CQUniversity
Browse

Studies on wheel/rail contact: Impact forces at insulated rail joints

Download (6.53 MB)
thesis
posted on 2023-11-03, 05:23 authored by Tao Pang
"To investigate the wheel/rail contact impact forces at insulated rail joints (IRJs), a three-dimensional finite element model and strain gauged experiments are employed and reported in this thesis. The 3D wheel/rail contact-impact FE model adopts a two stage analysis strategy in which the wheel-IRJ railhead contact is first established in the static analysis and the results transferred to dynamic analysis for impact simulations. The explicit FE method was employed in the dynamic analysis. The Lagrange Multiplier method and the Penalty method for contact constraint enforcement were adopted for the static and dynamic analyses respectively. The wheel/rail contact-impact in the vicinity of the end post is exhibited via numerical examples from the FE modelling. The wheel/rail contact impact mechanism is investigated. The strain gauged experiments which consist of a lab test and a field test are reported. The signature of the strain time series from the field test demonstrates a plausible record of the dynamic responses due to the wheel/rail contact impact. By using the experimental data, both the static and the dynamic FE models are validated. It is found that the stiffness discontinuity of the IRJ structure causes a running surface geometry discontinuity during the wheel passages which then causes the impact in the vicinity of the end post. Through a series of sensitivity studies of several IRJ design parameters, it is shown that the IRJ performance can be effectively improved with optimised design parameters." -- abstract

History

Number of Pages

193

Location

Central Queensland University

Additional Rights

I hereby grant to Central Queensland University or its agents the right to archive and to make available my thesis or dissertation in whole or in part through Central Queensland University’s Institutional Repository, ACQUIRE, in all forms of media, now or hereafter known. I retain all copyright, including the right to use future works (such as articles or books), all or part of this thesis or dissertation.

Open Access

  • Yes

Era Eligible

  • No

Supervisor

Associate Professor Manicka Dhanasekar

Thesis Type

  • Master's by Research Thesis

Usage metrics

    CQUniversity

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC