Copyright © 2008 Institute of Electrical and Electronics
Engineers, Inc.

All rights reserved.

Personal use of this material, including one hard copy
reproduction, is permitted.

Permission to reprint, republish and/or distribute this
material in whole or in part for any other purposes must
be obtained from the IEEE.

For information on obtaining permission, send an e-mail
message to stds-ipr@ieee.org.

By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Individual documents posted on this site may carry
slightly different copyright restrictions.

For specific document information, check the copyright
notice at the beginning of each document.




IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 7, JULY 2007

1573

On Designing Time-Varying Delay Feedback
Controllers for Master—Slave Synchronization
of Lur’e Systems

Qing-Long Han

Abstract—This paper is concerned with the problem of designing
time-varying delay feedback controllers for master—slave synchro-
nization of Lur’e systems. Two cases of time-varying delays are
fully considered; one is the time-varying delay being continuous
uniformly bounded while the other is the time-varying delay being
differentiable uniformly bounded with the derivative of the delay
bounded by a constant. Based on Lyapunov—Krasovskii functional
approach, some delay-dependent synchronization criteria are first
obtained and formulated in the form of linear matrix inequalities
(LMISs). The relationship between synchronization criteria for the
two cases of time-varying delays is built. Then, sufficient conditions
on the existence of a time-varying delay feedback controller are de-
rived by employing these newly-obtained synchronization criteria.
The controller gains can be achieved by solving a set of LMIs. Fi-
nally, Chua’s circuit is used to illustrate the effectiveness of the de-
sign method.

Index Terms—Absolute stability, controller design, linear matrix
inequality (LMI), Lur’e systems, state feedback, static output feed-
back, synchronization, time-varying delay.

1. INTRODUCTION

HAOTIC synchronization [2] has received considerable
Cattention due to its practical applications such as secure
communications in which an information bearing signal is
hidden on a chaotic carrier signal [10], [12], [22]. As is well
known, there are some nonlinear systems, such as Chua’s cir-
cuit, n-scroll attractors and hyperchaotic attractors [23], which
can be represented as Lur’e systems. Therefore, master—slave
synchronization for Lur’e systems has well studied in the
last decade [4], [5], [14], [16], [17], [19], [21], [22]. For the
master—slave systems which are identical and autonomous,
Curran and Chua [4] built the relationship between a synchro-
nization problem and absolute stability theory. Curran et al. [5]
extended the work in [4] using a Lur’e—Postnikov Lyapunov
functional. The main idea in [4], [5] is to employ a unified
approach [22], which reformulates chaotic synchronization as
a Lur’e system and then discusses the absolute stability of its
error system. For the master—slave systems which are identical
and nonautonomous, the synchronization scheme was inter-
preted as a model-reference control scheme in standard plant
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form, with exogenous input and regulated output [18]. For the
master—slave systems which are nonidentical, i.e., parameters
are mismatch between the two systems, the reader is referred to
[19], [20] and the references therein.

Due to the propagation delay frequently encountered in
remote master—slave synchronization schemes, recently, there
have been some research efforts to investigate the delay effect
on master—slave synchronization. For example, in [23], some
delay-independent and delay-dependent criteria were derived
for master—slave synchronization of Lur’e systems using a
constant time-delay static error output feedback control. In
order to handle the case where the master—slave systems can
not be synchronized by a pure time-delay static error output
feedback control, Liao and Chen [13] considered the feedback
control including both the current error state feedback and the
delayed static error output feedback, and gave some simple
algebraic conditions which are easy to be verified. In [1], the
results in [13], [23] were generalized and improved. Huang et
al. [11] extended the setting in [13] from a constant time-delay
feedback control to a time-varying delay one and derived
some delay-independent and delay-dependent synchronization
criteria under the assumption that the bound of time-derivative
of the time-varying delay is less than one. However, when
deriving delay-dependent sufficient conditions for master—slave
synchronization, both model transformation [11], [13], [23] and
bounding technique for cross terms [11] were employed. As
pointed out by Gu et al. [7], model transformation sometimes
will induce additional dynamics. Although a tighter bounding
for cross terms can reduce the conservatism, however, there is
no obvious way to obtain a much tighter bounding for cross
terms. To sum up, in order to derive a much less conservative
synchronization condition, we are in a position to avoid using
both model transformation and bounding technique for cross
terms, which is the first motivation of the present study.

It should be pointed out that the results in [1], [11], [13], [23]
were only concerned with deriving some sufficient conditions
for master—slave synchronization of Lur’e systems, and did not
address how to design the controller. A nonlinear optimization
approach proposed by Suykens and Vandewalle [16] was sug-
gested to handle the controller design issue. However, the non-
linear optimization problem was a nonconvex one. Non-differ-
entiability might occur [16]. How to easily design the controller
using a convex optimization problem is the second motivation
of the current study.

In this paper, we will deal with the problem of master—slave
synchronization of Lur’e systems using time-varying delay
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feedback control. Two cases of the time-varying delays will
be studied and some delay-dependent synchronization criteria
will be derived without employing any model transformation
and bounding technique for cross terms. We will build the rela-
tionship between the synchronization criteria for the two cases
of time-varying delays. Based on the synchronization criteria,
we will give some sufficient conditions on the existence of a
time-varying delay error feedback controller. These sufficient
conditions will be formulated in the form of linear matrix
inequalities (LMIs). Instead of solving a nonlinear optimization
problem, we will design the controller by solving a set of LMIs.
We will use Chua’s circuit to illustrate the effectiveness of the
design method.

Notation: R™ denotes the n-dimensional Euclidean space.
R™>" is the set of all m x m real matrices. For symmetric
matrices P and @, the notation P > @ (respectively, P > Q)
means that matrix P — (@ is positive definite (respectively,
positive semi-definite). I is an identity matrix of appro-
priate dimensions. tr(W) denotes the trace of matrix W.
diag(ay,az,---,ay) denotes the block-diagonal matrix. For
an arbitrary matrix W and two symmetric matrices P and @,

the symmetric term in a symmetric matrix is denoted by x, i.e.,
P W

P WY\
x Q) \WT Q
II. PROBLEM STATEMENT

Consider a general master—slave synchronization scheme
using time-varying delay static error feedback control

i(0) = Aa(t) + B (Ca(t)
M'{ () = Ha(t) M
J(t) = Ay(t) + By (Cy(t)) + u(t)
3'{ J(1) = Hy(t) @
U - ut) = — K (a(t) — y(1))
Lz (t—r(t) = 2 (t— (1)) ()

with master system M, slave system S and controller C, where
the time delay r(t) satisfying 0 < r(t) < rp/ is a time-varying
function. The master and slave systems are Lur’e systems
with state vectors z(t),y(t) € R™, and the output vectors
zz(t), zy(t) € R!, respectively; A € R"*", B € R"™*™,
C € R™*™ H € R'*™ are constant matrices; (-) : R™ — R™
is a memoryless nonlinear vector valued function which is
globally Lipschitz ¢(0) = 0, and suppose that the nonlinearity
©(+) is time-invariant, decoupled, and satisfies a sector condi-
tion with ¢, (£) belonging to a sector [0, k], i.e.,

@i(€) [p

Defining a signal e(t) = x(t)

i(6)—kE <0 VE>0  YEeR. 4

— y(t), we have the error system

e(t) = (A+ K)e(t) + Me(t — r(t)) + Bn (Ce(t),y(t)) (5)

where M = —LH and n(Ce(t),y(t)) = ¢(Ce(t) +
Cy(t)) — o(Cy(t). Let C = [e1,ca, -+ en]”, ¢ € R,
i = 1,2,---,m. Suppose that n(Ce(t),y(t)) belongs to the
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sector [0, k] (Curran and Chua [4]; Suykens and Vandewalle
[16]), i.e., for Vt > 0, Ve(t), y(t)

i (cFe(t),y(t)) [ni (]

The initial condition of system (5) is defined as

e(t),y(t)) — kel e(t)] <0 (6)

e(0) = ¢(6)

where ¢(6) is a continuous vector valued function.

The purpose of this paper is to design the time-varying delay
controller (3), i.e., to find the controller gains K and L, such
that the system described by (5)—(7) is globally asymptotically
stable, which means that the system described by (1)—(3) syn-
chronizes.

Throughout this paper, we will handle the following two cases
of the time-varying delay r(t).

Case 1) r(t) is a continuous function satisfying

Vo € [—rar, 0] (N

0<7r(t) <ry <oo Vvt > 0. 8)

Case 2) r(t) is a differentiable function satisfying

0<r(t) <ry < oo, 7(t) <rg < oo vV t>0.
©)

In the above, rj; and r4 are constants.

Remark 1: One can clearly see that Case 1 includes Case 2 as
a special case. Case 1 only requires that the time-varying delay
is a bounded continuous function while Case 2 needs additional
information regarding the bound of the derivative of the time-
varying delay. If the time-varying delay is differentiable and
T4 < 1, one can get a less conservative result using Case 2 than
that employing Case 1. However, if the time-varying delay is not
differentiable for all ¢ > 0, only Case 1 can be used to handle
the situation.

The following lemma is useful in deriving synchronization
criteria.

Lemma 1: For any constant matrix W € R™*", W = W71 >
0, scalar 0 < r(t) < ras, and vector function é : [—7p7,0] —
R™ such that the following integration is well defined, then

0

Tt +EWet+&)de < (e7(t) e (t—r(1)))

" <_vgv —VKV> (e(te—(?(t)))' 10

Proof: Use Lemma 1 in [9] to obtain

—TM
—r(t)

0
rar [N+ Wt + &)dE
—r(?)
0 r 0
> t+eyde | w /et—l—f
() ()
= [e(t) = e (t = r(O)]" W [e(t) = e(t = r(t))]-
Re-arranging some terms yields (10). O
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III. STABILITY ANALYSIS

For Case 1, choosing a Lyapunov—Krasovskii functional can-
didate as '

V(teo =T OPe)+ [ (rar =1+ QT (OrarR)E) e
t—rm
(1D
where e, is defined as e; = e(t + ), VO € [—rp,0], and
PeR>, P=P>0ReR*, R=R">0we
have the following result.

Proposition 1: Under Case 1, the error system described
by (5)—(7) is globally asymptotically stable if there exist
n x n real matrices P = PT > 0, R = RT > 0, and
A = diag(A1, A2, -+ -, Ap) > 0 such that

(1,1) PM+R (1,3) (1,4)
(1) _ * —R 0 (24)
v = « —on (3,4) | <0 U2
* * —R
where
(L) =(A+K)"P+P(A+K)-R
(1,3)=PB + ECTA
(14) :T]\,[(A + K)TR
(24) :T]\,[MTR
(3,4) =ryBTR

Proof: Taking the derivative of V (¢, e;) with respect to ¢
along the trajectory of (5) yields
V(t,er)=e"(t) [(A+K)"P+P(A+K)] e(t)
+2e” (t)PMe(t—r(t))+2¢" (t)PBy(Ce(t), y(t))
t
+ IO (LR 0~ [ TR

t—rum

From (6), for A = diag(A1, A2, -+, A\p) > 0, we have

Vt,er) <eT(t) [(A+ K)TP + P(A+ K)] e(t)
+2eT(t)PMe (t —r(t))
+2eT(t)PBn (Ce(t), y(t)) + €7 (t) (i R) é(t)
- [ @R - 21" Celt)plt)
x An (Ce(t)7 y(t)) + 2kn” (Ce(t),y(t)) ACe(t).

Use Lemma 1 to obtain
t

o RGO IO R R O))

_ * <_RR —RR> (e(te—(tz(t») '

Noting that (5) is true, the following holds:

e’'(t) (3 R) é(t)

(A+ K)T
MT
BT

=q"(t) (i R) (A+ K) M B)q(t)
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where
g ()= (') T (t—r(t)

Then, we have

0" (Ce(t), y(1))) -

where
i Ei2 Eis
E = * :22 523
* * 533
with

En=(A+K)"P+P(A+K)

-~ R+ (A+K)" (r}R) (A+K)
Eia=PM+R+ (A+K)" (rjy;R) M
E13 =PB+kCTA+(A+ K)" (r},R) B
Eps=—R+MT (r};R) M
Eos =M" (r};R) B
E33 = —2A + B" (r};R) B.

1

If = < 0, then there exists a sufficiently small £ > 0 such that
V(t,er) < g (Zg(t) < —eq?(Dg(t) < O for q(t) # 0,
which means that the system described by (5)—(7) is globally
asymptotically stable. In view of Schur complement, = < 0 is
implied by (1) < 0. This completes the proof. O

For Case 2, since r(t) is a differentiable function, by
making use of this additional information, we choose a Lya-
punov—Krasovskii functional candidate as

V(t, et) = V(t et) + Vg(t, et) (13)

where V' (¢, e;) is defined in (11) and

t

Vi(t,er) = / T (6)Qe(€)de

t—’r‘(t)

with Q@ € R™*", Q = QT > 0. Then, similar to the proof of
Proposition 1, we can conclude the following result.

Proposition 2: Under Case 2, the error system described by
(5)—(7) is globally asymptotically stable if there exist n x n real
matrices P = PT > 0,Q = QT > 0,R = RT > 0, and
A = diag(A1, A2, -+, Ayn) > 0 such that

T2 = ¢ 4 diag (Q, —(1 — r4)Q,0,0) < 0 (14)

where () is defined in (12).

Remark 2: Employing model transformation and bounding
technique for cross terms, Huang et al. [11] also considered the
problem of global asymptotic stability for the error system de-
scribed by (5)—(7), where the assumption that 7(t) < rq4 < 1
on time-varying delay r(¢) is required. However, from the proof
process of Proposition 1, one can clearly see that neither model
transformation nor bounding technique for cross terms is in-
volved. Therefore, the global asymptotic stability criteria are ex-
pected to be less conservative. Moreover, the restriction rg < 1
is removed, which means that a fast time-varying delay is al-
lowed.
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Itis easy to see that Propositions 1 and 2 provide delay-depen-
dent sufficient conditions for Cases 1 and 2, respectively, which
can guarantee global asymptotic stability of the error system de-
scribed by (5)—(7). Depending on the information of delay 7 (¢),
we can decide to use Proposition 1 or Proposition 2. If r(¢) is
a continuous function which is not differentiable for all ¢ > 0,
i.e., only the information about r; is available, we can only use
Proposition 1. If r() is a differentiable function, both Proposi-
tions 1 and 2 can be applied. The natural question is: Is there
any relationship between Propositions 1 and 2?7 The following
proposition well answers this question.

Proposition 3: Suppose that the delay 7(¢) satisfies (9). Then,
we have the following facts.

(i) For r4 > 1, there exist n X n real matrices

P=P>0Q=0QT >0,R=RY > 0,and
A = diag(A1, Aa, -+, Am) > 0 such that ¥ < 0 if
and only if there exist n x n real matrices P = PT > 0,
R =RT > 0,and A = diag(\1, A2, -+, \) > 0 such
that ¥ < 0.

(ii) Forry < 1,if there exist nxn real matrices P = PT > 0,
R =RT > 0,and A = diag(/\l,)\g,---,)\m) > 0
such that () <« 0, then there exist n X n real matrices
P=Pr>00Q=0T >0,R=R" > 0,and
A = diag(A1, X2, -, Am) > 0 such that ¥ < 0;
However, the reverse is not necessarily true.

Proof: (i) Necessity is obvious. For sufficiency, if there
exist n x n real matrices P = PT > 0, R = RT > 0, and
A = diag(A1, A2, -+, Am) > 0 such that U1 < 0, then there
exists a sufficiently small scalar gy > 0 such that

UM 4 gl <O0. (15)
Choosing ¢q; > 0 such that max{q;, —(1 — rq)q1} < qo, we
have

D 4 diag (I, —(1 = rq)n 1,0,0) < UM 4 goI. (16)

Letting Q = ¢ I, combining (15) with (16) yield ¥?) < 0.

(i1) Similar to the proof of the sufficiency part in (i), we can
conclude that for r4 < 1, if there exist n X m real matrices
P=PT >0,R=R" >0,and A = diag(\1, A2, -+, A\) >
0 such that (1) < 0, then there exist n X n real matrices
P=P >00Q=QT >0,R=R" >0,and A =
diag(A1, A2, -+, Am) > 0 such that (2 < 0. In the following,
we consider the reverse. Without loss of generality since there
always exists an orthogonal transformation such that a real sym-
metric matrix can be transformed into a diagonal one, we as-
sume that

) = diag(p1 I, pol, psl, pal)

where p1I € R™* ™, usl € R™*™, pusl € R™*™, uyl € R™*"
and p; (j = 1, 2, 3, 4) are real scalars satisfying
p1 <0, 0<pe<—(1—rg)pr, p; <0(j=3,4).

It is easy to see that U'(1) is not negative definite. However, there
exists an n X n real matrix Q = ¢ > 0, where 0 < —(1 —
rq) ‘ps < g < —pa, such that

lll(l) + dlag (Q7 _(1 - Td)Q"/ 07 0) <0
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i.e. U < 0, which means that for this situation, the reverse is
not true. This completes the proof. O

Remark 3: The second statement “However, the reverse is
not necessarily true” in Proposition 3 (ii) means that for some
situation, for r; < 1, even if there exist n X n real matrices
P=P >00Q=QT >0,R=R" >0,and A =
diag(A1, A2, -+, Am) > 0 such that U(®) < 0, for the same
P=PT>0,R=RT >0,and A = diag(A1, Ao, -+, Am) >
0, the inequality (1) < 0 is no longer satisfied.

Remark 4: If we consider the pure time-varying delay static
error output feedback controller, then the error system (5) be-
comes

e(t) = Ae(t) + Me(t —r(t)) + B (Ce(t),y(t)) .

The corresponding stability conditions are easily derived by set-
ting K = 01in (12) and (14) for Cases 1 and 2, respectively.

Remark 5: If there exist parameter perturbations in system’s
matrices, then we have the following uncertain master and slave
systems

#(t) = (A + EF(t)Go) z(t)

M: +(B+EF)G) ¢ (Cz(t)) (17
zz(t) = Hax(t)
and ) = (A+ EF(H)Go) a(t)
S: + (B+ EF(t)G1) p (Cy(t)) +u(t) (18)

2y (t) = Hy(t)
where E, G, and (G are known real constant matrices of ap-

propriate dimensions, and F'(¢) is an unknown continuous time-
varying matrix function satisfying

FT()F(t) <I. (19)
The corresponding error system becomes
é(t) = (A+ EF(t)Go+ K)e(t) + Me (t — r(t))
+ (B + EF(t)G1)n(Ce(t),y(t)). (20)

Using the routine method of handling norm-bounded uncer-
tainty [8], by Propositions 1 and 2, one can easily obtain more
general results.

IV. CONTROLLER DESIGN

In this section, based on the analysis results in last section,
we are in a position to address the issue of controller design.
Applying Proposition 1 we first state and establish the following
result for Case 1.

Proposition 4: Under Case 1, for a given scalar « > 0, the
system described by (1)—(3) synchronizes, with the error system
described by (5)—(7) having a unique and globally asymptot-
ically stable equilibrium point e(t) = 0, if there exist n x
n real matrices P = PT > 0, R = RT > 0, and A =
diag(;\l7 Ao,y j\m) > 0, X, Y of appropriate dimensions
such that

(1,1) Y+P (1,3) (1,4 oR
* -R 0 (2,4 0
* * —2A (3,4) 0 | <0 1)
* * * -R 0
* * * —f%
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where

Moreover, the controller gains of (3) are given by K = X p1
and LH = —M = —Y R™!, respectively.

Remark 6: It should be pointed out that even though we can
derive M = YR~} using (21), we can not guarantee to have the
controller gain L from LH = — M, which means that once M
is obtained, one should solve the equation LH = — M to derive
L. In some situations, in order to guarantee that there exists a
solution L to the equation LH = — M, we can set the matrix M
in the special structure depending on the information regarding
matrices L and H.

Remark 7: Different from a nonlinear optimization problem
proposed by Suykens and Vandewalle [16], which is a non-
convex optimization problem, one can clearly see that the
problem for designing the controller gains can be solved by
an efficient convex optimization algorithm, i.e., an LMI solver
feasp, which is well developed in Matlab LMI Toolbox [6]. It
should be pointed out that although the nonlinear optimization
problem in [16] is a nonconvex optimization problem, one can
have convex subproblems depending on how one solves the
optimization problem.

We need the following lemma to prove Proposition 4.

Lemma 2: For any real matrix W € R™*"™, W = wT >0,
a nonsingular matrix U € R"*", and a scalar ;1 > 0, then

—UTWUYT < 2w - pUt -

pU™HT (2

Proof: Tt is easy to see that

(U—IW(U—l)T +/L2W_1) _ (/LU_I + IU,(U_l)T)

=U'W = u )WY U'W — u)T

> 0.
Re-arranging some terms yields (22). This completes the
proof. O

Proof of Proposition 4: Pre- and post-multiply both sides of
(12) with diag(P~t, R=1, A=1, R~1), respectively, to obtain

(1,1) MR™'+P~' (1,3) (1,4)
* . 0 (2,4) <0
* * —2A"1  (3,4)
* * * —R1
where
1, 1)=P YA+ KT +(A+ K)P 1 - P 'RP!
(1,3)=BA '+ kP 1CT
(1,4) =ry P YA+ K)T
(2,4) :’I“]L[RilMT
(3,4) :’I“]L[AilBT
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For a given scalar a > 0, by Lemma 2, we have

—P'RP!'<a’R7! —2aP7 1. (23)
Then, introducing new variables P = rP1 R = R 1 A=
AL X=KP 1Y =MR1!and using Schur complement
yield (21). This completes the proof. O

Based on Proposition 2, the controller can be designed for
three different situations: 1) rg < 1;2)rq = 1;3) rqg > 1.

Proposition 5: Under Case 2 with r4 < 1, for given scalars
a > 0and 8 > 0, the system described by (1)—(3) synchronizes,
with the error system described by (5)—(7) having a unique and
globally asymptotically stable equilibrium point e(t) = 0, if
there exist n x n real matrices P = PT > 0, Q=0T >0,
R =RT > 0,and A = diag(Ay, Aa,---, Am) > 0, X, Y of
appropriate dimensions such that

(LY (L,2) (1,3) (1,4 oR 0 P
* (2,2) 0 (2,4) © £Q 0
* * —2A (3,4) 0 0 0
* * * —R 0 0 0 <0
* * * * —R 0 0
* * * * *  (6,6) 0
* * * * * * —
(24)
where
(1,1) = PAT + AP + X + XT — 2aP
(1,2) =Y + P
(1,3) = BA + kPCT
(1,4) ’I"]\,[(PAT +XT)
(2,2) = — (1 +20)R
(274) :’I”]\,[Y
(374) :’I”]\,[[\BT
(6,6) = — (1 —ra)Q

Moreover, the controller gains of (3) are given by K = X p1
and LH = —M = —-YR™!, respectively.

Proof: Pre- and post-multiplying both sides of (14) with
diag(P~1, R=Y, A1, R™1), respectively, we have

(1,1) MR'+P~' (1,3) (1,4)
% (2,2) 0 (2,4)
* * —2A"1Y (3,4) <0 @25
* * * —R71
where
(1,1) =P ' A+ K)" +(A+ K)P~!
+PlQp~t - plRP7!
.3)=BA Y+ kPOt
s =ry P~ (A + K)
1QR 1 _ Rfl
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Notice that (23), and for a given scalar 3 > 0, use Lemma 2 to
obtain

—R7Y(1 - r)QI R < B%[(1 —74)Q) ' = 2BR7L.
Then, introducing new variables P = Pt Q = Qfl, R =
R A=A"1X=KP'Y = MR and using Schur
complement yield (24). This completes the proof. O

Remark 8: It should be pointed out that instead of using
Lemma 2 to handle the nonlinear terms —P~'RP~! and
—R7'QR™! in (25) in the proof of Proposition 5, one can
introduce two new variables S; and Ss such that

~-P'RP ' < -5, —R'QR' < S5

which are equivalent to

-S1 P -S> R
(P _R)<07 (R _Q><0.
Then, (25) becomes

(1,1) MR™'+P~' (1,3)

(
(2,2) 0
(

* %X % -
*

=P Y A+K)" +(A+K)P~'+P'QP™!
=BA ' +EPTIOT

—1(A+K)T

—(1-rg)Sy ' =R™!

_5’;1

Introduce new varlables P=P1LQ=QYR=R?",
A=A1,X=KP LY = MRlsl—S_lS Syt
and use Schur complement to obtain

(1,1) Y4+P (1,3) (1,4) P
(220 0 (24 0
* * —2A (3, 4) 0 | <0 (28)
* * -R 0
* * * _Q

where

=PAT + AP+ X +XT -8,
=ry(PAT + XT)
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Then, we can formulate a minimization problem as

Minimize tr(Pf’ + QQ +RR+ 8,5 + 525'2)
(26), (28), and
P I Q I
(7 )z (7 0)=0
R I S1 I
(1 R>>0 (I Sl>20
Se I
(I &)>0
If tr(Pl5 +QQ+RR+ 5.5 + 525’2) = 5n, we can conclude
that under Case 2 with r4 < 1, the system described by (1)—(3)
synchronizes and the controller gains of (3) are given by K =
XPland LH = —M = —Y R~} respectively.
Proposition 6: Under Case 2 with r4 = 1, for given scalar
a > 0, the system described by (1)—(3) synchronizes, with the
error system described by (5)—(7) having a unique and globally
asymptotically stable equilibrium point e(#) = 0, if there exist
n x n real matrices P = PT > 0,Q = QT > 0, R = RT >

0,and A = dlag()\l Ao, - )\m) > 0, X, Y of appropriate
dimensions such that

subjectto

(L) (L,2) (1,3) (1L4) aR P
* —-R 0~ (2,4) 0 0
* * —2A (3,4) O 0
* * * -R 0~ 0 <0 (@29
* * * * —R 0
* * * * * —-Q
where

Moreover, the controller gains of (3) are given by K = X P!
and LH = —M = —Y R™!, respectively.

Proof: Notice that for 4 = 1, we have —(1 — 4)Q = 0.
The remaining proof is the same as that in Proposition 5. This
completes the proof. O

Proposition 7: Under Case 2 with 74 > 1, for a given scalar
a > 0, the system described by (1)—(3) synchronizes, with the
error system described by (5)—(7) having a unique and globally
asymptotically stable equilibrium point e(#) = 0, if there exist
real matrices P = PT > 0, Q= QT > 0,R = RT >
0,and A = diag(A1, Ao,---, Am) > 0, X, Y of appropriate
dimensions such that

(1,1) (1,2) (1,3) (1,4) aR 0 P

x  —R 0 (2,4 0 (2,6) 0

* «  —2h (3,4) 0 0 0
* s * -R 0 0 0 | <0

* * * * -R 0 0

* * * * *  (6,6) 0

* * * * * * —Q
(30)
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TABLE I
THE MAXIMUM ALLOWED TIME-DELAY BOUND 7, FOR DIFFERENT 7,
T4 0 0.3 0.6 0.9 10 | >10
(1] 0.1121 | 0.0814 | 0.0487 | 0.0130 | — -
Prop I | 0.1527 | 0.1527 | 0.1527 | 0.1527 | 0.1527 | 0.1527
Prop 2 | 0.1622 | 0.1591 | 0.1566 | 0.I541 | 0.1527 | 0.1527
where
(1,1) = PAT + AP + X + XT — 2aP
(1,2) =Y + P
(1,3) = BA + kPCT
(1,4) =rp (PAT + XT)
(2,4) =ra YT
(2,6)=(ra —1)R
(3, 4) = ’I"A[]\BT

Moreover, the controller gains of (3) are given by K = X P!
and LH = —M = —Y R™!, respectively.

Proof: Notice that —(1 — r¢)R"*QR~' > 0 for rq4 >
1. Apply Schur complement to —(1 — 74) R~1QR~! in (2,2)-
block in (25), and follow the same proof in Proposition 5 for the
remaining part. This completes the proof. O

V. EXAMPLE

In order to show the effectiveness of the derived results in this
paper, we consider the following Chua’s Circuit

&= a(y—h(z))
y=z—y+=z
z=—Py

with nonlinear characteristic
1
hlw) = myw + 5 (mo —ma) (o + | = |z = cl)

and parameters mog = —(1/7),my = (2/7),a =9, 5 = 14.28,
and ¢ = 1 (Chua et al. [3]; Madan [15]). The system can be
represented in Lur’e form [23] with

—am; o 0 —a(mo—m1)

A= 1 -1 1], B= 0
0 -4 0 0
C=H=(1 0 0)

and ¢(§) = (1/2)(|€ + ¢| — |¢€ — ¢|) belonging to sector [0, k]
with k = 1.

We first consider the stability analysis. In order to compare
with the resultin [11] and show the effectiveness of Propositions
1 and 2, let the controller gains be]

-1 0 0 6.0229
K=(0 -1 0|, L= 1337
0 0 -1 —2.1264

Applying the criterion (Theorem 1) in [11] and Propositions 1
and 2, the maximum allowed delay bound is listed in Table I,
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MASTER

e=x-y

-0.6"

-0.8

Fig. 1.
0.1527.

Simulation results for master, slave, and error systems for delay r,, =

from which one can clearly see that for r4 < 1, both Propo-
sition 1 and Proposition 2 can provide a larger bound than the
criterion in [11]; for r4 > 1, the criterion in [11] fails to make
any conclusion while Proposition 1 and Proposition 2 are still
valid to give the results. From the table, one can also see that
for 4 < 1, one can obtain better results using Proposition 2
than Proposition 1; for 74 > 1, the same results are derived
using Propositions 1 and 2, which further verifies Proposition 3
through this example. Figs. 1 and 2 give the simulation results
for master, slave and error systems for delay » = 0.1527 and
0.1622, respectively. One can clearly see that the master and
slave systems are indeed synchronized.
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MASTER

-14

-2

-3

-4 >l

SLAVE

x-y

e=,

-0.6
~08 i i i i i i |
1 2 3 4 5 6 7 8
t
Fig. 2. Simulation results for master, slave, and error systems for delay r s =
0.1622.

Next, we address the controller design.
Case 1) Let 7y = 0.8 and choose o« = 0.1. Using Proposi-
tion 4, we have

0.3326  —0.0285 —0.0536
P=1 -0.0285 1.3329 —0.0661
—0.0536 —0.0661  0.8447
2.0207 0 0
R= 0 3.1534 0
0 0 3.3215

—-0.7974
—0.4126
—0.7089

—0.0661
0.8447
2.0207

X =

Y =

—11.8961  0.8672
—0.0967 —1.2968
18.6310 —3.2381

0 0

0 0], A =0.1461.
0 0

Then, the feedback gains are given by

—3.1486 —8.9861 0.1236
K = | —1.5222 -0.1867 —1.6465
—1.4058 13.8066 —2.8424
0.0327
L= —0.4180
—1.0000

We give the simulation results for master, slave and
error systems for the above derived gains and delay
ryr = 0.8 in Fig. 3, from which one can see that the
master and slave systems are synchronized.

Case 2) (i) Forrp = 0.9, 74 = 0.5 < 1, choosing o = 0.1
and (3 = 0.6, applying Proposition 5 yield

0.1042 —0.0047 0.0001
P = -0.0047 0.3000 —0.0002
0.0001  —0.0002  0.2483
0.5497 —0.0128 0.0002
Q= —0.0128 0.8476  0.0000
0.0002 0.0000  0.8290
0.8391 0 0
R= 0 0.8125 0
0 0 0.7703
—0.2165 —2.7443  0.0026
X =1 —-0.1812 -0.1757 —0.2465
—0.0654 4.2866 —0.3678
02483 0 O
Y = 0.5497 0 0], A =0.0319.
—-0.0128 0 0

Then, the feedback gains are given by

—2.4920 -9.1862  0.0057
K= | —-1.7648 —-0.6137 —0.9920
0.0190  14.2875 —1.4717
—0.2959
L= —-0.6551
0.0153

(i1) For rpy = 0.8, r4 = 1, choose a = 0.1 and use
Proposition 6 to obtain

0.1357  —0.0095 0.0001
P =1 -0.0095 0.3815 0.0000
0.0001 0.0000  0.3109
0.6195 —0.0048 0.0000
Q= —0.0048 1.1143 0.0000
0.0000 0.0000 1.0891
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MASTER MASTER

Fig. 4. Simulation results for master, slave and error systems for Case II-(i).

Then, we derive the feedback gains as

t —3.6981 —9.2800  0.0025
Fig. 3. Simulation results for master, slave and error systems for Case 1. K= —1.9271 —-0.7846 —0.9970
0.0080 14.2834 —1.6112
—0.2381
L= -04744
1.3058 0 0 0.0037
k= 0 L1852 0 (iii) For 737 = 0.8, 74 = 1.5 > 1, choosing & = 0.1
0 0 1.1272 and employing Proposition 7, we have
—0.4132 —3.5046  0.0008 0.3139  —0.0887 —0.0005
A= -02541 —0.2809 —0.3101 P= | —-0.0887 11399  0.0014
—0.1352 5.4484 —0.5014 —0.0005 0.0014 0.4661
0.3109 0 0 1.8419 0.0493 0.0001
Y = 0.6195 0 0], A = 0.0549. Q = | 0.0493 4.4303 0.0000
0 0

—0.0048 0.0001 0.0000 4.0150
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MASTER

Fig. 5. Simulation results for master, slave and error systems for Case II-(ii).

Fig. 6. Simulation results for master, slave and error systems for Case II-(iii).

One obtains the feedback gains as

2.1258 0 0
0 36648 0 —6.9841 —10.0723 —0.0260
0 0 25755 K= | -50569 —23277 —1.0515
—~1.3801 —2.2061 —0.4905 ~0.2192
—1.2936 16.2313 —1.2057 L= —0.8664
0.4661 0 0 00252
1.8419 0 0 |, A =0.1785. The simulation results for master, slave and error
0.0493 0 0 systems for the above derived gains and delays for
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Case II (i)—(iii) are illustrated in Figs. 4-6, respec-
tively. From these simulation results, one can clearly
see that the master and slave systems are synchro-
nized, which means that the design method is effec-
tive.

VI. CONCLUSION

The problem of designing time-varying delay feedback con-
trollers for master—slave synchronization of Lur’e systems has
been addressed. Some delay-dependent synchronization criteria
have been obtained. In order to reduce the conservatism of the
criteria, we have avoided using model transformation and bound
technique for cross terms, which are used in the literature in de-
riving delay-dependent synchronization criteria for Lur’e sys-
tems. We have successfully built the relationship between the
criteria for the two cases of time-varying delays and have con-
cluded that if the time-varying delay is differentiable and the
bound of the time derivative of the time-varying delay is less
than one, we can derive a less conservative result using the cri-
terion for the second case than that for the first case; on the other
hand, when the bound of the time derivative of the time-varying
delay is equal to or greater than one, we can get the same results
using the criteria for the first case or second case; however, if the
time-varying delay is not differentiable, only the criterion for
the first case can be used to handle the situation. Based on the
newly-established synchronization criteria, we have derived suf-
ficient conditions on the existence of a time-varying delay feed-
back controller. Based on these sufficient conditions, we have
designed controller gains by solving a set of LMIs. We have
also illustrated the effectiveness of the design method through
Chua’s circuit.
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