to right panels) resulting in fewer multiple detections per fruit (lower 850 
FP), but failure to detect some fruit (higher FN). 851 

2.6.2.2 Non-maximum suppression 852 

NMS is a common technique used by various object detection frameworks to suppress multiple 853 

redundant (low scoring) detections with the goal of one detection per object in the final image (Fig. 854 

2-16). All detected boxes with an overlap greater than the NMS threshold are merged to the box 855 

with the highest confidence score. NMS accepts IoU values between 0 (no overlap) to 1 (complete 856 

overlap). 857 
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 858 

Figure 2-16.  Effect of NMS setting: left to right panels: NMS = 0.1, one detection for each fruit but some FN; 859 
NMS 0.3, one detection for each fruit with no FN; NMS 0.5, but not all detections merged.  860 

Fruit detection models should therefore be tuned for both confidence threshold and NMS values to 861 

achieve the highest F1-score on the validation set as illustrated in Koirala et al. (2019b). 862 

2.6.3 Training and test time 863 

Few papers report on training and detection time. Even when such information is reported, 864 

comparison is difficult given use of different CPUs and image resolution. Model training time is 865 

generally not critical as it represents a one off exercise. Training time is a function of batch size 866 

(number of images processed in parallel), which depends on available memory and, thus, on the 867 

computing resource employed. Institutional researchers often access High Performance Computing 868 

(HPC) clusters. Deep learning models can also be trained on cloud based high performance 869 

computers (e.g., Amazon’s AWS, Microsoft’s Azure and Google’s GCP), alleviating the need for a local 870 

computing resource.  871 

In contrast, test or detection time is of importance to the use of a detection system if real or near 872 

real time detection is required, e.g., at a processing time of 1 second per image, an orchard yield 873 

estimation for a large orchard of 100,000 trees, using two images per tree, requires 55 h. Future fruit 874 

harvesting operations will require near real time detection. In general, a processing rate of >30 875 

frames (images) per second (<30 ms per image) is regarded as a real-time speed for video 876 

processing, but slower rates may be acceptable for particular applications.  877 

Detection speed will be a function of algorithm complexity and computing capacity. For example, 878 

good accuracy on sweet pepper detection was noted for a Conditional Random Field (CRF) 879 

framework relative to a deep learning framework (Faster R-CNN), but at the cost of processing time 880 

(842 times greater) and a more tedious ground truthing for the pixel-level approach, compared to 881 

bounding box annotation (Sa et al. 2016). System design will therefore depend on the importance of 882 

accuracy relative to speed. 883 

Sa et al. (2016) employed a GeForce GTX980M 8GB GPU, reporting processing of 1297x964 images 884 

within ~341 ms, and 1920x1080 images within ~393 ms for a multimodal Faster R-CNN model used 885 

in detection of sweet peeper fruit. Rahnemoonfar and Sheppard (2017) reported processing time 886 

using a NVidia 980Ti 6GB GPU for fruit count on tomato plant (128x128) images at 6 and 50 ms, 887 

using deep learning CNN and area-based methods, respectively. On a NVDIA 980 Ti GPU, Bargoti and 888 
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Underwood (2017a) reported average detection times of 130 ms per (500x500) image using a Faster 889 

R-CNN framework VGG-16 model, 40 ms per image using a ZFNet model and 2,300 ms per image 890 

using a pixel-wise CNN model. Koirala et al. (2019b) reported on performance, memory requirement 891 

and inference time for several deep learning models (VGG, ZFNet and DarkNet) and object detection 892 

frameworks (Faster R-CNN, SSD and YOLO) in context of a mango fruit image dataset. For an image 893 

size of 512x512 pixels and using a HPC platform (NVIDIA Tesla P100 GPU), SSD and YOLO variants 894 

YOLOv3, YOLOv2, YOLOv2(tiny) and MangoYOLO took 70, 25, 20, 10 and 15 ms per image, 895 

respectively, for fruit detection, while Faster R-CNN(ZF) and Faster R-CNN(VGG) took 37 and 67 ms, 896 

respectively. For 2048x2048 input images, the detection times for MangoYOLO and YOLOv2 (tiny) 897 

were 20 and 10 ms and 70 and 51 ms on the HPC and on a NVIDIA GeForce GTX 1070 Ti GPU (local 898 

computer) platforms, respectively.  899 

2.7 Fruit detection using deep learning 900 

Prior to 2016, published work to discriminate fruits from background in images of tree fruit canopies 901 

was based on hand-engineered features to encode visual attributes (Gongal et al. 2015). 902 

Subsequently there have been 12 papers published on use of deep learning models in estimation of 903 

tree fruit number per image (Scopus data base, www.scopus.com, 904 

keywords:’deep’+‘learning’+’fruit’+’detection’, accessed 19/01/2019, revealing 9 publications, with 905 

an additional four publications located ‘by hand’) (Table 2-1).   906 

 907 

Table 2-1. Scientific reports on use of deep learning models in estimation of tree fruit number per image. 908 
The best result of each paper is shown.  When available, the F1 score is recorded, otherwise the validation 909 
metric used by the authors is included. 910 

Author Commodity Method Validation statistics 

Sa et al (2016) sweet pepper Faster R-CNN F1 0.84 

Bargoti and Underwood 

(2017a) 

apple, mango, almond 

apple, mango, almond 

Faster R-CNN ZF 

Faster R-CNN VGG 

F1 0.89, 0.88, 0.73 

F1 0.90, 0.91, 0.76 

Bargoti and Underwood 

(2017b) 

apple, mango Pixel wise CNN F1 0.86, 0.84 

Chen et al. (2017) apple FCN + CNN regression Ratio counted 0.91 

 orange FCN + CNN regression Ratio counted 0.97 

Choi et al. (2017) Citrus (classification) AlexNet  TP rate 96% 

Habaragamuwa et al. (2018) strawberry CNN AP 88.0% 

Bounding Box Overlap 0.74 

Liang et al. (2018) mango SSD VGG F1 0.91 

Peng et al. (2018) apple, litchi, navel orange, 

Huangdi gan 

SSD ResNet F1 0.96 

 

Tao et al. (2018) peach, apple, orange Faster R-CNN AP 91.5, 94.2, 90.2 % 

Xiong et al. (2018) green citrus Faster R-CNN F value 77.5% 

mAP 85.5 

Koirala et al. (2019b) mango Faster-RCNN ZF 

Faster-RCNN VGG 

SSD VGG 

MangoYOLO 

F1 0.94 

F1 0.95 

F1 0.96 

F1 0.97 

Kestur et al. (2019) mango CNN F1 0.84 

 911 

The first report on use of deep learning with CNN for fruit detection was by Sa et al. (2016). These 912 

authors implemented a multimodal faster R-CNN (using both RGB + NIR), reporting an improved F1 913 

score (increased from 0.81 to 0.84) for sweet pepper detection compared to their prior work 914 

http://www.scopus.com/
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(McCool et al. 2016), which was based on a pixel-wise segmentation technique. A F1 score >0.8 was 915 

obtained for all 6 fruit categories (apple, orange, avocado, mango, strawberry) considered.  916 

Subsequent studies have implemented the latest architectures from the deep learning – CNN 917 

community, with some studies attempting to modify architecture for the fruit 918 

classification/detection application.  F1 scores of >0.9 are being routinely achieved. A summary of 919 

representative studies follows: 920 

Chen et al. (2017) proposed a deep learning method to directly estimate total fruit count from input 921 

images, with integration of fruit segmentation and a count regression network into a single pipeline. 922 

A Fully Convolutional Network (FCN) (Long et al. 2015) was used to extract candidate regions in the 923 

images as blobs, while another CNN was used to count the number of fruits (oranges and apples) 924 

inside each blob of fruit region.  A regression model related CNN derived fruit count to human fruit-925 

in-image count.  926 

Other studies have used deep learning with CNN to detect fruit, then counted the detected fruit. For 927 

example, Bargoti and Underwood (2017a) used the original Faster R-CNN framework, achieving 928 

higher F1 scores using VGG-16 than ZFNet (Table 2-1). The results were superior to work using pixel-929 

wise CNN (a multiscale Multi Layered Perceptron with three hidden layers and a CNN of two 930 

convolution, pooling and fully connected layers respectively) (Bargoti and Underwood 2017b). The 931 

F1 score for fruit detection was thus improved with use of deeper networks (pixel-wise CNN vs ZFNet 932 

vs VGG-16) (Table 2-1). Similarly, (Kestur et al. 2019), used a full convolutional deep CNN- 933 

‘MangoNet’ to segment mango fruit in the images followed by connected object detection for fruit 934 

counting in images. 935 

Rahnemoonfar and Sheppard (2017) took the innovative step of deep simulated learning within the 936 

task of tomato fruit counting. Inception-ResNet architecture was modified, with the number of fruit 937 

objects estimated without detection and localization of objects, acting on a view of the entire image. 938 

The model was modified and trained entirely on synthetic (tomato) fruit images and tested on 939 

natural images, with a 91% average test accuracy, R2 of 0.90 and RMSE of 2.52 fruit/image on real 940 

images (downloaded from Google images; only 100 images used) and 93% on synthetic images. The 941 

algorithm was robust to varying degree of lighting conditions, occlusions and fruit overlaps. The 942 

modified Inception-ResNet architecture achieved a higher fruit detection accuracy than the standard 943 

Inception-ResNet architecture, while a shallow CNN of four layers (2 convolution and 2 fully 944 

connected layers) performed poorly (91.0, 70.0 and 11.6% accuracy, respectively).  945 

Mureşan and Oltean (2018) used deep learning (a CNN with four convolutional layers) for fruit 946 

classification (recognition) of 60 fruit categories, reporting a classification accuracy of 96.3% on a 947 

test set.  In this application fruit localisation is not required. The datasets (‘Fruit-360’) were released 948 

by the authors, allowing comparative work to be undertaken by other researchers.  949 

Koirala et al. (2019b) compared the detection results for a number of detection frameworks (Faster-950 

RCNN, SSD and YOLO) for mango fruit detection, and re-designed the YOLO architecture (to 951 

‘MangoYOLO’) for speed and memory optimization for the mango fruit application. All models 952 

achieved F1 > 0.90 on an independent validation set of 512×512 pixels images with the highest score 953 

(F1 of 0.97) from the MangoYOLO model. The superior result for MangoYOLO compared to the 954 

deeper architecture of YOLOv3 demonstrates that it is not number of layers alone that defines the 955 

performance, but also the design of the architecture. In MangoYOLO, Koirala et al. (2019b) merged 956 

the information from early detection layers to that of the later detection layers. 957 
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2.8 Tree fruit yield estimation 958 

2.8.1 Can’t see the forest for the trees? 959 

Uses for machine vision detection of fruit in images of tree canopies include estimation of fruit 960 

number per tree (‘load’), in-field fruit sizing, and automated harvest. Estimation of fruit size together 961 

with fruit number allows estimation of fruit weight (‘yield’) per orchard.  962 

Fruit weight can be correlated to fruit lineal dimensions in many fruit. Such a relationship allows fruit 963 

weight to be estimated using machine vision, given a measure of camera to fruit distance, e.g. using 964 

a time of flight camera.  For whole canopy images, as used in fruit load estimation, only a fraction of 965 

fruit in the image have entire outlines (i.e., not partially occluded), but that is sufficient to provide a 966 

size class distribution, assuming visible, outer canopy fruit are representative of all fruit on a tree (as 967 

achieved by (Wang et al. 2017b)). 968 

Of course, a tree fruit load estimate relies on assessment of the total number of fruit per tree, not 969 

the number of fruit visible in an image. With high accuracies reported for fruit detection in an image 970 

using deep learning methods, as discussed earlier in section 8, research attention should now shift to 971 

approaches to estimate total fruit per tree and per orchard. 972 

2.8.2 Seeing all fruit 973 

One approach to the estimation of fruit number per tree and orchard involves increasing the 974 

number of viewpoints of images of the tree, in an attempt to visualise all fruit on the tree (akin to a 975 

human estimate of fruit on tree, which involves walking around the tree). Payne et al. (2013) 976 

reported a higher (R2) between image counts and human counts of total fruit on tree based on a 977 

summation of counts from images taken on four sides of each canopy, compared to counts from 978 

images of two or one side.  979 

Multiple imaging of one canopy can result in over-estimation of fruit load by multiple counting of the 980 

same fruit. This issue has been addressed by background removal or masking of fruits based on 981 

depth or localizing fruit in 3D space (Wang et al. 2013), or use of stereo imaging with fruit 982 

registration between frames from multiple viewpoints (Moonrinta et al. 2010). Wang et al. (2013) 983 

and Song et al. (2014) implemented an object (fruit) tracking algorithm with multiple viewpoint 984 

images of apple and pepper plants, respectively.  985 

Stein et al. (2016) described a ‘multiview’ method in which 37 images of each side of mango tree 986 

canopies were captured from a passing platform. Fruit detection was done using deep learning 987 

(Faster R-CNN), inferring the instances of detected bounding-box as fruit counts as in (Bargoti and 988 

Underwood 2017a). Fruit number per tree was estimated based on an epipolar projection approach 989 

with fruit tracking using trajectory data (camera pose) provided by the navigation system and 990 

association of fruit to individual trees achieved using a LiDAR mask of orchard trees. A R2=0.90 for 991 

total fruit numbers for 16 trees (harvest count) with an error rate of only 1.36% for individual tree. A 992 

slope ~1 was reported on actual fruit number per tree (for 18 ‘calibration’ trees, as determined by 993 

harvest).  In this case, any double counting of fruit was balanced by non-detection (hidden fruit).  994 

Similarly, Liu et al. (2018) used a FCN to segment fruit pixels followed by fruit tracking across 995 

sequence of video frames. Fruit were then localized in 3D (to minimize errors of double counting 996 

fruit on same tree and form other rows) using a Structure from Motion (SfM) algorithm.  For fruit 997 

counts against human count on images, L1 error of 203 and 322 and error mean of -0.2% and 3.3% 998 
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and error standard deviation of 7.8% and 4.1% were reported for orange (daytime) and apple (night-999 

time) images respectively  1000 

However, these multiple view approaches are computationally complex and require precise object 1001 

tracking algorithms. Tracking can be challenging in scenes with large number of similar objects 1002 

(fruit), as present in a canopy scene. This can be an issue particularly for fruit clusters.  Also, double 1003 

counting of fruit will occur if the tracking of a fruit is lost due to fruit occlusion or sudden 1004 

movements in the camera platform.  Extra hardware (e.g., an inertial navigation system) is used to 1005 

minimise such issues.  1006 

2.8.3 Occluded fruit correction factor 1007 

Another approach to provide a tree fruit load estimate from a count of fruit in a tree image involves 1008 

calculation of a correction factor for occluded fruit.  The simplest approach is to use a single factor 1009 

per orchard. For example, Payne et al. (2013), Wang et al. (2013), Stein et al. (2016), Chen et al. 1010 

(2017) and Koirala et al. (2019b) report use of the slope of the linear regression between the 1011 

machine vision image count and harvest count for a set of calibration trees for fruit load estimation. 1012 

This method relies on consistent tree architecture across the orchard (i.e., a single correction factor 1013 

is applied to all trees). The factor must be established empirically for each orchard and may have to 1014 

be repeated each season if canopy structure / fruit position in canopy changes. For example, for the 1015 

five mango orchards considered, Koirala et al. (2019b) report that an orchard wide occluded fruit 1016 

correction factor used in conjunction with MangoYOLO based estimates of fruit number per canopy 1017 

image achieved fruit yield estimates between 4.6 to 15.2% of packhouse fruit count.  The correction 1018 

factor varied from 1.05 to 2.43 across the five orchards.   1019 

Ideally, a correction factor could be established on an individual tree basis rather than for the whole 1020 

orchard block. For example, the number of totally occluded fruit may be proportional to the number 1021 

of partly occluded fruit.   1022 

A per tree correction factor can be built into the model used to estimate fruit count per image.  For 1023 

example, Črtomir et al. (2012) trained an ANN using several input parameters (fruit area, canopy 1024 

area and number of visible fruits on images) against actual harvest count for apple trees.  The ANN 1025 

model provided an improved yield estimation, at R2=0.83 (Golden Delicious) and R2=0.78 (Braeburn), 1026 

compared to a simple regression model (fruit count on images as the only input), at R2=0.73 (Golden 1027 

delicious) and R2=0.51 (Braeburn).  Cheng et al. (2017b) used fruit and canopy features (number and 1028 

area of fruit, area of fruit clusters, and leaf area per tree image) to train a back-propagation neural 1029 

network (BPNN) model for prediction of apple yield (fruit weight per tree), reporting a R2 of 0.75, 1030 

RMSE of 2.5 kg /tree, for a crop near harvest maturity.   1031 

2.8.4 Estimating fruit weight 1032 

As noted earlier, allometric relationships exist between fruit lineal dimensions and weight.  Stajnko 1033 

et al. (2009) employed traditional machine vision segmentation techniques in estimation of fruit 1034 

number per canopy image using two images per tree and fruit size, using a size marker placed in the 1035 

tree. Apple yield per tree (Yt) was calculated based on Mitchell’s (Mitchell 1986) equation, involving 1036 

number and diameter of fruits.  1037 

Yt = N×a×Db, 1038 

where: Yt = yield per tree, N=number of fruits per tree, D=average diameter of fruit, a,b = constants 1039 

depending on apple variety. For average yield per tree (kg) an R2 of 0.96 between manual 1040 

measurement and machine vision estimation was reported.   1041 
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Črtomir et al. (2012) used an ANN (4-6-1 and 5-14-1 network architectures for varieties Golden 1042 

Delicious and Braeburn respectively) to estimate apple fruit yield (kg per tree) from a single image 1043 

per canopy.  The ANN regressed the inputs of fruit segmentation, as described in Stajnko and Čmelik 1044 

(2005) against weighted yield per tree. An R2 of 0.69 and 0.61 and standard deviation of 2.83 and 1045 

2.55 kg/tree between forecasted and actual (harvest) yield per tree was achieved for Golden and 1046 

Braeburn varieties respectively. This result was superior to that obtained using the method of 1047 

Stajnko et al. (2009). 1048 

Cheng et al. (2017b) used fruit and canopy features from images (fruit number estimated using a 1049 

traditional colour segmentation method as described by Zhou et al. (2012) , fruit area, fruit cluster 1050 

area, and foliage leaf area) as input parameters to an ANN (Backpropagation Neural Network, BPNN) 1051 

for yield (fruit weight per tree) prediction. Two separate ANN architectures were applied: a 4-12-1 1052 

architecture for the early period of fruiting and a 4-11-1 architecture for the ripening period.  Both 1053 

models performed well for apple prediction with the later period model slightly better than the early 1054 

period model. The later period model achieved an R2 of 0.82 and RMSE of 2.31 kg/tree on a Gala 1055 

apple test set from the season of model development, and an R2 of 0.75 and RMSE of 2.54 kg/tree 1056 

for a next season test set.  A BPNN model (4-10-1 architecture) on Pinova variety achieved an R2 of 1057 

0.88 and RMSE of 2.53 kg/tree on the test set.  1058 

Other workers have reported relationships between yield (fruit number or fruit weight per tree and 1059 

canopy characters based on remote (satellite) imagery such as spectral indices and canopy area.  For 1060 

example, Rahman et al. (2018) report use of an ANN regression model (10-5-1 architecture) between 1061 

spectral indices and crown area against mango fruit yield. However, while canopy area and plant 1062 

health will be linked to the potential to flower and for fruit set (i.e., the number of vegetative 1063 

terminals on a mango canopy sets the upper limit for the number of panicles that can form), there 1064 

can be high levels of flower and fruit drop.  Therefore, such models will require annual ‘calibration’ 1065 

to actual yield, to accommodation changes in flowering and fruit set conditions. 1066 

Deep learning has yet to be applied to such data sets for estimation of fruit load per tree and per 1067 

orchard. There are examples with other crops where deep learning models have been applied with 1068 

more complex spatio-temporal data and remotely sensed multi-spectral images for yield (t/ha) 1069 

prediction. Kuwata and Shibasaki (2015) used a Caffe based deep learning regression model 1070 

(Gaussian Radial Basis Function) trained with remotely sensed data (satellite data, climate data and 1071 

environmental metadata) to model corn crop yield estimation at a county level.  Jiang et al. (2018) 1072 

used weather and soil data as inputs to a Long Short-Term Memory (LSTM) model for corn yield at a 1073 

county level. Similarly, You et al. (2017) used deep learning (CNN and LSTM) models trained on 1074 

yearly yield and multi-spectral remote sensing data for real-time forecasting of soybean yield at a 1075 

county level. The advantage of deep learning is the automatic extraction of meaningful information 1076 

from the real-world raw data. There is a need to explore different deep learning architectures for 1077 

their possible implementation in the precision agriculture field. 1078 

2.9 Conclusion and recommendations 1079 

The need for handcrafting of features and designing of feature descriptors is removed in an ANN 1080 

through automated learning. In general, ANN model accuracy improves with number of model 1081 

layers, but at the cost of increased computational complexity. Object detection frameworks have 1082 

evolved under the selective pressure of a requirement for higher speed, moving from two-staged 1083 

region-based detectors to single shot dense object detectors. Deep learning models are reported to 1084 

outperform pixel-wise segmentation techniques involving traditional machine learning and 1085 

shallower CNN and Neural networks in the task of fruit-on-plant detection. The availability of 1086 
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publicly available detection frameworks with pre-trained weights and large public datasets of 1087 

annotated images for training have made adopting deep learning relatively easy. Typically, with use 1088 

of some hundreds of training images, the models can be fine-tuned for use in a particular image 1089 

object detection task.  Public datasets of annotated images of fruit on tree (and other agricultural 1090 

applications) should be created to facilitate algorithm comparison using the same image training, 1091 

validation and test sets.   1092 

There will be many reports generated on the adoption of a deep learning framework for specific 1093 

precision agricultural applications. Published research studies must present information on number 1094 

of training samples and values of network parameters used for model optimization. For replication 1095 

of a given study and for comparison/benchmarking, the source of the open-source codes/algorithms 1096 

and the model parameters (IoU and NMS thresholds) must be reported. A recommendation is made 1097 

for use of the F1 score as a common evaluation metric for performance measure of the prediction 1098 

models. Studies should also include several test sets independent to training set for the evaluation 1099 

of model robustness.  1100 

However, while reports of performance of a given model have technical merit to achieve an 1101 

application end, the research frontier in this field has now moved to creation of existing deep 1102 

learning architecture to suit a particular application, in terms of either increased speed or accuracy. 1103 

Recent application of deep learning methods to directly predict fruit numbers on images without the 1104 

need for labour intensive data labelling (pixel-wise or bounding box method) is of practical 1105 

importance. Given the accuracy of current frameworks in fruit detection, research focus should also 1106 

shift towards accurate estimation of orchard fruit number, i.e., to a consideration of systems to 1107 

avoid or adjust for occluded fruit. Reports of fruit load estimation should be validated using test sets 1108 

from more than one season, one cultivar and one orchard (i.e., one canopy architecture). It is 1109 

recommended that fruit load estimation be attempted using several deep learning approaches (e.g., 1110 

CNN detectors, deep regression and LSTM) involving several data sources (e.g., tree images, orchard 1111 

metadata, weather and yield history). 1112 

Precise fruit detection allows generation of yield maps, providing information on spatial variation on 1113 

which to base agronomic decisions. Fruit load estimation is also useful to inform harvest resourcing 1114 

and management, and marketing. Light weight deep learning models will also support robotic 1115 

harvesting.  1116 

Deep learning has been discussed in context of machine vision in this review, but the technique has 1117 

relevance with other data types.  The ability of deep learning methods to automatically extract 1118 

useful information from multi-dimensional raw data (e.g., digital images, LIDAR data, multi spectral, 1119 

remote sensing and satellite data, weather, climate and environmental data from several sensors) 1120 

and its scalability with big data holds great promise for applications such as real-time yield 1121 

estimation and forecasting, crop growth modelling and plant disease and pest modelling. Application 1122 

development will depend on quality data encompassing a range of environmental conditions, 1123 

cultivars and crop types and modalities (sensors and data types). 1124 
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Chapter 3. Deep learning for real-time fruit detection and 1134 

orchard fruit load estimation – benchmarking of 1135 

‘MangoYOLO’ 1136 

This chapter was published as a journal paper in then February 2019 edition of Precision Agriculture 1137 

as: 1138 

Koirala A, Wang Z, Walsh K, McCarthy C (2019b) Deep learning for real-time fruit detection and 1139 
orchard fruit load estimation: benchmarking of 'MangoYOLO'. Precision Agriculture 1140 
doi:https://doi.org/10.1007/s11119-019-09642-0 1141 

 1142 

The dataset used in this publication was made publicly available at 1143 

http://hdl.cqu.edu.au/10018/1261224. 1144 

Responses to minor revisions as requested by the thesis examiners can be found in the Addendum 1145 

section. 1146 
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 1160 

Abstract 1161 

The performance of six existing deep learning architectures were compared for the task of detection 1162 

of mango fruit in images of tree canopies. Images of trees (n = 1515) from across five orchards were 1163 

acquired at night using a 5 Mega-pixel RGB digital camera and 720 W of LED flood lighting in a rig 1164 

mounted on a farm utility vehicle operating at 6 km/h. The two stage deep learning architectures of 1165 

Faster R-CNN(VGG) and Faster R-CNN(ZF), and the single stage techniques YOLOv3, YOLOv2, 1166 

YOLOv2(tiny) and SSD were trained both with original resolution and 512×512 pixel versions of 1300 1167 

training tiles, while YOLOv3 was run only with 512×512 pixel images, giving a total of eleven models. 1168 

https://doi.org/10.1007/s11119-019-09642-0
http://hdl.cqu.edu.au/10018/1261224
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A new architecture was also developed, based on features of YOLOv3 and YOLOv2(tiny), on the 1169 

design criteria of accuracy and speed for the current application. This architecture, termed 1170 

‘MangoYOLO’, was trained using: (i) the 1300 tile training set, (ii) the COCO dataset before training 1171 

on the mango training set, and (iii) a daytime image training set of a previous publication, to create 1172 

the MangoYOLO models ‘s’, ‘pt’ and ‘bu’, respectively.  Average Precision plateaued with use of 1173 

around 400 training tiles. MangoYOLO(pt) achieved a F1 score of 0.968 and Average Precision of 1174 

0.983 on a test set independent of the training set, outperforming other algorithms, with a detection 1175 

speed of 8 ms per 512×512 pixel image tile while using just 833 Mb GPU memory per image (on a 1176 

NVIDIA GeForce GTX 1070 Ti GPU) used for in-field application. The MangoYOLO model also 1177 

outperformed other models in processing of full images, requiring just 70 ms per image (2048×2048 1178 

pixels) (i.e., capable of processing ~ 14 fps) with use of 4417 Mb of GPU memory. The model was 1179 

robust in use with images of other orchards, cultivars and lighting conditions. MangoYOLO(bu) 1180 

achieved a F1 score of 0.89 on a day-time mango image dataset. With use of a correction factor 1181 

estimated from the ratio of human count of fruit in images of the two sides of sample trees per 1182 

orchard and a hand harvest count of all fruit on those trees, MangoYOLO(pt) achieved orchard fruit 1183 

load estimates of between 4.6 and 15.2 % of packhouse fruit counts for the five orchards 1184 

considered. The labelled images (1300 training, 130 validation and 300 test) of this study are 1185 

available for comparative studies1. 1186 

Contribution:  1187 

• The first use of deep learning single stage detectors (YOLO and SSD) for fruit load 1188 

estimation is reported. 1189 

• Comparison of single stage detectors to two stage detectors (such as Faster R-CNN) using 1190 

common datasets. 1191 

• The YOLO architecture was optimised (as ‘MangoYOLO’) for improved speed without 1192 

sacrificing accuracy in mango fruit detection and benchmarked to other popular models 1193 

on a night image set and a day image set collected using another camera and illumination 1194 

system. 1195 

• Model robustness was demonstrated across orchards (growing conditions, cultivars), 1196 

illumination condition and camera hardware. 1197 

• An annotated image dataset is made available for benchmarking of new algorithms.  1198 

• The technology can be applied in real time for orchard fruit load estimation and 1199 

automated harvesting. 1200 

3.1 Introduction 1201 

3.1.1 The horticultural issue 1202 

Knowledge of tree fruit crop load and timing of maturation can guide agronomic treatments, labour 1203 

resource management and support market planning. In Australia, mango harvest timing is based on 1204 

heat sums from flowering and fruit dry matter content, assessed using handheld near infrared 1205 

spectroscopy (Walsh and Wang 2018). For mango crop load estimation, the appropriate orchard 1206 

yield metrics are fruit size distribution and fruit number, rather than tonnes per hectare, as fruit are 1207 

typically sold at wholesale level as trays of uniform sized fruit and at retail level per piece of fruit, 1208 

rather than on weight of fruit.  1209 

In current practice, harvest forecasts of crop load for the Australian mango industry are based on 1210 

previous yield history and manual counting of fruit on trees. Harvest forecasts are required six weeks 1211 
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before actual harvest to be of practical use in guiding harvest resourcing decisions, i.e., as early as 1212 

possible to allow for management decision making, but after stone (endocarp) hardening and the 1213 

period of fruit drop.  However, the current manual yield estimation technique is time consuming, 1214 

labour intensive and inaccurate (Anderson et al. 2018).  Indeed, given the level of variability in fruit 1215 

load per tree even in a well-managed orchard, Anderson et al. (2018) has calculated that typically 1216 

approximately 200 trees should be assessed per orchard management unit, for a 0.95 probability 1217 

and a percentage error of 10% on fruit load estimation. This level of human based sampling effort is 1218 

impractical. 1219 

3.1.2 Machine vision in the orchard 1220 

Machine vision can be applied in-field for fruit load estimation, extending the application of this 1221 

technology from its current use in the fruit pack-house. RGB camera images of tree canopies have 1222 

been coupled to depth camera images to provide information on fruit size distribution within an 1223 

orchard. For example, Wang et al. (2017b)  employed a time-of-flight depth camera on the (6 km/h) 1224 

moving platform used in the current study to estimate mango fruit lineal dimensions to a RMSE of 5 1225 

mm, and applied an allometric relationship to relate lineal dimensions to fruit weight and tray size 1226 

category. Given knowledge of fruit size distribution, the remaining element for a practical yield 1227 

estimation technique for mango is orchard fruit load estimation. 1228 

Mango fruit hang on long stalks derived from the panicle, making imaging from the orchard inter-1229 

row more practical than imaging from above (e.g., by drone). Mounting of imaging gear to a farm 1230 

vehicle allows for easy deployment on farm, however, imaging of a whole farm is not a trivial task. 1231 

For example, driving a medium sized farm with 30,000 trees at 4 m spacing involves 120 km, or 240 1232 

km if the imaging rig faces one direction only.  Imaging in two directions from a farm vehicle that is 1233 

traversing the farm for other tasks, such as a spray rig, is a possibility. Further, night imaging is not a 1234 

constraint in the Australian mango industry, with several operations currently conducted at night, 1235 

from spraying to harvesting, to avoid day time heat. 1236 

In orchard scenes, common challenges for machine vision detection of fruit include variation in 1237 

illumination, fruit occlusion, fruit orientation and similarities in colour and texture of fruit and foliage 1238 

(Gongal et al. 2015; Jimenez et al. 2000; Kamilaris and Prenafeta-Boldú 2018; Payne and Walsh 2014; 1239 

Syal et al. 2013). To minimize illumination issues inherent in daylight photography, a number of 1240 

researchers have advocated night imaging with artificial illumination (e.g., Qureshi et al. (2017) ) or 1241 

imaging under a shade structure (Gongal et al. 2015). Bargoti and Underwood (2017a) reported 1242 

imaging of mango orchards in day light hours using high intensity strobe lighting and very short 1243 

exposure times to avoid issues in direct sun lighting, but this required a camera capable of 1244 

microsecond exposures and use of high intensity Xenon strobe lights, increasing deployment cost 1245 

and complexity. 1246 

During the past decade there have been many reports of object classification in orchard scenes 1247 

(Gongal et al. 2015) involving manually defined (‘handcrafted’) parameters for features such as 1248 

intensity, colour space, shape and texture, or Histogram of Oriented Gradients (HOG), Local Binary 1249 

Patterns (LBP) or Haar-like features (Gongal et al. 2015). For in-field detection of mango fruit, Payne 1250 

et al. (2013) applied a colour based segmentation technique followed by blob detection, while Payne 1251 

et al. (2014) and Qureshi et al. (2017)  placed emphasis on texture analysis to achieve an improved 1252 

fruit detection rate. Nanaa et al. (2014) detected mango fruit based on elliptical shape fitting and 1253 

Kadir et al. (2015) applied texture analysis to define the fruit edge, followed by morphological 1254 

operations on binary image and ellipse fitting using Randomized Hough Transform (RHT) technique 1255 

for detection of mango fruit in clusters. Detection errors were associated with leaves of similar 1256 
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shape to fruit and occluded fruit. However, these ‘handcrafted’ approaches often fail to generalize 1257 

to other conditions (cultivars, growing conditions, lighting conditions), as reported for the mango 1258 

application by Payne et al. (2014) and Qureshi et al. (2017). 1259 

A generalised multi-scale feature (unsupervised) learning approach based on a sparse autoencorder 1260 

and a backpropagation neural network was applied by Hung et al. (2015) to estimate almond and 1261 

apple fruit load (with F1 scores of 84.8 and 87.3, respectively). More recently, deep neural networks 1262 

have been successfully used in a range of machine vision applications, including medical, 1263 

automotive, aerospace, defence, consumer electronics and natural language processing. Sa et al. 1264 

(2016) utilised the deep learning framework of Faster Regional-Convolutional Neural Network 1265 

(Faster R-CNN) (Ren et al. 2015) with Oxford Visual Geometry Group network (VGGNet) (Simonyan 1266 

and Zisserman 2014) for detection of various fruits through transfer learning.  In the transfer 1267 

learning technique used, a pre-trained model was further trained using small numbers of images 1268 

(ranging from 43 to 136), primarily sourced from the internet, with F1 scores of 0.848, 0.948, 0.938, 1269 

0.932, 0.942, 0.915 and 0.828 achieved for rockmelon, strawberry, apple, avocado, mango, orange 1270 

and sweet pepper, respectively. In the following year, Bargoti and Underwood (2017a) used Faster 1271 

R-CNN to detect fruit in day-time images of real orchard scenes illuminated with high intensity 1272 

strobe lights, reporting  higher F1 scores with the deeper (i.e., more layers) VGGNet than when using 1273 

the Zeiler and Fergus network (ZFNet) (Zeiler and Fergus 2014) (0.904, 0.908 and 0.775 compared to 1274 

0.892, 0.8876 and 0.726, for apple, mango and almond fruit detection, respectively). These F1 scores 1275 

were higher than that achieved using pixel-wise fruit segmentation with a Convolution Neural 1276 

Network (CNN) followed by Watershed Segmentation (WS) and blob detection (F1 scores 0.861 and 1277 

0.836 for apple and mango, respectively) (Bargoti and Underwood 2017b) but lower than those 1278 

reported by (Sa et al. 2016) for apple and mango detection, presumably as images of real orchard 1279 

scene present more challenges (such as varying illumination, large number of fruits per image, low 1280 

pixel count per fruit) for training and testing fruit detection models than for close-up images 1281 

collected from a greenhouse and Google search. More recently, Wang et al. (2018b) reported on the 1282 

use of the Faster R-CNN(VGG) deep learning architecture for task of segmenting and counting mango 1283 

panicles in canopy images, and compared the result to a panicle associated pixel count (but not 1284 

panicle count) achieved using a traditional method based on handcrafted colour based features. 1285 

3.1.3 Aim 1286 

Deep learning architectures appear to hold value for fruit load estimation from orchard canopy 1287 

images. However, in reports to date (e.g., Bargoti and Underwood (2017a), Sa et al. (2016) and Wang 1288 

et al. (2018b)), image processing has utilised high performance computing (HPC) resources over a 1289 

period of days following the actual imaging event. For practical application, an architecture was 1290 

sought that was sufficiently light (i.e., fewer convolutional and detection layers) to allow deployment 1291 

on readily available PCs, to allow for real time application in orchard, while maintaining accuracy.  1292 

The ‘need for speed’ is illustrated in the following calculations. For a medium sized farm of 30,000 1293 

trees there are 60,000 (dual-view) 5 Mega pixels images that are currently uploaded by satellite link 1294 

by farm management for image processing on a HPC resource. Local processing would avoid the 1295 

need for data transfer off-farm.  If processing took 1 second per image, the 60,000 images would 1296 

consume 17 h of computing resources, either in the farm office or during imaging. At the typical 1297 

speed of 6 km/h of a spray rig (a potential carrier for an in-field tree imaging system) and a tree 1298 

spacing of 4 m, there is 2.4 sec between trees, but only a fraction of this time is available for image 1299 

processing, especially for systems capturing views in two directions (both rows), or employing 1300 

multiple images per tree or video for fruit tracking between images (e.g., Stein et al. (2016).  Further, 1301 

real-time detection of fruits is a precursor to use in an autonomous harvesting system.  1302 
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It is difficult to assess the performance of deep learning architectures across published studies 1303 

because of difference in datasets, computing hardware, network parameters and performance 1304 

metrics. The current study undertook a comparison using common datasets of the deep learning 1305 

architectures employed to date in fruit load estimation (i.e., Faster R-CNN with VGG and ZF, two 1306 

stage detectors), and added consideration of current ‘state of art’ single stage detector 1307 

architectures, which have not yet been reported in context of fruit detection to our knowledge.  The 1308 

one-stage detectors offer increased speed of operation. Further, reported work to date has been 1309 

based on use of ‘off the shelf’ architectures that were trained for fruit detection, but were created 1310 

for a purpose other than the current application (mango fruit load estimation). Therefore, a new 1311 

deep learning architecture was proposed, based on the single stage architectures, to optimize 1312 

memory and speed of detection for the task of mango fruit detection, and performance 1313 

benchmarked to the existing ‘off-the-shelf’ algorithms.  1314 

Compared with previous published work, the current work contributes to the development of a 1315 

solution for fruit detection and yield estimation by examining the hypothesis that a single stage deep 1316 

learning detector is faster than a two-stage detector with similar accuracy, and that a deep learning 1317 

architecture can be optimized for speed and accuracy for a given application (mango fruit detection 1318 

in this study). A target processing speed of 500 ms on a field deployable computer was set to allow 1319 

for in-field image processing.  The ultimate goal is provision of a yield estimate to growers to within 1320 

15% of fruit harvest count (i.e., information useful to farm management; Walsh and Wand, 2018).  1321 

This aim requires accurate assessment of both fruit seen in images (i.e., a high F1 score) and the 1322 

proportion of fully occluded fruit. Fruit load estimation of five orchards is estimated to guage utility 1323 

of the estimation technique. 1324 

3.1.4 Deep Learning – object detection frameworks 1325 

A brief review of deep learning methods is presented to place the current work in context. Deep 1326 

learning methods have been reported to outperform traditional approaches in the majority of object 1327 

segmentation and classification tasks in agriculture, with the automatic feature extraction 1328 

capabilities of deep learning architectures reported to solve complex problems more easily, with 1329 

greater accuracy and better generalization than traditional approaches (Kamilaris and Prenafeta-1330 

Boldú 2018). While a greater number of training image is required for the deep learning methods 1331 

than those based on handcrafted features, the need for labour intensive and expert knowledge for 1332 

feature extraction is avoided (Bargoti and Underwood 2017a; Kamilaris and Prenafeta-Boldú 2018) . 1333 

The training of the deep learning frameworks involves optimization of a cost/loss/objective function 1334 

(combination of classification, confidence and box regression losses) for minimum error in object 1335 

classification and localization. As deep learning architectures have millions of parameters to be 1336 

optimized, these models are commonly trained on large datasets, such as ImageNet (450k images in 1337 

200 classes, (Deng et al. 2009), PASCAL VOC (12k images in 20 classes, (Everingham et al. 2010) and 1338 

COCO (120k images in 80 classes, (Lin et al. 2014). These online datasets provide labelled data 1339 

(images and annotation files for different object classes) free for training and benchmarking object 1340 

detection models. While these sets do not contain mango orchard images, deep-learning models can 1341 

be reused in new applications, with the learned features transferred through transfer learning. 1342 

Transfer learning is a method involving use of a relatively small number of images for ‘re-training’ or 1343 

‘fine tuning’ the knowledge (convolutional weights) of a model trained on a very large dataset, to 1344 

create a new model.  1345 

Current state of the art object detection frameworks include Faster R-CNN (Ren et al. 2015), You 1346 

Only Look Once (YOLO) (Redmon and Farhadi 2018), Single Shot MultiBox Detector (SSD) (Liu et al. 1347 
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2016), RetinaNet (Lin et al. 2017b) and Mask R-CNN (He et al. 2017). There is a fast pace of 1348 

developments in this field. For example, the recent review and survey of deep learning in agriculture 1349 

by Kamilaris and Prenafeta-Boldú (2018) did not report on use of single stage detectors (SSD and 1350 

YOLO).  1351 

Two stage detectors like Faster R-CNN have a region proposal network as a first stage which 1352 

proposes possible areas likely to contain objects (regions of interest, ROI), followed by a feature 1353 

extractor (a base CNN such as VGGNet or ZFNet) that extracts visual features from the ROIs to 1354 

determine the presence of object. A second stage undertakes classification and bounding box 1355 

regression. This pipeline is generally considered to be too slow for tasks requiring real-time 1356 

processing, e.g., on a GPU (GeForce GTX Titan X) hardware, Redmon and Farhadi (2017) reported 1357 

processing at 7, 46 and 91 frames per second using Faster R-CNN with VGG-16, SSD-300 and 1358 

YOLOv2-288, respectively. In a single stage detector, there is no region proposal stage as the 1359 

prediction is made directly on the input image in single forward pass through the CNN. A single stage 1360 

detector like YOLO converts the input image to a vector of scores and produces coordinates for the 1361 

predicted boxes with a single CNN, making a very fast detector. 1362 

A general object detection framework involves: (i) input image pre-processing (resizing, normalizing, 1363 

colorspace change etc.); (ii) detection of objects; (iii) placement of a bounding box (usually 1364 

rectangle) around the detected objects for the task of object localization; (iv) a calculation of class 1365 

specific confidence score for each detection; and (v) post processing filtering of detections on the 1366 

basis of a confidence score criterion, with merging of multiple detections of one object using the 1367 

non-maximum suppression (NMS) technique to supress detections based on an overlap threshold. 1368 

In the current study, three different state-of-the-art deep learning architectures for object detection 1369 

(Faster R-CNN, SSD, and YOLO) were trained and tested for mango fruit detection. 1370 

Faster R-CNN:  Faster R-CNN (Ren et al. 2015) is a two stage complete object detection framework 1371 

which replaced the selective search method of R-CNN (Girshick et al. 2014) with a Region Proposal 1372 

Network (RPN), with the advantage of higher detection speed. RPN slides a 3x3 window across the 1373 

final feature map and at each window location considers k different anchor boxes centred on the 1374 

location to generate possible region proposals. Each region proposal consists of an objectness score 1375 

for that region as well as the co-ordinates of the boxes. The regional proposals are filtered based on 1376 

objectness threshold and passed to what is essentially a Fast R-CNN (Girshick 2015) for object 1377 

detection. In general, Faster R-CNN can be regarded as an RPN on the top of Fast R-CNN. Faster R-1378 

CNN predicts bounding boxes using handpicked anchors (k=9) composed of three scales and three 1379 

aspect ratios and employs one detection layer. The base CNNs ZFNet and VGGNet (VGG-16) have 7 1380 

and 16 layers respectively. 1381 

SSD: SSD (Liu et al. 2016) is a one stage complete object detection framework. Unlike Faster R-CNN 1382 

which performs region proposal and classification separately, SSD simultaneously predicts the object 1383 

class and places a bounding box on the image. An input image is fed through a series of layers in the 1384 

base CNN, generating different sets of feature maps at different scales. For each feature map 1385 

position, a 3x3 convolutional filter is used to assess a set of default anchor boxes referred to as 1386 

‘priors’. Boxes are then drawn and classified at every single position in the image and at several 1387 

scales, generating a very large number of negative examples and few positives. To address the class 1388 

imbalance problem, SSD uses a technique called ‘hard negative mining’ to balance the positive and 1389 

negative classes during training, keeping the negatives to positives ratio to 3:1 by using only the 1390 

subset of negatives with highest training loss.  1391 
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YOLO: YOLOv2 (Redmon and Farhadi 2017), a single stage complete object detection framework, is 1392 

an improvement on YOLO (Redmon et al. 2016) making it better, faster and stronger. Class 1393 

probabilities, objectness scores, and bounding box coordinates are predicted from the final feature 1394 

map in one evaluation (forward pass) making it one of the fastest object detection methods. A pass-1395 

through layer is used that concatenates features from the higher resolution 26×26 layer to a 13×13 1396 

layer.  This process may have an advantage in small object detection involving finer grained features 1397 

(Redmon and Farhadi 2017). The backbone feature extractor for YOLOv2 is the Darknet-19 1398 

framework which has 19 convolution layers, mostly using 3×3 filters similar to VGGNet. YOLOv2 has 1399 

22 convolutional layers and 1 detection layer. YOLOv2(tiny) has a small architecture, with just 9 1400 

convolutional layers, 6 pooling layers, and 1 detection layer, sacrificing accuracy for speed (Redmon 1401 

2018).  1402 

YOLOv3 (Redmon and Farhadi 2018) is based on Darknet-53 and is an improvement over YOLOv2  1403 

(Redmon and Farhadi 2017). Darknet (Redmon 2018) is an open source deep learning framework 1404 

written in C and CUDA. Darknet-53 is a new feature extractor (53 convolution layers), improving on 1405 

Darknet-19 by addition of successive 3×3 and 1×1 convolutional layers with skip connections similar 1406 

to ResNet (He et al. 2016). Like SSD, YOLOv3 uses the concept of feature pyramids (Lin et al. 2017a) 1407 

to extract features at three different scales for box predictions. In order to capture more meaningful 1408 

and fine-grained information, the feature maps from lower layers are merged with up-sampled 1409 

feature map from higher layers and processed further. Like Faster R-CNN, YOLOv3 uses logistic 1410 

regression to predict objectness score of bounding boxes but only one bounding box anchor is 1411 

assigned per ground truth object. YOLOv3 employs 75 convolution layers and 3 detection layers. 1412 

3.2 Materials and Methods 1413 

3.2.1 Orchard sites 1414 

Images were acquired of all trees in each of five mango (Mangifera indica) orchards (farm 1415 

management units) located in Queensland, Australia, on December 7 and 8, 2017 (Table 3-1). The 1416 

orchard E set represented only a part of an orchard. Imaging occurred at least six weeks before 1417 

harvest, but after the ‘stone hardening’ stage (after which stage fruit drop is typically small). The 1418 

orchards varied in in cultivar and canopy structure. 1419 

Table 3-1. Description of orchards used for imaging. Sample trees refers to trees that were manually 1420 
harvested for a ground truth fruit load estimate (# Harvested fruit). 1421 

Location 
lat, long 

Orchard Cultivar 
Row 
spacing 
(m) 

Tree 
spacing 
(m) 

Tree 
height 
(m) 

Canopy 
width 
(m) 

# 
Trees 
imaged 

# 
Sample 
trees 

# 
Harvested 
fruit 

-25.144, 152.377 A Calypso 9.5 4 3 4 494 17 3519 

-25.144, 152.377 B Calypso 10.5 4 4.5 4 121 6 1676 

-25.144, 152.377 C Calypso 12 4 4 4 256 12 1784 

-25.162 152.351 D Honey Gold 8 4 3 2.8 566 18 1302 

-25.205, 152.284 E R2E2 9 5 3.3 2.8 78 18 729 

 1422 

3.2.2 Field imaging hardware 1423 

The field imaging rig (Fig. 3-1) consisted of an aluminium frame (1×1 m) with combination of LED 1424 

bars (SCA, 126W, 5400 Lumens) and LED flood lamps (Calibre, 35W, 2500 Lumens) totalling 720 W, 1425 

powered with a 24 V DC lead acid battery. Reflectors were removed from the LED bars to improve 1426 

light spread.  A Basler acA2440-75um machine vision camera (75 fps, 5 Mp, 2448×2048 pixels) with a 1427 



Deep learning- fruit detection 
 

P a g e  | 45 

Goyo (GM10HR30518MCN) lens (5 mm focal length) was operated at FStop 3, gain 5 and exposure 1428 

2.5 ms for RGB imaging. The rig also carried a Canon EOS750D with 10-22 mm lens and a Kinect RGB-1429 

D camera, as described in (Wang et al. 2018b). Camera colour calibration was not performed. Images 1430 

of tree canopies were captured at night with a typical camera to canopy distance of 2 m. The rig was 1431 

mounted to the tray of a farm utility vehicle and operated after sunset, with the vehicle driven at a 1432 

speed of about 6 km/hr. The use of night imaging allows for consistent illumination conditions 1433 

compared to the variation experienced in daylight hours due to sun angle and weather conditions 1434 

(Payne et al. 2013). The camera was triggered automatically, with reference to the pre-acquired 1435 

GNSS position of trees. As a one-off task, every tree was geo-located to an accuracy of within 2 cm 1436 

using a Leica GS-14 unit operating on a Continuously Operating Reference Stations (CORS) network.  1437 

The receiver was mounted to a mast above average canopy height. Imaging of an orchard consisted 1438 

of collection of two images per tree, imaged from opposite sides of each tree (termed ‘dual-view’ 1439 

images). The system has been previously reported in (Wang et al. 2018b) and evolved from the 1440 

systems used by Payne et al. (2013), Qureshi et al. (2017) and Underwood et al. (2018).  1441 

 1442 

Figure 3-1. Lighting and imaging camera rig mounted on a farm utility vehicle, operated at 6 km/h (left 1443 
panel), with components of LED floodlights, RGB camera and Time of Flight camera (right panel). 1444 

3.2.3 Computing hardware 1445 

Model training and testing was implemented on the CQUniversity High Performance Computing 1446 

(HPC) facility graphics node with following specifications: Intel® Xeon® Gold 6126 (12 cores, 1447 

2600MHz base clock) CPU, NVIDIA® Tesla® P100 (16 GB Memory, 1328 MHz base clock, 3584 CUDA 1448 

cores) GPU. Red Hat Enterprise Linux Server 7.4 (Maipo) and 384GB RAM. CUDA v9.0, cuDNN v7.1.1, 1449 

OpenCV v3.4.0, Python v2.7.14, GCC v4.8.5.  1450 

For in-field use, a Nuvo-6108GC industrial-grade computer with following specifications was used: 1451 

Intel® Core™ i7-6700TE CPU @ 2.40 GHz, 32 GB RAM, NVIDIA GeForce GTX 1070 Ti GPU (1607 MHz 1452 

GPU clock) with 8 GB dedicated memory (2002 MHz memory clock), 64-bit Windows 10 Pro, CUDA 1453 

v9.1, cuDNN v7.0.5, OpenCV v3.4.0. 1454 

3.2.4 Image pre-processing 1455 

All object detection methods re-size the input image to a specific resolution (‘network resolution’) 1456 

for training. The feature extractors (base CNN) used by deep learning frameworks usually require a 1457 
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square input resolution. In its original configuration, Faster R-CNN will resize the input image such 1458 

that the shorter dimension of height or width is resized to 600 pixels, while keeping the image 1459 

aspect ratio unchanged. SSD-300 and YOLO resize input images to 300x300 pixels and 416x416 1460 

pixels, respectively. Network resolution can be increased to accept larger input images (e.g., 1461 

2048x2048 pixels), but at the cost of increased memory and computation requirement. The resizing 1462 

of Basler 2448x2048 pixel images to 717x600 pixels for use in Faster R-CNN training resulted in a 1463 

decrease in typical fruit image size from ~ 16x16 pixels to ~ 7x7 pixels.  1464 

Network stride, the factor by which network scales down the input image to its final feature map, is 1465 

16 and 32 in Faster R-CNN (for ZF and VGG) and YOLO, respectively. With a stride of 16, a 16x16 pixel 1466 

image corresponds to one pixel in the final feature map.  To have object size greater than the stride 1467 

size on the final feature map, 2448x2048 pixel images were split into tiles (sub-images) of 612x512 1468 

pixels with a 4x4 grid, maintaining the original image aspect ratio. This allowed for training of 1469 

different detection frameworks with similar network resolution (around 512x512 pixels) and object 1470 

size, while reducing memory requirement in training.  1471 

Training object detection models requires labelled data, i.e., the class-label and the position (co-1472 

ordinates) of all ground truth bounding boxes in training images. While labelling is a manual and 1473 

labour-intensive process, annotation (drawing of ground truth bounding boxes) was easier on tiles 1474 

than on the full image, as the lower number of fruits on a tile compared to a full image reduces 1475 

chances of human error. The graphical image annotation tool labelImg 1476 

(https://github.com/tzutalin/labelImg: accessed 15/08/2017) was used to hand label all the ground 1477 

truth bounding boxes, with annotation files saved in PASCAL VOC format. 1478 

3.2.5 Image sets 1479 

The different object detection frameworks, i.e., Faster R-CNN, SSD and YOLO, require different data 1480 

formats for processing image data during training and testing. Datasets and directories were 1481 

structured similar to the PASCAL VOC dataset (Everingham et al. 2010), avoiding the need to change 1482 

scripts, with the detection frameworks parsing PASCAL VOC annotations into their format. For each 1483 

processed image, an XML annotation file (filename = image name) was created containing the image 1484 

attributes (name, width, height), the object attributes (class name, object bounding box co-1485 

ordinates.  1486 

Tiles of 612×512 pixels were randomly drawn from images from three rows of orchard A. Tiles with 1487 

no fruit were excluded. Training was undertaken using a set of 1300 tiles, with validation undertaken 1488 

on a further 130 tiles from the same set of trees (Table 3-2). Test set 1 consisted of 300 tiles from 1489 

three different rows of the same orchard and was split into three subsets containing 100 tiles each. 1490 

Subset L (Low complexity) contained tiles with well separated fruits. Subset M (Medium complexity) 1491 

contained tiles with some clustered (partially occluded) fruits. Subset H (High complexity) contained 1492 

tiles with many fruits in clusters. Test set 2 consisted of images 6 -18 trees in each of five orchards (A 1493 

to E, Table 3-2). The fruit load of these trees was manually assessed at harvest.  There was no 1494 

overlap of the orchard A prediction set with images used in the training and validation sets. The 1495 

trees of test set 2-A were imaged with Canon and Kinect cameras, creating two further image test 1496 

sets (2A-can and 2A–kin, respectively). Finally, the training and validation set images used by Bargoti 1497 

and Underwood (2017a), accessed from https://data.acfr.usyd.edu.au/ag/treecrops/2016-1498 

multifruit/, were employed (Train set 2-bu and Test set 3-bu, respectively). 1499 

Table 3-2. Description of image tile sets used in training, validation (model tuning) and testing. The training, 1500 
validation and test set 1 were from images of trees of two rows from within orchard A (cultivar Calypso).  1501 

https://github.com/tzutalin/labelImg
https://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit/
https://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit/
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Suffixes  ‘can’ and ‘kin’ refers to Canon and Kinect camera images, while ‘bu’ refers to an image set from 1502 
Bargoti and Underwood (2017a). 1503 

Dataset names 
Number 
of images 
or tiles 

Image size 
(pixels) 

Total # 
fruits in 
images 

Cultivar 

Train set 1 1300 612x512 11820 
Calypso 

Validation set 1 130 612x512 861 Calypso 

Test set 1 All 300 612x512 2600 Calypso 

Test set 1 Low 100 612x512 341 Calypso 

Test set 1 Medium 100 612x512 636 Calypso 

Test set 1 High 100 612x512 1623 Calypso 

Test set 2A 34 2448×2048 2151 Calypso 

Test set 2B 12 2448×2048 964 Calypso 

Test set 2C 24 2448×2048 842 Calypso 

Test set 2D 36 2448×2048 1229 Honey Gold 

Test set 2E 36 2448×2048 552 R2E2 

Test set 2A-can 34 6000×4000  2137 Calypso 

Test set 2A-kin 34 1920×1080  1746 Calypso 

Train set 2-bu 1154 500×500 7065 Calypso 

Test set 3-bu 270 500×500 947 Calypso 

 1504 

Trained models were also compared in terms of prediction results for sets of 6 -18 trees in each of 1505 

five orchards (Test set 2, Table 3-2), for which fruit load was manually assessed at harvest. Models 1506 

trained using images from Orchard A (Train set 1) were compared in terms of prediction results for 1507 

the image test sets from different orchards (differing in growing conditions and cultivars, Test set 2 1508 

A-E) and from different cameras (Test set 2A, 2A-can and 2A-kin). 1509 

Further benchmarking of the model developed in the current study was undertaken by comparison 1510 

to the Faster R-CNN(VGG) and Faster R-CNN(ZF) models used by Bargoti and Underwood (2017a), 1511 

employing their training and test sets (Train set 2-bu and Test set 3-bu; Table 3-2).  These images 1512 

were acquired of trees in orchard A in the season preceding imaging undertaken for the current 1513 

study, and were captured in daytime using a 20 Mp Prosilica GT3300c camera and Xenon strobe 1514 

lamps with a very short exposure time to reduce the effect of sunlight. The images are visually more 1515 

complex and challenging compared to the night acquired images of the current study, because the 1516 

images are relatively under-exposed, and the background is illuminated.  1517 

3.2.6 Deep learning architectures 1518 

3.2.6.1 Architectures used 1519 

Open source codes of the deep learning algorithms were downloaded from their official repositories 1520 

through the links provided by Redmon et al. (2016) for YOLO, by Liu et al. (2016) for SSD, and by Ren 1521 

et al. (2015) for Faster R-CNN. As a general naming convention, deep learning model names are 1522 

suffixed with a number representing the input image resolution of the network. In the current paper, 1523 

any model names with suffix –original refers to a model used with the default network resolution, as 1524 

available in the official repositories. The original arhitectures require input of 416×416 and 300×300 1525 

pixels for YOLO and SSD respectively. Faster R-CNN on other hand resizes and rescales the input 1526 

image to make the shorter side equal to 600 pixels  (e.g., 612×512 pixel input image gets  resized to 1527 



Deep learning- fruit detection 
 

P a g e  | 48 

600×717 pixels). The suffix -512 on a model name refers to the models whose network resolution 1528 

was changed to 512×512.   1529 

The algorithms implemented in this study are sourced from open source code available from online 1530 

repositories. The YOLO repository is constantly maintained, with more features added (e.g., object 1531 

tracking) and frequent code optimizations for better speed and accuracy. Performance (speed and 1532 

memory consumption) results for YOLO variants in HPC and Nuvo hardware are presented for the 1533 

code implementation of 12/2018. 1534 

Redmon and Farhadi (2018) note that the YOLO object detection framework allows for a trade-off 1535 

between speed and accuracy. Network resolution can be changed to detect objects on different 1536 

input image resolutions without the need for further training, and the heavy data augmentation 1537 

(modification of training image hue, saturation, rotation, jitter, multiscale etc.) available with YOLO 1538 

allows for the training of a robust model with a lower number of training images.  YOLOv2(tiny) (Fig. 1539 

3-2) is reported to have the highest speed and lowest accuracy of the YOLO variants. According to 1540 

Redmon and Farhadi (2018), YOLOv3 is deeper (i.e., has more convolutional layers; Fig. 3-3) than the 1541 

previous YOLO versions, but is as accurate and 3.0 and 3.8 times faster than SSD and RetinaNet, 1542 

respectively.  1543 

 1544 

Figure 3-2.  Block diagram of architecture YOLOv2(tiny) 1545 

 1546 

Figure 3-3.  Block diagram of architecture YOLOv3 1547 

 1548 

3.2.6.2 YOLO re-design 1549 

An attempt was made to optimize a model for speed, memory requirement and accuracy through a 1550 

re-design of the YOLO framework, to take advantages of both YOLOv2(tiny) (fewer layers and higher 1551 

speed) (Fig. 3-2) and YOLOv3 (multiple detection layers and high accuracy) (Fig. 3-3). The design of 1552 

MangoYOLO-512 incorporated 33 layers (Fig. 3-4), in comparison to 106 layers in YOLOv3 (Fig. 3-3) 1553 

and 16 in YOLOv2(tiny) (Fig. 3-2).  1554 
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 1555 

  1556 

Figure 3-4. Block diagram of architecture of MangoYOLO 1557 

The main rationale behind the modifications was to allow detection on multiple feature maps from 1558 

different layers of the network on the premise that this would allow for accurate detection of mango 1559 

fruit even with a reduced number of layers in the network. Similarly, it was reasoned that features 1560 

from the early stages (layers) would assist detection of smaller and darker fruit whose pixel 1561 

information could be lost when passed through a large number of layers in a deeper network. 1562 

Moreover, the decrease in the number of layers was expected to result in decreased 1563 

computation/detection time. MangoYOLO (Fig. 3-4) (33 layers) was created by modification of 1564 

YOLOv2(tiny) as follows:  1565 

• All 6 max-pooling layers in YOLOv2(tiny) were replaced with convolution layers as 1566 

implemented by YOLOv3. Convolution layers are considered to have the same effect as 1567 

pooling layers but are considered computationally more efficient (Springenberg et al. 1568 

2014).  1569 

• In Tiny YOLOv2, layer 13 (with 1024 filters) is a replica of layer 12 (Fig. 3-2). This layer was 1570 

removed, reducing computation time with no noticeable change in performance.  1571 

• To capture fine-grained information, feature maps from intermediate layers (6, 8 and 10) 1572 

were further processed by up-sampling to merge with feature maps of different 1573 

resolutions followed by four convolution layers, before detection (Fig. 3-4).  1574 

• The first detection was implemented at layer 42 in MangoYOLO, intermediate between 1575 

the positions implemented in YOLOv3, YOLOv2(tiny) (at layer 82 and 15, respectively).  1576 

• Total depth was 33 layers, less than one-third of YOLOv3 (107 layers), and so involves less 1577 

computation resulting in an expected improved detection speed.  1578 

• Unlike YOLOv3 that uses residual block (successive 3×3 and 1×1 convolutional layer with 1579 

skip connections similar to ResNet) (Fig. 3-3), the MangoYOLO architecture involves 1580 

convolution layers as in YOLOv2(tiny) (Fig. 3-4). A residual block is useful for resolving the 1581 

‘vanishing gradient’ problem in training of deeper networks (He et al. 2016). This 1582 

implementation was not necessary for shallower networks like MangoYOLO.  1583 

• As in YOLOv3 implementation, detections in MangoYOLO were made at three scales on 1584 

feature maps of 16×16, 32×32, 64×64 pixels for input images size 512×512 pixels, which 1585 
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were appropriate for the mango image dataset (average fruit size 43×48 pixels and 1586 

minimum fruit size 16×15 pixels in the Train set 1) under current study (Table 3-2). 1587 

3.2.7  Model training 1588 

3.2.7.1 Number of training images 1589 

The number of training images required by deep learning models largely depends on the visual 1590 

complexity of the images in training and test datasets, the network architecture, image 1591 

augmentation techniques and machine learning parameters of the network. Similar to (Sa et al. 1592 

2016) and (Bargoti and Underwood 2017a), an experiment was performed to provide a guide to the 1593 

number of training images required for training of a deep learning architectures, with default 1594 

network parameters. The training set of 1300 tiles was sampled randomly for subsets of 10, 50, 100, 1595 

200, 400, 600, 800, and 1300 tiles, with selection of 100 and 600 subsets repeated three times for an 1596 

estimate of the impact of sampling variation.  MangoYOLO(s) models were created based on training 1597 

with each subset, with optimisation on the number of iterations in each case based on average 1598 

training loss following https://github.com/AlexeyAB/darknet#when-should-i-stop-training.    1599 

3.2.7.2 Pretraining 1600 

All models but MangoYOLO(s) and (sbu) were initialized with pre-trained models/weights (referred 1601 

to as transfer learning) for training. MangoYOLO(s) was trained from scratch (random weight 1602 

initialization of convolution filters) as a custom designed CNN architecture with no existing pre-1603 

trained weights. Pre-trained weights for initializing MangoYOLO(pt) and (ptbu) were obtained by 1604 

training MangoYOLO(s) and (sbu), respectively, on the COCO dataset (following the instruction from 1605 

https://pjreddie.com/darknet/yolo) for 120K iterations. VOC 2007 pre-trained Caffe models (ZF and 1606 

VGG16) were downloaded for Faster R-CNN by running the fetch_fsater_rcnn_models.sh script 1607 

provided on the repository (https://github.com/rbgirshick/py-faster-rcnn, accessed 21/02/2018). 1608 

The ImageNet Large Scale Visual Recognition Competition (ILSVRC) pre-trained VGG16 model was 1609 

downloaded for SSD from the link provided in the official repository 1610 

(https://github.com/weiliu89/caffe/tree/ssd, accessed 16/03/2018). ImageNet pre-trained 1611 

convolutional weights for YOLOv2 (Darknet-19_448.conv.23) and YOLOv3 (darknet53.conv.74) were 1612 

downloaded from the links provided in the YOLO official website 1613 

(https://pjreddie.com/darknet/yolo, accessed 15/03/2018) (Redmon 2018). 1614 

3.2.7.3 Training with fruit images 1615 

Models were trained on the training set (Train set 1; Table 3-2) using default parameters of the 1616 

networks (YOLO, SSD and Faster R-CNN). The trained models were then tuned for the highest F1-1617 

score using the validation set.  F1 score is the weighted average (harmonic mean) of precision and 1618 

recall, and varies between 0 and 1. To tune the model on the validation set, non-maximal 1619 

suppression (NMS) was varied across the range 0.1 to 0.6, in 0.1 steps, but including 0.35 and 0.45, 1620 

while the confidence threshold was kept to the default minimum values for each detection 1621 

framework. The NMS threshold and class confidence threshold associated with the highest F1 score 1622 

were used as the ‘tuned’ parameters for the model for fruit detection on test sets. 1623 

Detection files were generated for the test set using the scripts: test_net.py for Faster R-CNN and 1624 

score_ssd_pascal.py for SSD from their official repositories. Generation of detection files in 1625 

YOLOv2/v3 required passing ‘valid’ as a command line argument to Darknet’s ‘detector’ function. To 1626 

generate precision and recall scores as well as the average precision, the script ‘voc_eval_py3.py’ 1627 

https://github.com/AlexeyAB/darknet#when-should-i-stop-training
https://github.com/rbgirshick/py-faster-rcnn
https://github.com/weiliu89/caffe/tree/ssd
https://pjreddie.com/darknet/yolo
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included in the Faster R-CNN official repository was used. This script was also modified to output the 1628 

highest F1 score and associated confidence cut-off thresholds for model tuning.  1629 

Two models were created using the MangoYOLO architecture, one involving training from scratch 1630 

(no transfer learning used) on the mango fruit training image set (MangoYOLO(s)-512), while the 1631 

second model involved training on the COCO dataset (following https://pjreddie.com/darknet/yolo/) 1632 

for 120K iterations before training on the mango fruit image training dataset (MangoYOLO(pt)-512). 1633 

3.2.8 Model comparisons 1634 

Seven models were compared, relative to human labelling of images, using: test sets 1 (orchard A 1635 

test set tiles) and 2 (images from trees from each of five orchards) (Table 3-2). In the latter case, 1636 

models trained on 512×512 pixel tiles were applied directly on the full (2448×2048 pixels) images by 1637 

setting the model input resolution to 2048×2048 pixels in configuration files. The increase in 1638 

network resolution allowed processing of large images without need for tiling, i.e., the model 1639 

weights remained the same but the network used larger feature maps for fruit detection. Fruit pixel 1640 

size remained the same whether it was from either tiled image or a full image.  1641 

MangoYOLO was also compared to the Faster R-CNN(VGG) and Faster R-CNN(ZF) results of Bargoti 1642 

and Underwood (2017a). For the latter case, a MangoYOLO model (MangoYOLO(sbu)-512) was 1643 

trained from scratch with the training set of Bargoti and Underwood (2017a) (Table 3-2) for 1644 

comparison to a model trained with the night imaging training set used in other exercises in the 1645 

current study (MangoYOLO(s)-512). These exercises were undertaken to gauge model robustness to 1646 

plant phenotype and to lighting conditions. 1647 

The MangoYOLO(s)-512 model, trained on orchard A training tiles extracted from images acquired 1648 

with a Basler camera, was also used in detection of fruit in images from the Canon and Kinect 1649 

cameras for the 17 test trees of orchard A. This exercise was undertaken to demonstrate model 1650 

robustness across camera platforms. 1651 

3.2.9 Orchard fruit load estimation 1652 

To estimate the fruit load of an orchard from a machine vision count of two sides of all trees, a 1653 

correction factor was calculated for ‘hidden’ fruit (i.e., fruit not seen in either side view of the ‘dual-1654 

view’ per tree).  The correction factor per orchard was calculated as a ratio of the sum of the number 1655 

of fruit (human count) in images of each side of the canopy to the hand harvest count per sample 1656 

tree (approximately 18 trees per orchard, Table 3-1). The total number of fruit detected on the block 1657 

by machine vision was multiplied by the correction factor to estimate the total fruit count per 1658 

block/orchard. Three estimates of fruit load for each of the five orchards were made, based on use 1659 

of Faster R-CNN with VGG, YOLOv3 and MangoYOLO models, with comparison to the pack-house 1660 

count of harvested fruit.  Percentage error on the machine vision estimate was calculated as  1661 

𝑆𝐸𝐴×𝐵

𝐴×𝐵
× 100 , where 𝑆𝐸𝐴×𝐵 = 𝐴 × 𝐵 × √(

𝑎

𝐴
)2 + (

𝑏

𝐵
)2  and A is the hidden fruit correction factor and 1662 

a is its associated standard error, B is the machine vision count per tree and b is its associated RMSE. 1663 

3.3 Results 1664 

3.3.1 Number of training images 1665 

The AP of MangoYOLO(s) models in prediction of validation set 1 improved with increasing number 1666 

of training tiles, increasing from a score of 0.925 with just 10 training images, to a plateau around 1667 
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0.98 after about 400 training images (Fig. 3-5). The MangoYOLO(s) model benchmarked to other 1668 

models in this study was created using the full set of 1300 training tiles. 1669 

 1670 

Figure 3-5. Average Precision for MangoYOLO(s)-512 on validation set 1 (Table 2) plotted against the 1671 
number of training images from Training set 1. Error bar represents standard deviation on three repeated 1672 
assessments. 1673 

3.3.2 Model performance 1674 

Eight models using an image resolution of 512×512 pixels were evaluated in terms of speed in 1675 

training and inference, and model size. Image batch size was set at 1 (i.e., only one image loaded 1676 

into memory during training). MangoYOLO(s)/MangoYOLO(pt) had the smallest size and a similar 1677 

GPU memory usage as YOLOv2 (tiny)-512, i.e., the least of the seven models (Table 3-3). 1678 

Table 3-3. GPU memory consumption in training and testing time for models using 512×512 pixel images and 1679 
final size of the trained model weight files. Values assessed on HPC hardware and using Darknet repository 1680 
(https://github.com/AlexeyAB/darknet, accessed on 15/03/2018) in the YOLO variants. 1681 

  
GPU memory consumption Trained weights 

Models  Training (Mb)  Inference (Mb) Size (Mb) 

Faster R-CNN(VGG)-512 2739 1759 533.948 

Faster R-CNN(ZF)-512 1719 1123 230.105 

SSD-512 2119 1259 92.759 

YOLOv3-512 2101 2097 240.533 

YOLOv2-512 1643 1639 261.957 

YOLOv2(tiny)-512 849 845 61.604 

MangoYOLO(s)-512 877 873 53.776 

MangoYOLO(pt)-512 877 873 53.776 

 1682 

  
GPU memory consumption Trained weights 

https://github.com/AlexeyAB/darknet
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Models 
 Training 

(Mb) 
 Inference 
(Mb) Size (Mb) 

Faster R-CNN(VGG)-
512 2739 1759 533.948 

Faster R-CNN(ZF)-512 1719 1123 230.105 

SSD-512 2119 1259 92.759 

YOLOv3-512 2101 2097 240.533 

YOLOv2-512 1643 1639 261.957 

YOLOv2(tiny)-512 849 845 61.604 

MangoYOLO(s)-512 877 873 53.776 

MangoYOLO(pt)-512 877 873 53.776 

A further five models trained using images at original resolution were evaluated. The required 1683 

memory allocation more than five-fold, e.g., YOLOv3 GPU memory requirement on the HPC 1684 

increased from 2101 Mb (Table 3-3) to more than 16 GB (data not shown) for inference using 1685 

512×512 and 2048×2048 pixel image resolution, respectively. This memory requirement exceeded 1686 

capacity so resolution was set to 1888×1888 pixels, for which 16 GB was required (Table 3-5). 1687 

All models achieved good detection results on Validation set 1 (F1 scores > 0.9, Fig. 3-7a), with the 1688 

highest F1scores associated with MangoYOLO(pt)-512 (0.968), MangoYOLO(s) (0.967), SSD-512 1689 

(0.959) and YOLOv3-512 (0.951, Table 3-4). Tiny YOLO-original had the lowest F1 score (0.90). 1690 

MangoYOLO(s)-512 achieved the highest average precision (AP=0.986), with similar results achieved 1691 

for MangoYOLO(pt) (AP=0.983), and SSD-300 (AP=0.982), while the lowest AP was associated with 1692 

Faster R-CNN-VGG-original (AP=0.917) (Table 3-4). 1693 

Table 3-4. Model performance (F1-score and AP)  for fruit count on Validation  set 1 (512×512) images and 1694 
average detection/inference times for different models. Values assessed on HPC hardware and using 1695 
Darknet repository (https://github.com/AlexeyAB/darknet, accessed on 15/03/2018) in the YOLO variants.  1696 

Models F1-score 
Average 
precision 

Inference time 

(sec.) 

Faster R-CNN(VGG)-original 0.936 0.918 0.067 

Faster R-CNN(VGG)-512 0.945 0.953 0.067 

Faster R-CNN(ZF)-original 0.929 0.933 0.037 

Faster R-CNN(ZF)-512 0.939 0.950 0.037 

SSD-300-original 0.950 0.983 0.046 

SSD-512 0.959 0.973 0.070 

YOLOv3-512 0.951 0.967 0.025 

YOLOv2-original 0.916 0.945 0.020 

YOLOv2-512 0.933 0.959 0.020 

YOLOv2(tiny)-original 0.900 0.938 0.010 

YOLOv2(tiny)-512 0.917 0.953 0.010 

MangoYOLO(s)-512 0.967 0.986 0.015 

MangoYOLO(pt)-512 0.968 0.983 0.015 

 1697 

The detection/inference times on 512×512 pixels images was lower for YOLO models than other 1698 

models (Table 3-4). The shortest inference time was achieved by YOLOv2(tiny) (10 ms) and 1699 

MangoYOLO(pt)-512/MangoYOLO(s)-512 (15 ms), while SSD-512 model required 70 ms (on a HPC 1700 

resource). For full canopy images (2048×2048 pixels), MangoYOLO(s)/MangoYOLO(pt) achieved a 1701 

good detection speed of 70 ms per image (~ 14 fps), and consumed the least memory of the three 1702 
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models compared (Table 3-5). For the test set-Overall, the lowest Root Mean Square Error (RMSE) 1703 

and highest R2 (correlation coefficient of determination) was associated with the MangoYOLO 1704 

models (Table 3-6). For the same network resolution, Faster R-CNN(VGG) out-performed Faster R-1705 

CNN(ZF) (Table 3-6).  1706 

Table 3-5.  Detection speed and memory usage for three models used with full canopy images (2048×2048). 1707 
Values assessed on HPC hardware and using Darknet repository (https://github.com/AlexeyAB/darknet: 1708 
accessed on 21/11/2018) in the YOLO variants. Within the GPU memory constraint the maximum network 1709 
resolutions for YOLOv3 were 1888×1888 and 1184×1184 for HPC and Nuvo computing platforms respectively 1710 
(note: YOLO requires the network input resolution to be multiple of 32). 1711 

Model  

Network input 
resolution 

(pixels) 

HPC 
Detection 
time (ms) 

HPC 
GPU memory 

(Mb) 

Nuvo 
Detection 
time (ms) 

Nuvo 
GPU memory 

(Mb) 

MangoYOLO(s)/MangoYOLO(pt) 512×512 <1 879 8 833 
YOLOv3 512×512 <1 2103 30 2055 
YOLOv2(tiny) 512×512 <1 851 5 834 
MangoYOLO(s)/MangoYOLO(pt) 2048×2048 20 4513 70 4417 
YOLOv3 1184×1184 - - 123 6805 
YOLOv3 1888×1888 20 16273 - - 
YOLOv2(tiny) 2048×2048 10 3279 51 3270 

 1712 

 1713 

Table 3-6. Model performance (R2, Root Mean Square Error (RMSE) of prediction and Bias) for fruit counts 1714 
using the overall test set (Test set 1 All) and subsets of low, medium and high frequency of fruit occlusion 1715 
(n=100 tiles in each set). Units for RMSE and bias are fruit number per tile. Best result within a column is 1716 
indicated in bold. Input resolution was 416×416 pixels for YOLO original variants. Images were rescaled for 1717 
the shorter side to be 600 pixels for Faster R-CNN original variants. 1718 

 Test set 1 All Test set 1 Low Test set 1 Medium Test set 1 High 

Model R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 RMSE Bias 

Faster R-CNN(VGG)-
original 0.97 2.25 -1.24 0.96 0.68 -0.14 0.92 1.67 -1.02 0.90 3.46 -2.6 
Faster R-CNN(VGG)-
512 0.98 1.22 -0.43 0.98 0.44 0.01 0.96 0.97 -0.33 0.95 1.83 -1 
Faster R-CNN(ZF)-
original 0.95 2.19 -0.97 0.92 0.85 0.05 0.87 1.75 -0.74 0.89 3.25 -2.2 

Faster R-CNN(ZF)-512 0.96 2.06 -0.99 0.95 0.68 -0.10 0.94 1.28 -0.63 0.90 3.25 -2.2 

YOLOv2(tiny)-original 0.95 1.66 0.09 0.92 0.90 0.31 0.92 1.38 0.43 0.89 2.35 -0.5 

YOLOv2(tiny)-512 0.97 1.46 0.49 0.91 1.00 0.45 0.93 1.35 0.55 0.93 1.89 0.46 

YOLOv2-original 0.96 1.85 -0.90 0.94 0.76 -0.02 0.93 1.28 -0.63 0.93 2.83 -2.1 

YOLOv2-512 0.97 1.33 0.13 0.95 0.70 0.27 0.92 1.21 0.05 0.93 1.82 0.08 

YOLOv3-512 0.98 1.18 -0.18 0.96 0.60 0.02 0.95 0.95 -0.18 0.95 1.72 -0.4 

SSD-300 0.98 1.31 -0.52 0.98 0.44 -0.01 0.94 1.19 -0.47 0.95 1.88 -1.1 

SSD-512 0.98 1.48 -0.65 0.96 0.60 0.02 0.95 1.26 -0.62 0.95 2.14 -1.4 

MangoYOLO(s)-512 0.98 1.09 -0.39 0.98 0.44 -0.05 0.95 1.04 -0.39 0.96 1.51 -0.7 

MangoYOLO(pt)-512 0.98 0.99 0.16 0.96 0.64 0.19 0.96 0.81 0.03 0.97 1.37 0.25 

 1719 
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3.3.3 Model robustness 1720 

3.3.3.1 Camera comparison and daylight imaging 1721 

For images acquired of the same trees under the same lighting, Canon images were the brightest 1722 

and Kinect images were the darkest (Fig. 3-6). MangoYOLO(pt) and MangoYOLO(s) models were 1723 

employed in estimation of fruit number per image for images of Test set 2A (17 trees in orchard A) 1724 

collected using three cameras (Table 3-7). The MangoYOLO(pt) model produced higher fruit counts 1725 

than the MangoYOLO(s) model, but with higher false positive rates and a lower R2.  The highest false 1726 

positive rate (ratio of counts of false positive detections to total detections expressed as percentage) 1727 

was associated with detection using MangoYOLO(pt) on Canon images. It was observed that in 1728 

resizing the Canon images from 6000×4000 pixels to 2048×2048 pixels that image of some leaves 1729 

took a curved shape similar to fruit. Moreover, false detections were also registered for parts of 1730 

branches and tree trunks where the light intensity was high. Less fruit detection occurred for Kinect 1731 

images using both MangoYOLO(s) and MangoYOLO(pt) models.  1732 

 1733 

Figure 3-6.  Example of fruit detection on images of same tree (Test set 2A) for different cameras (Basler, 1734 
Canon and Kinect), using a MangoYOLO(s) model trained on Train set 1. 1735 

 1736 

Table 3-7. Regression statistics for fruit detection by MangoYOLO(s) and MangoYOLO(pt) on sets Test set 2 1737 
A, Test set 2 A-can and Test set 2 A-kin captured using Basler, Canon and Kinect cameras respectively.  1738 

Test sets 

Original 
image 
resolution 

Network 
input 
resolution Model 

ground 
truth 
fruit # 

total 
detected 
fruit # R2 RMSE Bias 

false 
positive 
rate % 

Test set 2 A 2448×2048 2048×2048 MangoYOLO(s) 2163 2103 0.996 2.24 1.77 0.00 
Test set 2 A 2448×2048 2048×2048 MangoYOLO(pt) 2163 2201 0.987 3.25 -1.12 0.40 
Test set 2 A-can 6000×4000 2048×2048 MangoYOLO(s) 2137 2014 0.987 4.40 3.62 0.44 
Test set 2 A-can 6000×4000 2048×2048 MangoYOLO(pt) 2137 2455 0.964 10.90 -9.35 6.31 
Test set 2 A-kin 1920×1080 1024×1024 MangoYOLO(s) 1746 1512 0.981 7.39 6.88 0.00 
Test set 2 A-kin 1920×1080 1024×1024 MangoYOLO(pt) 1746 1560 0.965 6.52 5.47 0.32 

 1739 

3.3.3.2 Bargoti and Underwood images 1740 

MangoYOLO-512 was further benchmarked on the mango dataset created by Bargoti and 1741 

Underwood (2017a) (Table 3-8). Poor results were obtained for the models trained on the night 1742 

images acquired with the Basler camera when applied on the daytime/Prosilica camera images. In 1743 
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contrast, when a MangoYOLO model was trained using the Bargoti and Underwood (2017a) daytime 1744 

images, it performed reasonably well on the night-Basler images. MangoYOLO trained using the 1745 

Bargoti and Underwood (2017a) training set (from scratch or pretrained on the COCO data set) 1746 

outperformed YOLOv3.  1747 

Table 3-8. Prediction results for models trained and tested on the image sets used in (Bargoti and 1748 
Underwood 2017a). Results for the Faster R-CNN(ZF) and Faster R-CNN(VGG) models are from Bargoti and 1749 
Underwood (2017a). YOLO models sbu, and ptbu refer to models s and pt trained on bu (Bargoti and 1750 
Underwood 2017a) dataset. Network resolution for YOLO variants was set to 512×512 pixels for training and 1751 
testing. 1752 

Train Set Test set Model AP F1 R2  RMSE Bias 

Train set 1 Test set 1-Overall MangoYOLO(s) 0.991 0.959 0.98 1.09 -0.39 

Train set 1  Test set 1-Overall  MangoYOLO(pt) 0.989 0.956 0.98 0.99 0.16 

Train set 2-bu Test set 3-bu MangoYOLO(sbu) 0.927 0.890 0.93 1.12 0.17 

Train set 2-bu Test set 3-bu MangoYOLO(ptbu) 0.920 0.893 0.91 1.33 0.42 

Train set 2-bu Test set 3-bu  YOLOv3(sbu) 0.889 0.875 0.92 0.18 0.01 

Train set 1 Test set 3-bu  MangoYOLO(s) 0.420 0.482 0.36 3.96 2.46 

Train set 1  Test set 3-bu  MangoYOLO(pt) 0.463 0.535 0.39 0.39 2.38 

Train set 2-bu  Test set 1-Overall MangoYOLO(sbu) 0.834 0.868 0.86 4.60 3.13 

Train set 2-bu Test set 1-Overall MangoYOLO(ptbu) 0.931 0.913 0.95 2.58 1.65 

Train set 2-bu Test set 3-bu Faster R-CNN (VGG)  - 0.908  -  -  - 

Train set 2-bu Test set 3-bu Faster R-CNN (ZF)  -  0.876 -   -  - 

 1753 

3.3.3.3 Orchard and cultivar 1754 

Models trained using a set of images from one orchard and one cultivar (Calypso) only (i.e., Train set 1755 

1) were employed in evaluation of fruit load of orchards varying in location, growing condition and 1756 

cultivar.  Despite variations in fruit shape and leaf and fruit colour between orchards and cultivars, 1757 

all models performed well when applied to images of other orchards, without further training or fine 1758 

tuning (Fig. 3-7, Table 3-9). The best performance metrics (highest R2 and lowest RMSE) on the 1759 

relationship between machine vision counts of each sides of a tree and human count was achieved 1760 

using the MangoYOLO(pt) model in four orchards and using the MangoYOLO(s) model in one 1761 

orchard, relative to Faster R-CNN(VGG) and YOLOv3 models (Table 3-9). The poorest result for all 1762 

models was associated with orchard B which contained trees with larger canopies than the other 1763 

orchards. 1764 
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 1765 

Figure 3-7.  Example of fruit detection on images of cultivars HoneyGold and R2E2, using a MangoYOLO(s)-1766 
512 model trained on cultivar Calypso images (orchard A).  1767 

 1768 

Table 3-9. Regression statistics of machine vision count against human count of fruit on images of sample 1769 
trees (Table 3-1) for five orchards. Best result within a row is indicated in bold. Network resolution for Faster 1770 
R-CNN and MangoYOLO models was set to 2048×2048 but for YOLOv3 it was 1888×1888 (maximum possible 1771 
within available GPU memory of 16 Gb). 1772 

  
Faster R-CNN(VGG) YOLOv3 MangoYOLO(s) MangoYOLO(pt) 

Orchard  
Mean 
fruit/tree 
image 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

A 63.3 0.966 6.88 0.980 3.48 0.984 4.09 0.988 2.52 

B 80.3 0.955 14.53 0.957 10.33 0.951 11.79 0.964 8.71 

C 35.1 0.981 6.76 0.983 5.05 0.981 5.90 0.990 3.20 

D 34.1 0.968 6.61 0.988 4.77 0.988 4.91 0.977 3.91 

E 15.3 0.940 2.93 0.873 2.42 0.931 2.74 0.946 2.23 

 1773 

3.3.4 Orchard fruit load estimation 1774 

A correction factor for the occluded fruit on the trees was calculated as the average ratio of ground 1775 

truth human fruit count per tree image to the harvest count per tree. This value was estimated from 1776 

the data of the sample trees in each orchard, following the approach of Anderson et al. (2018). The 1777 

correction factors and their standard deviations were 1.69 + 0.5, 1.63 + 0.46, 2.43 + 1.21, 1.05 + 0.17 1778 

and 1.32 + 0.46 for orchards A, B, C, D and E respectively. The total number of fruits detected in the 1779 

images for an orchard was multiplied by the common correction factor to estimate the fruit counts 1780 

(fruit load) per orchard (Table 3-10).  The percentage error on the orchard estimates combined the 1781 

error of the correction factor estimate and the machine vision count estimate, varying between 8 1782 

and 24% across orchards and models. 1783 
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Table 3-10. Pack-house fruit count and number of fruits detected for each orchard using dual view imaging 1784 
six weeks before harvest, for each of five orchards.  Best result within a row is indicated in bold. Netwo rk 1785 
resolution was set to 2048×2048 for Faster R-CNN and MangoYOLO models, and to 1888×1888 (maximum 1786 
possible within available GPU memory of 16 Gb) for YOLOv3.  1787 

 
Orchard  A B C D E 

 
Packhouse fruit # 97382 26273 40837 36490 2110 

Machine vision model 
      

Faster R-CNN(VGG) fruit # estimate 93694 25162 41337 40151 2343 
 

% error estimate 13 21 24 20 21 
 

% difference to 
packhouse count 

-4 -4 1 10 11 

YOLOv3 fruit # estimate 100098 27102 43379 41689 2409 
 

% error estimate 9 17 20 14 18 
 

% difference to 
packhouse count 

3 3 6 14 14 

MangoYOLO(s) fruit # estimate 98029 26453 42179 41146 2383 
 

% error estimate 10 19 22 15 20 
 

% difference to 
packhouse count 

1 1 3 13 13 

MangoYOLO(pt) fruit # estimate 101857 27742 44501 42020 2400 
 

% error estimate 8 16 17 12 17 
 

% difference to 
packhouse count 

5 6 9 15 14 

 1788 

The machine vision estimates based on MangoYOLO(s) and Faster R-CNN(VGG) were closest to the 1789 

packhouse counts in two and three orchards, respectively. The higher error for the orchard D 1790 

estimate was associated with small trees in which the same fruit could be seen from both sides of 1791 

the tree.  1792 

 1793 

3.4 Discussion 1794 

3.4.1 Architecture 1795 

In the current study, features of two YOLO variants (YOLOv3 and YOLOv2(tiny)) were combined to 1796 

create a new architecture (MangoYOLO).  This architecture provided a processing speed appropriate 1797 

to real time operations, with use of only 33 layers for MangoYOLO compared to 107 layers in 1798 

YOLOv3, while the accuracy was on par to (or better than) other detectors for the task of mango 1799 

fruit detection in orchard.   1800 

The convolutional and pooling layers used in YOLO gradually decrease the spatial dimension with 1801 

increasing depth of the network, such that detection of some objects (e.g., small and non-obvious or 1802 

dark fruits) may become difficult at lower resolutions. Predicting layers were implemented at three 1803 

different resolutions of the feature maps, as in YOLOv3, concatenating meaningful semantic 1804 
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information from the deeper layers with fine grained information from the earlier layers for better 1805 

detection of objects. The first detection layer was implemented at layer 42 in MangoYOLO, 1806 

compared to layer 82 in YOLOv3, in an attempt to capture information from earlier layers of the 1807 

network. The superior performance of MangoYOLO compared to YOLOv3 on the mango test set 1808 

indicates that this design was successful. This result demonstrates that use of very deep networks 1809 

may not yield better results, depending on the context of deployment, and is consistent with advice 1810 

that architecture should be customised to the application. 1811 

There is a chemometric adage that there should be ‘no prediction without interpretation and no 1812 

interpretation without prediction’ (e.g., Herold B et al. (2009).  However, it is difficult to interpret 1813 

the multidimensional learning capacity of the deep-learning models.  The output of convolution 1814 

filters can be visualized for interpretation of the features learned and saliency/heat maps can be 1815 

generated to determine the parts of the images that were more important to the model for object 1816 

detection and classification tasks (Zeiler and Fergus 2014), however in the current application this 1817 

merely indicates that regions of the image associated with the whole fruit were utilised in the 1818 

model. As the deep learning models performed well (high F1 score and AP) in cross cultivar 1819 

generalization and detection of green fruit against a green background it can be inferred that models 1820 

weighted object edge and texture features rather than object colours.  An infrequent error was 1821 

associated with fruit covered by foliage on all side of its perimeter, thus lacking defined edges. This 1822 

error is also consistent with the interpretation that the deep learning models weighted edge or 1823 

shape features of fruit. 1824 

3.4.2 Training 1825 

3.4.2.1 Pre-training 1826 

Mango-YOLO(s) was trained on the mango orchard training set only, while MangoYOLO(pt) involved 1827 

pre-training on a COCO dataset for 120K iterations before training on the mango training set. The 1828 

transfer learning of the features learned on the larger dataset was of minor value as the validation 1829 

results of MangoYOLO(pt) was similar to MangoYOLO(s). 1830 

Pre-training MangoYOLO on the COCO dataset (MangoYOLO(pt)) did not significantly improve 1831 

performance compared to a model that was not initialized with COCO trained weights 1832 

(MangoYOLO(s)). Possibly the transfer learning was not helpful as the COCO dataset does not 1833 

contain images of mango fruit. Perhaps a more likely explanation is that the detection task is 1834 

relatively simple, and the shallower CNN architecture and heavy data augmentation techniques used 1835 

in MangoYOLO allow for training of a robust model using a modest number of images.  1836 

3.4.2.2 Number of training images 1837 

The training image set should encompass the variation expected in prediction images.  With data 1838 

augmentation (hue, saturation, jitter and multiscale), the performance (AP) of MangoYOLO(s) 1839 

models plateaued with use of >400 tiles in the training set.  The use of at least 1000 images is 1840 

recommended to provide some safety margin.  MangoYOLO models trained with the full training set 1841 

of 1300 tiles were robust in prediction of images from other orchards and from other cameras.  1842 

In contrast, Bargoti and Underwood (2017a) reported that for images acquired of the same orchard 1843 

(orchard A) in a previous year, a performance asymptote was not reached for a Faster R-CNN within 1844 

the available set of 1154 training images.  The difference between the two studies may result from 1845 

the differences in lighting conditions. Night imaging results in suppression of background issues and 1846 

often highlights fruit through specular reflection from the curved fruit surface (Payne et al., 2014). 1847 
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Presumably night imaging allows for the quicker convergence, using a lower number of images, with 1848 

consequent saving in the labour cost for labelling.  1849 

The standard deviation (SD) on AP scores (Fig. 3-5) for thee repeated training exercises using a 1850 

randomly selected 100 tiles (SD = 0.0053) was only slightly higher than that for training with 600 tiles 1851 

(SD = 0.0041), indicative of a low level of variance in the night imaged training set. Indeed, an AP 1852 

score of 0.925 was achieved for the validation set with use of just 10 training images. This result is 1853 

ascribed to the heavy data augmentation used by YOLO. 1854 

3.4.3 Model performance 1855 

3.4.3.1 Comparison to previous reports   1856 

Fruit and leaf colour, shape and texture can vary with cultivar and growing condition/stage. The 1857 

prediction results of handcrafted algorithms based on colour, texture and shape reported by Payne 1858 

et al. (2014) and Qureshi et al. (2017) for mango fruit detection were poor relative to the results of 1859 

the deep learning architectures reported in the current study, when used with images or canopies 1860 

from new orchards and cultivars. For example, Qureshi et al. (2017) reported a RMSE of 11.0 1861 

fruit/tree for fruit load on prediction set images, in comparison to RMSE values < 8.7 fruit/image in 1862 

the current study (Table 3-9). The result confirms previous observations of the applicability of deep 1863 

learning architectures for the fruit detection task. 1864 

3.4.3.2 Performance characterisation 1865 

Application of deep learning models directly on higher resolution images required larger memory 1866 

allocation, with 2048×2048 images requiring more than 16 GB of memory for use of YOLOv3-512 1867 

(Table 3-5). If GPU memory becomes a bottleneck for detection on large images, the tiling approach 1868 

used by Bargoti and Underwood (2017a) can be adopted, wherein detection is done by sliding 1869 

smaller windows over the image and finally NMS is applied collectively on the detections. However, 1870 

this route is not required with the MangoYOLO model, given its low memory requirement. 1871 

Given data augmentation, all of the ‘off-the-shelf’ deep learning architecture performed well in fruit 1872 

detection, with MangoYOLO achieving the highest F1 score and YOLOv2(tiny) the greatest speed.  1873 

The detection accuracy results (F1 scores) of the current study were slightly higher than those 1874 

reported by Bargoti and Underwood (2017a) who used Faster R-CNN(VGG/ZF) with daytime images 1875 

of orchard A of the current study. For the same network resolution, Faster R-CNN(VGG) out-1876 

performed Faster R-CNN(ZF) (Table 3-4), consistent with the report of Bargoti and Underwood 1877 

(2017a).  1878 

The MangoYOLO(s) and (pt) models were equally robust (i.e., similar AP and F1 scores) in prediction 1879 

of fruit load per image across diverse datasets (orchard, camera), although MangoYOLO(pt) achieved 1880 

the lowest RMSE of all models tested for fruit detection across different orchards (Table 3-7). 1881 

MangoYOLO models trained on the  Bargoti and Underwood (2017a) daytime images achieved 1882 

similar performance (F1 scores) compared to the results reported by Bargoti and Underwood 1883 

(2017a) using a Faster R-CNN framework with VGGNet and ZFNet (Table 3-8). Of practical 1884 

significance, the MangoYOLO model trained on daytime ProSilica camera images performed well in 1885 

prediction of night Basler camera images. 1886 

Bargoti and Underwood (2017a) reported that clustered fruits represented the greatest detection 1887 

error source in the mango fruit-on-tree detection task. In the current study, the bounding box 1888 

approach was adequate for detection of fruits in clusters. Therefore, the labour intensive method of 1889 
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instance segmentation for data labelling was not required.  False detections on the Basler images 1890 

were associated with curved leaves with contour similar to the fruit and some over-exposed areas of 1891 

the branches and tree trunk. There were very few cases where detections for two fruit were merged 1892 

into one when one fruit was heavily occluded by the other fruit.  1893 

The false detection rate was high (at 6.3%) for MangoYOLO(pt) when applied to images from the 1894 

Canon camera (Table 3-7). The false detection mostly occurred from resizing of Canon images, 1895 

resulting in image distortion, with leaves taking on a curved shape similar to fruit. Compared to the 1896 

number of fruit detections on the Basler images, there were fewer detections for Kinect images 1897 

presumably due to the lower luminosity (under-exposure) of those images, and more detections on 1898 

Canon images (higher luminosity). There were also more false detections on Canon images, resulting 1899 

from over exposed regions on branches, trunks and leaves.  1900 

3.4.4 Tree and orchard fruit load estimation 1901 

The deep learning methods performed well in detection of fruit in images. However, dual view 1902 

images may not reveal all fruit on a tree with a denser canopy or may result in double counting of 1903 

fruits if the same fruit is visible on both images of the same tree. An attempt was made to make an 1904 

estimation of the proportion of hidden fruits as a correction factor for yield prediction, based on 1905 

image and total counts of the number of fruits on the sample trees of Table 3-1. MangoYOLO(pt) 1906 

yield estimations between 4.6 and 15.2 % of packhouse counts were achieved, however errors on 1907 

these measurements were estimated to be large (Table 3-10).  The application of a single correction 1908 

factor based on a few sample trees across an entire orchard constitutes a source of error for orchard 1909 

yield estimation as the correction factor may vary with tree canopy density and fruit distribution 1910 

within the tree canopy, even within an orchard of consistent management practice, as evident in the 1911 

error term of this factor.  1912 

Future studies should consider system features to improve the estimate of fruit per tree.  Image 1913 

masking based on the depth, e.g., using a Microsoft Kinect- time of flight sensor (Wang et al. 2017b), 1914 

could be used to avoid double fruit counting by limiting the count from a given image to the near 1915 

side of the imaged canopy. Stein et al. (2016) addressed the issue of hidden fruit in dual view 1916 

imaging by using a multi-view approach, involving spatial localisation of fruit from approximately 25 1917 

images per tree side, given input of inertial navigation system and geolocation data.  Ideally a 1918 

tracking algorithm would be used without input of inertial navigation system and geolocation data, 1919 

to minimize operational complexity and cost. 1920 

3.5 Conclusion 1921 

This work should encourage future researches to customise deep learning models for a given 1922 

application task. The multiple image sets of fruit on canopy of the current study have been made 1923 

available, for use by other researchers for benchmarking performance of new algorithms. 1924 

A deep learning architecture, MangoYOLO, was constructed, based on YOLOv3 and YOLOv2(tiny).  A 1925 

F1 score of 0.97 for fruit detection in images was achieved, which, combined with a correction factor 1926 

for hidden fruits, gave orchard yield estimates within 15% of packhouse tallies.  With detection of 1927 

fruit in the image now possible in real-time, the limiting factor for accurate prediction of the block 1928 

yield using dual view imagery of trees is canopy occlusion of fruit. 1929 

Pre-training of the MangoYOLO model on larger datasets like ImageNet, COCO and PascalVOC is 1930 

recommended but not essential, given training with data augmentation on around 1000 tiles of fruit 1931 

on tree. The architecture is recommended for the task of estimation of mango fruit in tree images in 1932 
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comparison to YOLOv3, YOLOv2(tiny), Faster R-CNN(VGG) and Faster R-CNN(ZF) in terms of memory 1933 

use, speed and accuracy.  This model can be used with images acquired from a farm vehicle 1934 

operated at about 6 km/hr for real time fruit detection and can be deployed for different image 1935 

resolutions without need for re-training. The model should be tested with other fruit types and 1936 

other imaging conditions. Increasing image resolution and use of higher illumination levels may 1937 

further improve the fruit detection rate, and further training of the models with images from other 1938 

cultivars could improve performance in use with those cultivars.  1939 
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Chapter 4. Deep learning for mango panicle stage 1964 

classification 1965 

At the time of initial submission of this thesis, this chapter had been submitted for consideration by 1966 

the journal ‘Agronomy’ – special issue “In-field Estimation of Fruit Quality and Quantity”. This 1967 

manuscript was subsequently accepted with minor revisions, and a revised version was accepted. 1968 

The published version of this chapter has been included in the Appendix-B of this thesis. 1969 
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Abstract 1987 

A light and a deep learning framework (YOLO and R2CNN) were trained and tested for categorization 1988 

of mango panicles into several developmental stages and compared to a segmentation method.  The 1989 

use of upright and rotated bounding boxes was also compared, in context of the R2CNN method. A 1990 

correlation R2 = 0.90 was achieved between panicle counts made using the R2CNN method and the 1991 

results of a pixel-based segmentation method of a previous publication for 1,988 tree images (994 1992 

trees) of an orchard. For a validation set of images from the same orchards as the training set, 1993 

RMSEs on panicle counts  of 16.0, 25.8 and 32.3 panicles per tree image, with Mean average 1994 

precision (mAP) scores of 69.1, 62.5 and 70.9% and weighted F1-scores of 76.1, 74 and 82,  1995 

were achieved using YOLO, R2CNN and R2CNN-upright models (R2CNN trained on upright bounding 1996 

boxes), respectively. For a test set of images involving a different cultivar and use of a different 1997 

camera, the R2 for machine vision (two images per tree) to human count of panicles per tree was 1998 
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0.803, 0.805 and 0.761 for YOLO, R2CNN and R2CNN-upright models, respectively.  These predictions 1999 

involved images from different camera hardware and cultivar to that used in training, 2000 

indicating models can generalise well. In summary, there was no consistent benefit in use of rotated 2001 

over upright bounding boxes in this application and, while the YOLO model was superior in terms of 2002 

total panicle count, R2CNN proved more accurate for panicle stage classification. To demonstrate 2003 

practical application, panicle counts were made weekly for an orchard, with a peak 2004 

detection routine applied to document multiple flowering events.   2005 

4.1 Introduction 2006 

Mango trees produce panicles bearing hundreds of inconspicuous flowers, of which at most three or 2007 

four flowers will develop fruit, although frequently only one or none will so develop.  The 2008 

assessment of the number of panicles on a tree thus sets a maximum potential for the crop yield of 2009 

that season, while the assessment of stage of panicle development is useful for assessment of the 2010 

time spread of flowering, and thus the likely time spread of the harvest period.  Mapping areas of 2011 

early flowering can also guide selective early harvesting. Panicle detection may also inform selective 2012 

spraying operations.   However, the manual assessment and recording of panicle number and stage 2013 

is a tedious task.    2014 

Machine vision has been applied for assessment of the level of flowering for several tree crops 2015 

where the flowers are easily distinguishable from the background based on colour thresholding. For 2016 

example, Aggelopoulou et al. (2011) reported a prediction accuracy of 82% on apple flower 2017 

count, relative to a manual count, Dorj and Lee (2012) achieved a R2 of 0.94 between machine vision 2018 

and manual count of tangerine flowers, Horton et al. (2017) claimed an average detection rate of 2019 

83% on peach flowers, Hočevar et al. (2014) reported a R2 of 0.59 between machine vision 2020 

and manual count of apple flower cluster counts, and Oppenheim et al. (2017) obtained a F1-score 2021 

of 73% for tomato flower detection. Underwood et al. (2016) avoided a direct count of flowers, but 2022 

rather characterised almond ‘flowering intensity’ in terms of a ratio of flower and canopy pixels, 2023 

reporting a poor relationship (R2 = 0.23) for this index for a given tree between two seasons. 2024 

All these reports were based on segmentation routines, generally involving colour given the 2025 

obvious colour difference for flowers of these species and background.  2026 

There are some reports on use of machine vision for assessment of number of flowering panicles 2027 

(i.e., inflorescences consisting of multiple flowers). For example, Diago et al. (2014) used intensity 2028 

level in LAB colour space as an index to the number of grape flowers in inflorescences 2029 

imaged against a black background. A R2 of 0.84 against human count was achieved. Guo et al. 2030 

(2015) used SIFT descriptors/features along with SVM to detect rice flower panicles in images.   2031 

Recent review papers have emphasised the use of neural network and deep learning in agricultural 2032 

machine vision in general (Kamilaris and Prenafeta-Boldú 2018) and for fruit detection and yield 2033 

estimation (Koirala et al. 2019a). For example, Gongal et al. (2015) noted that better performance in 2034 

fruit detection and localization was achieved with use of neural networks compared to traditional 2035 

models based on colour thresholding and hand-engineered feature extraction methods. Koirala et al. 2036 

(2019b) introduced the use of lighter weight, single shot detectors such as YOLO, which allow faster 2037 

computation times. Dias et al. (2018a) used Clarifai (Zeiler and Fergus 2014) CNN architecture to 2038 

extract features from the possible flower regions obtained from super-pixel segmentation followed 2039 

by SVM (Cortes and Vapnik 1995) for flower detection. For apple, peach and pear datasets, this 2040 

method outperformed other methods of that time that were based on HSV and SVM colour 2041 

thresholding methods. Extending their earlier work, Dias et al. (2018b) used a fully convolutional 2042 

neural network (FCN) from Chen et al. (2018) for flower detection on tree images of apple, peach 2043 
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and pear. A region growing refinement (RGR) algorithm was implemented to refine the 2044 

segmentation output from FCN. This method achieved F1 scores of 83, 77, 74 and 86 % on two 2045 

apple, peach and pear flower datasets respectively, outperforming their previous Clarifai CNN 2046 

method (Dias et al. 2018a) and the HSV-based method.  2047 

Mango panicle size changes with developmental stage, increasing through bud break, ‘asparagus’, 2048 

elongation, anthesis (flower opening) to the full bloom ‘Christmas tree’ stage, then decreasing with 2049 

flower drop. Panicle structure is thus more complex than that of a single flower. Therefore, machine 2050 

vision detection of mango panicles is more challenging compared to the detection of the single 2051 

flowers of apple, citrus and almond trees.  Deep learning methods of object detection may suit 2052 

the task of detection and counting of panicles by developmental 2053 

stage, through automatic learning of useful features for classification (Koirala et al. 2019a).    2054 

There are two reports on the use of machine vision to assess mango flowering. Wang et al. 2055 

(2016) and Wang et al. (2018b) used the traditional method of pixelwise segmentation to segment 2056 

panicle pixels from canopy pixels, with results expressed either as panicle pixel count per tree or as 2057 

the ratio of panicle to canopy pixel count (termed ‘flowering intensity’). This procedure was 2058 

implemented on images obtained at night using artificial lighting, processed with a colour threshold 2059 

followed by SVM classification to refine the segmentation results. Wang et al. (2018b) also reported 2060 

on use of a Faster R-CNN (Ren et al. 2015) deep learning technique to count panicles. This work was 2061 

limited to estimation of the extent of flowering and the time of peak flowering event. A R2 of 0.69, 2062 

0.78 and 0.84 between machine-vision flowering intensity and in-field human count of panicles per 2063 

tree for 24 trees was reported for the segmentation method and a deep learning Faster R-CNN 2064 

framework to using dual and multi-view imaging approaches, respectively.    2065 

These earlier reports employed upright bounding boxes.  However, panicles are oriented in some 2066 

range of angles. Upright bounding boxes will therefore not fit tightly around the object 2067 

perimeter (Fig. 4-1), and a larger amount of background signal will be included in the object class for 2068 

training. This could adversely affect the classification accuracy of the model. Koirala et al. 2069 

(2019a) advised use of an annotation bounding box as tight as possible around the objects to avoid 2070 

background noise in the training image sets. R2CNN (Rotational Region CNN for Orientation Robust 2071 

Scene Text Detection) (Jiang et al. 2017) is a modification of the Faster R-CNN  object 2072 

detection framework to incorporate training on rotated bounding box annotations for detecting 2073 

arbitrarily-oriented objects in images. This modified framework seems suited to the task of panicle 2074 

detection. 2075 

 2076 

 2077 
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Figure 4-1. Left to right: original image, upright bounding box and rotated bounding box  2078 

In the current paper, the task of panicle detection task is extended to another level through 2079 

classification to developmental stage, with comparison of a large (R2CNN framework with 2080 

ResNet101 CNN) and a small (YOLO framework with MangoYOLO CNN) object detection 2081 

architecture. To the authors’ knowledge, the current study is the first to classify the stage of 2082 

flowering for an on-tree fruit crop and is the first report on use of the rotated bounding box method 2083 

of R2CNN for flower panicle detection. The current study also utilizes the imaging hardware used 2084 

by Wang et al. (2018b), allowing for a direct comparison of results of the traditional machine 2085 

learning approach used by Wang et al. (2018). Field relevance is demonstrated by assessment 2086 

of orchard flowering at regular intervals (e.g., weekly) to provide information on timing of flowering 2087 

peaks, for use in estimation of harvest timing.   2088 

4.2 Materials and methods 2089 

4.2.1 Image acquisition 2090 

Tree images of orchard A (Table 4-1) were acquired at night  every week from August 16 to October 2091 

18, 2018, using a 5 MP Basler acA2440-75µm RGB camera and a lighting rig (700 W LED floodlight ) 2092 

mounted on a farm vehicle driven at a speed of about 5 km/hr, as described by (Wang et al. 2093 

2018b).  The orchard contained 994 trees, and thus each weekly imaging event captured 1,988 2094 

images.   2095 

The image set of 24 trees from orchard B (Table 4-1; from Wang et al. (2018b) were used as a test 2096 

set. In that study, images were acquired using a 24 MP Canon (DSLR 750D) camera. The number of 2097 

panicles on these trees was manually counted, with categorisation to developmental stage. For both 2098 

orchards, trees were imaged from each side, with a view from each inter-row (‘dual-view’ imaging).  2099 

 2100 

Table 4-1. Orchard and imaging description 2101 

Orchard name Location (lat., long.) Variety Camera Image resolution 

Orchard A -23.032749, 150.620470 Honey Gold Basler 2468×2048 pixels 
Orchard B -25.144, 152.377 Calypso Canon 6000×4000 pixels 

 2102 

4.2.2 Data preparation  2103 

4.2.2.1 Image annotation and labelling  2104 

Mango panicles in the training image sets were categorized into three stages; (i) stage X -panicles 2105 

with flowers (whitish in colour) that were not fully opened (Fig. 4-2, top row); (ii) stage Y - panicles 2106 

with open flowers (Fig. 4-2, middle row); and (iii) stage Z - panicles displaying flower drop (Fig. 4-2, 2107 

bottom row).  A four-category system was initially trialled, but human differentiation of the two 2108 

early stages was problematic, and the resulting model performance was poorer than for the three-2109 

category system (data not shown).   2110 
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  2111 

  2112 

  2113 

Figure 4-2. Training examples for stages X to Z, by rows.  2114 

Annotation was done using roLabelImg (https://github.com/cgvict/roLabelImg) which is a 2115 

modification of LabelImg to incorporate rotated boxes.  As the annotations prepared for training 2116 

R2CNN contained rotated bounding boxes which cannot be used directly with the YOLO model, a 2117 

separate python script was written to convert the rotated bounding box annotations to upright 2118 

bounding box annotations for training of the YOLO model. A visualization of the rotated ground 2119 

truth boxes and the transformed upright bounding box annotation is presented in Figure 4-2120 

3. Separate Python scripts were written to convert the XML annotation format of roLabelImg to that 2121 

of R2CNN and YOLO formats for model training.   2122 

https://github.com/cgvict/roLabelImg
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  2123 

Figure 4-3. Display of ground truth bounding box original (rotated) red colour for R2CNN training and 2124 
transformed (upright) blue colour for MangoYOLO training.  2125 

 2126 

4.2.2.2 Training, validation and test sets  2127 

Training was based on 54 images of orchard A (Table 4-2), which were drawn from different 2128 

weeks. A validation set was assembled from images (orchard A) from one side of a single tree 2129 

acquired over a six-week period.  2130 

 Table 4-2. Number of panicles in training and validation data sets.  2131 

    Number of panicles  

  # images  Stage X   
(# panicles)  

Stage Y   
(# panicles)  

Stage Z   
(# panicles)  

Train set (rotated/upright)  54  1007  1107  1064  
Validation set (rotated/upright)   6  167  316  122  

 2132 

The training dataset also included annotations for background (369 snips), as required for R2CNN 2133 

training. R2CNN uses the background class for negative hard-data mining and was not treated as a 2134 

detection class during inference. However, the YOLO object detection framework does not require a 2135 

background class as all parts of the images other than those having bounding box for training are 2136 

automatically treated as background. Therefore, the background class was not used for YOLO model 2137 

performance assessment. 2138 

The test set was an independent set consisting of images of orchard B, from the study of Wang et al. 2139 

(2018b).  These images were of trees of a different cultivar and from a different orchard, and 2140 

acquired with a different camera, to that of the training and validation sets. 2141 
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4.2.3 Computing   2142 

Model training and testing was implemented on the CQUniversity High Performance Computing 2143 

(HPC) facility graphics node with following specifications: Intel® Xeon® Gold 6126 (12 cores, 2144 

2600MHz base clock) CPU, NVIDIA® Tesla® P100 (16 GB Memory, 1328 MHz base clock, 3584 CUDA 2145 

cores) GPU. Red Hat Enterprise Linux Server 7.4 (Maipo) and 384GB RAM. CUDA v9.0, cuDNN v7.1.1, 2146 

OpenCV v3.4.0, Python v2.7.14, GCC v4.8.5, scikit-learn v0.19.1, tensorflow-2147 

gpu v1.6.0, Keras v2.1.5, Cython v0.28.    2148 

4.2.4 Detection and classification models  2149 

4.2.4.1 YOLO   2150 

A YOLO deep learning object detection framework was used with a MangoYOLO CNN classifier 2151 

(Koirala et al. 2019b).  MangoYOLO was originally conceived for on-tree mango fruit detection, and 2152 

has an architecture based on the YOLOv3 (Redmon and Farhadi 2018) object detection framework, 2153 

optimized for better speed and accuracy. In the current study, four classes (3 stages and 1 2154 

background class) were used in YOLO training, however detection of the background class was 2155 

ignored during model performance evaluation.  2156 

The network input resolution for YOLO was set to 1024×1024 pixels following the YOLO requirement 2157 

that the input images are square, and resolution is a multiple of 32. This resolution can be changed 2158 

to higher values but at the cost of higher computation memory and slower train/test speed. As a 2159 

data augmentation strategy during training, samples were rotated randomly in the range of + 40 2160 

degrees to mimic variations in panicle orientations.    2161 

YOLO was trained for 103.8k iterations and a batch size of 64 with data augmentation techniques 2162 

defaulted to the YOLOv3 settings (saturation = 1.5, exposure = 1.5, hue = 0.1). The learning rate and 2163 

momentum were set to the default values of 0.001 and 0.9 respectively. No transfer learning was 2164 

employed, with the weights of the convolution neural network initialized at random values because 2165 

the original MangoYOLO model training was based on mango fruit images, which are very different 2166 

to flower images.  2167 

4.2.4.2 R2CNN    2168 

R2CNN is basically a Faster R-CNN object detection framework with a modification to support 2169 

training on rotated objects. The tensorflow re-implementation of R2CNN 2170 

(https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow) was used for training 2171 

and testing in this study.    2172 

All model training parameters were set to the default values of faster-RCNN for model training as 2173 

implemented in R2CNN (https://github.com/DetectionTeamUCAS/R2CNN_Faster-2174 

RCNN_Tensorflow). With R2CNN, as for Faster R-CNN, the input resolution can be set to be square or 2175 

the original aspect ratio can be preserved (shorter side scaled to 800 pixels and longer side scaled 2176 

accordingly). The original Basler images 2464×2048 pixels automatically resized to 962×800 pixels 2177 

during training and testing. The RGB channel pixel mean values were initialized with the values (R = 2178 

41.647, G = 41.675, B = 43.048) calculated of the training dataset.   2179 

The R2CNN implementation supported only three CNN architectures - mobilenet_v2, 2180 

ResNet50_v1 and resnet101_v1. Given that deeper CNN models generally produce better results in 2181 

terms of object detection and classification (Koirala et al., 2019), ResNet101_v1 CNN architecture 2182 

was used with R2CNN framework for model training. The model was trained for 146k iterations 2183 

https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow
https://github.com/DetectionTeamUCAS/R2CNN_Faster-RCNN_Tensorflow
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with a batch size of 1 (as no support existed for batches with more than 1 image), learning 2184 

rate of 0.0003 and momentum of 0.9. ImageNet pertained 2185 

weights (http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz ) were used as 2186 

transfer learning to initialize the R2CNN model.  2187 

4.2.4.3 R2CNN-upright  2188 

To allow a comparison between rotated and upright box annotation in model training, a R2CNN-2189 

upright model was established. The R2CNN-upright method is the same as the R2CNN method except 2190 

that the model was trained on the training set of upright annotation boxes, with the orientation of 2191 

all boxes set to zero degrees, as used for training of the YOLO method. All training parameters of 2192 

R2CNN were retained for training of the R2CNN-upright model.  2193 

4.2.5 Estimation of peak of flowering  2194 

Repeated (weekly) orchard imaging provided a time course of panicle number by 2195 

week. The signal.find_peaks function from Scipy (www.scipy.org) packages was used to find peaks in 2196 

the panicle numbers per tree side. Peak properties were specified as height = 10 and distance = 2. 2197 

Height determines the minimum height of the peak which refers to the minimum number of panicles 2198 

to consider as a peak. This parameter helps to filter noise (insignificant small peaks) in the signal. 2199 

Distance determines the minimum horizontal distance in samples between neighbouring peaks.   2200 

4.3 Results  2201 

4.3.1 Segmentation method  2202 

The pixel-segmentation method of Wang et al. (2018) differentiates pixels associated to panicles 2203 

from background based on fixed values of colour thresholding.   In poorly illuminated areas of 2204 

images, panicles were not detected (false negative) while in some mages, parts of the tree such as 2205 

branches or brownish/yellowish leaves were incorrectly classified as flower pixels. Two example 2206 

images are presented, processed using the segmentation and deep learning R2CNN methods (Fig. 4-2207 

4).   2208 

 2209 

http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz
http://www.scipy.org/
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  2210 

  2211 

Figure 4-4.  Pixel segmentation (left panels) and deep learning R2CNN (right panels) results for the same 2212 
images. Flowers in the dark background did not segment properly (top left). Branches and leaves were 2213 
erroneously segmented as flower pixels (bottom left).   2214 

Flowering intensity (ratio of flower pixels to the canopy pixels, flowering pixels) was assessed 2215 

following the method of Wang et al. (2018b) and correlated to the panicle counts per tree made 2216 

using the R2CNN method, for all 994 trees of an orchard and each of five consecutive weeks  (Table 2217 

4-3). Better correlation was obtained between stage Y panicle count rather than total panicle count 2218 

in the last two weeks, as the proportion of stage Y panicles decreased (Table 4-3).    2219 

Table 4-3. Correlation R2 between flowering intensity level per tree from pixel segmentation method and Y 2220 
stage or all stages panicle counts, respectively, from the R2CNN method.  2221 

Week  1  
(16 Aug)  

2  
(23 Aug)  

3  
(30 Aug)  

4  
(6 Sept)  

5  
(13 Sept)  

6  
(20 Sept)  

7  
(27 Sept)  
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(Stage Y) R2  0.903  0.896  0.892  0.788  0.853  0.871  0.708  
(All stages) R2  0.898  0.865  0.825  0.579  0.254  0.357  0.327  
Avg. ratio of stage Y to total panicle count 0.376 0.390 0.395 0.361 0.416 0.320 0.147 

 2222 

4.3.2 Deep learning methods  2223 

An example of one image processed with the three methods of YOLO, R2CNN and R2CNN-upright is 2224 

given as Figure 4-5. In general, RMSE for estimates of panicle count per tree of the validation set was 2225 

lowest with the YOLO method, and lower with use of rotated compared to upright bounding boxes 2226 

for the R2CNN methods (Table 4-4). For example, RMSE on total panicle count per image was 16, 26 2227 

and 32 for the YOLO, R2CNN and R2CNN-upright methods, respectively.    However, the highest 2228 

precision and F1 score was generally obtained with the R2CNN-upright model (Table 4-5). For 2229 

example, mAP was 69.1, 62.5 and 70.9, and F1 was 76.1, 74.0 and 82.0 for YOLO, R2CNN and R2CNN-2230 

upright methods, respectively.    2231 

Table 4-4. Panicle stage detection results on the validation set using three methods. RMSE refers to a 2232 
comparison with ground truth assessments of panicles per image. All values refer to # panicles/tree 2233 
image. Lowest RMSE values are shown in bold.  2234 

 
Ground truth R2CNN YOLO R2CNN -upright 

week X Y Z total X Y Z total X Y Z total X Y Z total 

1 1 37 72 110 1 27 64 92 0 36 73 109 1 30 46 77 

2 13 67 42 122 9 54 36 99 3 65 22 90 11 41 29 81 

3 28 91 8 127 9 62 15 86 24 78 6 108 22 53 7 82 

4 28 69 0 97 16 49 5 70 24 65 0 89 22 46 0 68 

5 46 28 0 74 38 21 1 60 45 21 0 66 36 17 0 53 

6 51 24 0 75 36 16 0 52 54 17 0 71 43 18 0 61 

RMSE 11.6 16.4 5.4 25.8 4.9 6.9 8.2 16.0 6.3 21.8 11.8 32.3 

Bias -9.7 -14.5 -1.7 -24.3 -2.8 -5.7 -3.5 -12.0 -5.3 -18.5 -6.7 -30.5 

Table 4-5.  Prediction statistics for the validation set using YOLO and R2CNN methods. Highest results are 2235 
shown in bold.  2236 

Statistic  Average Precision  F1  
Panicle stage  X  Y  Z  mAP  X  Y  Z  Weighted F1  
YOLO  68.7  78.1  60.5  69.1  75.4  79.0  69.5  76.1  
R2CNN  56.3  62.0  69.3  62.5  69.6  75.6  75.7  74.0  
R2CNN-upright  80.8  64.8  67.2  70.9  89.4  78.7  80.4  82.0  

 2237 
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    2238 

Figure 4-5. Example images processed with three methods. Top panel: Panicle stage 2239 
detection using YOLO method. Orange, green and blue coloured boxes represent panicle stages X, Y and Z 2240 
respectively.  Middle panel and bottom panel: Panicle stage detection using R2CNN and R2CNN-2241 
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upright methods, respectively. Green, pink and red coloured boxes represent panicle classes of X, Y and Z, 2242 
respectively.  2243 

YOLO and R2CNN methods were also compared in prediction of the test set of panicle count per tree 2244 

from images (two per tree) collected from a different orchard, cultivar and camera to the calibration 2245 

set (Table 4-6).  The YOLO method achieved the lowest RMSE and bias of the three methods, with a 2246 

R2 similar to that achieved with R2CNN, due to a large bias on the R2CNN result (Table 4-6). The 2247 

R2CNN-upright model returned a lower R2 than the base R2CNN model, a result similar to that 2248 

reported by Wang et al. (2018b) for a based Faster R-CNN method (which use upright boxes), for 2249 

these trees.   2250 

Table 4-6.  Comparison of several flower assessment methods on the test image set (as used by Wang et al. 2251 
(2018b) in terms of the R2  and RMSE between machine vision panicle (sum of two sides of a tree) count on 2252 
images (two per tree) versus in-field human counts of panicles per tree.   2253 

Detection method    R2  RMSE  Bias 

YOLO  0.803  35.6  -6.4 
R2CNN  0.805  91.9  -72.2 
R2CNN upright  0.761  93.2  -72.4 
Faster R-CNN (Wang et al. 2018b)  0.78  -  - 

 2254 

 2255 

 2256 

 2257 

  2258 

  2259 
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 2260 

Figure 4-6. Example images of panicle stage detection by YOLO and  R2CNN methods on Canon images 2261 
of Wang et al. (2018b). Top panel: Panicle stage detection using YOLO method. Orange, green and blue 2262 
coloured boxes represent panicle stages X, Y and Z respectively.  Middle panel and bottom panel: Panicle 2263 
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stage detection using R2CNN and R2CNN-upright methods, respectively. Green, pink and red coloured boxes 2264 
represent panicle classes of X, Y and Z, respectively.    2265 

4.4 Discussion  2266 

4.4.1 Method comparison  2267 

The pixel-segmentation method of Wang et al. (2018) outputs the total flower and canopy-like pixels 2268 

and does not provide estimation of the number of panicles. A correlation was obtained between 2269 

flowering intensity values and panicle counts, consistent with the report of Wang et al. 2270 

(2018).  However, pixel number per panicle varies with stage of panicle development, and so 2271 

confounds number with developmental stage. A stronger correlation is expected when all panicles 2272 

are at the same stage of development. The pixel segmentation method also uses a fixed colour 2273 

threshold range, but colour of panicles and canopy may vary between cultivars and with growing 2274 

conditions, resulting in false positives and negatives. Use of the segmentation method was therefore 2275 

discontinued in favour of a deep learning method, echoing the advice of Koirala et al. (2019).  2276 

All three methods (YOLO, R2CNN and R2CNN-upright) detected a smaller number of panicles than the 2277 

ground truth number (i.e., false negatives occurred). YOLO returned the lowest bias and RMSE for 2278 

count of panicles per image, but R2CNN-upright returned the highest mAP and F1 score (Table 4-4 2279 

and Fig. 4-5). The difference in ranking of methods is due to the difference in calculation of RMSE as 2280 

a ‘gross’ metric compared to Precision and F1 score, with false negative offset by false positive 2281 

detections in the RMSE metric, but not the Precision and F1 and metrics.   Therefore, model 2282 

performance was primarily assessed on their detection and classification performance using the 2283 

mAP and F1 evaluation metrics (Table 4-5). 2284 

The YOLO method (which involves use of upright boxes) produced similar mAP scores to the R2CNN-2285 

upright method, but the lower weighted F1-score of YOLO. This outcome suggests that the YOLO 2286 

method suffered from lower recall rates (Table 4-5). This result can be attributed to the deeper CNN 2287 

classifier (ResNet101) used with R2CNN method. 2288 

In the current application, the majority of the objects (panicles) were orientated upright, lessening 2289 

the potential advantages for use of rotated annotation boxes for model training. However, 2290 

surprisingly, the R2CNN-upright method achieved better result compared to R2CNN method. 2291 

Presumably, this is because an object is considered detected and used for calculating 2292 

the mAP scores only if the detected box sufficiently overlaps with the ground truth bounding box 2293 

overlaps (to the overlap threshold set in the program). The creation of an upright box from the 2294 

R2CNN created rotated box created a box of larger area, with greater overlap to the annotation box 2295 

and thus a greater number of detections. 2296 

The R2CNN, performed similarly and outperformed the Faster-RCNN method used in a previous 2297 

publication, despite training on images from a different camera and mango cultivar to that in the 2298 

test set (Table 4-5).   2299 

The R2CNN-upright method returned a superior result to the Faster R-CNN in the estimation of total 2300 

counts per tree. This outcome was expected as R2CNN is a Faster R-CNN framework with the added 2301 

capability of training on rotated objects (bounding box). Using upright boxes with R2CNN is therefore 2302 

expected to result in a result equivalent to faster-R-CNN. 2303 

The speed of the classification by YOLO and R2CNN methods could not be 2304 

compared because R2CNN supports standard CNN classifier architectures such as ResNet 2305 

and MobileNet while YOLO uses a custom CNN classifier architecture, with no support for standard 2306 
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CNN classifiers. It is expected, however, that YOLO will process images faster than R2CNN as the 2307 

object detection framework of YOLO uses a single-stage detection technique, in comparison to the 2308 

dual-stage detection technique of R2CNN.  Koirala et al. (2019b) documented speed and memory 2309 

requirement comparisons of MangoYOLO CNN architecture used in the YOLO framework of current 2310 

study benchmarked against several other deep learning object detection frameworks.  2311 

Fruit image size (in pixels) can vary due to variation in camera to tree distance or use of different 2312 

camera lens. YOLO models can be robust for such conditions as the YOLO object 2313 

detection framework provides multiscale image training as a part of data augmentation. Other data 2314 

augmentation techniques such as random rotation and random change in hue, saturation and 2315 

exposure of training samples provides robustness for YOLO model to deal with variation in lighting 2316 

conditions and cultivars. In comparison, R2CNN like Faster R-CNN does not support multiscale 2317 

training, and the only data augmentation during training provided is image flipping (horizontal and 2318 

vertical flips) as. Therefore, the YOLO method of object detection is recommended for applications 2319 

similar to that considered in the current study.  Improved classification accuracy for YOLO can be 2320 

expected from use of the full architecture of YOLOv3 (Redmon and Farhadi 2018) rather than using 2321 

lighter MangoYOLO architecture. 2322 

4.4.2 Applications  2323 

One of the challenges in precision agriculture is the display and interpretation of large data sets in a 2324 

form useful to the farm manager, i.e., an appropriate decision support tool for farm management is 2325 

required.  Thus, the presentation of data on panicle count by stage of development for every tree in 2326 

an orchard requires consideration. A key assessment is the timing of flowering, which can be used in 2327 

conjunction with calendar days or thermal time to estimate harvest date.  This is useful for planning 2328 

harvest resourcing.  Inaccurate harvest timing estimation will result either in harvest of less mature 2329 

fruit, resulting in lowered eating quality, or over mature fruit, with reduced postharvest life.  2330 

For example, panicle stage data can be presented on an individual tree basis by week as a line graph 2331 

(Fig. 4-7). This figure enables identification of early flowering areas in one row of an orchard, 2332 

but it does not scale well to consideration of an entire orchard block.      2333 



Deep learning- panicle assessment 
 

P a g e  | 78 

 2334 

Figure 4-7. Time course (weeks 1, 3, 5 and 7) of panicle number by developmental stage per tree for a row of 2335 
trees.  2336 

Data can also be presented on a farm map, using a colour scale to display values, per week of 2337 

imaging (Fig. 4-8) using the web-app described by Walsh and Wang (2018). In this display, the 2338 

individual image associated with each tree can be accessible.   2339 
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      2340 

Figure 4-8. Flowering intensity level (green, orange and red colour corresponds to low (<30 panicles or 10% 2341 
pixels), medium (30 to 70 panicles or 10 to 25% pixels) and high (>70 panicles or 25% pixels)) (top panel) or 2342 
panicle count (using R2CNN display) (bottom panel) of an orchard. In this software, an individual tree can be 2343 
selected to display the flowering intensity level, tree image, image capture date and tree id.   2344 

Alternatively, data can be summarised for an orchard block, with a tally of panicles by development 2345 

stage by week (Fig. 4-9). In the example data, there was a shift in developmental stage from 2346 

stage X to Y to Z over the monitored period, as expected given panicle development.  A peak in total 2347 

count occurred at week 5.  This profile can be interpreted as a single sustained flowering event 2348 

maintained over four weeks (weeks 1 to 5).   2349 

  2350 
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 2351 

Figure 4-9.  Flower stages trend analysis across weeks for an orchard  2352 

In another approach, the timing of the peak in panicle number per tree can be assessed for 2353 

individual trees given a time course of images and use of a peak detection routine (Fig. 4-10).  2354 

  2355 

Figure 4-10. Peak flowering event detection on stage-X panicle counts for two different trees across 9 weeks 2356 
of imaging. Single peak (left) and double peak (right) marked with a coloured dot.  2357 

A display of the number of trees with peaks in X stage panicle count each week can be displayed to 2358 

give a sense of when the orchard in general has a peak flowering event. For example, of 1986 images 2359 

of 993 trees in the block, 168 tree-sides (8%) displayed two flowering events (peaks in stage X) 2360 

(Fig. 4-11). The first flowering event occurred in the first 2 weeks of imaging while another peak 2361 

flowering event occurred on the fourth week. This information on major flowering events can be 2362 

coupled to temperature records to provide an estimated harvest maturity time based on thermal 2363 

time (Walsh and Wang 2018).  If the events are sufficiently large and temporally separated, the 2364 

grower can consider these as separate harvest events.   2365 
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 2366 

Figure 4-11.  Plot displaying week in which a peak flowering event was noted (top panel) and plot displaying 2367 
the week of the largest flowering event (bottom panel) for 168 trees in which two flowering peaks were 2368 
recorded.    2369 

Alternatively, data can be presented on a farm map for selective display of spread of panicles per 2370 

week of imaging (Fig. 4-12). In this software (Wang and Walsh, 2018), the individual image 2371 

associated with each tree can be accessed.   2372 

  2373 
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 2374 

 Figure 4-12. Flower stages X to Z (top to bottom panel) selected for one imaging run of week-1 and 2375 
corresponding flowering intensity level (yellow, orange and red colour corresponds to low (<30 panicles), 2376 
medium (30 to 70 panicles) and high (>70 panicles) display of an orchard.  2377 

 2378 
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4.5 Conclusion  2379 

Deep learning methods can automatically learn the useful features required in an application.  For 2380 

panicle detection this is likely to involve colour and shape patterns.  Similar to that demonstrated 2381 

by Koirala et al. (2019b) for the fruit detection application, a deep learning method was 2382 

demonstrated to generalize in terms of application to an orchard of different cultivar, growing 2383 

condition and canopy architecture, also imaged with a different camera, to that used for training 2384 

images. Similarly, Dias et al. (2018b) reported that a deep learning FCN trained on apple flower 2385 

images was able to generalize well for peach and pear flower detection, and to operate across 2386 

camera hardware. The use of deep learning models over traditional segmentation techniques for the 2387 

application of panicle developmental stage detection is thus confirmed.  2388 

In addition to total panicle counts, classification of panicle into several developmental stages was 2389 

achieved. This is an important step in allowing extraction of information on the time-spread of 2390 

flowering, and this later harvest.  Counts of panicles in stage X over time were used in estimation of 2391 

the timing of peak flowering events. Counts of panicles in stage Y demonstrated the highest 2392 

correlation the flower intensity level per tree.  2393 

There have been several publications on machine vision based detection and crop load estimation 2394 

for tree fruit crops, but relatively few reports of in-field tree crop flower assessment especially in 2395 

terms of developmental stage. There has been even less attention given to presentation and 2396 

management of such data.  The flower peak detection and display options presented in the current 2397 

study should prompt further work in this field.  2398 
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Chapter 5. Estimating the unseen – correction for occluded 2406 

fruit in tree fruit load estimation by machine vision 2407 

This chapter has been revised over the initial thesis submission to incorporate examiner comments.  2408 

This chapter will be submitted for consideration by the journal ‘Computer and Electronics in 2409 

Agriculture’. 2410 
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Abstract 2436 

Methods to automatically accommodate the proportion of fruits not captured in imaging of trees 2437 

from two sides due to occlusions from branches, foliage and other fruits within machine vision based 2438 

estimates of fruit load per tree were considered. Five approaches (methods and architectures) were 2439 

compared using data of three orchards. Several image features obtained through segmentation of 2440 

fruit and canopy areas (such as the proportion of partly occluded fruit) were used in training 2441 

Random forest and multi-layered perceptron (MLP) models for estimation of the correction factor 2442 

per tree. In another approach, deep learning convolutional neural networks (CNNs) were used to 2443 

automatically extract useful information from the input images, with each model directly trained 2444 

against harvest fruit count on sample trees (n=98 trees) of all three orchards. On a training set of 2445 

2017 season tree images (n=98 trees), a correlation coefficient of determination R2 of 0.98 and RMSE 2446 

of 18 fruits per tree was achieved between the number of fruits predicted by Random forest model 2447 

and the ground truth fruit count on the trees.  On a prediction set of 2018 season sample trees 2448 

(n=35), a R2 of 0.73 and RMSE of 69 fruits per tree was achieved for the Dual_view model, while the 2449 

direct prediction models failed.  Models were also validated in terms of a comparison of the machine 2450 

vision and packhouse fruit counts for the entire orchards. With models trained on images of the 2451 

same season, the Random forest model was the most accurate, with an estimation error of 1.6% 2452 

across the three orchards (n= 880 trees).  2453 

5.1 Introduction 2454 

5.1.1 Machine vision and ‘hidden’ fruit 2455 

For any crop, yield estimation aids harvest resourcing and market planning.  Current practice for 2456 

mango fruit yield estimation requires knowledge of previous yield history, visual observation and 2457 

manual counting of fruit on trees.  However, manual counting is labour intensive, time consuming 2458 

and unreliable. For an orchard with 469 trees (Anderson et al. 2018) reported a variation in 2459 

prediction error of manual count of fruit in an orchard relative to actual harvest count from 10 to 2460 

31% for counts based on  33 and 5% of total trees, respectively. A ~ 27 to 93% coefficient of variation 2461 

(standard deviation on tree fruit load divided by mean fruit load) was reported across ten mango 2462 

orchards, highlighting the requirement for large number of samples to achieve a reliable estimate of 2463 

fruit load per orchard.  As the workload of manual fruit counting of such numbers is impractical, 2464 

there is a need for an alternative estimation method. 2465 

Several researchers have reported on the use of machine vision for tree fruit detection and counting. 2466 

A recent review paper by Koirala et al. (2019a) reported high accuracies for deep learning methods 2467 

used in detection of fruit in canopy images, e.g., a F1 score of 0.968 was achieved for detection of 2468 

fruit in images of mango canopies using a customised deep learning MangoYOLO model.   2469 

However, the proportion of fruit on a tree that are captured in an image depends on canopy 2470 

architecture.  A ‘dense’ canopy will have a higher proportion of fruit hidden from camera view than a 2471 

less dense canopy, with fruit occluded by foliage or other fruit.  In sparse canopies, more fruits are 2472 

visible, but a given fruit may be seen twice in images from both sides of the tree row, leading to a 2473 

double count.  For ‘dual view’ imaging (one image per tree, from both sides of the row), Koirala et al. 2474 

(2019b) report variation in the ratio of total fruit on tree established by harvest to machine vision 2475 

count (hereafter referred to as the ‘occlusion factor’) ranging from 1.05 to 2.43, depending on 2476 

canopy density. Payne et al. (2013), Wang et al. (2013), Stein et al. (2016) and Koirala et al. (2019b) 2477 

utilized the average ratio of harvest count to the machine vision count of fruit on images of a set of 2478 
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‘calibration’ mango trees for use in correcting for the proportion of hidden fruits in estimation of 2479 

orchard yield from machine vision estimates.  2480 

The capture of images from multiple viewpoints (‘multiview’) as a camera is moved past a tree 2481 

results in visualization of more, but not all, fruit on each tree (Payne et al. 2013). Fruit count by 2482 

multiple viewpoint imaging relies on a method to track and register individual fruit across frames, 2483 

but multiple counting of the same fruit can occur if tracking fails (as caused by a sharp movement 2484 

between frames, or by obscuration of the fruit in several frames, followed by reappearance).  2485 

Multiple counting of the same fruit seen from other side of the row will also occur unless a method 2486 

to estimate fruit position is used. Wang et al. (2013) used stereo imaging with a block matching 2487 

technique to register fruit in sequential images of apple trees. Moonrinta et al. (2010) used blob 2488 

tracking to track fruits from consecutive frames of a video and structure-from-motion to locate 2489 

pineapple fruit in 3D. (Stein et al. 2016) used epipolar projection and the Hungarian algorithm for 2490 

fruit tracking in sequential images followed by a triangulation method to locate mango fruit in 3D. 2491 

Similarly Liu et al. (2018) used the Kalman filter and the Hungarian algorithm for fruit tracking on 2492 

video frames followed by structure from motion (SfM) method to locate orange and apple fruit in 2493 

3D. Stein et al. (2016) reported on the use of a multiview method in a mango orchard. Although a 2494 

high correlation and unity slope was achieved between multiview machine vision and harvest counts 2495 

of the mango fruits on trees it was reported that the number of hidden fruits were balanced by the 2496 

number of over counted fruits. Such a relationship may not hold for orchards of trees with different 2497 

canopy architectures, in which case even the multiview methods require an orchard or tree specific 2498 

adjustment for occluded fruit.  2499 

The dual view method is simpler and computationally less expensive (only two images per tree) but 2500 

less accurate (less fruit visible from a single viewpoint) compared to the multiview method which 2501 

requires fruit detection on multiple images per tree, and fruit tracking. Stein et al. (2016) reported 2502 

that dual view approach provided higher repeatability, if lower accuracy, for on-tree mango fruit 2503 

counts compared to multi-view approach (for dual view machine vision count vs harvest estimates, 2504 

R2 = 0.94 and slope = 0.54, while for multi-view, R2 = 0.90 and slope = 1.01, for 16 trees).  2505 

To date, estimation of an occlusion factor (harvest count to machine vision count) has required a 2506 

manual fruit load estimation of a set of trees representative of the orchard. However, the occlusion 2507 

factor can vary between trees for a range of reasons, including pruning history, irrigation and 2508 

nutrition (related to canopy foliage density). Therefore, the selection of ‘representative’ trees in 2509 

estimating an occlusion factor for the orchard is essential, and the error in the estimation of the 2510 

orchard occlusion factor represents a limitation in the application of machine vision to fruit load 2511 

estimation.  2512 

5.1.2 Dealing with occluded fruit 2513 

Ideally, the occlusion factor should be estimated from canopy images features for each tree in an 2514 

orchard  (Koirala et al. 2019a). It is likely that the features within canopy images hold clues to the 2515 

proportion of hidden fruit on the tree. For example, image characteristics such as the number of leaf 2516 

intersections or the ratio of partially occluded fruit to fully revealed fruit may hold information on 2517 

the proportion of occluded fruit.  2518 

Several reports have appeared of direct prediction of tree yield, i.e., with training against the 2519 

reference value of total tree fruit number or weight, rather than against number of fruits seen in 2520 

images. For example, Črtomir et al. (2012) trained ANN models with 4-6-1 and 5-14-1 architectures 2521 

for ‘Golden Delicious’ and ‘Braeburn’ varieties of apple, using the inputs of fruit counts obtained 2522 

from an image segmentation technique of canopy images and harvest fruit weight per tree.  For 2523 



Estimating the unseen 
 

P a g e  | 87 

single-view image of super spindle trees, the correlation (r) between model predicted and actual 2524 

yield was improved from 0.73 to 0.83 and from 0.51 to 0.78 for ‘Golden Delicious’ and ‘Braeburn’ 2525 

varieties, respectively, for the linear regression of fruit counts from image and direct prediction of 2526 

total fruit load per tree.   2527 

Cheng et al. (2017b) trained an ANN (4-11-1 architecture) model using image features (fruit area, 2528 

fruit cluster area and canopy leaf area) along with fruit number from single-view image to predict 2529 

apple var. Gala yield (kg/tree). The canopies were trained as slender spindles with 3.5 × 1.5 m 2530 

spacing. An R2 0.82 and RMSE of 2.3 kg/tree was achieved for a test set for the season. For the 2531 

Pinova variety, an ANN (4-10-1 architecture) achieved R2 of 0.88 and RMSE of 2.5 kg/tree for a test 2532 

set. In a parallel approach, Qian et al. (2018) trained an (4-14-1 architecture) ANN model with four 2533 

image features (total fruit pixel area, circle fitted fruit pixel area, average radius of fitted circle and  2534 

residual fruit pixel area after circle fitting)  from dual view images of apple trees to predict individual 2535 

tree yield (kg/tree). The model, trained on images of 21 trees and validated on images of five trees, 2536 

achieved an R2 of 0.996 and RMSE of 1.0 kg/tree on the training set and R2 of 0.94 and a RMSE of 2.4 2537 

kg/tree on the validation set.  2538 

ANN regression can also be used with the CNN models for processing image features. Chen et al. 2539 

(2017) developed a fruit counting pipeline based on deep learning to estimate fruit number in tree 2540 

canopy images. A deep learning Fully Convolutional Network (FCN) blob detection network was 2541 

trained for pixel-wise segmentation of fruit regions in images. This step was followed by a linear 2542 

regression between the detected blobs and harvest count to estimate the final yield (total fruit 2543 

count/tree) from the tree image. this study involved non-trellised orange imaged in daylight and 2544 

trellised apple trees imaged at night using flash illumination. A ratio of harvest count to machine 2545 

vision estimates (blob+count+regression model) of 1.03 and 1.10 was obtained for the orange and 2546 

apple data sets, respectively. In comparison, this ratio was much higher for mango trees with 2547 

traditional tree architectures, as reported above. Denser canopieshide more fruits and are more 2548 

challenging for machine vision yield estimation. Thus, estimation of the occlusion factor is 2549 

particularly important for estimation of mango crop load.  2550 

In the current study, several machine learning and deep learning methods were explored for total 2551 

tree fruit load estimation based on dual view imagery, i.e., avoiding the use of occlusion factor for 2552 

hidden fruits based on manual counting of fruit in sample. Five models (Dual_view, Deep_yield, 2553 

MLP_yield, Random_forest, Exception_yield) were trialled for estimation of fruit load per tree based 2554 

on input of dual view mango tree images (Table 5-1). MangoYOLO (Koirala et al. 2019b) was used for 2555 

fruit detection and counting of visible fruit on tree images, except for the Xception_yield model. 2556 

Models used in the study are tabulated with their implementation purpose (Table 5-1). “Yield 2557 

estimation” in this study refers to the estimated total number of fruit for a group of trees,  based on 2558 

visible fruit counted using MangoYOLO adjusted t using an occlusion factor as in the dual_view 2559 

model or through automated adjustment from trained models for number of hidden fruits in dual 2560 

view images of a tree or blocks of trees. 2561 

Table 5-1. Fruit counting and yield estimation models and their purpose 2562 

Model name Purpose 

MangoYOLO model Automated fruit detection and counting on tree images based on 

bounding-box training. 
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Xception_count model A model that learns fruit distribution pattern on input tree images based 

on CNN-regression modelling to be utilized for canopy classification.  

Xception_classification 

model 

Automated classification of tree images into 3 categories (low, medium 

and high) based on fruit distribution and canopy architecture. 

Dual_view model Yield estimation based on automated counting of visible fruits using 

MangoYOLO model and adjusted using a correction/occlusion factor 

(average ratio of harvest fruit count to image fruit count for sample 

trees). 

Deep_yield model Automated yield estimation based on fruit numbers and canopy 

classification of two images, one image per sides of a tree.  

MLP_yield model Automated yield estimation based on input parameters obtained from 

canopy and fruit region extraction and fruit counts (fully visible and 

partly occluded determined through ellipse fitting) using MLP neural 

network. 

Random_forest model Automated yield estimation based on input parameters as for MLP_yield 

model but utilizing an ensemble of decision trees for regression. 

Xception_yield model Automated yield estimation based on a method similar to 

xception_count model but extracting canopy and fruit regions of two 

sides of a tree into a single image as input to the model.  

 2563 

5.2 Materials and Methods 2564 

5.2.1 Hardware 2565 

Images of two sides of each tree were acquired at night time with a 5 Mp Basler acA2440 RGB 2566 

camera and a 720 W LED light panel mounted on a 5 km/h moving platform, as detailed in (Koirala et 2567 

al. 2019b). 2568 

All models were compiled and run on a Red Hat Enterprise Linux Server 7.4 machine with 384GB 2569 

RAM and NVIDIA® Tesla® P100 GPU (16 GB memory). CUDA v9.0, cuDNN v7.1.1, OpenCV-python 2570 

v4.0.0.21, Python v2.7.14, Keras v2.2.0, Scikit-learn v0.19.1 and Tensorflow v1.8.0. 2571 

5.2.2 Orchard information 2572 

Images were acquired of Mangifera indica cv. Calypso trees in orchards on a farm located at (lat, 2573 

long -25.144, 152.377) Queensland, Australia on 7 and 8th of December 2017, and 13 and 14th of 2574 

January 2018 (Table 5-2). The orchards varied in row spacing between 9.5-12 m, with tree spacing 2575 

along rows at 4 m. Canopy width was approximately 4 m. The total number of trees in orchard A, B 2576 

and C were 494, 121 and 265 respectively. Sample trees in each block were hand harvested for fruit 2577 

count in both seasons (Table 5-2). An extended number of sample trees were hand harvested in the 2578 

2017 season, resulting in 44, 19 and 35 sample trees for orchard A, B and C (termed A-x, B-x and C-x, 2579 

respectively) (Table 5-2).  2580 
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Table 5-2. Statistics on the harvest count of sample trees (fruit per tree) for each of two seasons. ABC 2581 
represent the collection of sample trees from orchards A, B and C. 2582 

  2017 2018 

Orchard Sample tree # Mean SD Mean  SD 

A 17 207 86 128 99 
B 6 279 148 205 134 
C 12 148 75 274 126 
ABC 35 199 103 191 130 
A-x  44 187 76 - - 
B-x  19 253 160 - - 
C-x  35 171 90 - - 
ABC-x  98 194 105 - - 

 2583 

5.2.3 Fruit counting and canopy classification 2584 

5.2.3.1 MangoYOLO 2585 

MangoYOLO (Koirala et al. 2019b)  is a deep learning CNN fruit detection and localization model 2586 

optimized for speed, computation, and accuracy through re-designing of YOLO object detection 2587 

framework. MangoYOLO model detects mango fruit and draws bounding boxes on the detected 2588 

fruits on tree images.  The number of bounding boxes provides fruit number per image.  2589 

Network architecture 2590 

MangoYOLO consisted of total 33 layers (3 detection, 2 route, 2 up-sample and 26 convolutional 2591 

layers) as shown in figure 5-1. 2592 

 2593 

Figure 5-1. Block diagram of MangoYOLO model  2594 

Training method 2595 

MangoYOLO model (pre-trained on 1300 images containing 11820 mango fruits) was adopted from 2596 

Koirala et al. (2019b) and implemented with the OpenCV-python v4 (added support for YOLOv3 2597 

implementation). The class confidence and NMS thresholds for MangoYOLO model were set to 0.24 2598 

and 0.45 respectively. 2599 

5.2.3.2 Xception_count model 2600 

Xception_count model learns the fruit distribution pattern on images through training a CNN-2601 

regression model on the input tree image against target fruit count (obtained from MangoYOLO) per 2602 

tree image. The intermediate output from the trained Xception_model was then utilized for 2603 

classifying tree images into several categories based on the learned fruit distribution pattern. 2604 

Network architecture 2605 

 ‘Xception’ (Chollet 2017) is a deep learning CNN model which has an input resolution of 299 × 299 2606 

pixels. The base (without the final classification layers) of the Xception model was imported from 2607 
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Keras deep learning library and used inside the Xception_count model. The input resolution of the 2608 

Xception model was changed to accept input images of 1024 × 1024 pixels. A regression head which 2609 

was comprised of four layers was added to this base model and a global spatial pooling layer 2610 

(GlobalAveragePooling2D) was used on the output of the base model (Fig. 5-2). The pooling layer 2611 

was followed by a connected (Dense) layer consisting of 1024 neurons, ‘relu’ activation function and 2612 

a Dropout (0.65) layer. Dropout (Srivastava et al. 2014) helps in preventing neural networks from 2613 

overfitting by randomly dropping out the fraction of neuron inputs to 0 at each update during 2614 

training. The final layer is a dense layer with a ‘linear’ activation function. 2615 

 2616 

Figure 5-2. Xception_count model (left) and schematic of Xception base model (without top classification 2617 
layers) (right) 2618 

Training method 2619 

The Xception_count model was trained on 988 mango tree canopy images of 494 tress (i.e. images 2620 

of two sides of each tree) from orchard A in December 2017. The original images (2448x2048 pixels) 2621 

were resized (1024x1024 pixels) as input variables to the Xception_count model. Normalized fruit 2622 

counts on each image obtained from the MangoYOLO model (Koirala et al. 2019b) was used as 2623 

target value for model training. The Xception_count model was initialized with random weights, i.e., 2624 

no transfer learning was implemented. Training consisted of 50 epochs, using a batch size of 2 and a 2625 

learning rate of 1e-4. The Xception_count model was compiled with the MSE (Mean Squared Error) 2626 

loss function and ‘adam’(Kingma and Ba 2014) optimizer. MSE is a commonly used loss function for 2627 

regression modelling and is computed as the mean of the squared difference between estimated 2628 

and actual values.  2629 

5.2.3.3 Canopy categorization/classification 2630 

The feature vector from the intermediate layer of the trained Xception_count model was utilized to 2631 

classify/categorize canopies having similar fruit patterns into different clusters with the aim of 2632 

accurately estimating total fruit in the tree from what is seen on the two sides. K-means clustering 2633 

was applied on the output vectors from the ‘global_average_pooling2d_1’ layer of the 2634 

Xception_count (Fig. 5-2) model (input size 1024x1024 pixels) for whole orchard A 2017-season tree 2635 

images.   2636 

The K-means algorithm clusters data by separating samples to n groups of equal variances. Since 2637 

there was no ground truth category/label for the images being clustered, the Silhouette coefficient 2638 

(Rousseeuw 1987) was calculated to assess the usefulness of feature vector for segregating canopies 2639 
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into clusters. The Silhouette value is a measure of similarity of an object to its own cluster compared 2640 

to other clusters. Silhouette coefficient is calculated from the measure of mean distance between a 2641 

sample and (i) all other points in the same cluster, (ii) all other points in the next nearest cluster.  2642 

The Silhouette coefficient varies in range (-1, 1), with higher scores for better defined clusters. 2643 

Default parameters from the sklearn library were used for both k-means clustering and Silhouette 2644 

metrics calculation. The number of clusters was varied from 2 to 5 (Table 5-3). For further work, 2645 

three clusters were chosen on all blocks because of a relatively good Silhouette coefficient and 2646 

relatively balanced distribution on canopy number (Table 5-3). There was visual difference in the 2647 

images of three clusters/categories (Fig. 5-3): (i) very less or even no fruit (more vegetation), (ii) 2648 

medium number of fruits more uniformly distributed around the canopy (iii) large number of fruits 2649 

and open canopies. 2650 

Table 5-3. Categorization of tree canopy images from each block into three clusters 2651 

Orchard Silhouette 
score 

#trees in 
cluster1 

#trees in 
cluster2 

#trees in 
cluster3 

A 0.4311 443 344 211 

B 0.4622 62 104 76 

C 0.4982 175 242 113 

 2652 

 2653 

Figure 5-3. Example images from the three categories based on Silhouette score. 2654 

Canopy classification models 2655 

5.2.3.4 Xception_classification model 2656 

A trained Xception_classification model can classify input tree images into 3 categories (low, 2657 

medium and high) based on fruit distribution pattern. Output from Xception_classification model 2658 

serves as input for yield estimation models used in this study. 2659 

Network architecture 2660 

The Xception_classification model is of the same architecture as Xception_count model (Fig. 5-2) 2661 

with following changes: 2662 

-  Dense_2 layer of Xception_classification model consisted of 3 neurons for 3 canopy 2663 

categories/classes and ‘sigmoid’ activation function compared to 1 neuron and ‘linear’ 2664 

activation function for predicting continuous values in Xception_count model. 2665 

(i) (ii) (iii) 
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- Xception_classification model was compiled with ‘categorical_crossentropy’ loss function 2666 

compared to MSE loss function in Xception_count model. 2667 

Cross-entropy is a commonly used loss function for multi-class classification task. Cross-entropy is 2668 

based on the maximum likelihood (probability distribution across multiple classes). This function 2669 

tries to minimize the mean difference between the actual and estimated probability distributions for 2670 

all classes considered. 2671 

Training method 2672 

The Xception_classification model was trained using the tree images of orchard A as input and 2673 

corresponding categories (1-3) obtained from the k-means clustering algorithm as ground truth 2674 

labels. 2675 

The Xception base of Xception_classification model was initialized with the learned weights from the 2676 

Xception base of Xception_count model. Finally, the Xception_classification model was trained on 2677 

images (1024 ×1024 pixels) of the 3 canopy categories for 50 epochs with batch size=2 and learning 2678 

rate =1e-4. For training and validation, the training image data orchard A (all 494 trees) was split into 2679 

90% for training and 10% for validation. 2680 

5.2.4 Canopy and fruit region extraction 2681 

Canopy extraction 2682 

After the fruit regions were extracted from the bounding box coordinates returned as detection by 2683 

MangoYOLO model, a colour segmentation technique followed by contour fitting was used to 2684 

extract the foliage of the canopy into a blank image. Images were converted from BGR to HSV range 2685 

using the OpenCV function. Colour segmentation was done by selecting a range of green colour (HSV 2686 

range lower = [33, 80, 40] and upper = [102, 255, 255]) followed by morphological operations 2687 

(conversion to grayscale, median blurring, adaptive thresholding (mean) and closing). In the 2688 

resultant binary image, OpenCV’s contour fitting function was used to obtain the contour of the 2689 

foliage from the image (Fig. 5-4).   2690 

Shape fitting 2691 

Mango fruit shape can be approximated using an ellipse fit (Charoenpong et al. 2004; Kader 1997; 2692 

Nanaa et al. 2014).  Wang et al. (2017b) and (Wang et al. 2018a) reported on the use of ellipse fitting 2693 

technique to discriminate fully exposed mango fruit from the partly occluded fruit in images of tree 2694 

for fruit size estimation. A similar approach was implemented in the current study. 2695 

Each input image was processed using MangoYOLO for detection of the fruit region. Each RoI (region 2696 

inside bounding box) was individually processed for shape fitting. ROIs were converted to grayscale 2697 

and sharpened (to highlight the fruit edges) using OpenCV functions. The resultant image was 2698 

converted to binary image using the adaptive thresholding (mean) algorithm followed by 2699 

morphological closing operation. OpenCVs contour fitting function and ellipse fitting algorithm was 2700 

used to fit an elliptical shape on the binary image. 2701 

Creation of training data for MLP_yield and Random_forest models 2702 

It was observed that the ellipses fitted to partially occluded fruits were more eccentric compared to 2703 

fully visible (entire) fruit (Fig. 5-4). An eccentricity value  of 0.75, asdetermined from visual 2704 

inspection of images, was used as a threshold to discriminate fruit as partially occluded. The area of 2705 
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ellipses for full and partly occluded fruit were summed for each tree image. Similarly, the canopy 2706 

area was calculated as the pixel area of the contour in tree images. 2707 

 2708 

Figure 5-4. Ellipse fitting and canopy extraction. Right panel: Area enclosed by the white contour around the 2709 
tree represents the canopy foliage area. Left panel: Fruit enclosed by blue ellipse contour and red ellipse 2710 
contour represent the fully exposed fruit and partly occluded fruit respectively. 2711 

 The eccentricity threshold may vary for cultivars which differ in fruit shape. 2712 

Table 5-4. Description of input variables used for MLP_yield and Random_forest models. Subscripts a and b 2713 
represent data for side A and side B images of a tree, respectively. 2714 

Attributes Description 

cTa, cTb count of total fruit on image from MangoYOLO model 
cFa, cFb count of exposed (fully visible) fruit  
cOa, cOb count of partially occluded fruit  
RpFa, RpFb ratio of total pixel area of exposed fruit to the canopy pixel area 
RpOa, RpOb ratio of total pixel area of partially occluded fruit to the canopy pixel area 
RpCa, RpCb ratio of canopy pixel area to the total image pixel area 

 2715 

Creation of training data for exception yield model 2716 

For each side of the tree images of the training data (images of sample trees orchard ABC-x), fruits 2717 

and canopies were segmented and placed besides each other in a new single image (Fig. 5-5) which 2718 

created a new dataset of images. This process resulted in half the number of images in the newly 2719 

reconstructed dataset. 2720 

The MangoYOLO model was used to detect fruits on the images and the coordinates of the detected 2721 

bounding box were used to extract the RoI (fruit regions) into a blank image. 2722 

Similarly, the canopy extraction contour was used as a mask to segment the foliage into a blank 2723 

image (Fig. 5-5). Finally, the four images of extracted fruit and canopy regions (2448 × 2048 pixels 2724 

each) were aligned into a single image (4896 × 4096 pixels) and resized (1024 × 1024 pixels) for input 2725 

to the Xception_yield model.  2726 
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 2727 

Figure 5-5. Left panel – a single image reconstructed of two sides of a canopy with fruits and canopy 2728 
separated). Right panel – closeup view of the fruit cluster. 2729 

 2730 

 2731 

 2732 

5.2.5 Yield estimation 2733 

5.2.5.1 Dual_view model 2734 

In order to estimate total fruit per tree, the dual_view model relied on use of a manually established 2735 

occlusion factor to adjust the fruit counts from MangoYOLO model. This occlusion factor is the 2736 

average ratio of what is counted by the machine vision (MangoYOLO) method on tree images to a 2737 

manually obtained fruit count for a set of ‘calibration’ trees.  2738 

The following machine learning models were created to directly predict the total fruit number per 2739 

tree from the input of dual-view images. Since each yield estimation model was comprised of several 2740 

small modules (different architecture, different input data types and different input resolutions), the 2741 

training parameters vary across models. These parameters were tuned to obtain best results while 2742 

also considering the available computational resources (e.g., GPU memory). 2743 

5.2.5.2 Deep_yield model 2744 

Network architecture 2745 

The Deep_yield model was composed of 5 networks- MangoYOLO, MLP, Regression, 2746 

Xception_siamese and Xception_classification (Fig. 5-6).  2747 



Estimating the unseen 
 

P a g e  | 95 

 2748 

Figure 5-6. Block diagram of the Deep_yield model 2749 

The MLP block: The Multi Layered Perceptron (MLP) consisted of a stack of multiple Fully Connected 2750 

(FC) layers of neurons (8-4 architecture). The input layer (dense_1) contained 8 neurons (6 for the 2 2751 

category vectors each having 3 elements obtained for each side of tree images from 2752 

Xception_classification model, and 2 neurons for the fruit count on two sides of image obtained 2753 

from MangoYOLO model). The final layer (dense_2) consisted of 4 neurons to match the number of 2754 

input nodes (i.e., the output of the Xception_siamese network) in the model. An activation function 2755 

‘relu’ was used for both dense layers. 2756 

The Siamese block: With a Siamese network it is possible to train a single model for multiple inputs. 2757 

The Xception_siamese network takes RGB input images (299 × 299 pixels) for each side of a tree as 2758 

input to the Xception model (Fig. 5-6). The outputs for each image side from Xception model of the 2759 

Xception_siamese network were concatenated (concatenate_1 layer) and global average spatial 2760 

pooling operation applied. The data was further processed through Fully Connected (FC)/dense 2761 

layers- dense_3 and dense_4 having 1024 and 4 neurons respectively. A dropout layer (dropout_1) 2762 

with dropout value =0.65 was used before the final layer to prevent the model from overfitting. All 2763 

the dense layers used ‘relu’ activation function. Final layer (dense_4) consisted of 4 neurons to 2764 

match the output nodes of the MLP model. 2765 

The Regression block: The regression model consisted of 1 concatenation layer and 2 FC dense layers 2766 

(Fig. 5-6). The concatenation layer (concatenate_2) concatenated the outputs of Xception_siamese 2767 

and MLP models. The dense layer (dense_5) with ‘relu’ activation function consisted of 4 neurons to 2768 

match the number of input nodes. The final layer (dense_6) consisted of 1 neuron and a ‘linear’ 2769 

activation function to predict continuous data (total fruit counts per tree). 2770 
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Training method 2771 

For training and validation, the training data (images of sample trees orchard ABC-x) was split into 2772 

80% for training and 20% for validation. Set ABC-x contains more images than the individual blocks A 2773 

or B or C therefore number of images in the validation set was increased from 10% to 20%. 2774 

The Deep_yield model was trained for 200 epochs with learning rate=1e-3, loss function =MSE, 2775 

optimizer=Adam, batch size=8.  The Xception network inside Xception_siamese model was initialized 2776 

with pre-trained ImageNet weights available from the Keras library. For model training, the target 2777 

values (harvest count) were normalized by dividing with the maximum harvest count value. 2778 

5.2.5.3 MLP_yield model 2779 

The MLP_yield model was used in predicting the total fruit number per tree form the count of fruit 2780 

on the two sides of tree image with additional features (number of exposed (fully visible) and 2781 

partially occluded fruit, canopy foliage area (pixel), fully visible fruits total area (pixel), partially 2782 

occluded fruit total area (pixel) using MLP regression.  2783 

Network architecture 2784 

The MLP_yield model consisted of a stack of multiple Fully Connected (FC) layers of neurons (12-6-1 2785 

architecture). The input layer (dense layer_1) consisted of 12 neurons to match the number of input 2786 

variables. The intermediate layer (dense layer_2) consisted of 6 neurons. Both first and second 2787 

layers used ‘relu’ activation. The final layer (output_layer) consisted of a single neuron to predict 2788 

fruit counts and a ‘linear’ activation function was used.  2789 

Training method 2790 

The MLP_yiled network takes 12 input variables (6 for each image side of a tree- cT, cF, cO, RpF, RpO 2791 

and RpC, Table 5-4). Fruit count data (cTa, cFa, cOa, cTb, cFb, cOb) and target ground truth harvest 2792 

count per tree were normalized by dividing by 200 and 600 respectively.  This value was obtained as 2793 

the maximum values that can be expected for the training dataset.  2794 

All 3 layers of MLP_yield model was initialized using ‘uniform’ weights and trained for 200 epochs 2795 

with a batch size of 4. The model was compiled with MSE loss and Adam optimizer with learning rate 2796 

of 1e-3. For training and validation, the training data (images of sample trees orchard ABC-x) was split 2797 

into 80% for training and 20% for validation. 2798 

5.2.5.4 Random_forest model  2799 

The Random_forest model was used for estimating total fruit number per tree based on input 2800 

parameters same as MLP_yield model but utilizing ensemble of decision trees for regression. 2801 

Network architecture 2802 

Random forest (Breiman 2001) is a simple yet accurate machine learning algorithm used for 2803 

classification and regression tasks (Liaw and Wiener 2002). It builds ‘forests’ from an ensemble of 2804 

decision trees to increase predictive accuracy. Random forest adds randomness while splitting a 2805 

node by searching for best feature from a random subset of features rather searching for most 2806 

important features from bigger set which helps control over-fitting of the model. 2807 

Training method 2808 
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RandomForestRegressor from ‘sklearn’ library was used with default values (max_depth =None, 2809 

n_estimators=100, criterion=’mse’) for model training on the same training data used by the 2810 

MLP_yield model.  2811 

5.2.5.5 Xception_yield model 2812 

Network architecture 2813 

The architecture of the Xception_yield model is the same as that of the Xception_count model (Fig. 2814 

5-2) but takes reconstructed image (canopy and fruit regions of both sides of a tree extracted on to a 2815 

single image) as input.  2816 

Training method 2817 

Since the newly reconstructed image dataset contain a smaller number of training images, this 2818 

dataset was split into 90% for training and 10% for validation. Model was compiled with MSE loss, 2819 

Adam optimizer and trained for 50 epochs with batch size of 2 and learning rate of 1e-4. Transfer 2820 

learning was not used and the weights for the CNN model was initialized at random values. 2821 

5.3 Results and Discussion 2822 

In this study ‘yield estimation’ refers to the prediction of the total number of fruits on a group of 2823 

mango trees based on machine vision count of fruits in dual-view images of individual trees, 2824 

adjusted for hidden fruits through use of manual correction factor or automated model training. 2825 

Therefore, RMSE and R2 values from regression analysis were used as major metric for evaluation 2826 

different models used in the study. 2827 

5.3.1 Fruit counting  2828 

The deep learning models e.g. Xception_count model can be used for direct prediction of fruit count 2829 

on images without a need for bounding box annotation as used for training MangoYOLO but not as 2830 

accurate (Tables 5-5, 5-6). 2831 

Table 5-5: Linear regression statistics for fruit counted on tree images of orchard A (17 trees, 34 images 2018 2832 
season) by Xception_count model and MangoYOLO model against human count of fruit on images. 2833 

 Xception_count model 2018  MangoYOLO model 2018 
Orchard Slope Intercept R2 RMSE Slope Intercept R2 RMSE 

A 0.715 13.69 0.93 10.1 0.915 0.08 0.98 5.3 

Table 5-6. Linear regression statistics for fruit counted on tree images for orchard A (all 988 images of 494 2834 
trees) by Xception_count model versus MangoYOLO model for 2 seasons. 2835 

 2017 2018 
Orchard Slope Intercept R2 RMSE Slope Intercept R2 RMSE 

A 0.731 12.32 0.96 9.12 0.728 19.81 0.94 11.8 

 2836 

5.3.2 Visualization 2837 

The class activation map was visualized on the final convolutional layer (block14_sepconv2_act) of 2838 

the trained Xception_count model to indicate the regions in images utilized by the model for 2839 

prediction of fruit numbers. The Grad-CAM (Selvaraju et al. 2017) visualization technique revealed 2840 

that the model was indeed activated by the fruit regions rather than other objects (Fig. 5-7). 2841 
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 2842 

Figure 5-7. Grad-CAM visualization of activation map of the final convolution layer of Xception_count model 2843 
trained to directly predict fruit count on input images 2844 

5.3.3 Canopy categorization  2845 

The Xception_classification model was capable of classifying tree images to one of the categories it 2846 

was trained for (Table 5-7). 2847 

Table 5-7. Classification results for orchard A (all 988 images of 494 trees) 2017 season used during training 2848 

 Predicted categories from Xception_classification model 
 

Ground truth 
categories from k-
means clustering 

 Cat 0 Cat 1 Cat 2 

Cat 0 (443) 387 51 5 
Cat 1 (334) 2 332 0 
Cat 2 (211) 13 0 198 

 2849 

The model trained on orchard A achieved precisions of 80%, 99% and 94% for classifying images in 2850 

category 1, 2 and 3 respectively, on the training set orchard A. The Xception_classification model 2851 

(trained on orchard A images 2017 season) was further tested on orchard C images 2017 season 2852 

(Table 5-8). The model trained on orchard A achieved precisions of 65%, 88% and 97% for classifying 2853 

images in category 1, 2 and 3 respectively, on the test set orchard C. 2854 

Table 5-8. Classification results for orchard C (all 530 images of 265 trees) 2017 season from the model 2855 
trained on orchard A images (all 988 images of 494 trees) 2856 

 Predicted categories from Xception_classification model 
 

Ground truth 
categories from k-
means clustering 

 Cat 0 Cat 1 Cat 2 

Cat 0 (175) 114 18 43 
Cat 1 (113) 14 99 0 
Cat 2 (242) 8 0 234 

 2857 
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5.3.4 Feature importance 2858 

While the deep yield models are essentially black boxes, it is useful to gain some insight into the 2859 

attributes used, the better to train such models and to anticipate prediction failures. The 2860 

visualization of Xception_yield model showed that the model used the fruit regions in the image for 2861 

prediction of the total fruit count in the canopy (Fig. 5-8).  2862 

 2863 

 2864 

Figure 5-8. Grad-CAM visualization of the activation map of the final convolutional layer of Xception_yield 2865 
model (trained to directly predict tree fruit count from input images). Left and right sub-panels present the 2866 
raw images of two sides of a tree and activation heat-maps of canopy and fruit regions, respectively. Top 2867 
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panels: Typical result for tree with fruits on both sides of the canopy.  Bottom panels: Typical result for tree 2868 
with fruits on one side of canopy. 2869 

The Random forest regression model for prediction of harvest count placed higher weight on fruit 2870 

count than the other canopy and fruit features (Table 5-9). The occluded fruit count (cO) was 2871 

weighted more than counts of fully visible fruits (cF). 2872 

Table 5-9. Feature_importance values (sums up to 1) returned by the Random Forest regressor on the 2873 
different input variables. Refer to Table 3 for the description of variables. The variable with highest 2874 
weighting (total fruit count) is shown in bold. 2875 

cTa cFa cOa RpFa RpOa RpCa cTb cFb cOb RpFb RpOb RpCb 

0.26 0.07 0.08 0.01 0.01 0.07 0.24 0.06 0.10 0.01 0.01 0.07 

The number of partly occluded fruit was estimated through the ellipse fitting technique. Of all fruits 2876 

visible in tree images ,29 and 37 % were partly occluded in the two sets considered, equivalent to 21 2877 

and 31 % of total fruits per tree, respectively (Table 5-10). A correlation R2 >= 0.64) was observed 2878 

between the number of partly occluded fruit on tree images and the harvest fruit count (Table 5-10). 2879 

Table 5-10. The correlation between number of partly occluded fruit to the total fruit count on images and 2880 
to harvest count per tree. 2881 

 Partly occ. vs. harvest count Partly occ. vs.  machine vision count 

Image set R2 Slope  Intercept Ratio R2 Slope  Intercept Ratio 

ABC-x 0.69 0.17 5.41 0.21 0.93 0.37 -0.19 0.37 
ABC- 2018 0.64 0.09 5.92 0.31 0.88 0.28 -0.29 0.29 

 2882 

The ratio of exposed fruit (cFa +cFb) to the harvest count was correlated to the proportion of hidden 2883 

fruit (harvest – cTa –cTb) to the harvest count for both the seasons (Table 5-11). However, this result 2884 

was of no practical significance for yield estimation as the relationship requires information on the 2885 

harvest count of individual trees considered. 2886 

Table 5-11. Correlation between hidden and exposed fruits for 2 seasons obtained from MLP_yield model.  2887 
Units are fruit number per tree. 2888 

Hidden fruit vs exposed fruit orchard 
ABC-x 2017 

 Hidden fruit vs exposed fruit orchard 
ABC-2018 

Slope Intercept R2  Slope Intercept R2 

-1.3299 0.9097 0.8943  -0.7051 0.7098 0.9074 

 2889 

For the same orchard A used in this study, Stein et al. (2016) observed almost no relationship 2890 

between the canopy volume (estimated as LiDAR voxel count) and yield (fruit count per tree). 2891 

(Anderson et al. 2018) also reported a poor correlation (R2 = 0.21 and 0.17, respectively) between 2892 

canopy attributes (canopy volume and trunk circumference) and fruit load. These observations are 2893 

consistent with the low weighting assigned to the attributes related to canopy size (e.g., RpC). 2894 

5.3.5 Sample tree yield prediction 2895 

The comparison of number of fruits that is captured on dual view images of trees and counted using 2896 

machine vision model (MangoYOLO) to the actual (harvest) fruit number per tree is presented in 2897 

Table 5-12. Although a good correlation (R2 >= 0.69) was achieved between machine vision count 2898 

and harvest count, the low values of slope indicates there is a large proportion of fruits that are not 2899 

visible in dual view imaging (Table 5-12)  2900 
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Table 5-12. The linear regression statistics between machine vision (MangoYOLO) fruit count (without using 2901 
occlusion ratio for correction) on images to the harvest count per tree. 2902 

Test set Avg. #fruit 
per tree 

St. Dev Slope Intercept R2  RMSE Bias 

ABC-x 2017 194 105 0.44 17.7 0.69 113.4 -91.8 
ABC 2018 191 130 0.32 17.3 0.73 143.7 -112.0 

 2903 

The dual view method was compared to four methods for direct yield estimation in prediction of the 2904 

training set and test set (Table 5-2) (images of 2017 and 2018 seasons, respectively). The Random 2905 

forest model achieved the best results (R2 = 0.98 and RMSE =17.8) between the predicted and actual 2906 

fruit counts on the same set ABC-x that was used for training (Table 5-13).  2907 

Table 5-13. Prediction results for ABC-x 2017 season sample trees using different yield estimation methods, 2908 
trained with the ABC-x 2017 training image set. 2909 

Model Slope Intercept R2 RMSE 
(# fruit per tree) 

Deep_yield 0.94 10.25 0.92 30.4 
MLP_yield 0.81 36.62 0.79 47.7 

Random_forest 0.90 18.93 0.98 17.8 
Xception_yield 0.71 28.8 0.94 44.8 

Dual_view 0.89 36.39 0.69 65.4 

 2910 

As expected, a better dual view method result was obtained using an occlusion factor estimated 2911 

from the same season sample trees (Table 5-13). Surprisingly, this dual view result was superior to 2912 

that of the other methods (Table 5-14). The performance from the Random forest method was poor 2913 

in comparison to the dual view method but was better than other models (Table 5-14). The direct 2914 

yield estimation models were therefore not robust in prediction of a new population. 2915 

Table 5-14. Prediction results for ABC 2018 season sample trees using different yield estimation methods, 2916 
trained with ABC-x 2017 images. 2917 

Model Train set Occlusion 
factor 

Test set Slope  Intercept R2 RMSE  
(# fruit per tree) 

Deep_yield ABC-x 2017   ABC 2018 0.29 61.19 0.34 129.1 
MLP_yield ABC-x 2017  ABC 2018 0.50 30.34 0.66 102.9 
Random_forest ABC-x 2017  ABC 2018 0.46 52.86 0.60 97.4 
Xception_yield ABC-x 2017  ABC 2018 0.42 29.00 0.72 106.3 
Dual_view - ABC 2018 ABC 2018 0.83 44.46 0.73 69.0 
Dual view - ABC-x 2017 ABC 2018 0.67 35.51 0.73 72.7 
Dual view  - ABC 2017 ABC 2018 0.63 33.54 0.73 77.6 

 2918 

5.3.6 Orchard block yield prediction 2919 

For the combined whole orchard ABC block prediction, all direct prediction models achieved 2920 

estimates closer to the actual packhouse record than the count from the Dual_view model (Table 5-2921 

15). Random forest model provided the best estimate for combined ABC orchards for season 2017, 2922 

with a 1.6% prediction error (Table 5-15). Note that the models were trained on images of samples 2923 

trees from the same orchard and season as used for block prediction.   2924 

 2925 
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Table 5-15. Block prediction results for whole orchard A, B and C season 2017 from models trained on 2926 
orchard ABC-x 2017 data.  Best result (closest to packhouse) is shown in bold. 2927 

Packhouse 
count 

Dual_view Deep_yield MLP_yield Random_forest Xception_yield 
predicted % err Predicted % err predicted % err predicted % err predicted % err 

A 97382 58074 2.57 91760 -5.77 93879 -3.60 99779 2.46 83638 -14.11 
B 26273 16189 17.07 26307 0.13 32148 22.36 29307 11.54 26022 -0.96 
C 40837 17329 6.09 39399 -3.52 41025 0.46 39188 -4.04 36624 -10.32 
ABC 164492 91592 13.59 157466 -4.27 16705

2 
1.56 168274 2.30 146284 -11.07 

 2928 

The RMSE on individual tree estimates was 18 fruit per tree on an average fruit load of 200 2929 

fruit/tree, i.e., within 10%.  The low prediction error of the orchard total suggests that the model has 2930 

good accuracy but poor precision on individual tree count, with summation across many trees acting 2931 

to improve precision. 2932 

However, some error exists on the packhouse counts, in terms of fruit left on tree or ground during 2933 

commercial harvest.  Also, the packhouse grader did not provide count on non-marketable fruits 2934 

(small size, bruised, over-ripe, diseased etc.), and counts on this category of fruit were manually 2935 

estimated from weight of the reject bin and an estimate of average fruit weight.   2936 

5.4 Conclusions 2937 

The use of machine learning models to be trained directly on fruit number per tree rather than fruit 2938 

number per image would avoid the need for manual estimation of an occlusion factor every season. 2939 

The supervised machine learning methods were able to improve the correlation between the 2940 

number of fruits seen in the images to the harvest fruit counts, producing better result on training 2941 

set data compared to the results from machine vison count corrected by occlusion factor.  However, 2942 

the same model when used to predict the total fruit count on a new season data (test set images) 2943 

produced poor results. This indicates that the model created from just one season data was not 2944 

enough for prediction on next season data for the trees considered in this study. This result can be 2945 

attributed to the high variability in fruit number on individual tree between seasons. In general, the 2946 

machine learning techniques try to model the underlying relations and patterns from the input data 2947 

to predict on a new data. Thus, it is important to have more variation in the training data to train an 2948 

accurate prediction model. Training of these models across several seasons and orchards is 2949 

recommended. Moreover, the random forest regression model weighted on the fruit counts rather 2950 

than the other image features based on the pixel count of fruit and canopy regions in images. It was 2951 

also observed that the forest regression weighted more on the occluded fruit counts compared to 2952 

the counts of fully visible fruits. 2953 
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Chapter 6. In Field Fruit Sizing Using A Smart Phone 2963 

Application 2964 
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Abstract  2993 

In field (on tree) fruit sizing has value in assessing crop health and for yield estimation. As the mobile 2994 

phone is a sensor and communication rich device carried by almost all farm staff, an Android 2995 

application (“FruitSize”) was developed for measurement of fruit size in field using the phone 2996 

camera, with a typical assessment rate of 240 fruit per hour achieved. The application was based on 2997 

imaging of fruit against a backboard with a scale using a mobile phone, with operational limits set on 2998 

camera to object plane angle and camera to object distance. Image processing and object 2999 

segmentation techniques available in the OpenCV library were used to segment the fruit from 3000 

background in images to obtain fruit sizes. Phone camera parameters were accessed to allow 3001 

calculation of fruit size, with camera to fruit perimeter distance obtained from fruit allometric 3002 

relationships between fruit thickness and width. Phone geolocation data was also accessed, allowing 3003 

for mapping fruits of data. Under controlled lighting, RMSEs of 3.4, 3.8, 2.4, and 2.0 mm were 3004 

achieved in estimation of avocado, mandarin, navel orange, and apple fruit diameter, respectively. 3005 

For mango fruit, RMSEs of 5.3 and 3.7 mm were achieved on length and width, benchmarked to 3006 

manual caliper measurements, under controlled lighting, and RMSEs of 5.5 and 4.6 mm were 3007 

obtained in-field under ambient lighting. 3008 

6.1 Introduction 3009 

In-field sizing of fruit on tree can be used to provide information on rate of fruit growth and thus 3010 

timing of harvest maturity, for estimation of pack-house packaging resource requirement and to 3011 

inform marketing decisions (Moreda et al. 2009). For example,  (Zude et al. 2011) reported on use of 3012 

manual in-field fruit sizing for the estimation of cherry fruit harvest maturity. (Wang et al. 2017a) 3013 

reported in-field sizing of mango fruit to gauge packing tray size requirements for the crop. 3014 

Current best practice for estimation of fruit size in orchard involves measurement by calipers, fruit 3015 

sizing rings or circumference tapes. These measures require a certain level of operator attention, 3016 

particularly when manual transcription of results is required. Relatively low cost (< USD $1000) 3017 

digital fruit sizers with data logger functionality are available (e.g., from Guss Manufacturing, Strand, 3018 

South Africa), with transfer of data to a connected lightweight computer or tablet possible, e.g., as 3019 

utilised in studies by References (Green et al. 1990; Morandi et al. 2007)). However, the available 3020 

tools lack inbuilt geolocation and wireless communications capacity, and inherently rely on the 3021 

operator purchasing and carrying specialist hardware. 3022 

The use of machine vision for fruit sizing on packing lines began in the 1970’s and is now well 3023 

established (van Eck et al. 1998; Walsh 2018). In this application, a light box installed over the 3024 

conveyor allows uniform lighting, a background of contrasting colour, fixed camera to fruit distance 3025 

and angle, and use of multiple cameras. For example, Spreer and Müller (Spreer and Müller 2011) 3026 

used two colour cameras with a fixed camera-to-fruit distance to assess mango fruit length, width, 3027 

and thickness in a pack line scenario. Machine vision can also be applied to in-field estimation of 3028 

fruit size, given knowledge of camera to object (fruit) distance. This can be achieved by inclusion of a 3029 

scale bar in the object plane, e.g., as done by Reference (Cheng et al. 2017a). To avoid this 3030 

requirement, Regunathan and Lee (Murali and Won Suk 2005) employed four ultrasonic depth 3031 

sensors, however, the method produced an average distance to canopy rather than distance to 3032 

individual fruit. In consequence the root mean square error (RMSE) on the size estimate of citrus 3033 

fruit on tree was 19 mm (calculated from neural network estimate in Table 2 of (Murali and Won Suk 3034 

2005)). The use of a RGB-D (depth) camera was suggested by Reference (Dellen and Rojas Jofre 3035 

2013) for the measurement of object volume (i.e., boxes), while (Kongsro 2014) proposed use of the 3036 

low cost Kinect RGB-D camera (Microsoft, Redmond, WA, USA) in the estimation of pig weight. In a 3037 
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parallel work, our group has used a Microsoft Kinect V2 RGB-D camera mounted to a farm vehicle to 3038 

measure mango fruit length and width of non-occluded fruit on tree, with RMSE of 4.9 and 4.3 mm 3039 

achieved, respectively (Wang et al. 2017a). The disadvantage of this system is the requirement for 3040 

relatively bulky, specialist equipment. 3041 

The ‘smartphone’ is now a ubiquitous handheld communication and computing device, effectively 3042 

carried at all times by all farm staff. (Seifert et al. 2015) used the data storage and communication 3043 

capability of the smartphone for management of manual measurements of cherry fruit dimensions. 3044 

However, these devices possess cameras, geolocation capability, capacity for real time image 3045 

processing and the ability to transfer data to shared data structures. Therefore, a smartphone 3046 

application is proposed for the assessment of fruit size, capitalising on existing phone features to 3047 

achieve a low-cost solution in a product carried by the user at all times, and thus accessible for use 3048 

at any time. Future developments can include image analysis to provide a defect assessment in 3049 

parallel to sizing estimates. The development of such an application is relatively straightforward, 3050 

with novelty in being the first to achieve this practical solution to in-field fruit measurement, and in 3051 

addressing the technical challenge of accommodating variation in fruit thickness (i.e., camera to fruit 3052 

perimeter distance). 3053 

6.2 Materials and Methods 3054 

A description of operation of the application is given, followed by a description of the experimental 3055 

characterisation exercises. 3056 

6.2.1 The ‘FruitSize’ Application 3057 

6.2.1.1 Description of Overall Operation 3058 

An application (‘FruitSize’) was written in Java and C/C++ language using the OpenCV library for 3059 

image processing, for use on an Android phone (Android 4.4 or above platforms). The application 3060 

can read parameters such as camera maximum resolution, camera focal length, camera horizontal, 3061 

and vertical view angles for different phones, and output length and width of an imaged object 3062 

(fruit). A HTC Desire 820 mobile phone was used for the reported trial work. In this phone the in-3063 

built primary camera has a focal length of 3.81 mm, a calculated pixel-bin size of 2.377 μm and 4224 3064 

× 3136 pixels (13 Megapixels), with a resolution of 1920 × 1080 pixels utilised as this resolution is 3065 

supported by most smartphones. A Samsung Galaxy S6 with 16 Megapixel rear camera (Android 7.0) 3066 

was used to illustrate the use of the application on other mobile phones. 3067 

Operation consisted of holding a board with a blue coloured A4 paper sheet behind fruit on tree 3068 

(Figure 6-1a). A yellow circle on the backing paper was used as a reference for the estimation of 3069 

camera to reference plane distance. The blue background was chosen to facilitate segmentation of 3070 

green, red, and yellow fruit (e.g., Figure 6-2). The camera to fruit distance was maintained greater 3071 

than 120 mm (to ensure image coverage of the whole fruit and reference circle) and less than 300 3072 

mm (as an operator convenience, with backboard held in one hand and camera in other hand). 3073 
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 3074 

Figure 6-1. Application scenario (left) and main user interface (right), illustrating fruit real dimensions of 3075 
length (L), width (W), and thickness (T). 3076 

 3077 

Figure 6-2. Image processing: image acquisition (left); circle identification (middle); and fruit 3078 

segmentation (right). 3079 

6.2.1.2 Detection of Fruit 3080 

Two regions in the image are of interest: The reference circle and the fruit. For in-field acquired 3081 

images, object segmentation is a challenging task because of high variation in lighting condition, 3082 

including strong shadows on fruits, and variance in fruit traits such as size, shape, colour, and 3083 

texture. As cameras in different mobile phones differ in colour rendering, a device independent 3084 

segmentation method was sought. Camera RGB output was converted to XYZ space and then to CIE 3085 

L*a*b* space using OpenCV functions. A blue background provided contrast to fruit which are 3086 

typically green, red, or yellow, using the b* channel of CIE L*a*b* colour space. The Otsu’s 3087 

automatic thresholding (Otsu 1975) was applied on the b* channel of the image to segment fruit and 3088 

reference object from the background. Otsu’s method seeks a global optimum threshold such that 3089 
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the method can adapt to different light conditions. Thus, thresholding was accurate even with strong 3090 

direct s4unshine and partial shadowing of the fruit (Figure 6-3). 3091 

Morphological operations were then conducted to remove small objects (peduncle, twigs, leaves, 3092 

etc.), and a stalk (fruit peduncle) filter based on the priori knowledge that fruit are much larger than 3093 

the stalks (Wang et al. 2017a), was used to remove the stalks which connect with the fruit. Finally, a 3094 

dilation operation with a disk structure of one pixel radius was used to generate a smooth curve 3095 

shape to outline the imaged fruit (examples in Figures 6-2 and 6-3). Images were rejected in which 3096 

the fruit and reference circle made contact. 3097 

  

           (a) (b) (c)                               (d) 

Figure 6-3. Panels from left to right display (a) RGB image of fruit against a blue board and canopy 3098 
background, in conditions of partial direct sunlight; (b) gray scale in the b* channel for the same image, (c) 3099 
the segmented image; and (d) a histogram of b* channel values from the image, with the Otsu’s method 3100 
optimum threshold for separation of background from Region of Interest pixels indicated by the grey arrow. 3101 

Finally, object eccentricity and area were used to define the reference circle and the fruit. The 3102 

findContours function in the OpenCV library was used to find the shapes of all isolated objects and 3103 

the fitEllipse function was used to judge if the object image shape was close to a circle, using the 3104 

criterion of eccentricity (𝜀) calculated from the length (ellipse major axis, a) and width (minor axis, b) 3105 

of a bounding box (Equation (1)). 3106 

𝜀 =  √1 − (
𝑏

𝑎
)

2

 (1) 

This parameter was estimated for both the reference circle and the fruit. With the phone camera 3107 

held parallel to the clipboard, the reference circle is imaged as a perfect circle with 𝜀 =  0. 3108 

The eccentricity and area size (in pixels) of the fruit image were used to judge the type of fruit, as 3109 

introduced in Reference (Wang et al. 2017a). Briefly, mango and avocado fruit approximate an 3110 

ellipse shape while apple and citrus fruit approximate a circle shape. This categorisation was used for 3111 

selection of the appropriate fruit allometric relationship between width and thickness. 3112 



Fruit sizing app 
 

P a g e  | 108 

6.2.1.3 Camera to Reference Plane Distance Estimation 3113 

Pixel size (𝑝) (in mm) can be estimated from the camera focal length, 𝑓 (in mm), the total number of 3114 

horizontal (or vertical) pixels, 𝑊𝑚, and the camera horizontal (or vertical) angle of field of view, 𝜃 (in 3115 

degrees) (Equation (2)). 3116 

𝑝 =  
2𝑓

𝑊𝑚
tan

𝜃

2
 (2) 

Usually each cell in a CMOS image sensor is square, so solving 𝑝 in one dimension is sufficient. The 3117 

reference circle diameter (in pixels, denoted by ø) was estimated of the segmented image, and its 3118 

actual size was calculated as product of ø and 𝑝. Using the thin lens formula, the distance 𝑢 (in mm) 3119 

from the reference plane to the camera was estimated from the known diameter (D) of the 3120 

reference circle (Equation (3)): 3121 

𝑢 =  
𝑓𝐷

ø𝑝
 

(3) 

6.2.1.4 Estimating Fruit Dimensions 3122 

Fruit length, width and thickness were defined in terms of real dimensions (𝐿𝑟, 𝑊𝑟, 𝑇𝑟, in units of 3123 

mm) and image dimensions (𝐿𝑖, 𝑊𝑖, in units of pixels). A bounding box was drawn around an object 3124 

recognised as a fruit. Box vertical and horizontal dimensions represent fruit image length 𝐿𝑖 and 3125 

width 𝑊𝑖, respectively, in units of pixels. The thin lens formula (Equations (4) and (5)) allows 3126 

calculation of the fruit real length 𝐿𝑟 and width 𝑊𝑟  (in mm): 3127 

𝐿𝑟  =  
𝑢

𝑓
𝑝𝐿𝑖 (4) 

𝑊𝑟  =  
𝑢

𝑓
𝑝𝑊𝑖 (5) 

where 𝒖 is the distance from the backboard to the camera (in mm). 3128 

However, the fruit is a three-dimensional object, with the imaged perimeter of the fruit occurring 3129 

some distance above the reference plane. The reference plane was projected to the fruit perimeter 3130 

plane using an estimate of the fruit half-thickness. Fruit thickness, 𝑇𝑟 (in mm), was iteratively 3131 

estimated using an experimentally determined relationship with fruit width (see later section), as 3132 

𝑇𝑟  =  𝑐𝑊𝑟  (where 𝑐 is constant) until 𝑊𝑟  converged. With each iteration, a revised estimate of 𝑇𝑟 3133 

was used to calculate new values for 𝐿𝑟 and 𝑊𝑟  by replacing 𝑢 with (𝑢 −
𝑇𝑟

2
). Empirically, this 3134 

process converged to a stable value of 𝑊𝑟  within five iterations. 3135 

6.2.1.5 Operating Features 3136 

The user requires a simple and interactive interface, with the application reacting to potential errors, 3137 

e.g., the acquired image is rejected if the camera to object plane angle or the camera to object 3138 

distance is out of specification. An accepted image is processed and displayed with a green circle 3139 

overlaying the reference spot and a red bounding box overlaying the target fruit. Time stamp and 3140 

geolocation data from the smartphone is saved along with fruit size into a CSV file in the phone 3141 

‘Download’ folder, with user input required to transfer the file to local computer or cloud server. 3142 
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6.2.2 Experimental Exercises 3143 

6.2.2.1  Reference Circle Size 3144 

A larger reference circle allows for a more accurate assessment of diameter, given limitations of 3145 

camera resolution. The impact on fruit sizing of size of reference circles was empirically evaluated by 3146 

mounting the phone on an optical stand with distance to the background varied between 120 and 3147 

300 mm in steps of 20 mm as assessed by manual tape measure (accuracy of approximately 1 mm), 3148 

covering the range of anticipated working distances. Camera to reference plane distance 𝑢 was 3149 

calculated from Equation (3) for images acquired of reference circles of a range of diameters (10–70 3150 

mm) at each distance. 3151 

 3152 
6.2.2.2 Camera Tilt 3153 

The camera plane should be parallel to the object plane for the most accurate measurement of 3154 

object size. A circle object will appear as an ellipse in the image if the camera is tilted. To evaluate 3155 

this source of error on distance estimation, the mobile phone was held on an adjustable optics 3156 

mount with a fixed distance of 200 mm from camera lens to the backboard, tilted up (+) or down (−) 3157 

relative to the reference plane. 3158 

6.2.2.3 Fruit Allometrics and Sizing 3159 

As a reference measure, fruit length and width were assessed using a digital caliper (DCLR-1205, 3160 

Clockwise Tools Inc., Palo Alto, CA, USA). Measurement repeatability was assessed as standard 3161 

deviation (SD) of 20 repeated measurements of a mango fruit. To establish fruit allometrics, the 3162 

length, width, thickness, and weight of 387 mango fruits of four cultivars (Kensington Pride (KP), 3163 

Calypso, Honey gold and Keitt) were measured. Fruit were of a range of maturities. 3164 

To test the performance of the ‘FruitSize’ application, four exercises were undertaken. Exercise 1: 3165 

Images were acquired of 20 fruit each of apple (Royal Gala), avocado (Hass), mandarin (Imperial), 3166 

orange (Navel), and mango (Honey Gold) in a laboratory setting. Exercise 2: Images were acquired of 3167 

176 mango (cultivars Kensington Pride and Honey Gold) fruit on tree. Acquisition occurred under a 3168 

range of lighting conditions, although strong shadows were avoided. Exercise 3: Twenty-one mixed 3169 

fruit (mandarin, apple and orange) were measured by calipers, and by two operators, using separate 3170 

phones (Samsung and HTC). Exercise 4: Twenty mango (Kensington Pride) fruit were tagged on tree 3171 

at stone hardening stage, and assessed weekly over two months, until harvest, using both calipers 3172 

and the FruitSize application. 3173 

6.3 Results and Discussion 3174 

6.3.1 Effect of Reference Circle Size on Distance Estimation 3175 

Increased reference circle size should result in an improved estimation of the distance from camera 3176 

to image plane, as the relative uncertainty in the estimation of the diameter of the reference circle is 3177 

decreased. For example, there is a blur between yellow and blue areas of approximately four pixels 3178 

at a camera to image plane distance of 200 mm. At this distance, a line of 10 mm is imaged by 80 3179 

pixels, and thus an uncertainty of 4 pixels represents 5% of the measurement. 3180 

The measured RMSE of the camera to reference plane distance estimate decreased as circle size 3181 

increased, with improvement decreasing for larger diameters (Figure 6-4). A reference circle size of 3182 
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40 mm, associated with RMSE of 2.4 mm (Figure 6-4), was adopted in further work in a compromise 3183 

between precision and the available space on an A4 sized background. An RMSE of 2.4 mm in 3184 

distance estimation will introduce a 1.2% error in estimation of fruit size, given a camera to image 3185 

plane distance of 200 mm (calculation using Equation (3)). 3186 

 3187 

Figure 6-4. RMSE of camera to object distance estimation (for 10 replicate measurements) as influenced by 3188 
reference circle size. 3189 

6.3.2 Effect of Camera Tilt Angle 3190 

As the angle of the camera to reference plane was increased by tilting the camera long axis, the 3191 

error of the camera to reference plane distance estimation increased non-linearly (Figure 6-5) 3192 

because of distortion of the imaged reference circle. A limit of 14°, associated with an eccentricity of 3193 

0.3, was set on the camera-object plane angle for further processing of the image. The RMSE of 12 3194 

mm, associated with a 14° tilt, will introduce 6% error on estimation of fruit size for a fruit-to-camera 3195 

distance of 200 mm (from Equation (3)). 3196 

 3197 
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Figure 6-5. Absolute residual of camera to object distance estimation as influenced by angle between 3198 
camera (phone major axis) and object planes, for tilt forward (down) and back (up). Camera lens held at a 3199 
set distance to object plane, while phone body was tilted. 3200 

In field practice, there was greater variation in user positioning of the major axis of the phone 3201 

relative to the backboard than for the minor axis of the phone. Use of the reference circle minor axis 3202 

(axis parallel to the minor axis of the phone) to estimate camera to reference plane distance 3203 

therefore achieved better accuracy than use of major axis (data not shown), and therefore this axis 3204 

was used in scaling the image. 3205 

6.3.2.1 Fruit Allometrics 3206 

Fruit can be characterized in terms of their lineal dimensions of length, width, and thickness. For 3207 

some commodities, width and thickness may be similar, and all three parameters are similar for a 3208 

spherical fruit. An allometric relation between the lineal dimensions of fruit length, width, thickness, 3209 

and the weight of Chok Annan variety mango fruit was established by Reference (Spreer and Müller 3210 

2011), and for a range of other cultivars by (Anderson et al. 2017). Similar allometric relationships 3211 

between fruit lineal dimensions and weight hold for other fruit. Allometric relations can also be 3212 

established between lineal parameters, e.g., between length and width. 3213 

In holding the backing board behind fruit on a tree, the long axis of the fruit (Lr) naturally aligns with 3214 

long axis of the backing board. For mango fruit, the wider minor axis (fruit ‘width’, Wr) aligns with 3215 

the board minor axis, with the dimension of the fruit in the camera to reference plane direction 3216 

representing fruit ‘thickness’. An allometric relationship established between mango fruit thickness 3217 

(Tr) and width was stronger than that for thickness and length (Table 6-1). The relationship Tr = 0.88 3218 

× Wr was adopted in the operation of the application. The same relationship was applied to avocado 3219 

fruit. Mandarin, apple, and citrus were assumed to be spheres, i.e., Tr = Wr. 3220 

Table 6-1. Allometric relationships based on linear regression with intercept of zero for fruit real thickness 3221 
(Tr) to length (Lr) and width (Wr) of mango fruit (n given in brackets). 3222 

Cultivar 
Tr vs. Wr Relationship Tr vs. Lr Relationship 

Slope R2 Slope R2 

Honey Gold (42) 0.82 0.72 0.74 0.50 

KP (43) 0.87 0.66 0.73 0.47 

Calypso (242) 0.90 0.88 0.75 0.65 

Keitt (60) 0.82 0.93 0.57 0.92 

All 0.88 0.67 0.74 0.60 

The RMSE values on length and width estimation of 20 mango fruit were decreased from 8.8 to 5.3 3223 

mm and 6.8 to 3.7 mm by the depth correction step. Obviously, the procedure does not give a 3224 

perfect estimate of camera to fruit perimeter distance, and so represents a source of error in fruit 3225 

sizing estimation. 3226 

6.3.3 Size Estimation Results 3227 

Repeatability of the reference (caliper) method was assessed at 1.2 mm for mango fruit (SD of 20 3228 

measurements). 3229 
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Exercise 1: For avocado fruit, RMSE on fruit length and width was 3.4 and 1.6 mm, respectively, 3230 

while for apple, mandarin and orange diameter, RMSE was 2.0, 3.8 and 2.4 mm, respectively. The 3231 

RMSE on mango fruit length and width measurements were 5.3 and 3.7 mm, respectively. 3232 

Exercise 2: For in orchard measurements of mango fruit on tree (n = 176), the linear correlation of 3233 

machine vision estimated fruit length and width against caliper measurements was characterised by 3234 

a R2 = 0.921 and 0.904 and RMSE of 5.5 mm and 4.6 mm (bias = +1.0 and +1.1) for length and width 3235 

estimation, respectively (Figure 6-6). This RMSE result is equivalent to that achieved in a companion 3236 

study on in field estimation of mango fruit size using a Kinect time of flight camera (Wang et al. 3237 

2017a). The lower RMSE of the assessments made indoors compared to the field based mango 3238 

measurements is likely due to better operator performance in terms of holding the phone parallel to 3239 

the backing board and less segmentation error associated with uniform lighting in an indoor setting. 3240 

  

Figure 6-6. Correlation between mobile application and caliper measurement of fruit length (left panel) and 3241 
width (right panel). 3242 

The bias is attributed to an error either in the lens and pixel specifications accessed from the camera 3243 

software, or an over-estimate of fruit depth from fruit allometry. However, bias can be empirically 3244 

corrected in future measurements. 3245 

Exercise 3: To illustrate use of the application across mobile phones, two mobile phones were bench 3246 

marked to caliper measurements, with similar results achieved (RMSE = 2.0 and 2.1 mm for the HTC 3247 

and Samsung phones, respectively) (Figure 6-7). The slight difference is attributed to operation error 3248 

(i.e., different camera tilt angles). The performance consistency of the application on different 3249 

mobile phones is ascribed to the measurement principle, being based on thin lens theory. A 3250 

manufacturer/model calibration or bias-correction procedure could increase accuracy, but this 3251 

approach adds additional complexity (e.g., a list of supported phones). 3252 



Fruit sizing app 
 

P a g e  | 113 

 3253 

Figure 6-7. Fruit length and width estimated using the mobile application on two phone types (HTC, 3254 
Samsung), relative to caliper measurement, for a set of mandarin, orange and apple fruit (n = 21 fruit). 3255 

Exercise 4: To illustrate use of the application, machine vision and caliper estimates of 20 tagged 3256 

fruits on tree were acquired weekly over two months (three fruit dropped before the last reading) 3257 

(Figure 6-8). The average growth rate over this period was 1.0 mm/day for length and 0.9 mm/day 3258 

for width, as estimated using either caliper or machine vision. Changes in the rate of growth can be 3259 

interpreted in terms of growth conditions, e.g., water availability and fruit maturity (Anderson et al. 3260 

2017). Size estimates can be converted to fruit weight estimates based on fruit allometry, as 3261 

undertaken in the companion study (Wang et al. 2017a). 3262 

 3263 

Figure 6-8. Time course of average mango fruit lineal dimensions (n = 17 fruit) for length (top line pair) and 3264 
width (bottom line pair), as assessed using calipers (dashed line) or machine vision (FruitSize application; 3265 
solid line). Error bars represent the standard error of the mean. 3266 
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6.3.4 Fruit Size Application Use 3267 

A typical assessment rate of four fruit per minute or 240 fruit per hour was achieved. The FruitSize 3268 

application can be used for estimation of population statistics on fruit size, to inform packing and 3269 

marketing decision making. The required sample for such a task is dependant of the level of 3270 

population variation. For the population of assessed fruit reported in Figure 6-5, the standard 3271 

deviation (SD) on the machine vision length and width estimates was 18.7 mm and 14.2 mm, 3272 

respectively. Using the t-statistic relationship n =  (
𝑡×𝑆𝐷

𝑒
)

2
 and t = 1.96 (confidence level of 95%, n > 3273 

15) and acceptable error of 5 mm, a sample size of 54 (for length) and 31 (for width) samples is 3274 

warranted. This is a manageable workload, per orchard block. 3275 

6.4 Conclusions 3276 

In a parallel study we describe in-field fruit sizing based on use of an RGB-D camera mounted to a 3277 

farm vehicle. The current paper introduces a low-cost solution, based on use of a smartphone. The 3278 

application utilises the thin lens formulae and a reference marker to estimate camera to background 3279 

distance, adjusted for camera to mid-fruit plane by an iterative correction from the relationship 3280 

between fruit length and thickness. The application employs several internal checks of image quality 3281 

features that impact on size estimation, rejecting images taken outside of the camera to fruit 3282 

distance of 120 mm to 300 mm, and at a tilt angle between camera plane and object plane of 3283 

greater than 14 degrees. The eccentricity and area of the imaged fruit was used to allocate the 3284 

image to a fruit type and associated allometric relationship between fruit width and thickness. 3285 

Measurement accuracy allowed estimation of fruit growth rate from weekly assessments, and 3286 

allowed estimation of fruit size distribution. Phone geolocation data allows for field collected data to 3287 

be automatically assigned to user defined orchard management units, with associated calculations 3288 

to render weight distribution or projected time to reach a desired size. 3289 

Possible improvements include a lightweight frame to hold the camera at a fixed distance and angle 3290 

relative to the object, with compromise to ease of storage and transport. Use of more than one 3291 

reference circle (e.g., in the four corners of the backboard) would also be useful in calculating a 3292 

correction for camera tilt and distance. New phone technology employing a true-depth camera (e.g., 3293 

iPhone X) or stereo cameras (HTC Evo 3D, iPhone 7 Plus) could be used to obtain the fruit perimeter 3294 

to camera distance, replacing the need for a reference object. Alternatively, a third-party plug-in 3295 

ToF-distance measurement device (e.g., Ryobi ES9400) could be used. 3296 

The application is available for download at https://www.fruitmaps.com.au. 3297 
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Chapter 7. Conclusion 3308 

7.1 Summary 3309 

Tree fruit crop yield estimation is a valuable input to orchard management activity and into decision 3310 

support tools for planning marketing, transport and harvest labour needs. Advances in machine 3311 

vision hardware, image analysis and data management (cloud computing) are allowing new 3312 

opportunities in a wide range of applications.  In this thesis, machine vision has been applied to in-3313 

field assessment of the extent of flowering, fruit size and fruit number. An accurate automated fruit 3314 

recognition and counting is also a precursor to robotic fruit harvesting.  3315 

A machine vision fruit detection system was designed, evaluated and implemented for real-time 3316 

mango panicle and fruit detection and counting in the orchard. The system is based on night time 3317 

dual view imaging, and is comprised of an RGB camera, LED floodlight, GNSS receiver and a field 3318 

computer mounted on a farm vehicle. Deep learning model training and testing was implemented on 3319 

the CQUniversity High Performance Computing (HPC) platform running Red Hat Linux operating 3320 

system and NVIDIA® Tesla® P100 (16 GB memory) GPU. For in-field use, a Nuvo-6108GC industrial-3321 

grade computer running Windows operating system and NVIDIA GeForce GTX 1070 Ti (8GB memory) 3322 

GPU was used. Deep learning algorithms on both hardware were compiled with CUDA and cuDNN 3323 

major versions 9 and 7, respectively. Similarly, OpenCV and Python major versions 3 and 2 were 3324 

installed on both computing resources, respectively. As a general recommendation, a computing 3325 

platform with GPU memory of 8 GB or more is recommended for deep learning model training and 3326 

testing. For larger CNNs and higher network input resolution, the memory requirement can scale to 3327 

more than 16 GB (Koirala et al. 2019b). Therefore, for practical in-field implementation, deep 3328 

learning architectures must be optimized for lower computational resources.   3329 

The thesis addressed both flowering and fruit load estimation. There have been several publications 3330 

on automated fruit detection but relatively few publications address in-field tree crop flower 3331 

assessment. The flower peak detection and display options presented in the current study should 3332 

prompt further work in this field. Another area poorly addressed in the literature is the issue of fruit 3333 

occlusion. The structure of canopy, camera viewpoint and other occlusions pose a challenge for 3334 

machine vision systems in terms of visualization of all fruits on tree and thus for accurate yield 3335 

estimation. Attempts to accommodate the occlusion factor inside a trained model as presented in 3336 

the current study should also provide guidance for future work in this field. 3337 

The following objectives, as set at the start of the thesis, have been addressed: 3338 

Objective 1: Define applications for machine vision in mango culture for precise estimation of crop 3339 

yield  3340 

As initially conceived, this thesis addressed a need for mango fruit load estimation in orchard, with 3341 

estimation made at least four weeks before harvest.  However, additional applications for machine 3342 

vision were defined and addressed, including the in-field count of panicle number to assist in 3343 

characterisation of the time and spread of harvest and the size of fruit, to complement the estimate 3344 

of fruit number. Fruit detection and estimation of fruit size, which is based on an estimate of camera 3345 

to fruit distance, is also fundamental to the development of automated harvesting.   3346 

Objective 2: Contribute to the design of a low-cost imaging system for use on mango orchards 3347 

This thesis work occurred in context of a team activity (Sensors Group, Institute for Future Farming 3348 

Systems, CQU). In the design of a low-cost imaging systems for practical implementation on mango 3349 
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orchards my primary contribution, as recorded in this thesis, was the development of a deep 3350 

learning based detection framework. An existing object detection framework was re-designed for 3351 

reduced computational cost (Chapter 3). This new detection framework outperformed other 3352 

frameworks in terms of operational speed, memory requirement and detection accuracy, enabling it 3353 

to be used for real-time in-field operation. This framework was extended to detection and count of 3354 

several developmental stages of mango panicles for flowering assessment (Chapter 4). Several 3355 

machine learning methods and their combinations were also explored to predict the total crop yield 3356 

from the fruit counts and tree images obtained from using machine vision system (Chapter 5). 3357 

Additionally, a smartphone app based on machine vision algorithms was developed for fruit sizing 3358 

and estimation of fruit weight (Chapter 6). The app can be downloaded to any android phone (from 3359 

www.fruitmaps.com.au) and operated without the need for extra imaging hardware and computing 3360 

resource, makes this a cost-effective application. 3361 

Objective 3: Establish a database of images with different mango varieties and associated actual 3362 

flowering/fruit count collected at different times of season and from different orchards. These image 3363 

sets will be useful for anyone who wish to train and test their models 3364 

Deep learning methods benefit from the use of large training datasets (big data) and the availability 3365 

of such datasets for mango flower and fruit is rare. Tree flower and fruit images were collected on 3366 

several commercial orchards located in different geographical regions within Australia, with images 3367 

of different cultivars acquired every season for three years.  Ground truth manual counting of fruit 3368 

per tree was collected for calibration trees. Different camera hardware was also used in imaging in 3369 

some locations. This activity created a large dataset of images and ground truth fruit counts. The 3370 

labour-intensive task of ground truth data annotations and labelling of images for training machine 3371 

learning algorithms was undertaken on approximately 2600 images, across fruit and flowering tasks. 3372 

This annotated training data (1730 annotated images for fruit detection) was made publicly available 3373 

for benchmarking other machine vision systems at http://hdl.cqu.edu.au/10018/1261224. 3374 

Objective 4: Compare and benchmark the state-of-the-art machine learning methods for estimation 3375 

mango flower and fruit detection and yield estimation 3376 

State-of-art machine learning methods were reviewed and overviewed for the use in fruit detection 3377 

and yield estimation (Chapter 2). An existing object detection framework was re-designed to create 3378 

a new model, and performance benchmarked against several state-of-the art machine learning 3379 

methods, for the task of fruit detection and yield estimation (Chapter 3). Similarly, the new model 3380 

was extended for flower assessment and benchmarked against the machine vision systems of 3381 

previously published works (Chapter 4). 3382 

The better generalization capabilities of deep learning methods across cultivars, lighting conditions 3383 

and imaging hardware, were demonstrated in this current study. Moreover, deep learning 3384 

algorithms proved robust against varying level of occlusions, which is an unavoidable case for in-field 3385 

applications.  3386 

Objective 5: Contribute to the development of a decision support tool using output of the machine 3387 

vision analysis 3388 

One of the challenges in precision agriculture is the display and interpretation of large data sets in a 3389 

form useful to the farm manager, i.e., an appropriate decision support tool for farm management. 3390 

All the machine vision systems, established form this study, for application in flower assessment, 3391 

fruit detection, fruit sizing and yield estimation, were integrated into a common resource - the 3392 

FruitMaps website (www.fruitmaps.com.au), which was developed by the greater CQU Sensors 3393 

http://www.fruitmaps.com.au/
http://www.fruitmaps.com.au/
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team. The machine vision system is capable of uploading the data (images, fruit counts, panicle stage 3394 

counts, fruit size etc.) into the web server for the display in an easy to interpret form (graphics and 3395 

plots). Users can view the data at an individual tree level on the satellite maps of their orchard and 3396 

use the information to manage farm and for market planning and farm resource management 3397 

(Chapter 4).  3398 

7.2 Future directions 3399 

7.2.1 General trends 3400 

The general public is aware of rapid progress in array of technologies, with the media carrying 3401 

coverage of ‘buzzword’ topics such as machine vision, AI and IoT. Key drivers for adoption of 3402 

automated sensors and technologies on farm include the shortage of farm labour, the falling price 3403 

and increasing availability of computing and communication resources.  In particular, orchard 3404 

applications of machine vision are enabled by the rapid implementation of machine vision 3405 

technologies in a range of other applications, which underpins lowered cost and improved reliability 3406 

of the technology.  3407 

7.2.2 Technology compromises 3408 

The adoption of a technology relies on a synergy of technical, social and political factors.  The best 3409 

technical solution is not necessarily the solution that will be adopted, e.g., in the videotape format 3410 

war, Betamax was said to have been better technical solution, but VHS won the war. An obvious 3411 

compromise exists in the balance of cost, complexity and performance of a technology. 3412 

The suite of technologies that will be commercially adopted for orchard imaging remains to be seen.  3413 

For the orchard imaging task, night time imaging was preferred in this study over daytime imaging.  3414 

The night imaging solution provided reduced background noise and better image quality, with use of 3415 

lower cost and less specialised equipment (e.g., LED lighting system instead of high cost Xenon 3416 

strobe lights which have been used in daytime imaging, with attendant need for short exposure 3417 

cameras). However, ‘higher end’ solutions can provide amazing visualisations of orchard scenes. For 3418 

example, Stein et al. (2016) utilised RGB and LiDAR with IMU and GNSS tracking to create a 3D 3419 

representation of a mango orchard, locating every fruit in XYZ space.  However, as noted earlier, 3420 

commercial adoption will rest on a balance of cost, complexity and performance. 3421 

The issue of lighting deserves further attention.  A Flash-No-Flash (FNF) technique has been 3422 

proposed to mitigate the effect of strong background lights for a picking robot operating in 3423 

structured glasshouse environment (Arad et al. 2019). The issue of hidden fruits especially for large 3424 

and dense tree canopies also deserves further attention. The issue is partly addressed using multi 3425 

view imaging (e.g., sequence of images or videos) which exposes more fruit than use of a single or 3426 

dual view. Recent advances in the field of complex tracking, e.g., DeepSORT (Wojke et al. 2017) 3427 

holds promise for this implementation. However, multi view imaging requires tracking of multiple 3428 

fruit across consecutive frames to prevent double counts, and the added computational complexity 3429 

will add to the computing hardware requirements of this application.  3430 

The use of machine vision and associated automation of farm tasks is lagging for orchard 3431 

applications because of the constraints of the unstructured farm environment. Developments in 3432 

several fields are often required for the adoption of a technology.  For example, the uptake of the 3433 

automobile was concurrent with developments in road engineering.  The uptake of machine vision 3434 

into orchard tasks is complemented by a trend to high-density small tree plantings in many tree 3435 

crops, including mango.  In the case of apple trees, trellised production is now common. The narrow 3436 
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canopies have promise for better light interception, for machine vision and for penetration by 3437 

harvest arms.  3438 

7.2.3 From cloud to in-field computing  3439 

The expansion of cloud computing resources provides opportunities for implementation of orchard 3440 

machine vision applications. The Amazon AWS and Microsoft Azure provide pre-configured 3441 

environments in the cloud supporting popular deep-learning tools such as Caffe, Keras, MXnet, 3442 

PyTorch, and Tensorflow for deploying machine learning and deep learning AI applications. 3443 

However, uploading large number of images to the cloud server can be time consuming and in many 3444 

cases the orchards are in relatively remote areas with no or very poor internet speed. As an 3445 

example, a commercial orchard (approximately 55k mango trees) in the Northern Territory of 3446 

Australia is using a satellite link to upload farm images because of lack of landline or 3-G mobile 3447 

network. Approximately 7000, 5 MP images of 3,500 trees requires about 8 hours of upload time.  3448 

Having a local computing resource can avoid the need to store or transfer images and provides 3449 

reduced system complexity and operation time. Industrial-grade ruggedized GPU computers suitable 3450 

for in-field operation are becoming available, servicing a market in autonomous vehicles. For 3451 

example, the Nuvo from Neousys Technology (www.neousys-tech.com)  provides GPU ‘grunt’ for the 3452 

running of state-of-art deep learning models. These computers have been used in autonomous farm 3453 

robots (https://www.swarmfarm.com/) and CQUniversity’s mango harvester. 3454 

Reduced computational time allows for cheaper hardware. There exist some light weight deep 3455 

neural networks (e.g., MobileNet) for mobile and embedded vision applications. Smart phones are 3456 

equipped with various sensors including RGB and ToF cameras and can run machine vision and light 3457 

weight deep learning algorithms. Many mobile apps have already integrated machine learning 3458 

technology to provide better and accurate services through learning from huge pool of data. The 3459 

application of mango fruit sizing from this research work can be extended to disease/defect 3460 

detection on fruits in future. Such embedded machine vision systems can find several applications in 3461 

an orchard, such as for insect and weed classification. For example, Leafsnap (Kumar et al. 2012) 3462 

mobile app identifies tree species from the image of tree leaves (leafsnap.com). The Croptracker 3463 

‘Harvest Quality Vision’app allows imaging of apple fruit in a  harvest bin, with analysis of quality 3464 

attributes before the fruit reaches the packhouse (https://www.croptracker.com/product/harvest-3465 

quality-vision.html, doa 5/11/2019).  3466 

FLIR Systems (https://www.flir.com.au/) recently launched the Firefly-DL machine vision camera that 3467 

supports deep learning inference hardware onboard the camera. This current generation of 3468 

hardware can support small CNN models such as LeNet, SqueezeNet and SSD MobileNet_v1, and 3469 

cannot handle the more accurate and popular CNN architectures such as VGG, ResNet, Inception and 3470 

YOLO are not yet supported. No doubt hardware advances will come, enabling ‘edge computing’ 3471 

applications in the field of precision agriculture and in pack-line grading. 3472 

7.2.4 Advancement in AI 3473 

Deep learning CNN architectures have shown state-of-art performance on object detection and 3474 

classification tasks. There are several other deep learning techniques beyond classification task that 3475 

can be exploited for the use in precision agriculture. There has been a huge progress in generative 3476 

AI, for example, Google’s BigGAN is able to generate high resolution synthetic images that are 3477 

precisely like real images. Moreover, deep learning techniques has been used for tracking objects 3478 

with higher accuracies in the video frames. Current application of deep learning methods for fruit 3479 

detection and yield estimation such as, training deep models on synthetic fruit datasets (saving the 3480 

http://www.neousys-tech.com/
https://www.swarmfarm.com/
https://www.croptracker.com/product/harvest-quality-vision.html
https://www.croptracker.com/product/harvest-quality-vision.html
https://www.flir.com.au/
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cost of data acquisition) and training deep regression models for direct prediction of fruit numbers 3481 

on input tree images (saving the time and cost for object annotation) are promising. Long Short-3482 

Term Memory (LSTM) methods of deep learning have been widely used for prediction on time-series 3483 

data for example, weather forecast. Such technologies along with IoT have a big promise for a 3484 

sustainable precision farming. 3485 

7.2.5 IoT 3486 

The application purpose of machine vision estimation of flowering is to support estimation of 3487 

harvest timing, but it is only one half of the solution.  The other requirement is for temperature 3488 

monitoring, ideally of individual blocks of trees, to inform heat sum models of fruit maturation.  This 3489 

can be done with manually logged thermistors, but the logging task is tedious.  Given that 3G 3490 

connection is often poor on mango farms, and connections are relatively expensive, other solutions 3491 

are needed to deploy sensors for crop and orchard environment monitoring. As an example, 3492 

LoRaWAN (Long Range Wide Area Network) solutions from Advantech (www.advantech.com) 3493 

provides IoT sensor nodes of low cost, long range (~18 km in rural areas) and low energy 3494 

consumption (https://doi.org/10.3390/s18030772) . A wireless gateway can support hundreds of 3495 

sensor nodes to efficiently collect and upload sensor data to the cloud for forecasting.  3496 

7.2.6 Autonomy on farms 3497 

Autonomous vehicles could be used to monitor the orchards for tree crop health and yield. Among 3498 

others, SwarmFarm Robotics (https://www.swarmfarm.com/) deploys small semi-autonomous 3499 

machines for spraying and weeding tasks on broad acre crops. Such platforms are the basis for 3500 

autonomous farm machine vision systems. The use of auto-steer tractors is common in the grains 3501 

industry and nascent in tree crops use, with a level of human intervention, e.g., for turning at row 3502 

ends.  Thus, orchards need to be designed with suitable navigation of field automated systems in 3503 

mind.  3504 

In the field work of this thesis, GNSS signal loss was experienced in some parts of orchard blocks, 3505 

usually the end rows close to wind-breaking tall trees. The use of GNSS system for navigation of 3506 

autonomous farm vehicles is thus unreliable for existing orchards. Self-driving cars can 3507 

autonomously navigate using LIDAR or RGB data and machine learning algorithms. LIDAR and/or 3508 

RGB can be used for mapping trees in the orchard to support navigation using SLAM techniques, 3509 

with the downside of additional computational complexity.  3510 

The machine vision applications of flowering and fruit load estimation were explored in this thesis. 3511 

The same technology can be used to support auto-harvesting technology. Several attempts have 3512 

been made to apply robotics to fruit harvest.  Most of these attempts involve the use of standard 3513 

industrial robotic arms with five to seven degrees of freedom in a protected crop environment (e.g., 3514 

the Harvey capsicum harvester; https://research.qut.edu.au/future-farming/projects/harvey-the-3515 

robotic-capsicum-sweet-pepper-harvester/, doa 5/11/2019). Such industrial robotic arms are 3516 

expensive and operate slowly and may not be suitable for tree crops bearing hundreds of fruits per 3517 

tree. More appropriate is the use of multiple linear actuators or picking arms arranged in some grid 3518 

pattern specific to the crop application. For example, the AGROBOT strawberry harvester offers 3519 

higher speed from multiple arms with limited (1 or 2 degrees of freedom) flexibility. The citrus 3520 

harvester from Energid (www.energid.com) uses a multiple low-cost hydraulic picking mechanism 3521 

arranged in a grid fashion. The FFRobotics (www.ffrobotics.com) apple harvester uses multiple linear 3522 

actuators for picking of apple fruits.  3523 

http://www.advantech.com/
https://doi.org/10.3390/s18030772
https://www.swarmfarm.com/
https://research.qut.edu.au/future-farming/projects/harvey-the-robotic-capsicum-sweet-pepper-harvester/
https://research.qut.edu.au/future-farming/projects/harvey-the-robotic-capsicum-sweet-pepper-harvester/
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As a relatively high cost, large, firm fruit, hanging freely at the end of a long peduncle, the mango 3524 

fruit is well suited to robotic harvesting.  There is also a strong pull factor for this application in 3525 

Australia, given shortage of farm labour and the harsh harvest time environment, with up to 40 oC 3526 

ambient temperatures, and the release of an acidic sap from fruit on harvesting that can cause 3527 

human skin damage. The CQUniversity team has recently developed the world’s first mango 3528 

harvesting robot (www.cqu.edu.au/cquninews/stories/general-category/2019/world-first-mango-3529 

auto-harvester-from-cquni). This machine, designed to operate in existing Australian commercial 3530 

orchards, is 3 meters tall and equipped with 9 linear arms that can extend 1.7 m into the canopy. A 3531 

75% harvest efficiency on fruits visible to the system has been achieved to date. The eyes of the 3532 

system are an RGB and ToF camera. The brain of the system is the deep learning MangoYOLO model 3533 

developed in this thesis. This technology has great promise to replace human harvest labour, but 3534 

numerous challenges remain. In the machine vision area, it is necessary to implement a selective 3535 

harvesting capability, based on harvest maturity classification. 3536 

Quantum fieri non multo – much has been done but there is much to do. 3537 

 3538 
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Appendix 3918 

Other Published Research 3919 

The main body of this thesis contained the key publications made in the context of the use of 3920 

machine learning and deep learning CNN techniques for mango flower detection and assessment, 3921 

fruit detection, counting and fruit load estimation. Some of the research follows preliminary work 3922 

conducted for fruit detection and flower assessment using traditional object segmentation methods 3923 

which were also published. Moreover, some methods extend fruit detection method developed in 3924 

this thesis for use with tracking algorithms as a major component of yield estimation framework 3925 

which were also published. This section contains these papers listed in chronological order as 3926 

follows: 3927 

Wang Z, Walsh K, Koirala A (2019) Mango Fruit Load Estimation Using a Video Based MangoYOLO—3928 
Kalman Filter—Hungarian Algorithm Method Sensors 19:2742 3929 
doi:https://doi.org/10.3390/s19122742 3930 

 3931 
Underwood JP, Rahman MM, Robson A, Walsh KB, Koirala A, Wang Z (2018) Fruit load estimation in 3932 

mango orchards - a method comparison. Paper presented at the ICRA 2018 Workshop on 3933 
Robotic Vision and Action in Agriculture, Brisbane,  Australia.  3934 

 3935 

Koirala A, Walsh K, Wang Z, McCarthy C Mobile device machine vision estimation of mano crop load. 3936 
In: International Tri-Conference for Precision Agriculture, New Zealand, 2017. 3937 
doi:https://doi.org/10.5281/zenodo.895382 3938 

 3939 
 3940 
Wang Z, Verma B, Walsh KB, Subedi P, Koirala A Automated mango flowering assessment via 3941 

refinement segmentation. In: International Conference on Image and Vision Computing New 3942 
Zealand (IVCNZ) 2016 IEEE, pp 1-6. doi:https://doi.org/10.1109/IVCNZ.2016.7804426 3943 
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Appendix A. Published version of Chapter 3 3956 

Mango Fruit Load Estimation Using a Video Based MangoYOLO-Kalman Filter-Hungarian Algorithm 3957 

Method 3958 

Wang Z, Walsh K, Koirala A (2019) Mango Fruit Load Estimation Using a Video Based MangoYOLO—3959 
Kalman Filter—Hungarian Algorithm Method Sensors 19:2742 3960 
doi:https://doi.org/10.3390/s19122742 3961 
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Appendix B. Published version of Chapter 4 3981 

Deep Learning for Mango (Magnifera indica) Panicle Stage Classification 3982 

Koirala, A.; Walsh, K.B.; Wang, Z.; Anderson, N. Deep Learning for Mango (Mangifera indica) Panicle 3983 

Stage Classification. Agronomy 2020, 10, 143. Doi: https://doi.org/10.3390/agronomy10010143  3984 
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Appendix C. Published version of Chapter 6 4008 

Mobile device machine vision estimation of mango crop load 4009 

Koirala A, Walsh K, Wang Z, McCarthy C Mobile device machine vision estimation of mano crop load. 4010 
In: International Tri-Conference for Precision Agriculture, New Zealand, 2017. 4011 
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Appendix D. Method comparison 4020 

Fruit load estimation in mango orchards- a method comparison 4021 

Underwood JP, Rahman MM, Robson A, Walsh KB, Koirala A, Wang Z (2018) Fruit load estimation in 4022 
mango orchards - a method comparison. Paper presented at the ICRA 2018 Workshop on 4023 
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Appendix E. Automated Mango Flowering Assessment via Refinement 4032 

Segmentation 4033 

Wang Z, Verma B, Walsh KB, Subedi P, Koirala A Automated mango flowering assessment via 4034 
refinement segmentation. In: International Conference on Image and Vision Computing New 4035 
Zealand (IVCNZ) 2016 IEEE, pp 1-6. doi:https://doi.org/10.1109/IVCNZ.2016.7804426 4036 
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Addendum 4046 

This section includes materials that provide additional information for some part of the 4047 

thesis to incorporate reviewers’ suggestions. 4048 
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Figure 1-1. 2019/2020 Mango crop forecast- dispatch to the market (*BLACK - Actual weekly volume of trays dispatched from the 

region across all varieties *RED - Forecast weekly volume of trays dispatched from the region across all varieties) 
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Representative images showing the failure detection by Mango-YOLO. 4104 

4105 
Figure 1. False positive (parts of tree branch detected as fruit) 4106 

4107 
Figure 2. False positive (parts of tree branch detected as fruit) 4108 

True positive = 25 

False positive = 1 

False negative = 0 

Precision = 0.96 

Recall = 1 

F1 = 0.98 

True positive = 10 

False positive = 1 

False negative = 0 

Precision = 0.96 

Recall = 1 

F1 = 0.979 
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4109 
Figure 3. False positive (parts of tree branch detected as fruit) and false negative (fruit not detected) 4110 

4111 
Figure 4. False positive (parts of tree leaves detected as fruit) 4112 

True positive = 62 

False positive = 1 

False negative = 1 

Precision = 0.984 

Recall = 0.984 

F1 = 0.984 

True positive = 18 

False positive = 2 

False negative = 0 

Precision = 0.9 

Recall = 1 

F1 = 0.947 
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