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Abstract 

Recent years have seen the emergence of the concept of “functional foods”– where the value 

of food products is based on their health-benefiting properties in addition to their basic 

nutritional value. Globally, the functional food market is worth US $170 billion and is projected 

to grow at 7.5% p.a. over the next 10 years. In order to capitalise on this lucrative emerging 

market, producers and wholesalers need to demonstrate that their products contain high levels 

of these desirable compounds. This is typically assessed through time-consuming, expensive 

analytical techniques such as high-performance liquid chromatography (HPLC) or liquid 

chromatography-mass spectrometry (LC-MS). While these methods provide a high level of 

specificity and sensitivity, more rapid analytical techniques may be better suited to the routine, 

near-real-time analysis of large numbers of samples. Furthermore, there is currently a lack of 

basic context data on the typical levels of bioactive compounds that are found in many crops 

grown under Australian conditions, particularly for grain crops. This lack of context data makes 

it challenging to know whether a particular product would be considered high or low quality 

from a functional food perspective.  

Consequently, the first major aim of this project was to profile the typical levels of bioactive 

compounds present in economically significant grain crops grown in Australia – specifically 

faba bean, wheat, mungbean and chickpea. The major focus was on phenolic compounds, as 

these possess high levels of antioxidant activity and are found in relatively high levels in grain 

crops. Furthermore, this class of compounds is associated with a wide range of health benefits, 

particularly for the prevention of cardiovascular disease.  

Using spectrophotometric methods and HPLC analysis, moderate differences were found in 

the phenolic contents and antioxidant capacity of different varieties from each crop. This was 

particularly noted for the ten varieties of faba bean analysed, where there was a 121% 

difference in total phenolic content (TPC) between the varieties with the lowest and highest 

contents. This pulse also contained the highest total phenolic contents (258-571 mg GAE/100 

g) and ferric reducing antioxidant potential (237-531 mg TE/100 g) of all crops investigated. 

The five mungbean varieties showed lower levels and more minor differences in phenolic 

content (79-105 mg GAE/100 g; 32% variation between varieties) and cupric reducing 

antioxidant capacity (498-584 mg TE/100 g; 17% variation), while the while the ferric reducing 

antioxidant potential did not differ significantly between varieties (14-20 mg TE/100 g). 

However, the content of numerous phenolic compounds (p-hydroxybenzoic acid, vanillic acid, 

caffeic acid, sinapic acid, trans-ferulic acid, cinnamic acid and vitexin) were significantly 

different between the mungbean varieties investigated. Similar observations were made for 

the chickpea samples, where there were moderate differences in total phenolic content (73-
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94 mg GAE/100 g; 29% variation) and ferric reducing antioxidant potential (25-40 mg TE/100 

g; 62% variation) between varieties. Again, the content of most phenolic acids analysed by 

HPLC were significantly different between varieties. Although varietal differences were not 

examined for wheat, the TPC of the 65 samples was higher than mungbean and chickpea 

(130-180 mg GAE/100 g), while the ferric reducing antioxidant potential ranged from 14-64 

mg TE/100 g.  

In addition to the varietal differences, the impact of growing location and season on phenolic 

content and antioxidant capacity were investigated in faba bean. Although these variables had 

no effect on the total phenolic content, the growing location did alter the levels of several 

individual phenolic compounds (protocatechuic, vanillic and chlorogenic acids, as well as the 

flavonoids vitexin and rutin).  

The second major aim of this project was to investigate the prospect of infrared spectroscopy 

as a rapid technique for the prediction of phenolic content and antioxidant capacity in 

Australian grain crops. Promising results were found for the estimation of total phenolic content 

and antioxidant capacity in faba bean and wheat flour, particularly using near-infrared 

spectroscopy. The NIR model for TPC showed an R2
test of 0.66 and RMSEP of 76 mg GAE/100 

g when applied to faba bean, and an R2
test of 0.86 and RMSEP of 4 mg GAE/100 g in wheat. 

However, infrared spectroscopy was unable to predict the concentrations of these analytes in 

mungbean or chickpea flour. This may be due to additional matrix constituents obscuring the 

analyte signals in the infrared region, or a consequence of the lower phenolic/antioxidant 

contents in these crops.  

Nevertheless, the overall results suggest that infrared spectroscopy could be used for the 

estimation of total phenolic content or antioxidant capacity (i.e., prediction of high or low 

contents) in certain grain crops. This technique could potentially be applied for the routine 

screening of bioactive constituents, helping Australian producers to capitalise on the growing 

domestic and international functional food markets. Monitoring bioactive compound levels in 

Australian grain – either through traditional or non-invasive analytical techniques – could 

provide an additional level of quality assurance for producers of functional food crops and help 

maintain Australia’s global recognition as a producer of high-quality food.  
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Chapter 1. Introduction  

1.1 Background and problem statement 

Australia is an agriculturally-driven nation (Henzell, 2007). The gross value of the Australian 

agricultural sector was AU $61 billion in 2019-20, comprising approximately 4% of GDP and 

around 14% of export income (Australian Bureau of Statistics, 2021). Within the cropping 

sector, broadacre cropping – including wheat, barley and pulses – is responsible for over AU 

$13 billion value (around 46% of the total value of the cropping sector). Approximately two-

thirds of Australian agricultural produce by value is exported (Gunasekera et al., 2008), with 

Australia being the largest global exporter of certain pulse crops such as faba bean and 

chickpea (AEGIC, 2017). It is also a major exporter of other pulses and cereal crops, including 

wheat. In general, Australia’s export produce is internationally recognised to be of a high 

standard, thanks to the stringent quality assurance measures implemented on-farm, during 

post-harvest processing, and prior to export, through the assistance of facilities such as the 

Australian Export Grains and Innovation Centre (AEGIC). With significant worldwide 

population growth and an estimated increase of 50-100% demand for food between 2015 and 

2050 (McKenzie & Williams, 2015), there is a significant opportunity for the Australian 

agricultural industry to increase production levels in view of increasing their export potential in 

the global market share (Adamson, 2013). In particular, there is considerable interest in 

expanding the cropping sector in northern Australia (i.e., above the Tropic of Capricorn) (Ash 

et al., 2017; Chauhan & Williams, 2018; CRCNA, 2020; Petheram et al., 2018).  

Additionally, Australian producers have the opportunity to add value to their commodity based 

products by capitalising on the expanding “functional food” market – where foods are 

purchased for their health-benefiting effects, rather than as a source of basic nutrition and 

energy (Granato et al., 2017; Urala & Lähteenmäki, 2007). For example, consumption of juice 

from the Queen Garnet plums has been shown to reduce oxidative stress (Netzel et al., 2012) 

and reduce the risk of blood clot formation in clinical trials (Santhakumar et al., 2015). Similarly, 

in vitro studies have suggested that polyphenolics isolated from chickpeas could protection 

against colorectal cancer (Bochenek et al., 2019). If high levels of such health-benefiting 

compounds can be demonstrated in a particular crop, consumers may pay a price premium 

for these products, particularly if the buyer is familiar with the concepts of functional foods (Di 

Pasquale et al., 2011). Furthermore, crops with high levels of bioactive compounds have 

potential for the development of value-added foods and ingredients (López‐Barrios et al., 

2014; Vioque et al., 2012; Zhang et al., 2012), which can also be marketed on the basis of 

their levels of health-benefiting compounds. Examples of foods experiencing a considerable 

rise in popularity due to their reported health benefits include the “ancient grains” (e.g., chia, 
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quinoa, millet and spelt), pulse crops (including mungbean, chickpeas, faba beans and lentils), 

and numerous other crops.  

However, maintaining product quality through stringent quality assurance protocols is 

paramount in order to capitalise on this demand for functional foods and maintain a strong 

position in the global export market. The sale of crops as functional foods necessitates routine 

monitoring and quantification of the levels of bioactive compounds in produce from various 

growing locations and seasons. This ensures that consumers are receiving the premium 

product that they are paying for from a functional food-based quality perspective. However, 

baseline information on the typical levels of these compounds and their variation between 

different genotypes and environmental conditions is lacking from an Australian perspective.  

In addition, the standard analytical techniques used to measure such compounds are 

hampered by three factors: their high running costs, the time consumption, and the amount of 

environmentally detrimental waste they produce (Wang et al., 2000). Due to the high levels of 

precision and accuracy that can be obtained, high-end instrumentation methods such as high-

performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-

MS) and gas chromatography-mass spectrometry (GC-MS) remain the gold standard for the 

measurement of a vast range of bioactive analytes. Nevertheless, more rapid and non-

invasive analytical techniques such as infrared spectroscopy are increasingly being used for 

food quality assessment (Cortés et al., 2019; Cozzolino et al., 2014; Gordon et al., 2018; 

Huang et al., 2008; Lu & Rasco, 2012; Pandiselvam et al., 2021). Infrared spectroscopy uses 

electromagnetic wavelengths with a frequency lower than that of visible light in order to 

characterise the functional groups present in a given matrix, allowing for the tentative 

characterisation and quantification of the chemical constituents present.  

The bioactive compounds responsible for the health-benefiting effects of functional food crops 

can all be classified as phytochemicals – i.e., compounds that are produced by plants (Huang 

et al., 2016). The major classes of phytochemicals in food products include polyphenols, 

carotenoids, alkaloids, glucosinolates, polyacetylenes, polysaccharides, allium compounds, 

lectins, terpenes, capsaicinoids and betalains (Campos-Vega & Oomah, 2013). Of these, 

polyphenols have attracted the greatest interest in recent years, as they are widely present in 

most functional foods and display well-known health-benefiting effects (Shahidi & 

Ambigaipalan, 2015). Consequently, the non-invasive measurement of polyphenols has 

attracted attention across a number of crop types, predominantly in fruit and fruit products 

(Aleixandre-Tudo et al., 2018; Cobaleda-Velasco et al., 2018; Fragoso et al., 2011a; Fragoso 

et al., 2011b; Queji et al., 2010). However, there have been limited studies performed on grain 

and pulse crops using infrared spectroscopy for this purpose.  
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With increasing demand for food production at a lower cost, the development of such rapid, 

non-invasive analytical techniques for the assessment of crop quality is essential to creating 

a sustainable cropping sector. Consequently, this work aimed to investigate the use of infrared 

spectroscopy for the prediction of bioactive contents in economically significant grain crops.  

1.1.1 Research design and methodology 

The study followed a quantitative research design. A relatively large number of samples (>60) 

were analysed for each matrix type so as to allow the creation of accurate regression models. 

Although more samples may be required for the creation of highly robust prediction models, 

this sample size was considered sufficiently large for the proof-of-concept work performed in 

this study.  

Where possible, the grain samples were chosen to encompass a wide range of phytochemical 

contents, including selecting samples from different varieties (for all crops) and growing 

locations (in the case of all crops except mungbean). In addition to this, the faba bean and 

chickpea samples included samples from different growing seasons.  

1.2 Aims and scope of the research  

The research aim of this project was to explore the typical levels of bioactive compounds of 

selected grain crops grown in Australia, namely faba bean, mungbean, chickpea and wheat. 

A particular focus was on the comparative levels of bioactive compounds found in different 

commercial varieties of each crop. This was conducted through the use of traditional, 

destructive analytical techniques, as well as rapid analytical techniques (near-infrared and 

mid-infrared spectroscopy) which could be applied to the ground grain samples.  

The following research questions were addressed in this project:  

• What are the typical levels of bioactive compounds present in the selected crops when 

grown under typical Australian conditions? What level of variation is present due to 

environmental or genotypic factors?  

• Can infrared spectroscopy techniques be used to predict the levels of bioactive 

compounds, such as polyphenolics and anthocyanins, across the food types included 

in this study?  

• What are the optimal data pre-processing techniques for the non-invasive prediction 

of bioactive compounds? Does this vary with the compound class or crop types?  

• What other information can be obtained through infrared spectroscopy?  

In order to address these questions, they were broken down into specific aims, as outlined in 

the following sections.  
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1.2.1 Aim one 

The first aim of this research project was to characterise the typical levels of phenolic and 

antioxidant compounds found in Australian-grown faba bean, wheat, mungbean and chickpea. 

This was conducted using several traditional analytical techniques, with varying degrees of 

sensitivity and accuracy:  

1. Spectrophotometric-based wet chemical methods (benchtop methods). This 

included the TPC, FRAP, CUPRAC and TMAC assays.  

2. Profiling of individual phenolic compounds using high-performance liquid 

chromatography with diode array detection (HPLC-DAD).  

3. Confirmation of the identity of one selected phenolic compound (isovitexin) using 

liquid chromatography-mass spectrometry (LC-MS).  

1.2.2 Aim two  

The second aim was to investigate the extent of variation in the aforementioned bioactive 

compounds found in different varieties of each crop. Included in this was the assessment of 

the impact of growing location and season for most crop types.  

Specifically, the objectives were:  

1. To determine the extent of variation in bioactive compounds found in different 

varieties of faba bean, mungbean and chickpea.  

2. To determine the impact of growing location on the level of bioactive compounds in 

faba bean and chickpea.  

3. To determine the impact of growing season on the level of bioactive compounds in 

faba bean and chickpea.  

1.2.3 Aim three 

The third aim was to investigate the correlations between the broad classes of bioactive 

analytes (TPC, FRAP, CUPRAC, TMAC), individual phenolic acids, and their relationship with 

other nutritive-related parameters (e.g., protein content) in each crop.  

1.2.4 Aim four  

The fourth and final aim was to investigate the prospect of using infrared spectroscopy 

(including both near-infrared and mid-infrared spectroscopy) as a rapid, non-destructive 

means of predicting the level of bioactive compounds in the crops investigated.  

Prediction of the following bioactive compound classes was attempted:  
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1. Total phenolic content (TPC) 

2. Antioxidant capacity (FRAP and/or CUPRAC) 

3. Total monomeric anthocyanin content (TMAC) 

1.3 Limitations to this research 

As with any research project, the work presented here has its limitations.  

Firstly, the sample size was somewhat limited due to time constraints and the challenges of 

obtaining grain samples from different (known) genotypes, origins and growing seasons. 

Larger sample sizes generally increase the prediction accuracy and robustness of infrared 

spectroscopy models; consequently, the sample size is one factor that may impact on the 

robustness of the models when applied to new samples or populations.  

Additionally, not all of the samples could be sourced from controlled field trials of different 

varieties grown across different locations and seasons, due to the time constraints involved in 

the sample procurement phase of this work. Although the samples were chosen to have the 

widest range of phytochemical compositions feasible, the performance of some models may 

be improved by including a wider range of analyte concentrations.  

In a similar vein, it was not feasible to sample every commercial Australian variety of each 

crop for the phytochemical analysis. Consequently, this work cannot be seen as an exhaustive 

comparison of the phytochemical composition of Australian faba bean, wheat, mungbean and 

chickpea genotypes. However, a sufficiently large number of samples were analysed for most 

crop types to provide reasonable insight into the typical phenolic contents and antioxidant 

capacity of grain crops grown under Australian conditions.  

Another factor influencing the performance of non-invasive prediction models is the accuracy 

of the reference methods (Sørensen, 2002). In this case, this is the accuracy of the benchtop 

spectrophotometric methods used for the measurement of total phenolic content and 

antioxidant capacity. While they have reasonable accuracy, the coefficient of variation 

between replicate extracts of the same sample is typically in the order of ~5%. Most of this 

variation would be attributable to sampling error, while a small amount would come from error 

associated with the spectrophotometric methods.  

Finally, regression modelling was only conducted using partial least square regression in this 

study. It is possible that the use of emerging non-linear regression techniques, such as neural 

networks or support vector regression, could provide more accurate prediction models (Ni et 

al., 2014). Future work could investigate these chemometric techniques for the prediction of 
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bioactive compounds in grain matrices and compare their performance to traditional modelling 

methods.  

1.4 Structure of the thesis 

This thesis begins with a literature review on the use of infrared spectroscopy for the prediction 

of bioactive compounds in other food matrices (Chapter 2). This provides important 

background information on infrared spectroscopy as an analytical technique, and on its 

reported use for the prediction of bioactive analytes in other crops.  

Chapter 3 provides the results of a detailed investigation into the phenolic composition of faba 

bean. Australia is the leading exporter of this crop globally, making it of considerable economic 

significance. The results presented include an examination of the effects of variety, growing 

season and location on the levels of bioactive compounds in faba bean. Additionally, the 

prediction of these bioactive compounds was attempted using IR spectroscopy.  

Following on from the promising results found in faba bean, the use of IR spectroscopy for the 

prediction of phenolic content and antioxidant capacity was investigated in a crop containing 

lower levels of these compounds – wheat (Chapter 4).  

The next crop investigated was mungbean (Chapter 5), a pulse crop of increasing importance 

in Australia. Although all the samples were sourced from one location, the variation in bioactive 

compounds between different varieties was investigated. Infrared spectroscopy was also 

trialled for the prediction of these analytes.  

The fourth and final grain crop investigated in this work was chickpea (Chapter 6), another 

crop for which Australia is the leading exporter worldwide. The differences in bioactive 

composition were examined for different varieties, growing locations and years. Again, the 

prediction of these analytes was attempted using IR spectroscopy.  

The thesis finishes with a general discussion and recommendations (Chapter 7) and final 

conclusions (Chapter 8).  
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Chapter 2. Literature review 

2.1 Overview 

Infrared spectroscopy (wavelengths between 750-25,000 nm) offers a rapid means of 

assessing the chemical composition of a wide range of sample types, both for qualitative and 

quantitative work. Its use in the food industry has been increasing significantly over the past 

five decades and it is now an accepted analytical technique for the routine analysis of certain 

proximate analytes. Furthermore, it is commonly used for routine screening and quality control 

purposes in numerous industry settings, albeit not typically for the analysis of bioactive 

compounds. Using the Scopus database, a systematic search of literature of the five years 

between 2016-2020 identified 45 studies using near-infrared spectroscopy for the 

quantification of bioactive compounds in food products, and 17 studies using mid-infrared 

spectroscopy for this purpose. The most common bioactive compounds assessed were 

polyphenols, anthocyanins, carotenoids and ascorbic acid. Numerous factors affect the 

accuracy of the developed model, including the analyte class and concentration, matrix type, 

instrument geometry, wavelength selection and spectral processing/pre-processing methods. 

Additionally, very few of the studies were validated on independently sourced samples, thus 

are likely to over-estimate the accuracy of this method. Nevertheless, the results demonstrate 

some promise of infrared spectroscopy for the rapid estimation of a wide range of bioactive 

compounds in food matrices. 

2.2 Infrared spectroscopy 

2.2.1 Infrared light regions  

Infrared (IR) spectroscopy is a well-established tool in analytical chemistry, offering a non-

invasive, non-destructive and rapid means of assessing the chemical composition of a wide 

range of sample types. It operates on the principle that dipole-active covalent bonds can 

absorb electromagnetic radiation, causing excitation of the bond from a lower to a higher 

vibrational (or rotational) energy level. For this reason, IR spectroscopy can also be termed 

vibrational spectroscopy. Covalent bonds can absorb electromagnetic wavelengths with a 

lower frequency than that of visible light (i.e. infrared wavelengths). The relationship between 

the wavelength and frequency of electromagnetic waves is represented using the following 

equation:  

υ = c/λ                    Equation 2.1 

where υ = frequency; c = speed of light in a vacuum; λ = wavelength 
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This means that infrared light has a longer wavelength (750-25,000 nm) compared to visible 

light (380-750 nm). Furthermore, the lower frequency of infrared light means it carries less 

energy compared to visible light, as can be ascertained from the Planck-Einstein relation:  

E = hυ                   Equation 2.2 

where E = energy; h = the Planck constant; υ = frequency 

For the purposes of analytical spectroscopy, the infrared spectrum can be divided into three 

main regions: near-infrared (NIR), mid-infrared (MIR) and far-infrared, with the NIR region 

being closest to the visible light spectrum. The NIR region spans wavelengths from 750 to 

2500 nm (Pasquini, 2003). Historically, NIRS has been and continues to be utilised more than 

mid-infrared spectroscopy in the food industry due to its lower cost and greater penetrative 

power (i.e., lower absorption by the sample). This allows for more representative sampling of 

more of the sample (Almeida et al., 2006) and reduces sample preparation requirements 

(Burks et al., 2000). Wavelengths in the NIR region result from the overtone and combination 

bands of IR-active bonds, rather than their fundamental tones; hence show weaker signals 

compared to those in the MIR region.  

The MIR region spans the wavelengths of 2,500 to 25,000 nm and contains the fundamental 

absorptions of IR-active bonds. For ease of interpretation, these values are more commonly 

presented in units of “wavenumbers” (cm-1). The wavelengths in the MIR region (2,500 to 

25,000 nm) correspond to the wavenumbers 4000 and 400 cm-1 (Pasquini, 2003).  

Finally, the far infrared region (wavenumbers of 400-10 cm-1) is rarely used except in 

astronomy, although there are occasional applications that have been reported in the food 

analysis sector (Bershtein & Ryzhov, 1994; Han et al., 2018; Susi & Ard, 1973). Consequently, 

the remainder of this review focuses on applications of NIR and MIR spectroscopy.  

2.2.2 Introduction to infrared spectroscopy 

To collect an infrared spectrum from a sample, the instrument (spectrometer) emits the full 

spectrum of infrared wavelengths into the sample, where the chemical bonds present absorb 

specific wavelengths of infrared light. The degree of absorption (amplitude of the signal) is 

proportional to the number of corresponding bonds that interact with and absorb the infrared 

light, while the frequency of the peak is characteristic of the bond type. Hence from the 

remaining light that is reflected from or transmitted through the sample, an analyst can deduce 

the identity and quantity of the compounds present.  

Compared to other analytical methods, the main advantages of infrared spectroscopy are its 

speed, relatively low price of the instrument, and the fact that it is typically non-destructive and 

non-invasive, lowering or eliminating sample preparation time (Bureau et al., 2019; Walsh et 
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al., 2020). Furthermore, IR spectroscopy is highly sensitive, requires small sample sizes and 

can analyse samples from a wide variety of matrix types, including solids, powders, films, gels, 

liquids and gases (Bureau et al., 2019). This technique does not produce any waste products, 

in contrast to separative methods such as liquid chromatography (Johnson & Naiker, 2019). 

Conversely, the disadvantages of this method include the challenge of interpreting spectra 

from complex mixtures containing a number of different compounds, and the need to develop 

and maintain robust calibration models for the quantitative analysis of analytes (Bureau et al., 

2019). As infrared spectroscopy can only detect compounds that contain IR-active bonds, it 

cannot be used for the direct analysis of monoatomic species, ions or elements.  

In addition, infrared spectroscopy – particularly NIRS – is best suited for the analysis of 

macroconstituents (usually those present at concentrations of ~0.5% or higher). Below this 

concentration range, it is difficult to separate out the signal of the analyte from the rest of the 

spectral peaks. In many instances where previous researchers have reported detecting 

analytes at much lower concentrations, it is likely that NIRS is actually detecting a different 

analyte present at macro-levels – the concentration of which is correlated with the targeted 

analyte. This is known as a surrogate or secondary correlation (Walsh et al., 2020). In some 

cases, this correlation may be unavoidable due to both analytes absorbing in similar regions 

(Velasco et al., 1998). In other situations, it may be the only way through which IR 

spectroscopy can be used to estimate the microconstituent concentration. The use of such 

secondary correlations is acceptable in many cases – as long as the correlation holds true for 

all samples analysed. Some publications have reported that these correlations may change 

between different sample populations or harvest years (Velasco et al., 1998), which may 

explain the poor performance of independent test sets found in some studies analysing 

microconstituents with IR spectroscopy.  

Despite these limitations, the speed and cost-effectiveness of IR spectroscopy have led to its 

adoption across many sectors of the food industry. This review focuses on the application of 

IR spectroscopy (both MIR and NIR) for the quantitative assessment of bioactive compounds 

in foodstuffs. It concludes with a contemporary perspective on the future of IR spectroscopy 

for the analysis of bioactive compounds in the food industry and highlights key areas where 

further research is required.  

2.2.3 A brief history of infrared spectroscopy 

Although infrared light was discovered by Wilhelm Herschel in 1800 (Herschel, 1800), the 

development of infrared spectroscopy for analytical chemistry really began in the late 1800s 

and early 1900s (Thomas, 1991). Beginning in 1903, William Coblentz published three 

volumes of infrared spectra for hundreds of different compounds (Barnes & Bonner, 1936), a 
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remarkable achievement considering that it took 3-4 hours to record a single spectrum at this 

time (Thomas, 1991). During the next few decades, the sensitivity and accuracy of the 

instruments continued to be refined, although applications remained limited. The first company 

to manufacture infrared spectrometers (Perkin-Elmer) was set up during this period, in 1937 

(Thomas, 1991). By the 1940s and 50s, dispersive IR spectrophotometers began to be more 

readily available and affordable, and thus were adopted by many analytical laboratories 

worldwide for the identification of purified organic compounds (Bureau et al., 2019).  

The next step along the journey was the analysis of complex matrices containing numerous 

different chemical constituents, such as food products. The first use of IR spectroscopy in the 

food industry is not well documented; however, reports of the structural assessment of 

individual carbohydrate sugars in aqueous solutions date back to the 1960s (Bureau et al., 

2019). The first applications of IR spectroscopy for food analysis were also in this decade 

(Capuano & van Ruth, 2016).  

Historically, infrared spectroscopy chemists believed that it was impossible to separate out 

functional chemical information from the overlapped overtone peaks of the NIR spectrum; 

hence focused their efforts on MIR spectroscopy. However, pioneering work by Karl Norris in 

the 1960s for the grain industry demonstrated that useful chemical information could be teased 

out of NIR spectra from “real” food samples through the use of chemometric techniques (Norris, 

1965; Williams & Norris, 1987). By the late 1980s, NIR spectroscopy had been used for the 

analysis of intact vegetables (Renfroe & Kays, 1985) and fruits (Dull et al., 1989). The ongoing 

progress of this analytical technique was assisted by several technological advances in the 

instruments available, including the development of Fourier transform instruments in the 

1960s, fiber optics in the 1980s and diode array spectrophotometers late in the 20th century 

(Jha, 2010; McClure, 2003).  

Currently, infrared spectroscopy (principally NIR spectroscopy) is used in the quality analysis 

of a wide variety of food products, including fruit and vegetables (Bureau et al., 2019; Walsh 

et al., 2020), meat (Weeranantanaphan et al., 2011) and fish (Liu et al., 2013; Power & 

Cozzolino, 2020), grains and cereal products (Caporaso et al., 2018; Cozzolino, 2014b; 

Johnson, 2020), honey (Cozzolino et al., 2011), dairy products (De Marchi et al., 2018) and 

beverages (Huang et al., 2008).  

2.2.4 Principles of infrared spectroscopy 

2.2.4.1 Back to basics: the atom 

In order to understand the principles of infrared spectroscopy, it is first necessary to begin with 

a solid theoretical understanding of atoms and chemical bonds. Our contemporary 
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understanding of the atom is that it comprises a nucleus of positively charged protons and 

neutrally charged neutrons, surrounded by a cloud of orbiting negatively charged electrons. 

Although the exact location of the electron is unknown at any given time, the Schrödinger 

wave equation can be used to describe the area in which there is a ≥95% probability of finding 

the electron.  

When a single covalent bond is formed between two atoms, overlap or “sharing” of the electron 

orbits allows a pair of electrons to be shared between the two nuclei. Similarly, a double bond 

results from the sharing of four electrons between two nuclei. The electrostatic attraction 

between the bonded electrons and the nuclei prevents the atoms from drifting apart. 

Conversely, electrostatic repulsion between the two positively charged nuclei prevent them 

from coming too close together. Consequently, the bond length (the distance between the two 

nuclei) is not fixed. Rather, bonds act like springs between the atoms they join, vibrating at 

specific frequencies depending on the atomic masses of the atoms involved and the “stiffness” 

of the bond itself. If the vibration of the bond changes the dipole moment of the molecule (the 

location of partial charge(s) within the molecule), then the bond is considered to be infrared-

active. Consequently, infrared photons of the corresponding frequency are able to be 

absorbed by the bond and excite it to a higher vibrational level.  

The fundamental vibration wavelength can be calculated using Hooke’s law for a simple 

harmonic oscillator:  

𝑣̅ =  
1

2𝜋𝑐
√

𝐾

𝜇
                   Equation 2.3 

where 𝑣̅ = wavenumber (in cm-1), c = speed of light (in cm s-1), K = force constant (in dynes 

cm-1) and μ = reduced mass of the bond in g atom-1 (calculated as shown in Equation 2.4) 

𝜇 =
𝑚1 × 𝑚2

𝑚1+ 𝒎𝟐
                   Equation 2.4 

Based on this formula, it can be seen that stronger bonds (e.g. alkenes) will generally vibrate 

faster than weaker bonds (e.g. alkanes), and bonds involving lighter atoms (e.g. C-H) will 

vibrate faster compared to those formed from heavier atoms (e.g. C-O).  

If the bond vibration was purely harmonic, then there would be only one vibrational frequency 

(the fundamental) and no overtones. However, bonds are more easily stretched than 

squeezed, thus act as anharmonic oscillators (see Figure 2-1). Hence for each IR-active bond 

there are a number of unequally spaced vibrational levels (overtones), each consecutively 

reducing in intensity. Higher frequency photons (i.e., lower wavelengths) are required to excite 

the bond to higher overtones. The vibrational energy of the bond for each overtone (V = 0, 1, 

2…) can be calculated as shown in Equation 2.5. Hydrogen-bearing groups (e.g., C-H, O-H, 
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N-H) are the most anharmonic, meaning that these groups are most readily detected in the IR 

region.  

𝐸𝑣 = (𝑉 +  
1

2
) ℎ𝜔̅𝑒 − (𝑉 +  

1

2
)

2
ℎ𝜔̅𝑒𝑥̅𝑒 + (𝑉 + 

1

2
)

3
ℎ𝜔̅𝑒𝑦̅𝑒            Equation 2.5 

where 𝑥̅𝑒 and 𝑦̅𝑒 are the anharmonicity constants, V = overtone (0, 1, 2…) 

If a bond is sufficiently excited, it will break (this is illustrated by the dashed grey line in Figure 

2-1). The bond dissociation energy (D) is a measure of the amount of energy required to break 

a covalent bond under standard conditions.  

 

Figure 2-1: Potential energy well of a covalent bond. Source: Metrohm AG, Herisau, 

Switzerland. Reproduced with permission.  

Furthermore, an atom bonded to two or more other atoms may experience different vibrational 

modes, such as symmetric stretching, antisymmetric symmetric stretching, scissoring, rocking, 

wagging and twisting (see Figure 2-2). Each of these vibrational modes will result in absorption 

at different frequencies. When all of this is taken into consideration, the total vibrational energy 

of a diatomic molecule can be expressed as shown in Equation 2.6:  

 

Equation 2.6 
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Figure 2-2: The various vibrational and rotational modes that may occur in a molecule. 

Source: Yokogawa Australia Pty Ltd. Reproduced with permission.  

The background information presented here is essential for understanding the interaction of 

infrared light with covalent bonds and consequently the principles behind the use of infrared 

spectroscopy for the measurement of analytes in food matrices. More detailed theory behind 

bond vibrational levels and their interaction with IR light is beyond the scope of this review; for 

this, the reader is referred to previous publications on this topic (Beć & Huck, 2019; Cozzolino, 

2014a; Ozaki et al., 2021).  

2.2.4.2 Absorption of infrared light and band assignments 

When a bond is exposed to infrared light of the correct frequency, it will absorb light photons 

at that frequency and the bond will be stimulated to a higher energy level for a very brief period 

(approximately 10-12 seconds) before returning to its ground state.  

The corresponding frequency for each bond depends upon the bond structure, as discussed 

in Section 2.2.4.1. Numerous factors influence the wavelength at which infrared light is 

absorbed by a bond, including the mass of both atoms comprising the bond, the vibronic 

coupling associated with the bond, and the shape of the molecular surface surrounding the 

bond. Hence the same bond can absorb at slightly different wavelengths, depending on the 
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other bonds and atoms surrounding the bond of interest. However, the typical wavelengths at 

which bonds absorb infrared light are well documented.  

Figure 2-3 details the absorption locations of common chemical bonds in the mid-infrared 

region, while Table 2-1 provides more specific information on the MIR absorption locations of 

important bonds for food analysis. For example, OH bonds absorb between 3700-3200 cm-1, 

while CH bonds absorb between 3200-2800 cm-1.  

 

Figure 2-3: The locations of some major absorption bands in the mid-infrared region. 

Source: Master Organic Chemistry 

(https://www.masterorganicchemistry.com/2016/11/23/quick_analysis_of_ir_spectra/). 

Reproduced with kind permission from James Ashenhurst.  
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Table 2-1: Mid-infrared absorption bands for a range of bonds important for food 

analysis.  

Bond 
Compound/functional 

group 

Wavenumbers 

(cm-1) 

O-H stretch Water, alcohol 3600-3200 

C-H stretch Alkene 3100-3000 

C-H stretch Aromatic ring 3060-3020 

C-H stretch CH2/CH3 2960-2860 

C=O stretch Carboxylic acid ~1750 

C=O stretch Ester 1750-1715 

C=O stretch (amide I) Amide 1700-1600 

C=C stretch Alkene 1666-1640 

C=C stretch Aromatic ring 

1625-1590, 1590-

1575, 1525-1470, 

1465-1430 

-C-H deformation 

vibration (asymmetric & 

symmetric) 

Methoxy group 1470-1435 

O-H deformation Phenol 1390-1330 

C-O-H deformation Phenol 1382-1317 

C-O vibration Alkyl-aryl ether 
1310-1210, 1120-

1020 

C-O stretch Phenol 1260-1180 

C-C stretch Phenyl carbon 1225-1075 

C-O stretch Ester, alcohol 1230-1030 

-C-H rocking vibration Methoxy group 1200-1185 

C-O stretching vibration Phenol 1150-1040 

C-H out-of-plane 

deformation 
Aromatic ring 900-700 

O-H out-of-plane 

deformation 
Aromatic ring ~720 

References: (Abbas et al., 2017; Dufour, 2009; Mecozzi & Sturchio, 2017) 
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As previously mentioned (Section 2.2.4.1), the presence of overtones in the NIR region means 

that absorption peaks from a single bond occur repeatedly throughout the NIR spectrum, at 

different levels of attenuation (Figure 2-4). In addition, combination bands can occur in the far-

NIR region when two or more fundamental vibrations are excited simultaneously (Bokobza, 

1998).  

 

Figure 2-4: Near-infrared absorption band locations. Source: Metrohm AG, Herisau, 

Switzerland. Reproduced with permission. 

Determination of the peak locations in a given matrix allows the qualitative identification of the 

type of bonds present in the sample. Furthermore, the amount of infrared light absorbed by 

the matrix is theoretically proportional to the number of bonds present, following the Beer-

Lambert’s law:  

A = log (
I0

I
) =  ϵlc                  Equation 2.7 

where A = absorbance, ϵ = molar absorptivity, l = length of light path, c = concentration 

However, the Beer-Lambert law is strictly valid only for transmission measurements obtained 

through non-scattering media. Consequently, a number of modified laws have been proposed 

for transmittance spectra obtained from scattering media (Mallet et al., 2021; Mamouei et al., 

2021) and for reflectance spectra (Bhatt et al., 2016; Mayerhöfer et al., 2020).  
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Nevertheless, the underlying relationship between bond abundance and absorbance has 

allowed infrared spectroscopy to be used as a quantitative method for the assessment of 

various IR-active analytes across a wide range of sample matrices (Caporaso et al., 2018; 

Cortés et al., 2019; Mahesar et al., 2019; McGoverin et al., 2010; Wilson & Tapp, 1999).  

2.2.5 Sample presentation 

To gain an accurate assessment of the sample matrix using infrared spectroscopy techniques, 

it is essential that the portion of the sample that is “seen” by the instrument is representative 

of the whole sample. The use of an appropriate method of sample presentation is crucial in 

this respect. Furthermore, due to the wide range of sample types which can be analysed using 

IR spectroscopy (including solids, liquids, films, gels and powders), there are a variety of 

sample presentation methods that have been adopted.  

Perhaps the simplest form of sample presentation is full transmittance mode (180° light-

sample-detector). This is also the only method for which the Beer-Lambert law holds strictly 

true. In this presentation mode, the IR light enters one side of the sample and some 

wavelengths are absorbed by the sample, with the remaining light measured as it exits the 

other side of the sample. As long as the length of the light path is sufficiently low, the use of 

transmittance mode ensures that the emitted light has an opportunity to interact with nearly all 

of the analytes present in the light path. Consequently, it is typically quite representative of the 

true matrix composition. However, it is only suitable for analysing relatively thin samples due 

to the high level of absorbance in aqueous-based matrices. As shown by Beer-Lambert’s law 

(Equation 2.7), increasing the light path length will proportionally increase the absorbance, 

making it more difficult to detect the signal of the resultant spectra. For example, a path length 

of only a few millimetres is often required when using transmittance NIR spectroscopy for the 

analysis of aqueous solutions. Due to path length limitations, the use of transmittance 

spectroscopy for the analysis of solid or powder substances can be more challenging 

compared to reflectance modes. However, analysis of products such as whole fruits is possible 

using higher incidence light intensities and more sensitive detectors (Clark et al., 2003; Fraser 

et al., 2003).  

One variation of full transmittance mode is partial transmission spectroscopy, also known as 

interactance spectroscopy. This refers to the mode where the infrared light is partially 

transmitted through the sample matrix, before being detected by another sensor at the matrix 

surface but located adjacent to the source. These instruments utilise a physical barrier 

between the light source and detector to prevent the detector from receiving any IR light 

reflected directly from the sample surface (see Figure 2-5). The benefits of this method are a 
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reduced path length compared to full transmittance mode, while providing increased 

interaction between the IR light and the sample matrix compared to reflectance geometry.  

Reflectance mode is one of the most commonly used presentation modes in infrared 

spectroscopy applications, particularly for NIRS. In this mode, the infrared light enters one 

side of the sample and interacts with the sample matrix as it penetrates into the sample. The 

majority of non-absorbed light is then reflected back to the surface of the sample, where it is 

detected by the instrument sensor. Some non-absorbance scattering of the IR light can also 

occur, which can bias the resultant spectra. One of the main advantages of reflectance mode 

is its one-dimensionality (i.e., the instrument only needs access to the sample surface in one 

location, as opposed to transmittance spectroscopy where both sides of the sample must be 

accessible), allowing it to be used in a much broader range of applications compared to 

transmittance spectroscopy. However, it is entirely reliant on the assumption that the 

composition of the surface material is representative of the entire sample matrix.  

Within the food sector, reflectance NIR spectroscopy is widely reported in publications for the 

analysis of horticultural produce (Kumar et al., 2017; Ncama et al., 2018) and in the grains 

industry (Caporaso et al., 2018; Yang et al., 2011). There are no commercial instruments 

designed to use this geometry mode for the analysis of whole fruits, as differences in skin 

composition between fruit populations can reduce the robustness of the model. However, 

reflectance NIR spectroscopy is commonly used for the analysis of ground grain products in 

industry/commercial settings, as these samples are generally quite homogenous throughout.  

Diffuse or body reflectance mode is also commonly used by NIR spectroscopists. It functions 

similarly to regular reflectance spectroscopy, but benefits from increased interaction between 

the IR light and the sample compared with specular (surface) reflectance modes (Figure 2-5).  

A diagrammatical summary of the main sample presentation modes used for the infrared 

spectroscopy analysis of solid matrices is shown in Figure 2-5. As each sample presentation 

mode has its drawbacks and benefits (Kawano, 2008; Wilson & Tapp, 1999), the optimum 

method will depend on the sample matrix and intended application.  
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Figure 2-5: Sample presentation modes used in the infrared spectroscopy analysis of 

solid materials, showing the interaction of the light with the sample. Source: Walsh et 

al. (2020). Reproduced under Creative Commons 4.0 licence.  

2.2.6 Data analysis 

The final stage in the use of infrared spectroscopy for analytical purposes is the processing of 

the spectral data. In many cases, the signal of the desired analyte may be obscured by other 

matrix components present in much higher concentrations, such as water or carbohydrate-

based structures. The use of modern mathematical data analysis techniques – termed 

chemometrics – can aid in uncovering minor analyte signals and developing optimum models 

for the quantification of the analytes. However, it is important to note that no amount of data 

analysis or chemometrics can “uncover” an analyte if the signal from the analyte is either not 

present or its concentration is too low to be detected by the instrument. The exception to this 

is if there is a secondary correlation between the analyte and a macroconstituent that can be 

detected by NIRS (see Section 2.2.2).  

2.2.6.1 Spectral pre-processing 

Typically, infrared spectra are subjected to pre-processing before they can be used for 

quantitative analytical purposes. The aim of this procedure is to remove spectroscopic 

artefacts from the measurement process, such as random noise, scatter or baseline drift 

(Gautam et al., 2015; Rinnan, 2014). The effects of these artefacts are particularly detrimental 

when attempting to analyse complex mixtures or analytes present in very low concentrations 

(Schoot et al., 2020).  

A variety of spectral pre-processing methods are available. These include smoothing, 

multiplicative scatter-correction (MSC), standard normal variate (SNV), normalization by 

range (NBR) and the calculation of derivatives (Dotto et al., 2018). As previous authors have 
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reviewed the range of available spectral pre-processing methods in detail (Lee et al., 2017; 

Mishra et al., 2020), only a brief summary of the most commonly pre-processing methods are 

presented here.  

Standard normal variate (SNV) is a normalisation-based pre-processing method. In this pre-

processing method, the mean value of each spectrum is calculated and this constant value is 

subtracted across the entire spectrum, before the spectrum is divided by the standard 

deviation of the entire spectrum.  

Calculating the derivative of spectra is another common approach to account for baseline shift 

or amplitude differences in the spectra. First and second derivatives are the most commonly 

used. Although higher order derivatives such as the third derivative have been successfully 

used in some applications (Orman & Schumann, 1991; Rodriguez-Otero et al., 1995; 

Terhoeven-Urselmans et al., 2008), there is an accompanying decrease in the signal-to-noise 

ratio as the derivative order increases (Rodriguez-Otero et al., 1995).  

Finally, it is important to note that pre-processing methods are often combined. For example, 

typical pre-processing of spectra for use in analytical spectroscopy could involve calculating 

the SNV of the spectra, before subsequently calculating the first derivative of the SNV-

processed spectra.  

The choice of optimum spectral pre-processing methods is poorly defined and strongly 

dependent upon both the matrix type and analyte of interest. Furthermore, the need for and 

choice of pre-processing method may also vary with the sample size of the population (Schoot 

et al., 2020). In the absence of definitive guidelines, trial and error is often the best approach 

when developing new applications for infrared spectroscopy.  

2.2.6.2 Data analysis methods 

For quantitative applications of infrared spectroscopy, regression modelling is among the most 

commonly used data analysis methods. One of the first chemometric methods applied in 

quantitative infrared spectroscopy applications was multiple linear regression (MLR), which 

attempts to predict the analyte concentration from the spectral absorbance at several different 

wavelengths. However, it cannot be used for the analysis of entire spectra, due to the high 

multicollinearity of the adjacent datapoints comprising the spectra.  

Partial least squares regression (PLSR) is a derivative of MLR suited to datasets with high 

levels of multicollinearity, such as infrared spectra (Mehmood & Ahmed, 2016). Through a 

variety of algorithms, the key contributing variables are identified and weighted such that the 

wavelengths most closely correlated with the analyte concentration have the greatest 

contribution to the PLSR model (Mehmood & Ahmed, 2016). PLSR is widely used for the 
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development of infrared spectroscopy models across the food science sector (Cobaleda-

Velasco et al., 2018; de Oliveira et al., 2014; Hu et al., 2016).  

In recent years, there has also been interest in emerging machine learning techniques such 

as artificial neural networks (ANNs), support vector machine (SVM) and deep learning 

(Gabriëls et al., 2020; Le, 2020; Rajalakshmi & Gopal, 2020; Sharabiani et al., 2019). These 

non-linear techniques look for patterns within the data in order to optimise model weighting 

and extract the desired information from the spectra. As more samples and spectra are added 

to the dataset, the model can update over time in order to provide more accurate prediction 

results.  

As with spectral pre-processing, the optimum chemometric technique often depends on the 

sample matrix and/or analyte (Ludwig et al., 2019; Ni et al., 2014).  

2.3 Bioactive compounds and their significance in functional 
foods 

2.3.1 Functional foods 

Recent years have seen an expansion of the “functional food” market – where foods are 

purchased for their health-benefiting effects, rather than as a source of basic nutrition and 

energy (Granato et al., 2017; Johnson et al., 2020f; Urala & Lähteenmäki, 2007). For example, 

phenolics isolated from chickpeas have been found to provide anti-cancer effects, particularly 

against colorectal cancer (Bochenek et al., 2019). Similarly, phenolics from the pseudocereal 

Quinoa (Chenopodium quinoa) have been shown to provide strong in vitro anti-inflammatory 

effects (Liu et al., 2020a). Consumers may pay a price premium for such health-benefiting 

foods (Di Pasquale et al., 2011). For example, Spanish consumers reported that they would 

pay ~55% extra for resveratrol-enriched wine (Barreiro-Hurlé et al., 2008), as this compound 

has purported benefits for cardiovascular health. This willingness to pay a premium for 

healthier food has been mirrored in several other studies (Hirogaki, 2013; Markosyan et al., 

2009; Miškolci, 2014), albeit with typically lower price premiums reported (e.g., 10-15% higher 

than the regular price).  

Even if there is not a market for the functional food in its unprocessed form, such produce also 

has potential for the development of value-added foods and ingredients (López‐Barrios et al., 

2014; Vioque et al., 2012; Zhang et al., 2012), marketed on the basis of their levels of health-

benefiting compounds. Examples of foods experiencing a considerable rise in popularity due 

to their reported health benefits include the so-called ancient grains (such as chia, quinoa, 

millet and spelt), pulse crops (including mungbean, chickpeas, faba bean and lentils), as well 

as numerous other crops (Boukid et al., 2018; Cooper, 2015; Singh et al., 2017). For instance, 
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the plum variety Queen Garnet was developed and marketed with an emphasis on its 

exceptionally high levels of anthocyanins, which possess antioxidative and anti-thrombotic 

properties (Fanning et al., 2013; Netzel et al., 2012; Xiang et al., 2019c). Another well-known 

example is the açaí berry from South America, popularised due to its high anthocyanin content 

and antioxidant capacity (Yamaguchi et al., 2015).  

2.3.2 Definition of bioactive compounds 

There is no clear literature consensus on the definition of bioactive compounds, with 

Guaadaoui et al. (2014) proposing them to be “compounds which have the capability and the 

ability to interact with one or more component(s) of living tissue by presenting a wide range of 

probable effects”. However, from a consumer perspective, bioactive compounds are generally 

understood to be compounds which will promote good health or health-benefiting effects. This 

concept is more similar to the consensus statement from the 23rd Hohenheim Consensus 

Meeting, which stated that “bioactive compounds are essential and non-essential compounds 

(e.g., vitamins or polyphenols) that occur in nature, are part of the food chain, and can be 

shown to have an effect on human health” (Biesalski et al., 2009). Such bioactive compounds 

may also be referred to as “nutraceuticals” (Kalra, 2003), which reflects their presence in the 

human diet.  

2.3.3 Classes of bioactive compounds 

The majority of bioactive compounds can be broadly classified as phytochemicals – 

compounds that are produced by plants – although some (such as fatty acids) are also found 

in animal-based foods. There are numerous classes of bioactive compounds (Figure 2-6), 

each with their own distinct biological activities and health benefits. These include polyphenols, 

flavonoids, carotenoids, phytosterols, phytoestrogens, alkaloids, glucosinolates, anthocyanins, 

terpenoids and others (Hamzalıoğlu & Gökmen, 2016; Mani et al., 2021). Each compound 

class is characterised by distinct structural features in their chemical composition. For example, 

polyphenols display the presence of multiple phenol groups, while all flavonoids comprise two 

phenyl rings and a heterocyclic ring containing an embedded oxygen heteroatom.  
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Figure 2-6: The various classes of major bioactive compounds found in food products. 

Source: Câmara et al. (2021). Reproduced under Creative Commons 4.0 licence.  

It could be considered that compounds which show antioxidant activity form a class of 

bioactive compounds. However, a structurally diverse array of compounds may exhibit 

antioxidant activity, including polyphenols, anthocyanins, flavonoids and carotenoids. For this 

reason, this review excluded studies solely reporting quantification of the total antioxidant 

capacity (TAC) of samples, as in many cases the antioxidant activity of a matrix cannot be 

directly related to the concentration of a specific structural class of bioactive compounds 

(Pellegrini et al., 2020). Nevertheless, this does not detract from the importance of TAC as a 

potential indicator of crude biological activity. Although the concept of TAC has been criticised 

by several researchers as a result of its lack of specificity (Fraga et al., 2014; Pompella et al., 

2014), numerous clinical trials have indicated a positive relationship between greater intake of 

antioxidants and reduced levels of oxidative stress and inflammatory markers (Detopoulou et 

al., 2010; Hermsdorff et al., 2011; Kobayashi et al., 2012; Wang et al., 2014b), reduced all-

cause mortality (in non-elderly cohorts) (Agudo et al., 2007; Bastide et al., 2017) and reduced 

risk of adverse cardiovascular events, particularly ischaemic stroke (Colarusso et al., 2017; 

Del Rio et al., 2010; Rautiainen et al., 2012a; Rautiainen et al., 2013; Rautiainen et al., 2012b).  
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2.3.4 Current analytical methods 

There are numerous analytical methods available for the quantification of bioactive 

compounds, depending on the physical and chemical properties of the specific class of 

compound(s) of interest.  

For example, terpenoids and other volatile compounds are commonly analysed by gas 

chromatography coupled with mass spectrometry (GC-MS), which uses a mobile inert gas 

phase and a stationary column phase to separate the compounds of interest (da Silva et al., 

2019; Kukula-Koch et al., 2018).  

Non-volatile compounds such as polyphenols, anthocyanins, flavonoids and carotenoids are 

typically analysed using the related technique of liquid chromatography coupled with mass 

spectrometry (LC-MS) (Baysal et al., 2021; Netzel et al., 2006; Xiang et al., 2019a). As with 

gas chromatography, the column contains the stationary phase, while a liquid mobile phase 

carrying the analyte flows through the column. The relative affinity of the analyte for the mobile 

and stationary phases allows for its separation from other matrix constituents. Finally, the 

mass spectrometry module is used to identify the analyte based on its molecular mass.  

In cases where the compounds of interest are known and pure standards are available for 

comparative purposes, high performance liquid chromatography (HPLC) with ultraviolet-

visible detection may suffice (Santos et al., 2017). This method works in the same way as LC-

MS but uses absorbance in the ultraviolet-visible region to detect the eluting compounds, 

rather than mass spectrometry.  

Colorimetric methods such as the Folin-Ciocalteu assay may also be used for the analysis of 

total phenolics, or for the quantification of anthocyanins using the pH-differential method 

(Johnson et al., 2020c). These methods are less specific compared to separation-based 

techniques such as liquid and gas chromatography; however, they are must faster and cost-

efficient.  

More recently, there has been an interest in using rapid, non-invasive analytical techniques 

such as infrared spectroscopy for the prediction of bioactive compounds (Aleixandre-Tudo et 

al., 2018; Johnson et al., 2020d; Mahesar et al., 2019). This emerging area of research is the 

focus of this review.  

2.3.5 Previous work and aims 

Although several previous reviews have focused on the use of infrared spectroscopy for the 

estimation of specific groups of bioactive compounds, such as antioxidants (Cozzolino, 2015; 

Lu & Rasco, 2012) and phenolics (Ignat et al., 2011), there are no contemporary reviews in 
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the last decade on this technique for the quantification of bioactive compounds in food 

products. For instance, the review by McGoverin et al. (2010) on this topic is over ten years 

old, with numerous IR-related papers published during the ensuing period. Similarly, the 

review by Pallone et al. (2018) on the use of vibrational spectroscopy in food analysis included 

only 7 studies quantifying constituents which could be classified as “bioactive” compounds. 

Hence, this chapter aims to review the contemporary literature (last five years) reporting the 

estimation or quantification of bioactive compounds in food matrices.  

2.4 Methods 

The Scopus database (https://www.scopus.com/) was searched for articles between 2016-

2020 containing the following terms in their title, abstract or keywords sections:  

• Any of the following: near infrared OR mid infrared OR spectroscopy 

• AND food 

• AND bioactive OR phenolic OR antioxidant OR anthocyanin 

• AND quantification OR determination OR measurement 

In this way, articles pertaining to the quantification of bioactive constituents of functional foods 

using infrared spectroscopy were able to be acquired.  

Articles up to and including 31st December 2020 were considered, with the search limited to 

articles published in the 5 years prior (i.e. 1st January 2016 to 31st December 2020). The titles 

and abstracts of all articles were manually screened to find relevant articles for inclusion in 

this review.  

Inclusion criteria were:  

• Original studies published in the 5 years between 2016 and 2020 

• Quantified a compound or group of compounds with recognised health-benefiting 

effects, above that expected from basic nutritional needs 

• The matrix was a food or potential food product 

2.5 Scientific effort (2016-2020) 

The scientific effort over the past five years is summarised in Table 2-2 (for NIRS) and Table 

2-3 (for MIRS). The information presented in the tables includes the type of matrix analysed, 

analyte(s) investigated, sample size of the calibration and validation sets, wavelength range 

used in the optimised model, and statistical method used for analysis of the spectra. All fruit 

and vegetable samples were analysed fresh and intact, unless otherwise stated in the table. 

The test set column shows whether the authors used a dependent test set for the model 
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validation (i.e., samples from the same population as the calibration set) or independent test 

set (i.e., samples drawn from a different population to the calibration set, such as from a 

different year, season or geographic location). The cross-validation statistics (R2
CV and 

RMSECV) are reported in the corresponding columns for all studies. In cases where the study 

also included an independent test set, the R2 and RMSEP for the test set are reported in the 

test set column. Finally, the notes column provides information about the sample population 

details and notable findings of the study.  
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Table 2-2: Studies reporting the use of near-infrared spectroscopy for the quantification of bioactive compounds in food products 

(2016-2020).  

Food 

matrix 
Analyte(s) 

Sample 

size 

(cal/val) 

Wavelength 

range (nm) 

Optical 

geometry 

Statistical 

method 
Test set 

Cross 

validation 
R2 (CV) RMSECV Notes Reference 

Fruit 

Açaí and 

juçara 

Total anthocyanin 

content 

Variable 

(n=374 

total) 

1606-1793 Reflectance PLS Independent 

populations 

R2 = 0.74-0.88; 

RMSEP = 5.09-

6.76 g/kg 

LOO 0.89-

0.91 

2.50-2.91 

g/kg 

Fruit from 2 

seasons & 4 

localities 

(Cunha 

Júnior et al., 

2016) 

Bilberry 

(dried 

powder) 

Anthocyanins 38/27 1064-1640, 

1833-2354 

Reflectance PLS Dependent test 

set (randomly 

selected samples) 

LOO 0.995 0.28 % 

w/w 

NIR analysis 

could identify 

counterfeit 

bilberry 

samples 

(Gardana et 

al., 2018) 

Blackberry Total phenolics 

Total carotenoids 

90/30 400-2500 Reflectance PLS None n/s 0.69 

0.76 

1.69 

0.95 

mg/g 

 (Toledo-

Martín et al., 

2018) 

Grapes 

(red) 

Trans-resveratrol 

Quercetin 

Total phenols 

15 900-1700 Reflectance PLS None LOO 0.988 

0.955 

0.974 

0.424  

0.008 

mg/kg 

12.15 

mmol/kg 

3 locations; 2 

seasons 

(Tzanova et 

al., 2020) 

Grapes 

(red and 

white)  

Total phenolics 203/67 400-1100 

 

900-2500 

Reflectance PLS, SVM Dependent test 

population 

n/s 0.872-

0.914 

0.697-

0.726 

0.15-0.22 

 

0.28-0.31 

mg/g 

2 cultivars 

from one 

season and 

location. SVM 

gave better 

results than 

PLS 

(Xiao et al., 

2018) 
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Grapes 

(red) 

Total anthocyanins 

Total 3-O-glucoside 

anthocyanins  

Total 3-O-(6-

acetyl)glucoside 

anthocyanins  

Total 3-O-(6-p-

coumaroyl)glucoside 

anthocyanins 

Malvidin 3-O-glucoside 

Malvidin 3-O-(6-

acetyl)glucoside 

Malvidin 3-O-(6-p-

coumaroyl)glucoside 

Petunidin 3-O-glucoside 

Petunidin 3-O-(6-

acetyl)glucoside 

Petunidin 3-O-(6-p-

coumaroyl)glucoside 

Delphinidin 3-O-

glucoside 

Delphinidin 3-O-(6-p-

coumaroyl) glucoside 

Peonidin 3-O-glucoside 

Peonidin 3-O-(6-

acetyl)glucoside 

Peonidin 3-O-(6-p-

coumaroyl)glucoside 

Cyanidin 3-O-glucoside 

Cyanidin 3-O-(6-

acetyl)glucoside 

Cyanidin 3-O-(6-p-

coumaroyl)glucoside 

60/20 380-1028 Reflectance 

(hyperspectral 

imaging) 

MPLS Dependent test 

set (stratified 

samples) 

6-fold 

cross 

validation 

0.91 

0.92 

 

0.90 

 

 

0.83 

 

 

0.87 

0.90 

 

0.80 

 

0.93 

0.57 

 

0.91 

 

0.91 

 

0.92 

 

0.88 

0.80 

 

0.75 

 

0.88 

0.77 

 

0.86 

189.05 

155.94 

 

4.12 

 

 

23.09 

 

 

73.93 

4.13 

 

13.32 

 

29.44 

0.98 

 

2.04 

 

48.41 

 

3.28 

 

30.35 

0.31 

 

3.81 

 

16.43 

0.16 

 

1.78 

mg/L 

8 different 

cultivars from 

2 sites 

(Diago et al., 

2016) 

Grapes 

(red) 

Nonacylated 

anthocyanins 

Total anthocyanins 

47/- 950-1650 Reflectance 

(hyperspectral 

imaging of 

single grapes) 

PLS Dependent test 

population 

LOO 0.72 

 

0.72 

0.78  

 

0.70 mg/ 

grape 

Fruit from 2 

dates, 2 

vineyards, 1 

season 

(Martínez-

Sandoval et 

al., 2016) 
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Grape 

pomace 

(marc) 

Catechin 

Epicatechin 

Proanthocyanidin B1 

Proanthocyanidin B2 

Proanthocyanidin B3 

Proanthocyanidin B4 

Proanthocyanidin trimer 

1 

Proanthocyanidin trimer 

2 

Proanthocyanidin 

tetramer 1 

Proanthocyanidin 

tetramer 2 

Proanthcyanidin B2-3-

O-gallate 

Galloyl 

proanthocyanidin 

Total flavanols 

Gallic acid 

Protocatechuic acid 

Caffeic acid 

Caftaric acid 

Cis-coutaric acid 

Trans-coutaric acid 

Total phenolic acids 

Quercetin 3-O-rutinoside 

Quercetin 3-O-

glucuronide 

Quercetin 3-O-glucoside 

Quercetin pentoside 

Kaempferol 3-O-

galactoside 

Kaempferol 3-O-

glucuronide 

Kaempferol 3-O-

glucoside 

12/- 950-1650 Reflectance 

(hyperspectral 

imaging) 

PLS None LOO 0.80 

0.96 

0.65 

0.75 

0.50 

0.63 

0.65 

 

0.86 

 

0.65 

 

0.53 

 

0.89 

 

0.58 

 

0.78 

0.75 

0.82 

0.92 

0.91 

0.83 

0.95 

0.87 

0.63 

0.81 

 

0.64 

0.15 

0.98 

 

0.93 

 

0.98 

 

14.00 

4.72 

20.53 

1.86 

3.43 

3.01 

3.12 

 

7.68 

 

11.62 

 

2.66 

 

6.29 

 

7.27 

 

66.63 

5.58 

2.70 

0.36 

2.56 

0.15 

0.19 

9.61 

1.82 

4.36 

 

5.95 

0.04 

0.11 

 

0.07 

 

0.41 

 

Fruit from 1 

variety, 

season and 

location 

(Jara-

Palacios et 

al., 2016) 
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Quercetin 

Kaempferol 

Total flavonols 

0.72 

0.97 

0.70 

0.19 

0.02 

14.27 

mg/100g 

Grape 

skins (red) 

Total iron-reactive 

phenolics 

Anthocyanins 

Tannins 

40/20 977-1625 Reflectance 

(hyperspectral 

imaging) 

PCR, 

PLS, SVR 

Dependent test 

set 

Segment 

validation 

0.907 

 

0.879 

0.896 

0.178 

 

0.144 

0.107 

mg/L 

Five cultivars 

from 4 dates 

in 1 growing 

season 

(Zhang et al., 

2017) 

Grape 

seeds (red) 

Total iron-reactive 

phenolics 

Tannins 

40/20 977-1625 Reflectance 

(hyperspectral 

imaging) 

PCR, 

PLS, SVR 

Dependent test 

set 

Segment 

validation 

0.879 

 

0.924 

0.240 

 

0.519 

mg/L 

Five cultivars 

from 4 dates 

in 1 growing 

season 

(Zhang et al., 

2017) 

Guava 

(frozen 

pulp) 

Ascorbic acid 50 1000-1892, 

2007-2227 

Transflectance PLS Dependent test 

set (randomly 

selected samples) 

LOO 0.85 

(test 

set) 

6.14 

mg/100g 

(test set) 

Samples from 

2 Brazilian 

marketplaces 

(Alamar et al., 

2016) 

Jujube Gallic acid 

Caffeic acid  

L-epicatechin 

Phloridzin 

Cianidanol  

52/26 900-1700 Transmittance Si-ACO-

PLS 

Dependent test 

population 

n/s 0.879 

0.887 

0.906 

0.858 

0.836 

3.06 

6.04 

16.30 

0.84 

16.01 

µg/g 

Samples from 

5 regions 

(Arslan et al., 

2020) 

Kakadu 

plum 

(powder) 

Ascorbic acid 80/5 866-2532 Diffuse 

reflectance 

PLS Independent 

(commercially 

sourced samples) 

R2 = 0.73; RMSEP 

= 4733 mg/ 100g 

n/s 0.93 1839  

mg/100g 

 (Cozzolino et 

al., 2020) 

Marsh 

grapefruit 

β-carotene 

Total carotenoids 

240 850-2500 

400-850 

Reflectance PLS Independent 

(samples from a 

separate orchard)  

Test set 

validation 

0.99 

0.92 

(test 

set) 

0.00 

2.69 

µg/g 

(test set) 

Fruit from 1 

season and 2 

locations 

(Ncama et al., 

2018) 

Raspberrie

s 

Total phenols 

Total anthocyanins 

TAC (FRAP) 

 

168 950-1650 Reflectance 

(hyperspectral 

imaging) 

PLS None n/s 0.70 

0.63 

0.61 

127 

12 

39 

mg/100g 

 (Rodríguez-

Pulido et al., 

2017) 
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Tomato Total phenolics 

Lycopene 

Total flavonoid 

β-carotene 

50 285-1200 Reflectance PLS None LOO? 0.834 

0.864 

0.790 

0.708 

1.80 

1.03 

1.82 

1.14 

µg/g 

 (Alenazi et 

al., 2020) 

Tomato Lycopene 

β-carotene 

180/60 500-1100 Transmittance PLS Semi-independent 

(separate harvest 

in same season) 

R2 = 0.85, 0.77; 

RMSEP = 1.79, 

1.00 mg/kg 

LOO 0.89 

0.88 

1.56 

0.63 

mg/kg 

 (Tilahun et 

al., 2018) 

Tomato 

(dehydrate

d and 

ground) 

Lycopene 

Phenols 

TAC (DPPH) 

TAC (FRAP) 

TAC (ABTS) 

61/31 800-2500 Reflectance PLS, 

RBF-NN 

Dependent test 

set 

n/s 0.882 

0.910 

0.882 

0.876 

0.937 

1.61 

80 

0.70 

0.97 

0.86 

mg/100g 

RBF-NN 

generally 

performed 

better than 

PLSR 

(Ding et al., 

2016) 

Wax jambu Total phenolics  

Total anthocyanins 

50/35 1000-2400 Diffuse 

reflectance 

PLS Dependent test 

set (Kennard-

Stone selection) 

n/s 0.94 

0.98 

22.18 

9.0  

mg/100g 

 (Viegas et al., 

2016) 

Vegetables 

Carrot Ascorbic acid 

β-carotene 

24/6 (?) 420-1100 Reflectance PLS Dependent test 

set 

4-fold 

cross 

validation 

0.98 

0.98 

0.04 µg/g 

0.10 

µg/100g 

Roots 

sampled over 

an 8-week 

storage 

period 

(Rady et al., 

2018) 

Red 

cabbage 

(EtOH 

extract) 

Total anthocyanins 

Monomeric 

anthocyanins 

Total polyphenols 

1 (with 33 

serial 

dilutions) 

1000-2500 Transmittance PLS 9 dilutions 

prepared from 

new cabbage 

extract 

Segment 

validation 

0.98 

0.98 

 

0.96 

16.4 

20.2 

 

42.7 

mg/L 

 (de Oliveira et 

al., 2018) 

Potato Total phenolics 

Antioxidant capacity 

(DPPH) 

160/68 1100-2300 Reflectance PLS Dependent test 

set 

Venetian 

blind 

cross-

validation 

0.84 

0.67 

1.20 

1.21 

mg/g 

White, red, 

yellow & 

purple fleshed 

cultivars 

(López-

Maestresalas 

et al., 2017) 
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Grains/pulses 

Barley malt Total phenolics 10 1000-2500 Reflectance 

(hyperspectral 

imaging) 

SVM, 

SVR 

Dependent test 

set (5% of total 

pixels) 

n/s 0.85 1 ppm  (Tschannerl 

et al., 2019) 

Oat, millet, 

buckwheat  

Total phenolics 77 1596-2396 

1128-2162 

740-1070 

Reflectance PLS Test set used but 

no information 

provided on its 

origins or size 

LOO (for 

most 

models) 

0.921 

0.951 

0.823 

 

1.46 

1.11 

1.98 

mg/g 

Compared 3 

handheld 

instruments 

(microPhazir 

RX, MicroNIR 

2200, SCiO) 

(Wiedemair & 

Huck, 2018) 

Common 

bean 

(flour) 

 

Total phenols 

Ortho-diphenols 

Flavonoids 

Gallic acid 

Catechin 

Myricetin-3-glucoside 

Quercetin-3-6’’-manolyl-

glucoside 

Kaempferol-3-glucoside 

Kaempferol-3-6’’-

manolyl-glucoside 

Kaempferol 

42/- 1000-2500 Reflectance PLS Spectra randomly 

selected from 

dataset (1/3 of 

total spectra) 

LOO  

0.91 

0.85 

0.90 

0.96 

0.48 

0.97 

0.90 

 

0.85 

0.93 

 

0.87 

RPDs: 

5.20 

4.84 

5.18 

10.25 

2.38 

10.25 

7.52 

 

6.27 

9.32 

 

6.51 

21 varieties; 2 

seasons 

(Carbas et 

al., 2020) 

Mungbean Catechin 

Chlorogenic acid 

Caffeic acid 

p-coumaric acid 

t-ferulic acid 

Vitexin 

Isovitexin 

Myricetin 

Quercetin 

Kaempferol 

42/18 1600-2500 Reflectance 

(from whole 

grains) 

PLS Dependent test 

set 

Segment 

validation 

0.996 

0.998 

0.992 

0.989 

0.998 

0.997 

0.997 

0.994 

0.989 

0.998 

0.603 

0.590 

1.78 

1.8 

0.519 

0.238 

0.23 

1.82 

1.67 

0.5 (% 

relative) 

 (Meenu et al., 

2016a) 



 

Page 62 of 248 
 

Quinoa 

(whole 

seed) 

Total free phenolics 

Total betalains 

TAC (DPPH) 

38/- 400-2500 Reflectance PLS None Segment 

validation 

n/s 

n/s 

0.73 

n/s 

n/s 

8.6 

mmol/kg 

For TAC in 

ground seed; 

R2 = 0.66; 

RMSECV = 

9.6 mmol/kg 

(Macavilca & 

Condezo-

Hoyos, 2020) 

Soybean Total anthocyanins 

Cyanidin-3-glucoside 

Delphinidin-3-glucoside 

70 1000-2500 Reflectance PLS Subset of spectra 

of samples 

included in 

calibration set 

n/s 0.88 

0.90 

0.88 

0.13 

0.12 

0.03 

mg/g 

 (Amanah et 

al., 2020) 

Oils 

Olive oil Squalene 118/59 1100-2300 Transmittance PLS Dependent test 

set 

LOO? 0.83 

(test 

set) 

2.31 

g/kg 

(test set) 

Poorer results 

obtained 

using Vis-

NIRS data 

(Cayuela & 

García, 2018) 

Olive oil  

Total tocopherols 

α-tocopherol  

β-tocopherol 

γ-tocopherol 

 

197/91 

189/93 

197/102 

195/101 

350-2500 Transmittance, 

transflectance 

PLS Dependent test 

set 

LOO?  

0.89 

0.92 

0.54 

0.85 

 

SEC: 

43.83 

33.90 

0.59 

4.54 

mg/kg 

Vis-NIRS 

gave slightly 

better results 

than NIRS in 

most cases 

(Cayuela & 

García, 2017) 

Olive oil Tyrosol 

Tyrosol secoiridoids 

Hydroxytyrosol 

Hydroxytyrosol 

secoiridoids 

Total phenolics 

75/18 800-2500 Transmittance PLS None LOO 0.55 

0.84 

0.55 

0.82 

0.82 

5.27 

41.5 

4.84 

43.1 

76.7 

mg/kg 

 (Mora-Ruiz et 

al., 2017) 

Olives (as 

paste) 

Total phenolics 

Oleuropein 

291/53 

147/53 

1400-2400 Reflectance PLS Dependent test 

set 

LOO? 0.71 

0.73 

(cal) 

0.08 

6.6 

mg/kg 

Samples 

obtained 

across 7 

seasons 

(Trapani et 

al., 2017) 
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Aromatic plants 

Black 

pepper 

(whole) 

Piperine 132/- 950-1650 Reflectance PLS None Segment 

validation 

0.726 0.289 

g/100g 

For ground 

samples; R2 = 

0.850, 

RMSECV = 

0.231g/ 100g 

(Park et al., 

2020) 

Black tea Caffeine 

Epigallocatechin gallate 

37/19 950-1650 Reflectance PLS, MLR Dependent test 

set 

LOO? 0.933 

0.782 

3.65 

3.32 

mg/g 

 (Wang et al., 

2021b) 

Black tea Cianidanol 

Ferulic acid 

Gallic acid 

Rutin 

Phloridzin 

L-epicatechin 

84/56 (20 

replicate 

samples 

at 7 time 

points) 

899-1724 Transmittance CARS-

PLS 

Dependent test 

set 

n/s 0.956 

0.928 

0.911 

0.825 

0.881 

0.969 

9.66 

0.21 

4.22 

0.77 

6.85 

20.1  

mg/100g 

20 tea 

samples 

collected at 7 

time points 

during 

fermentation 

process 

(Zareef et al., 

2019) 

Cocoa 

bean 

Total phenols 

Catechin 

Epicatechin 

Epigallocatechin 

Theobromine 

74/- 

76/- 

75/- 

72/- 

75/- 

400-2498 Reflectance PLS None 

 

LOO? 0.71 

0.62 

0.04 

0.02 

0.77 

6.09 

0.65 

5.24 

0.09 

4.55 

mg/g 

 (Hernández-

Hernández et 

al., 2021) 

Cocoa 

bean 

Total polyphenols 72 800-2778 Diffuse 

reflectance 

PLS None LOO 0.84 0.93 

mg/g 

Samples from 

different 

storage and 

fermentation 

periods 

(Sunoj et al., 

2016) 

Cocoa 

bean husk 

Total phenols 

Catechin 

Epicatechin 

Epigallocatechin 

Theobromine 

77/- 

80/- 

79/- 

78/- 

78/- 

400-2498 Reflectance PLS None LOO? 0.81 

0.74 

0.06 

0.20 

0.83 

4.75 

0.55 

5.31 

0.10 

3.72 

mg/g 

 (Hernández-

Hernández et 

al., 2021) 
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Coffee 

bean 

Chlorogenic acid  

Total phenolics 

101/36 950–1650 Reflectance 

(hyperspectral 

imaging) 

MPLS Dependent test 

set. SEP = 15.6 

and 17.6% 

n/s 0.81 

0.58 

(cal) 

0.91 

4.63 

mg/g 

 

 (Nogales-

Bueno et al., 

2020) 

Ginger Zingerone 

6-gingerol 

8-gingerol 

10-gingerol 

6-shogaol 

58/22 1389-2500 Reflectance PLS Dependent test 

set 

LOO 0.981 

0.986 

0.988 

0.997 

0.998 

(cal) 

0.076 

0.072 

0.078 

0.077 

0.084 

mg/g 

 (Yan et al., 

2021) 

Beverages 

Cashew 

apple 

nectar 

Ascorbic acid 49/16 1000-1903, 

1971-2227 

Transflectance PLS Dependent test 

set (randomly 

selected samples) 

n/s 0.84 

(cal) 

4.8  

mg/100g 

(test set) 

Samples from 

2 Brazilian 

marketplaces 

(Caramês et 

al., 2017a) 

Coffee 

aqueous 

solution 

Chlorogenic acid 86 401-1871 Transmittance 

(1 mm path 

length) 

PLS None LOO 0.556 0.76 

mg/mL 

Key predictor 

wavelength 

was around 

1450 nm (C-H 

vibration; 2nd 

overtone) 

(Shan et al., 

2017) 

Grape 

juice 

Total phenolics 

Anthocyanins 

49/16 1000-2500 Transflectance PLS Dependent test 

set (randomly 

selected samples) 

Optimising 

no. of 

latent 

variables 

0.96 

0.84 

(cal) 

37 

4.44 mg/ 

100mL 

(test set) 

Slightly worse 

results for 

phenolic 

content 

compared to 

MIR 

(Caramês et 

al., 2017b) 

Guava 

nectar 

Ascorbic acid 41/13 1000-1899, 

1983-2227 

Transflectance PLS Dependent test 

set (randomly 

selected samples) 

n/s 

(LOO?) 

0.86 

(cal) 

7.44  

mg/100g 

(test set) 

Samples from 

2 Brazilian 

marketplaces 

(Caramês et 

al., 2017a) 

Soft drink 

(grape & 

passion-

fruit) 

Ascorbic acid ~47/20 1000-2500 Reflectance PLS Test set of 5 

samples created 

by diluting one 

sample to specific 

concentrations 

LOO 0.70 

0.76 

0.67 

0.56 

mg/g 

 (Santana et 

al., 2020) 
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Wine (red) Trans-resveratrol 

Quercetin 

 

Total phenols 

20 900-1700 Transmittance PLS None LOO 0.994 

0.990 

 

0.996 

0.113  

0.073 

mg/L 

0.144 

mM 

3 locations; 2 

seasons 

(Tzanova et 

al., 2020) 

Wine (red) Gallic acid 

Catechin 

B1 (flavonol dimer) 

Polymeric phenols 

Caftaric acid 

Caffeic acid 

Coutaric acid 

p-coumaric acid 

Quercetin-3-glucoside 

Quercetin 

Kaempherol 

Delphinidin-3-glucoside 

Cyanidin-3-glucoside 

Petunidin-3-glucoside 

Peonidin-3-glucoside 

Malvidin-3-glucoside 

Delphinidin-3-

acetylglucoside 

Cyanidin-3-

acetylglucoside 

Petunidin-3-

acetylglucoside 

Peonidin-3-

acetylglucoside 

Malvidin-3-

acetylglucoside 

Delphinidin-3-

cumarylglucoside 

Petunidin-3-

cumarylglucoside 

Peonidin-3-

cumarylglucoside 

~387/182 800-2500 Transmittance PLS using 

PRESS 

Dependent test 

set 

Segment 

validation 

0.86 

0.83 

0.76 

0.88 

0.86 

0.87 

0.84 

0.87 

0.88 

0.84 

0.85 

0.92 

0.86 

0.9 

0.85 

0.87 

0.88 

 

0.91 

 

0.92 

 

0.91 

 

0.85 

 

0.86 

 

0.85 

 

0.86 

 

3.01 

5.85 

4.94 

135 

8.8 

0.82 

2.63 

0.61 

10.3 

1.65 

0.15 

2.32 

0.05 

2.16 

1.73 

16.5 

0.65 

 

0.34 

 

0.89 

 

0.65 

 

7.15 

 

0.19 

 

0.57 

 

0.84 

 

Wines 

comprised 

four cultivars 

from 13 

vinifications 

over 2 

seasons. 

NIRS more 

accurate at 

predicting 

phenolic 

content than 

ATR-MIR or 

transmission 

FT-IR.  

(Aleixandre-

Tudo et al., 

2018) 
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Malvidin-3-

cumarylglucoside 

Polymeric pigments 

MCP tannins 

Anthocyanins 

0.84 

 

0.86 

0.92 

0.87 

4.27 

 

5.71 

204 

53.1 

mg/L 

Other foods 

Honey Phenolics 

Flavonoids 

Carotenoids 

Antioxidants (FRAP) 

105/45 1000-2500 Reflectance PLS Dependent test 

set (randomly 

selected samples) 

Segment 

validation 

0.884 

0.903 

0.922 

0.922 

14.5 

1.01 

0.035 

0.43 

mg/100g 

6 different 

floral varieties 

of honey 

(Tahir et al., 

2016) 

Propolis Flavones & flavonols 

Flavanones & 

dihydroflavonols 

Antioxidant capacity 

(ABTS) 

70/29 1100-2000 Reflectance 

(fibre-optic) on 

ground sample 

MPLS Dependent test 

set (randomly 

selected samples) 

Segment 

validation 

0.63 

0.68 

 

0.87 

(cal) 

29.4 

9.5 

 

112 

mg/g 

Samples 

sourced from 

Chile and 

Spain 

(Betances-

Salcedo et 

al., 2017) 

Abbreviations: RBF-NN = radial basis function neutral network; LOO = leave-one-out cross-validation; n/s = not specified; PLS = partial least squares; SVM = support vector 

machine; TAC = total antioxidant capacity 
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Table 2-3: Studies reporting the use of mid-infrared spectroscopy for the quantification of bioactive compounds in food products (2016-

2020).  

Food matrix Analyte(s) 

Sample 

size 

(cal/val) 

Wavenumber 

range (cm-1) 

Optical 

geometry/ 

presentation 

Statistical 

method 
Test set 

Cross 

validation 

R2 

(cv) 
RMSECV Notes Reference 

Fruit 

Kakadu plum 

(powder) 

Ascorbic acid 80/5 4000-400 ATR PLS Independent 

(commercially 

sourced 

samples) 

R2 = 0.65; 

RMSEP = 

2367 mg/ 

100g 

n/s 0.91 1811 

mg/100g 

 (Cozzolino et 

al., 2020) 

Vegetables 

Red 

cabbage 

(EtOH 

extract) 

Total anthocyanins 

Monomeric 

anthocyanins 

Total polyphenols 

1 (with 33 

serial 

dilutions) 

4000-650 ATR PLS 9 dilutions 

prepared from 

new cabbage 

extract 

Segment 

validation 

0.98 

0.98 

 

0.96 

18.1 

21.3 

 

44.4 

mg/L 

 (de Oliveira et 

al., 2018) 

Grains/pulses 

Buckwheat 

(leaves and 

flowers) 

Rutin 

Quercetin 

Quercitrin 

Sum of flavonoids 

Not 

stated 

(total = 

108) 

4000-500 ATR (whole 

and ground 

dried 

samples) 

PLS Dependent 

test set 

LOO 0.99 

0.99 

0.95 

0.98 

3.63 

0.06 

2.48 

4.80 

mg/g 

Used 7 different 

species of 

buckwheat 

(Kokalj Ladan 

et al., 2017) 

Common 

bean (flour) 

 

Total phenols 

Ortho-diphenols 

Flavonoids 

Gallic acid 

Catechin 

Quercetin-3-glucoside 

42/- 4000-400 ATR (flour) PLS Spectra 

randomly 

selected from 

dataset (1/3 of 

total spectra) 

LOO  

0.86 

0.31 

0.86 

0.94 

0.89 

0.43 

RPDs:  

4.36 

1.54 

4.30 

10.12 

9.47 

1.91 

 (Carbas et al., 

2020) 
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Quercetin-3-6’’-

manolyl-glucoside 

Kaempferol-3-

glucoside 

Myricetin 

Kaempferol-3-6’’-

manolyl-glucoside 

Kaempferol 

0.73 

 

0.38 

0.35 

0.39 

 

0.84 

4.25 

 

1.23 

1.81 

1.79 

 

7.03 

Soybean Total anthocyanins 

Cyanidin-3-glucoside 

Delphinidin-3-

glucoside 

70/- 4000-650 ATR (whole 

seeds) 

PLS Spectra of 

samples 

included in 

calibration set 

n/s 0.86 

0.88 

0.87 

0.15 

0.13 

0.03 

mg/g 

70 different 

varieties 

(Amanah et al., 

2020) 

Oils 

Olive oil Fatty acid methyl 

esters 

Fatty acid ethyl esters 

Fatty acid alkyl esters 

 

Diacylglycerols:  

C34 1,2 

C34 1,3 

C36 1,2 

C36 1,3 

 

Pheophytin a 

Chlorophyll a 

Pheophytin b 

Total xanthophyll 

Lutein 

Chlorophyll b 

59/30 4000-650 ATR PLS Dependent 

test set 

n/s 0.87 

 

0.85 

0.87 

 

0.62 

0.83 

0.79 

0.77 

 

0.72 

0.75 

0.71 

0.61 

0.75 

0.72 

41.63 

 

27.43 

60.10 

 

1.07 

1.26 

4.29 

4.02 

 

2.42 

0.32 

0.10 

0.41 

0.71 

0.21 

mg/kg 

Samples from 2 

seasons. Quite 

poor test set 

validation 

results for 

colour pigments. 

Improved 

results from 

fusion of UV-Vis 

and IR spectra 

(Uncu et al., 

2019) 

Olive oil Tyrosol 

Tyrosol secoiridoids 

Hydroxytyrosol 

Hydroxytyrosol 

secoiridoids 

Total phenolics 

75/18 4000-400 ATR PLS None LOO 0.32 

0.30 

0.17 

0.19 

0.44 

4.98 

105.7 

9.96 

106.1 

162.1 

mg/kg 

 (Mora-Ruiz et 

al., 2017) 
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Olive oil Total phenolics 70/30 4000-600 ATR PLS Dependent 

test set 

n/s 0.998 0.072 

g/L 

 (Hirri et al., 

2016) 

Beverages 

Cachaça Total phenolics 32/16 4000-650 ATR (liquid 

sample) 

PLS Ranked 

subset of 

samples (60% 

cal; 20% val; 

20% test set) 

n/s 0.820 248 mg/L 

Test set: 

R2 = 0.690; 

RMSE = 

318 mg/L 

Much poorer 

results than 

fluorescence 

spectroscopy 

(Carvalho et 

al., 2020) 

Grape juice Total phenolics 

Anthocyanins 

49/16 4000-400 ATR PLS Dependent 

test set 

(randomly 

selected 

samples) 

Optimising 

no. of 

latent 

variables 

0.90 

0.81 

(cal) 

21 

4.22 

mg/100mL 

(test set) 

Performed 

better than NIR 

for phenolic 

content 

(Caramês et 

al., 2017b) 

Shiraz wine Total anthocyanins 

Total phenolics 

70/30 1700-950 ATR (liquid 

sample) 

PLS Dependent 

test set 

LOO 0.61 

0.60 

32 mg/L 

5.7 au 

Wines from 24 

different 

Australian 

locations 

(Ristic et al., 

2016) 

Wine (red) Gallic acid 

Catechin 

B1 

Polymeric phenols 

Caftaric acid 

Caffeic acid 

Coutaric acid 

p-coumaric acid 

Quercetin-3-glucoside 

Quercetin 

Kaempherol 

Delphinidin-3-

glucoside 

Cyanidin-3-glucoside 

Petunidin-3-glucoside 

Peonidin-3-glucoside 

Malvidin-3-glucoside 

Delphinidin-3-

acetylglucoside 

~387/182 4000-600 ATR (liquid 

sample) 

PLS using 

PRESS 

Dependent 

test set 

Segment 

validation 

0.83 

0.78 

0.8 

0.85 

0.85 

0.86 

0.85 

0.81 

0.85 

0.69 

0.82 

0.88 

 

0.76 

0.86 

0.84 

0.85 

0.86 

 

3.42 

7.26 

4.99 

128 

9.76 

1.07 

3.14 

0.63 

13 

2.56 

0.34 

2.96 

 

0.06 

2.57 

1.47 

20.7 

1.44 

 

Wines 

comprised four 

cultivars from 13 

vinifications 

over 2 seasons. 

Slightly less 

accurate at 

phenolic content 

compared to 

FT-NIR 

(Aleixandre-

Tudo et al., 

2018) 
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Cyanidin-3-

acetylglucoside 

Petunidin-3-

acetylglucoside 

Peonidin-3-

acetylglucoside 

Malvidin-3-

acetylglucoside 

Delphinidin-3-

cumarylglucoside 

Petunidin-3-

cumarylglucoside 

Peonidin-3-

cumarylglucoside 

Malvidin-3-

cumarylglucoside 

Polymeric pigments 

MCP tannins 

Anthocyanins 

0.85 

 

0.88 

 

0.89 

 

0.89 

 

0.85 

 

0.85 

 

0.85 

 

0.85 

 

0.85 

0.89 

0.86 

0.48 

 

1.19 

 

1.03 

 

6.49 

 

0.41 

 

0.79 

 

0.91 

 

3.98 

 

5.5 

261 

47.2 

mg/L 

Wine (red) Gallic acid 

Catechin 

B1 

Polymeric phenols 

Caftaric acid 

Caffeic acid 

Coutaric acid 

p-coumaric acid 

Quercetin-3-glucoside 

Quercetin 

Kaempherol 

Delphinidin-3-

glucoside 

Cyanidin-3-glucoside 

Petunidin-3-glucoside 

Peonidin-3-glucoside 

Malvidin-3-glucoside 

~387/182 4000-600 Transmission PLS using 

PRESS 

Dependent 

test set 

Segment 

validation 

0.85 

0.85 

0.84 

0.91 

0.87 

0.86 

0.84 

0.83 

0.82 

0.84 

0.87 

0.84 

 

0.82 

0.88 

0.85 

0.86 

4.57 

5.39 

3.91 

132 

9.87 

1.02 

2.8 

0.625 

13 

1.59 

0.328 

4.15 

 

0.0645 

4.1 

2.1 

24.2 

Wines 

comprised four 

cultivars from 13 

vinifications 

over two 

seasons. 

Slightly less 

accurate at 

phenolic content 

compared to 

FT-NIR 

(Aleixandre-

Tudo et al., 

2018) 
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Delphinidin-3-

acetylglucoside 

Cyanidin-3-

acetylglucoside 

Petunidin-3-

acetylglucoside 

Peonidin-3-

acetylglucoside 

Malvidin-3-

acetylglucoside 

Delphinidin-3-

cumarylglucoside 

Petunidin-3-

cumarylglucoside 

Peonidin-3-

cumarylglucoside 

Malvidin-3-

cumarylglucoside 

Polymeric pigments 

MCP tannins 

Anthocyanins 

0.84 

 

0.86 

 

0.88 

 

0.9 

 

0.84 

 

0.88 

 

0.85 

 

0.87 

 

0.85 

 

0.82 

0.92 

0.89 

1.28 

 

0.513 

 

1.24 

 

1.12 

 

8.85 

 

0.463 

 

0.831 

 

1.01 

 

4.7 

 

7.49 

224 

56.5 

mg/L 

Wine (red, 

rose and 

white) 

Total phenolics 

Total anthocyanins 

35/- 4000-650 ATR PLS Cross-

validation only 

LOO 0.91 

0.86 

269.2 

1.79 

mg/L 

7 wines, each at 

5 different 

processing 

points 

(Canal & Ozen, 

2017) 

Wine (red 

and white) 

Total polyphenols 

Malvidin-3-O-

glucoside 

Peonidin-3-O-

glucoside 

Petunidin-3-O-

glucoside 

Delphinidin-3-O-

glucoside 

Delphinidin-3-O-(6-

acetyl)-glucoside 

51/21 4000-650 ATR PLS Dependent 

test set 

LOO 0.75 

0.53 

 

0.56 

 

0.67 

 

0.71 

 

0.27 

 

249.1 

6.87 

 

0.38 

 

1.1 

 

0.73 

 

0.15 

 

Samples from 

various 

locations across 

2 seasons 

(Sen et al., 

2016) 
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Petunidin-3-O-(6-

acetyl)-glucoside 

Peonidin-3-O-(6-

acetyl)-glucoside 

Malvidin-3-O-(6-

acetyl)-glucoside 

Delphinidin-3-O-(6-p-

coumaroyl)-glucoside 

Malvidin-3-O-(6-p-

coumaroyl)-glucoside 

o-coumaric acid 

0.29 

 

0.31 

 

0.41 

 

0.45 

 

0.69 

 

0.63 

0.24 

 

0.22 

 

2.59 

 

0.12 

 

0.65 

 

0.33 

mg/L 

Other foods 

Chocolate (+)-catechin 

(+)-epicatechin 

Total phenolics 

TAC (DPPH) 

TAC (ORAC) 

18/7 4000-550 ATR PLS Semi-

independent 

(7 randomly 

selected 

commercial 

chocolate 

brands) 

R2 = 0.86, 

0.72, 0.88, 

0.89, 0.90; 

RMSEP = 

0.10, 0.57, 

5.08, 13.07, 

37.92 mg/g 

9-fold 

cross 

validation 

0.94 

0.87 

0.93 

0.92 

0.89 

0.09 

0.58 

4.21 

1.05 

11.38 

mg/g 

18 different 

types of 

chocolate 

containing 35-

100% cacao 

(Hu et al., 

2016) 

Honey Catechin 

Syringic acid 

Vanillic acid 

Chlorogenic acid 

 

TAC (DPPH) 

64/36 3000-2800, 

1800-700 

ATR PLS Dependent 

test set 

(ranked 

subset of 

samples) 

LOO 0.999 

0.992 

0.946 

0.994 

 

0.955 

0.40 

1.08 

0.45 

0.43 

µg/g 

1.63 

mg/100g 

Models based 

on Raman 

spectra were 

slightly better 

than FTIR 

(Tahir et al., 

2017) 

Abbreviations: LOO = leave-one-out cross-validation; n/s = not specified; SFA = saturated fatty acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty 

acids; TAC = total antioxidant capacity 
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2.5.1 General trends 

2.5.1.1 Publications by year 

Between 2016 and 2020, an average of 10 studies per year were published on the use of 

infrared spectroscopy for the measurement of bioactive compounds in food products. The 

number of studies published per year over this period remained relatively constant, although 

only 3 published studies were found for 2019 (Table 2-4).  

Table 2-4: Number of published papers reporting the use of infrared spectroscopy for 

the quantification of bioactive compounds in food products between 2016-2020. Note 

that duplicated references from Tables 2-2 and 2-3 (i.e., studies using both NIR and MIR 

spectroscopy on the same matrix) were only counted once.  

Year Number of 

published studies 

2016 13 

2017 12 

2018 10 

2019 3 

2020 11 

 

2.5.1.2 Matrix type 

Interrogation of the included studies by matrix type revealed that NIR spectroscopy was most 

commonly used for the analysis of bioactive compounds in fruit matrices, followed by aromatic 

plants, grains/pulses and beverages (Table 2-5). In contrast, MIR spectroscopy was most 

often reported for the analysis of beverages, likely due to the ease of presentation for this 

sample type.  
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Table 2-5: Number of studies included in this review, broken down by matrix type. If the 

same study used both NIR and MIR spectroscopy, it was counted separately in each 

column.  

Matrix type 
Number of published studies 

NIR MIR 

Fruit 18 1 

Vegetables 3 1 

Grains/pulses 6 3 

Oils 4 3 

Aromatic plants 7 0 

Beverages 6 7 

Others 2 2 

Total 46 18 

 

2.5.1.3 Optical geometry 

The majority of publications (58%) using NIR spectroscopy for the prediction of bioactive 

compounds used reflectance or diffuse reflectance geometry. A further 16% of studies used 

hyperspectral imaging in reflectance mode. Only 20% of studies used transmittance and 9% 

used transflectance, the majority of which were performed on beverage or oil samples. 

However, it should be cautioned that the vast majority of studies were not validated through 

independent test set validation and hence have not shown their robustness in “real-world” use; 

consequently, the optical geometry types used in the academic studies reported here may not 

reflect the optical geometry of instruments used commercially.  

All of the MIR spectroscopy studies except one (Aleixandre-Tudo et al., 2018) used an 

Attenuated Total Reflection (ATR) sampling platform, which requires samples to be placed in 

close contact with the ATR crystal.  

2.5.1.4 Sample size and test sets 

The number of calibration samples ranged from 10 to 387 (mean = 83 ± 72 samples), while 

the size of the validation set ranged from 5 to 182 (mean = 37 ± 32 samples). The majority of 

studies used a dependent test set (65%) or did not use any test set (24%), while only 9% of 

studies used an independent test set for validation of the developed model.  

Within the four NIRS studies utilising an independent test set, one used transmittance (Tilahun 

et al., 2018), while the others used reflectance (Cunha Júnior et al., 2016; Ncama et al., 2018) 

or diffuse reflectance geometry (Cozzolino et al., 2020). Cunha Júnior et al. (2016) sourced 
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their test set from the following season to the calibration set, while Ncama et al. (2018) used 

test set samples from a geographically distinct farm (~400 km away) and Cozzolino et al. 

(2020) used commercially sourced samples for validation purposes. The study by Tilahun et 

al. (2018) could arguably be classified as using a semi-independent test set, as the authors 

used samples from a different harvest time point within the same season and from the same 

location. Interestingly, all four of these NIRS studies were performed on fruit rather than other 

food matrices.  

In most of these studies, the test set validation statistics were moderately poorer compared to 

the cross-validation statistics. For example, Cunha Júnior et al. (2016) found an R2
CV of 0.89-

0.91 and RMSECV of 2.5-2.9 g/kg for the prediction of total anthocyanin content in açaí and 

juçara fruit, compared to an R2
test of 0.74-0.88 and RMSEP of 5.1-6.8 g/kg. Similarly, the 

RMSEP for the prediction of lycopene content in tomato fruit was moderately higher at 1.79 

mg/kg compared to the RMSECV of 1.56 mg/kg (Tilahun et al., 2018). However, the 

performance of the test set from Cozzolino et al. (2020) was much worse, with an R2 of 0.73 

and RMSEP of 4733 mg/100 g (compared to an R2 of 0.93 and RMSECV of 1839 mg/100 g 

for cross-validation).  

Using MIRS for the analysis of chocolate samples, Hu et al. (2016) found that the test set 

statistics for the prediction of (+)-catechin, (+)-epicatechin and total phenolics in chocolate 

using MIRS were quite comparable to the cross-validation statistics. However, the RMSEP for 

prediction of total antioxidant capacity (TAC) in the same samples was 3-12 times higher than 

the RMSECV, suggesting that MIRS was not suitable for the accurate estimation of TAC in 

this matrix. These few examples illustrate the level of over-optimistic results which are likely 

to be reported when using no test set or a dependent test set for model validation.  

2.5.1.5 Chemometric techniques 

Virtually all of the publications used partial least squares regression (PLSR) or some derivative 

of this regression technique for model development. Tschannerl et al. (2019) used Support 

Vector Regression (SVR) for the prediction of total phenolic content in barley malt samples 

using hyperspectral imaging. However, only 10 samples were investigated in that study, with 

no independent test set used. Zhang et al. (2017) also used SVR for the prediction of phenolic 

content in wine grape skins and seeds from their hyperspectral images, demonstrating that for 

most analytes, the use of SVR gave better results than PLSR or principal component 

regression (PCR). Xiao et al. (2018) used a Least Squares Support Vector Machine (LS-SVM) 

algorithm for the prediction of total phenolics in white and red grapes, again with better results 

found compared to the standard PLSR algorithm. Finally, Ding et al. (2016) compared the use 

of Radial Basis Function Neural Networks (RBF-NN) and PLSR in dehydrated tomato samples, 
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finding that RBF-NN performed better for the lycopene, total phenolic content and total 

antioxidant capacity measured by the DPPH and ABTS assays, while PLSR performed better 

for the prediction of total antioxidant capacity via the FRAP method. No studies were found 

using deep learning or ANN algorithms, although this is a matter of increasing interest for other 

areas of IR spectroscopy (Anderson et al., 2021; Beć et al., 2021).  

2.5.2 Trends by analyte class 

Another major aspect of interest to researchers is the types of bioactive analyte(s) that have 

been measured using IR spectroscopy. Consequently, Table 2-6 presents a break-down of 

the studies included in this review by the compound class of the reported analytes. Additionally, 

the major classes are discussed in the following sections.  

Table 2-6: Number of studies included in this review, broken down by analyte class. 

Note that if the same study investigated multiple matrices or investigated more than 

one analyte class in the same matrix, it was counted separately.  

Analyte class Number of published 

studies 

Total polyphenol content^ 34 

Specific polyphenols^ 21 

Total anthocyanin content 13 

Specific anthocyanins 4 

Total carotenoid content 2 

Specific carotenoids (β-

carotene, lycopene) 

6 

Ascorbic acid (vitamin C) 6 

Alkaloids (theobromine, 

caffeine, piperine) 

4 

Fatty acid esters & other 

bioactive hydrocarbons 

2 

Chlorophylls 1 

Tocopherols 1 

Total 94 

^ polyphenols includes phenolic acids and flavonoid derivatives 

2.5.2.1 Polyphenols 

The greatest number of studies examined for the purpose of this current review were focused 

on predicting the total polyphenol content, or the content of specific polyphenol compounds 

present in the matrix (Table 2-6), with over half of all investigations focused on these analytes. 
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There is an ongoing interest in biochemical characterisation and quantification of polyphenols 

across a wide range of food products, given that compounds from this class have been 

associated with a wide range of potential health-benefiting effects (Alves-Santos et al., 2020; 

Cassidy et al., 2020; Johnson et al., 2021a; Koch, 2019; Rasouli et al., 2017), particularly in 

improving cardiovascular health (Costa et al., 2017; Ed Nignpense et al., 2020; González 

Arbeláez et al., 2018; Rasines-Perea & Teissedre, 2017; Sanches-Silva et al., 2020). 

Consequently, the rapid prediction of total polyphenol content using infrared spectroscopy 

could have potential to greatly benefit the effectiveness and robustness of the quality 

assurance process for functional food products (Johnson et al., 2020f; McGoverin et al., 2010).  

Ferrer-Gallego et al. (2020) provided a recent review of the use of vibrational spectroscopy in 

the prediction of the phenolic composition of grapes and wines, although other food matrices 

were not considered in that review. The authors considered that this technique showed 

considerable promise for this purpose, although noted that future studies on grapes and wine 

should incorporate a wider range of environmental and genotypic variation.  

Some authors have reported difficulty in creating robust models for the prediction of total 

polyphenols using infrared spectroscopy. For example, Martín-Tornero et al. (2020) found that 

NIRS and MIRS could only be used as a screening method for the total polyphenol content in 

grape leaves, due to the high prediction errors associated with the models created. These 

authors used a dependent test set (leaves collected from different locations within the same 

vineyards). In blackberry fruit, the best model for total phenolics reported by Toledo-Martín et 

al. (2018) had a R2
cv of 0.69 and RMSECV of 169 mg/100 g. Again, the cross-validation 

samples used in this study were randomly selected from the same population as the calibration 

samples; consequently, the model performance on an independent population would be lower 

again. Similar results in terms of model accuracy were found by Rodríguez-Pulido et al. (2017) 

in raspberries, Trapani et al. (2017) in olive paste and Hernández-Hernández et al. (2021) in 

cocoa bean, while quite poor cross-validation results were found by Nogales-Bueno et al. 

(2020) for the prediction of total phenolic content (TPC) in coffee bean using NIR hyperspectral 

imaging. As the mean TPC of the samples was 3.6% w/w, the poor performance appears more 

attributable to the reproducibility of sample presentation or the wavelength selection, rather 

than the concentration of the analyte.  

In contrast, Tzanova et al. (2020) and Jara-Palacios et al. (2016) reported quite good findings 

for the prediction of total polyphenol content in grapes and grape pomace, respectively (R2
cv 

= 0.87-0.97; RMSECV = 9.6-21 mg/100 g), indicating that the instrument choice, geometry 

and data processing techniques may have an influence in addition to the matrix type. However, 
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it is important to note that none of the aforementioned studies on the prediction of total phenolic 

content used an independent test set; therefore, the results should be taken with caution.  

There do not appear to have been any studies that focused on the IR quantitation of specific 

phenolic compounds or total phenolic content in model systems; hence it is difficult to know 

what limit of detection and level of error to expect when using IR spectroscopy for this purpose. 

Although Abbas et al. (2017) used MIRS for the qualitative identification of 36 phenolic 

compounds (presented in powder form), they did not attempt the quantitation of these 

compounds in a model matrix.  

2.5.2.2 Anthocyanins 

The second-most common analyte type that has been investigated using infrared 

spectroscopy was anthocyanins. Most of these studies (13 out of 17) looked at the total 

anthocyanin content, while only 4 studies attempted the prediction of specific anthocyanins. 

As a class of flavonoids, anthocyanins are less abundant than total polyphenols, so would be 

expected to be a more challenging target for infrared spectroscopy. Anthocyanins are brightly 

coloured and absorb light at around 520 nm; hence it may be thought that they could be 

detected using the visible wavelengths of Vis-NIR instruments. However, surprisingly, all 

except one of the studies using NIRS for the measurement of anthocyanins did not include 

the visible light region in the optimised models, indicating that the infrared region actually 

contained most of the functional information pertaining to the anthocyanin content. Given the 

low concentration of anthocyanins, their prediction through NIRS is likely to rely upon 

secondary correlations with other matrix constituents.  

Most studies using NIRS reported reasonably high accuracies for anthocyanin prediction in 

fresh sample matrices (R2
cv = 0.72-0.98; RMSECV = 9-13 mg/100 g), while MIRS performed 

similarly well for the estimation of anthocyanin content in soybean, grape juice and red wine. 

Rodríguez-Pulido et al. (2017) found a lower model linearity using NIRS in raspberry fruit (R2
cv 

= 0.63), although the RMSECV obtained was roughly comparable at 12 mg/100 g.  

Studies attempting the prediction of individual anthocyanins in red grapes (Diago et al., 2016) 

and wine (Aleixandre-Tudo et al., 2018; Sen et al., 2016) reported that the concentrations of 

most of these compounds could be predicted with only slightly lower accuracy compared to 

the total anthocyanin content. Given the very low concentrations of many of these compounds, 

it is likely that the created models were indirectly measuring their concentration via their 

secondary correlations with more abundant compounds which are more readily detected using 

infrared spectroscopy (possibly the predominant individual anthocyanin compounds present 

in the sample). Somewhat confusingly, many of the studies reported the anthocyanin content 

in units of mg/L of the sample extracts, rather than being correctly reported in mg/g or mg/100 
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g of the intact fruit from which the infrared spectra were obtained. Hence the results of these 

models should be interpreted with some degree of prudence. Future researchers in this area 

should be aware of and avoid this common pitfall.  

2.5.2.3 Carotenoids 

In contrast to the trends observed for anthocyanins, studies investigating carotenoids using 

infrared spectroscopy mainly attempted the prediction of specific carotenoid compounds (β-

carotene, lycopene) rather than predicting the total carotenoid content. In addition, all of the 

studies attempting carotenoid prediction were performed using NIRS.  

Several studies in intact fresh tomato fruit reported similar results for the prediction of lycopene 

(R2
cv = 0.85-0.86; RMSECV = 18-103 mg/100 g FW) and β-carotene (R2

cv = 0.71-0.77; 

RMSECV = 10-114 mg/100 g FW) (Alenazi et al., 2020; Tilahun et al., 2018). Similar results 

were found for lycopene in dried tomato powder (Ding et al., 2016).  

Toledo-Martín et al. (2018) also found acceptable results for the total carotenoid content in 

blackberry (R2
cv = 0.76, RMSECV = 0.01 mg/100 g), with the carotenoid model outperforming 

that developed for total phenolic content in the same crop. Higher model accuracies (R2
cv > 

0.9; RMSECV <0.01 mg/100 g) were reported for β-carotene content in carrot (Rady et al., 

2018) and marsh grapefruit (Ncama et al., 2018), as well as for total carotenoids in honey 

(Tahir et al., 2016).  

2.5.2.4 Ascorbic acid 

Studies using infrared spectroscopy (NIRS or MIRS) for the estimation of ascorbic acid content 

were performed in Kakadu plum powder (Cozzolino et al., 2020), carrot (Rady et al., 2018), 

frozen guava pulp (Alamar et al., 2016), cashew apple and guava nectar (Caramês et al., 

2017a), and soft drinks (Santana et al., 2020). Most models showed reasonable accuracy 

(R2
cv = 0.7-0.98; RMSECV = 4-7 mg/100 g). Due to the exceptionally high ascorbic acid 

content in Kakadu plum (mean content of 14,323 mg/100 g), the RMSECV values of Cozzolino 

et al. (2020) were much higher at 1811-1839 mg/100 g. The model linearity was quite high 

(R2
cv = 0.91-0.93), with an RPD of 4.0-4.1, although the independent test set validation 

(comprising commercially purchases samples of Kakadu plum powder) gave a considerably 

poorer RMSEP (4733 mg/100 g). All of the other aforementioned studies did not validate their 

models using independent test sets, but only used dependent test sets (comprising randomly 

selected samples from the full dataset).  

Cozzolino et al. (2020) was also the only study to compare the performance of NIRS and MIRS 

for predicting ascorbic acid content, finding slightly improved accuracy of NIRS compared to 

MIRS in dried Kakadu plum powder.  
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2.5.2.5 Other analytes 

Other bioactive compounds assessed using infrared spectroscopy included chlorophylls, fatty 

acid esters, squalene and tocopherols (compounds related to vitamin E) in olive oil, piperine 

in black pepper, caffeine in black tea, and theobromine in cocoa bean. In general, good results 

were generally found for caffeine, and most tocopherols and fatty acids, while reasonable 

results were found for theobromine, squalene, chlorophylls and piperine. It should be noted 

that most of these analytes were only investigated in a single study. Nevertheless, these 

results support the use of infrared spectroscopy as a highly adaptable tool for the rapid 

estimation of a substantially wide range of bioactive compounds in food-based matrices.  

2.5.3 Future directions 

As found throughout this review, infrared spectroscopy shows considerable potential for the 

quantification and relative prediction of the levels of bioactive components in food products. 

Although most research to date has been proof-of-concept work and/or conducted under 

controlled laboratory conditions, interest and applications in this field are likely to continue to 

grow. A brief discussion on several particular aspects worth noting is provided here.  

Hyperspectral imaging is a rapidly growing area of research in the food science sector, 

particularly for the determination of food quality and safety (Caporaso et al., 2021; Khan et al., 

2020; Lu et al., 2020; Wang et al., 2021a), but also for authentication purposes (Feng et al., 

2021; Temiz & Ulaş, 2021). This technique collects near-infrared spectra from each pixel in a 

photograph (creating a ‘hypercube’ dataset), allowing for analysis of the spatial variation of 

the analyte, as well as its mean concentration. Consequently, hyperspectral imaging could 

potentially be used for the quantification of bioactive compounds (Kiani et al., 2018). Indeed, 

several of the studies reviewed here applied hyperspectral imaging for the estimation of 

anthocyanins and phenolic acids in grapes and grape byproducts (Diago et al., 2016; Jara-

Palacios et al., 2016; Martínez-Sandoval et al., 2016; Zhang et al., 2017), and for the 

estimation of phenolics in barley malt (Tschannerl et al., 2019) and coffee beans (Nogales-

Bueno et al., 2020). However, there have been limited applications of hyperspectral imaging 

systems in industrial applications to date, due to its associated challenges such as obtaining 

reproducible sample presentation, minimising the effects of ambient light, and the complexity 

of data analysis (Khan et al., 2020). Furthermore, hyperspectral imaging can only be used with 

a reflectance geometry. Finally, the cost of these instruments remains quite high compared to 

regular NIR instruments; thus hyperspectral imaging tends to only be used in applications 

which have a need for spatial information.  

The use of infrared spectroscopy as a real-time, online (or “inline”) process analytical 

technology is another principal area of interest. NIRS is commonly used in manufacturing 
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environments and processing plants for the online analysis of a range of food products, 

principally for the determination of proximate quality parameters such as moisture content, 

soluble solids and protein (Agbonkonkon et al., 2021; Torres et al., 2020). This real-time 

information can then be fed back into the manufacturing system, allowing various processing 

parameters to be adjusted accordingly in view of maintaining the optimal quality of the product. 

Online NIRS could potentially be extended to the quality assurance of bioactive compounds 

in functional food production systems, in addition to existing analytes already being monitored.  

Finally, it is worth noting the importance of confirming the accuracy and reproducibility of 

infrared spectroscopy techniques using sufficiently large sample sizes and test sets which are 

independent to the calibration sets. Given that only a small fraction of the studies reviewed 

here used a fully independent test set for model validation purposes, it is likely that the reported 

accuracy is over-optimistic in many instances and not representative of the true accuracy 

which could be expected if applying the model for routine quality assurance purposes.  

2.6 Summary 

The technique of infrared spectroscopy has enjoyed considerable success in the food analysis 

industry over the past few decades. In recent years, an increasing number of studies are 

exploring the use of this technology for the analysis of bioactive compounds in food products, 

such as polyphenols, anthocyanins or carotenoids. While much reported work is still in the 

proof-of-concept or method development stage, infrared spectroscopy appears to show 

promise for the relative assessment – if not absolute quantification – of these bioactive 

analytes.  
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Chapter 3. Faba bean 

This chapter uses information from three previously published papers:  

Johnson, J.B., Collins, T., Skylas, D., Quail, K., Blanchard, C. and Naiker, M., 2020. Profiling 

the varietal antioxidative contents and macrochemical composition in Australian faba beans 

(Vicia faba L.). Legume Science, 2(2), p.e28. DOI: 10.1002/leg3.28 

Johnson, J.B., Walsh, K. and Naiker, M., 2020. Application of infrared spectroscopy for the 

prediction of nutritional content and quality assessment of faba bean (Vicia faba L.). Legume 

Science, 2(3), p.e40. DOI: 10.1002/leg3.40 

Johnson, J.B., Skylas, D.J., Mani, J.S., Xiang, J., Walsh, K.B. and Naiker, M., 2021. Phenolic 

Profiles of Ten Australian Faba Bean Varieties. Molecules, 26(15), p.4642. DOI: 

10.3390/molecules26154642 

 

3.1 Introduction 

Following on from the promising literature results discussed in Chapter 2, the first grain crop 

chosen for investigation was faba bean. This crop is well-known for its high levels of phenolic 

compounds and health-benefiting properties. Furthermore, Australia is the largest exporter of 

faba bean worldwide, making it of considerable economic significance. With increasing 

interest in the health benefits of this crop, there is potential for Australian growers/wholesalers 

to distinguish the high quality of Australian faba bean through marketing it with an emphasis 

on the levels of bioactive compounds present. However, this would necessitate (1) background 

information on the typical levels of phenolics and antioxidants found in Australian-grown faba 

bean, and (2) cost-effective methods of assessing the levels of these compounds in this crop.  

This work aimed to provide some of this missing information through the analysis of a large 

number of faba bean samples (n=100) grown in controlled field trials. The samples 

investigated were comprised of ten different commercial faba bean varieties, grown in Pulse 

Breeding Australia (PBA) field trials across two growing sites (Charlick and Freeling, South 

Australia) and two seasons (2016 and 2017). This ensured that a wide range of genetic 

material and environmental variation was sampled.  

This work had three major aspects:  

• Firstly, the general phytochemical composition of the faba bean samples were 

assessed using benchtop spectrophotometric methods. These methods were used to 

measure the total phenolic content, total antioxidant capacity and total monomeric 
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anthocyanin content of the samples. This was conducted on all samples from 2016 

and 2017 (n=100).  

• To further investigate selected phenolic compounds present in the faba bean crop, 

high-performance liquid chromatography coupled with diode array detection (HPLC-

DAD) was used to identify and quantify 10 phenolic compounds present. Due to the 

additional time-consuming sample concentration required, only the 60 samples from 

the 2017 season were analysed by HPLC-DAD.  

• Finally, NIR and MIR spectra were collected from all faba bean flour samples (n=100) 

and analysed. This included qualitative analysis (identification of variety/growing 

site/season) and quantitative analysis (prediction of bioactive compound contents 

using PLSR models).  

3.2 Background 

Increased consumption of pulses world-wide is driven in part by growing consumer demand 

for new foods with enhanced nutrition and health benefits. Pulses such as faba bean (Vicia 

faba L.) have significant potential in the development of value-added foods and ingredients 

(López‐Barrios et al., 2014; Vioque et al., 2012). Globally, faba bean is reported to be the third 

most important legume crop, with over 5.4 million tonnes harvested annually (Rahate et al., 

2021).  

Domestically, faba bean is grown in South Australia, Victoria, Western Australia, New South 

Wales and southern Queensland (Siddique et al., 2000). With annual production of around 

300,000 tonnes, faba bean comprises 10-15% of the total pulse production in Australia 

(AEGIC, 2017). Australia is the third-largest producer worldwide and the largest exporter, 

responsible for one-third of  international trade for this crop (AEGIC, 2017). Primary importers 

include the Middle East, particularly Egypt, and South East Asian countries (AEGIC, 2017).  

Recent years have seen increasing interest in faba bean due to its nutritional content (Rahate 

et al., 2021; Sharan et al., 2021) and health-benefiting properties (Turco et al., 2016). In 

addition to containing high levels of protein and nearly all essential minerals (AEGIC, 2017), 

the reported health benefits of this crop include improving cardiovascular health (Siah et al., 

2012), inhibiting xanthine oxidase activity (Spanou et al., 2012) and providing anti-obesity 

effects (Jakubczyk et al., 2019; Siah et al., 2012), anti-cancer activity (Siah et al., 2012) and 

anti-inflammatory activity (Boudjou et al., 2013). These beneficial biological activities are 

largely linked to the high levels of antioxidant and phenolic compounds found in faba bean 

(Boudjou et al., 2013; Siah et al., 2012; Turco et al., 2016). This has led to an interest in using 

faba bean or its isolates in functional food applications (Sharan et al., 2021).  
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However, it is important to note that genotypic variations can influence the phenolic and 

flavonoid biosynthetic pathways (Zanotto et al., 2020), resulting in significant variation in the 

phenolic contents of different grain/pulse varieties (Xiang et al., 2019c). Consequently, there 

has been recent interest in identifying faba bean varieties with high levels of phenolic content. 

For example, Valente et al. (2018) and Valente et al. (2019) profiled the phenolic content and 

antioxidant capacity of seven European faba bean varieties, finding that the levels of total and 

individual phenolic acids and flavonoids differed significantly between varieties. Similarly, 

Baginsky et al. (2013) found clear differences in the phenolic composition of 10 faba bean 

varieties grown in Chile, although it should be noted that this study was performed on 

immature seed material. Another earlier study highlighted the range in total phenolic contents 

and antioxidant activity among 13 Tunisian faba bean cultivars (Chaieb et al., 2011). However, 

despite Australia’s international importance as a faba bean producer, there are few 

comparative studies reporting the phenolic contents of commercial faba bean varieties grown 

in this country. This is of particular significance as Australian pulse breeders have focused on 

selecting varieties for disease resistance and elevated yield (Siddique et al., 2000), without 

considering the impact these selections could have upon the phytochemical composition of 

the new varieties (Wrigley et al., 2019).  

Nasar-Abbas et al. (2009) reported on the phenolic compounds found in one Australian faba 

bean variety, while Siah et al. (2014a) and Siah et al. (2012) investigated two and three 

varieties, respectively. In the largest study to date on the phytochemical composition of 

Australian faba bean, Siah et al. (2014b) examined the phenolic content and antioxidant 

activity in five Australian faba bean varieties.  

In terms of non-invasive assessment, there have been a number of studies that have 

previously applied NIRS for the quality analysis of the faba bean crop (Johnson et al., 2020e), 

including the analysis of protein (El-Sherbeeny & Robertson, 1992; Williams et al., 1978), 

starch and oil (Wang et al., 2014a), tannins (De Haro et al., 1988) and total polyphenol content 

(Wang et al., 2014a). However, there have only been a limited number of studies investigating 

the prediction of bioactive compounds using this technique, and none investigating MIRS for 

this purpose.  

Consequently, the first aspect of this work was to investigate and compare the total phenolic, 

antioxidant and anthocyanin content of a selection of Australian-grown faba bean samples. 

This allowed examination of the impacts of genotype, growing location and season upon the 

broad phytochemical composition of this crop. Subsequently, individual phenolic compounds 

were identified and quantified in a subset of these faba bean samples using HPLC-DAD. 
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Finally, infrared spectroscopy (NIRS and MIRS) was applied for the prediction of bioactive 

compounds in the faba bean matrix.  

The results provide further insight into the nutritional and health-benefiting properties of 

common Australian faba bean cultivars, as well as providing valuable information on the extent 

of their genotypic variation present in terms of the phenolic acid and flavonoid biosynthesis 

pathways. Additionally, they highlight the prospect of using infrared spectroscopy for the 

quality assurance of faba bean.  

3.3 Materials and methods 

3.3.1 Faba bean samples 

The faba bean seed material used in this study was sourced from a multi-environment field 

trial conducted as part of the Pulse Breeding Australia (PBA) Southern Node breeding 

program, via the Australian Export Grains Innovation Centre (AEGIC). The growing and 

harvest conditions are described in detail by Skylas et al. (2019). Briefly, 10 commercial faba 

bean varieties were grown at two different locations in South Australia: Charlick (35°19'43"S, 

138°52'44"E) and Freeling (34°27'20"S, 138°47'17"E), over two consecutive growing seasons 

(2016 and 2017). These four environmental conditions are abbreviated here as 16Char, 

17Char, 16Free and 17Free.  

The 10 varieties included in these growing trials account for the bulk of domestic production 

of the faba bean crop (Pulse Australia, 2016b). Key features of each variety are provided in 

Table 3-1, including their origin, release date and disease resistance.  

Two field replicates were analysed (each in duplicate) for each of the 2016 sites and three 

field replicates were analysed (each in duplicate) for each of the 2017 sites.  

The seed samples were coarsely ground by AEGIC staff using a Van Gelder grinder with a 3 

mm screen (J.P. Van Gelder and Co., Sydney), before being impact-milled to a fine flour using 

a Falling Number grinder with 0.8 mm screen (Falling Number AB, Stockholm). The moisture 

content of the samples was measured following AACC International Method 44-15.02 

(AACC International, 1975). Prior to analysis, the flour samples were stored in the dark at 4°C.  

Data supplied by AEGIC for each of the faba bean samples included their protein, total starch, 

amylose, amylopectin, vicine and convicine contents. The methods used for the determination 

of each of these analytes are described in detail by Skylas et al. (2019). Briefly, protein was 

measured by the Dumas combustion method (LECO TruMac N protein analyser; Saint Joseph, 

MI, USA), starch by AACC International Method 76-13.01, and amylose by AACC International 

Method 61-03.01. The amylopectin content was calculated as the difference between starch 
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and amylose contents. Vicine and convicine were measured by liquid chromatography-mass 

spectrometry (LC-MS); the method is provided in Skylas et al. (2019).  

Table 3-1: Faba bean varieties included in this study.  

Variety Release 
Seed 

size 

Germplasm 

Origin 

Disease resistance 

Asc(f) Asc(s) CS Rust PSbMV BLRV 

Fiord 1980 Small Greece mS mS vS S S - 

Fiesta VF 1998 Medium Spain mS/mR mR/R S S S - 

Farah 2003 Medium Spain mR/R mR/R S S S - 

Nura 2005 Medium Ecuador, Greece mR/R mR/R S mS vS - 

Doza 2008 Medium Ethiopia, Sudan vS vS mS mR/R - - 

PBA Rana 2011 Large 
Ecuador, 

Lebanon 
R R mS mS/mR mR/R - 

PBA Warda 2012 Large Ecuador, Greece vS/S vS/S mS mR/R - mT 

PBA Samira 2014 Medium 

Lebanon, UK, 

Spain, Ecuador, 

Greece 

R R mS mS S - 

PBA Zahra 2015 Large Morocco, Spain R - mS mS S - 

PBA Nasma 2015 Large 
China, Sudan, 

Italy 
vS/S vS/S mS mS - mT 

Abbreviations: Asc = ascochyta blight; f = foliage; s = seed; CS = chocolate spot; PSbMV = pea seed-borne 

mosaic virus; BLRV = bean leafroll virus; R = resistant; S = susceptible; T = tolerant; m = moderately; v = very 

A dash (-) indicates resistance is unknown 

References: Pulse Australia (2016b), Skylas et al. (2019).  

3.3.2 Reagents 

All reagents used were of analytical grade. Methanol, hydrochloric acid and sodium carbonate 

were purchased from Chem Supply (Gillman, South Australia). All other reagents were 

purchased from Sigma-Aldrich Australia (Castle Hill, New South Wales). Unless otherwise 

specified, all dilutions and assay preparations were made using Milli-Q water (Merck; 

Bayswater, Victoria). All solutions were stored in the dark at 4°C until usage.  

3.3.3 Extraction of polar phenolic compounds 

Extracts were prepared in duplicate for each sample. Firstly, approximately 0.5 g of faba bean 

flour was combined with 8 mL of 90% v/v aqueous methanol and vortexed for 10 seconds 

(Ratek VM1 vortex mixer). Following this, the extracts were mixed for 60 minutes using an 

end-over-end shaker (Ratek RM4) operating at 50 rpm. After centrifugation at 1000 rcf for 10 
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minutes (Heraeus Multifuge; Thermo Fisher Scientific), the supernatant was collected. To 

extract any remaining phytochemicals, the extraction process was repeated with another 8 mL 

of 90% methanol added to the pellet, followed by end-over-end mixing for 20 minutes. The 

combined supernatants were finally made up to 20 mL volume using 90% methanol. Extracts 

were stored in the dark at 4°C until required for analysis.  

Although previous researchers have investigated both free and bound phenolic fractions in 

other pulse crops (Xiang et al., 2019c), only the free phenolic fraction was investigated in the 

present study. The principal reason for this is that bound phenolics (i.e., those bound to cell 

wall structures) have reduced bioavailability (Manach et al., 2004); thus the free phenolic 

compounds are likely to be the primary contributors to any observed beneficial health effects.  

3.3.4 Analysis of TPC 

Total phenolic content (TPC) was determined through a modification of the Folin-Ciocalteu 

method developed by Singleton and Rossi (1965). Firstly, 2 mL of a 1:10 aqueous dilution of 

Folin-Ciocalteu reagent was combined with 400 µL of sample extract in a 10 mL centrifuge 

tube. The samples were incubated at room temperature in darkness for 10 minutes before 2 

mL of 7.5% w/v aqueous sodium carbonate was added. The mixture was then vortexed for 10 

seconds, incubated at 40°C for 30 minutes in a covered water bath, and vortexed for another 

10 seconds. The absorbance at 760 nm was then measured using a UV-Vis 

spectrophotometer (Thermo Scientific Genesys 10S UV-Vis; Sydney, Australia) blanked with 

Milli-Q water. The total phenolic concentration was derived as a function of the equivalent 

absorbance of gallic acid in the range 20 to 120 mg L-1 (R2 = 0.999; see Figure 3-1). Results 

were expressed as milligrams of gallic acid equivalents (GAE) per 100 g of oven dry sample 

weight (mg GAE/100 g).  
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Figure 3-1: Calibration curve of gallic acid used in the Folin-Ciocalteu TPC assay.  

3.3.5 Analysis of FRAP 

To measure the total antioxidant capacity, the ferric reducing antioxidant potential (FRAP) 

assay developed by Benzie and Strain (1996) was performed on the samples. The FRAP 

reagent was prepared by combining 300 mM acetate buffer at pH 3.56, 20 mM aqueous ferric 

chloride and 10 mM TPTZ (made in 40 mM HCl) in the ratio 10:1:1. This solution was pre-

equilibrated at a temperature of 37°C prior to use. The FRAP reagent, ferric chloride and TPTZ 

solutions were prepared fresh each day. To perform the assay, 3 mL of FRAP reagent, was 

combined with 100 µL of sample (pre-equilibrated at 37°C) and vortexed for 10 seconds.  The 

samples were incubated in a covered water bath at 37°C for 4 minutes, vortexed for 10 

seconds, and their absorbances read at 593 nm. The FRAP was derived as a function of the 

equivalent absorbance of Trolox (a water-soluble analog of vitamin E) in ethanol solution 

across the range of 25 to 175 mg L-1 (R2 = 0.999; Figure 3-2). Results were expressed as 

milligrams of Trolox equivalents (TE) per 100 g of oven dry sample weight (mg TE/100 g).  
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Figure 3-2: Calibration curve of Trolox used in the FRAP assay.  

3.3.6 Analysis of TMAC 

The total monomeric anthocyanin content (TMAC) was determined using a minor modification 

of the pH differential method described by Giusti and Wrolstad (2001). A pH 1 buffer solution 

was prepared from 0.025 M aqueous KCl, with the pH adjusted using concentrated (32%) HCl. 

Similarly, a pH 4.5 buffer solution was prepared using 0.4 M aqueous sodium acetate, adjusted 

to pH 4.5 with concentrated HCl.  
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In a cuvette, 400 µL of sample extract and 1.6 mL of pH 1 buffer were combined and mixed 

by inversion. After equilibration in darkness at room temperature for 15 minutes, its 

absorbance was read at 510 and 700 nm. This procedure was repeated on the same sample 

using the pH 4.5 buffer. The monomeric anthocyanin concentration was calculated using the 

formula shown in Equation 3.1 (Giusti & Wrolstad, 2001):  

Anthocyanin content (mg cyd-3-glu L-1) = (A × 449.38 × Dilution Factor × 1000) / (26900 × 1) 

where A = (pH1: Absorbance510 nm – Absorbance700 nm) - (pH4.5: Absorbance510 nm – 

Absorbance700 nm)                Equation 3.1 

The molecular weight (449.38 g mol-1) and molar extinction coefficient (26,900 M-1 cm-1) of 

cyanidin-3-glucoside were used, as it is the most abundant anthocyanin bound in nature 

(Markakis, 1989). Results were expressed as milligrams of cyanidin-3-glucoside (cyd-3-glu) 

per 100 g of oven dried sample weight (mg cyd-3-glu/100 g).  

3.3.7 Phenolic profiling by HPLC-DAD 

As mentioned in the introduction (Section 3.1), phenolic profiling by high-performance liquid 

chromatography coupled with diode array detection (HPLC-DAD) was only conducted on 60 

of the faba bean samples (all of the 2017 samples), due to the time-consuming rotary 

evaporating stage involved.  

After conducting the benchtop phytochemical assays (Sections 3.3.4-3.3.6), approximately 18 

mL of each methanol extract was concentrated using a rotary evaporator (Büchi Rotavapor R-

114; Flawil, Switzerland) with an external vacuum pump (Edwards RV3 Rotary Vane Vacuum 

Pump; Burgess Hill, UK). The water bath (Büchi B-480) was limited to a temperature of 27°C 

to minimise enzymatic hydrolysis of any glycosidic bonds (Yabefa et al., 2014). After being 

evaporated to the point of dryness, the remaining solids were reconstituted in 1 mL of HPLC-

grade methanol and syringe filtered (Livingstone 0.45 µm PTFE) into HPLC vials.  

The concentrated extracts were analysed using an Agilent 1100 HPLC system (Waldbronn, 

Germany), comprising a G1313A autosampler, G1322A vacuum degasser, G1311A 

quaternary pump, G1316A thermostatted column compartment and G1315B diode array 

detector. The HPLC-DAD method used was developed by the author for the analysis of 

phenolic compounds in pulse matrices. A reversed-phase C18 column (Agilent Eclipse XDB-

C18; 150 × 4.6 mm; 5 µm) and guard cartridge (Gemini C18 4 × 2 mm) were used, with an 

injection volume of 5 µL and column temperature of 27 ± 0.8°C. The mobile phase comprised 

0.01 M phosphoric acid (A) and methanol (B) at a flow rate of 1 mL/min, with the gradient 

beginning at 20% B and ramping linearly to reach 100% B at 20 min. The total run time was 

25 min, with a post-run equilibration time of 7 min.  
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Compounds were putatively identified based on the comparison of their retention time and UV 

spectra with authentic standards run under the same conditions (Sigma Aldrich Australia). The 

purity of each peak was confirmed by examining the UV spectra at different time points 

throughout the peak. The concentrations of the identified compounds were calculated from 

the peak areas, using external calibration standards between 1-100 mg L-1. The associated 

quality-of-analysis parameters are shown in Table 3-2. The limit of detection (LOD) was taken 

as the concentration at which the peak area was <2 mAU×s, while the limit of quantification 

(LOQ) was calculated as 3× the LOD.  

Table 3-2: Quality-of-analysis parameters for the phenolic standards. All calibrations 

were performed at concentrations between 1–100 mg L−1. 

No. Compound 
Retention 

time (min) 

Wavelength 

(nm) 
Slope 

LOD  

(mg L−1) 

LOQ  

(mg L−1) 

Calibration 

R2 

 Hydroxybenzoic acids 

1 Protocatechuic acid 3.94 250 13.5 0.1 0.4 1 

4 p-hydroxybenzoic acid 5.78 250 25.9 0.1 0.2 1 

5 Vanillic acid 6.26 250 12.3 0.1 0.4 1 

6 Syringic acid 6.59 280 15.1 0.1 0.3 1 

 Hydroxycinnamic acids 

3 Chlorogenic acid 5.26 320 14.1 0.1 0.4 1 

7 p-coumaric acid 8.12 320 32.3 0.05 0.2 1 

9 trans-ferulic acid 8.44 320 26.9 0.1 0.2 1 

 Flavonoids 

2 Catechin 4.55 280 4.0 0.4 1.3 1 

8 Vitexin 8.17 320 7.3 0.2 0.7 0.9999 

10 Rutin 9.82 250 6.2 0.2 0.8 1 

 

3.3.8 Near-infrared (NIR) spectroscopy 

Near-infrared spectra were collected from the flour samples using an Antaris II FT-NIR 

Analyzer (Thermo Scientific; USA). The instrument was operated in reflectance mode, using 

the integrating sphere with a rotating sample cup (30 mm diameter). Spectra were collected 

between 1000-2500 nm (10,000-4,000 cm-1), as the mean of 32 scans (resolution of 8 cm-1). 

Spectra were collected in triplicate, repacking the sample cup with fresh flour each time. The 
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spectra were exported in *.csv format, with the mean of the triplicate spectra for each sample 

used in subsequent analysis.  

3.3.9 Mid-infrared (MIR) spectroscopy 

A Bruker Alpha FTIR (Fourier transform infrared) spectrophotometer (Bruker Optics Gmbh, 

Ettlingen, Germany) fitted with a platinum diamond ATR single reflection module was used to 

collect the MIR spectra. Homogenised faba bean flour was used to cover the reflection module 

and pressure applied to achieve uniform contact between the ATR interface and flour. Air was 

used as a reference background; the background measurement was performed every 10 

samples. Cross-contamination of samples was minimised by cleaning and drying the platform 

with isopropyl alcohol and laboratory Kimwipes® between samples.  

MIR spectra between 4000 and 400 cm-1 were recorded using the OPUS software version 7.5 

(Bruker Optics Gmbh, Ettlingen, Germany) as the average of 24 scans at a resolution of 4 cm-

1. Five spectra were collected from each sample, repacking the instrument with fresh flour 

each time. The mean values from these replicate scans were used in subsequent analysis.  

3.3.10 Statistical analysis of phenolic data 

Statistical tests were performed on the phytochemical and phenolic data using IBM SPSS 

(v26) and R Studio running R 4.0.5 (R Core Team, 2020). Parametric testing was considered 

appropriate as the majority of data were approximately normally distributed, and the Central 

limit theorem could be applied due to the large sample size of the dataset (n = 60-100).  

One-way ANOVAs were used for the analysis of the phytochemical constituents (i.e., FRAP, 

TPC, TMAC). A two-way ANOVA was performed on the HPLC-DAD dataset to assess the 

impact of variety and growing site on the content of various phenolic compounds.  

Principal component analysis (PCA) was performed in the Unscrambler X software, version 

10.5 (Camo ASA, Oslo, Norway). Where applicable, results are presented as mean ± 1 

standard deviation.  

3.3.11 Spectral data analysis 

Qualitative exploratory analysis of the infrared spectral data was conducted using with the 

Unscrambler X software. The MIR spectra were pre-processed to the second derivative using 

a Savitzky-Golay algorithm at a polynomial number of 2 and a smoothing window of 41 points 

(Savitzky & Golay, 1964), following previous work on barley (Gordon et al., 2019) and 

mungbean (Johnson et al., 2019). Using a first or second derivative removes spectral 

variations in the baseline and slope (Savitzky & Golay, 1964), minimising differences due to 

non-compositional variables such as the pressure and contact with the reflection module. 
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Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) 

were performed in the Unscrambler X using the pre-processed MIR spectra.  

Quantitative regression analysis of the infrared spectra was conducted in R Studio, using the 

spectrolab and prospectr packages. Spectra were pre-processed using the 1st and 2nd 

derivative method using a Savitzky-Golay algorithm (Savitzky & Golay, 1964) with varying 

numbers of smoothing points (5, 11, 15 or 21). Throughout the manuscript, these are referred 

to used abbreviated codes, e.g., 1d15 would be the Savitzky-Golay first derivative of the 

spectra, using a 15-point window (7 points on either side). In order to determine the optimum 

pre-processing method and number of components to use, the model performance of the 

calibration set was evaluated through full cross-validation (leave-one-out [LOO] method).  

For model development, the 2017 samples (n=60) were used for the calibration set, while the 

2016 samples (n=40) were used as an independent test set. A maximum of 10 components 

were considered for each PLSR model.  

3.4 Results and discussion 

3.4.1 Phytochemical profiles 

The first stage of this work was to investigate the basic phytochemical composition of the faba 

bean samples using benchtop spectrophotometric-based methods, namely the analysis of 

total phenolic content, antioxidant capacity and total anthocyanin content. This information 

was used to gain a broad picture of the differences in phytochemical composition between the 

10 faba bean varieties, and to examine any general trends between different growing seasons 

or locations.  

3.4.1.1 Ferric reducing antioxidant potential 

The average ferric reducing antioxidant potential determined for each of the faba bean 

varieties is shown in Table 3-3. There was a significant positive correlation between FRAP 

and the protein content of the samples (r100 = 0.346, P<0.001).  

In order to determine the impact and interactions of genotype and environment on the FRAP, 

a three-way ANOVA was performed using variety, growing site and year as the independent 

variables. This revealed a significant interaction between variety and year (P<0.01), but not 

between variety and site. Variety had a highly significant impact on FRAP (F10,60 = 632.267, 

P<0.001), while site and year had no significant impact (P>0.05 for both).  
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Table 3-3: Average ferric reducing antioxidant potential (FRAP; mg TE 100g-1 DW) of the 

ten faba bean varieties. Samples with the same letter in the last column were not 

statistically different at α = 0.05 according to post-hoc Tukey testing.  

Variety 16Char 16Free 17Char 17Free Mean ± SD 

Fiord 255 223 261 231 243 ± 24 d 

Fiesta VF 259 222 237 233 237 ± 23 d 

Farah 253 250 249 231 245 ± 25 d 

Nura 320 307 326 261 301 ± 33 bc 

Doza 274 250 275 287 273 ± 27 cd 

PBA Rana 456 471 542 610 531 ± 90 a 

PBA Warda 265 244 269 259 260 ± 16 cd 

PBA Samira 346 302 321 324 323 ± 25 b 

PBA Zahra 284 264 299 262 278 ± 23 bcd 

PBA Nasma 262 236 272 272 249 ± 27 cd 

Mean ± SD 297 ± 62 277 ± 74 305 ± 91 297 ± 114  

 

While most varieties displayed similar FRAP levels, those for Nura and PBA Samira were 

significantly higher than the three lowest varieties (Fiesta VF, Fiord and Farah). PBA Rana 

had the highest FRAP values, being approximately double that of most of the other varieties. 

This highlighted the need for further investigation into the specific phenolic and antioxidant 

compounds that are elevated in this variety, in order to determine if it could potentially provide 

greater health benefits compared to other varieties.  

3.4.1.2 Total phenolic content 

The total phenolic contents followed a similar trend to the FRAP values (Table 3-4). There was 

a linear correlation between FRAP values and total phenolic contents (r100 = 0.917; P<0.001), 

as previously observed in faba bean (Chaieb et al., 2011) and other crops (Chen et al., 2018; 

Hung & Morita, 2008; Zhang et al., 2013; Žilić et al., 2012). There was also a significant 

positive correlation between protein content and total phenolics (r100 = 0.302, P<0.01) but no 

correlation between total phenolics and FRAP or moisture content (P>0.05).  

A three-way ANOVA revealed a highly significant impact of variety on the TPC (F10,60 = 72.646, 

P<0.001), with no interactions between variety, site or season (P>0.05 for all). As observed 

for FRAP, PBA Rana contained almost double the total phenolic content of most varieties, 

while PBA Samira contained less phenolics than PBA Rana but more than all other varieties. 



 

Page 94 of 248 
 

The remaining eight varieties contained similar levels of phenolics (258-294 mg GAE 100g-1 

DW). This is shown graphically in Figure 3-3.  

Year also had a significant impact on the TPC (P<0.05), with samples from 2017 showing 

higher average TPCs compared to the 2016 samples.  

Table 3-4: Average total phenolic content (TPC; expressed in mg GAE 100g-1 DW) of 

faba bean varieties. Samples with the same letter in the last column were not 

statistically different at α = 0.05 according to post-hoc Tukey testing.  

Variety 16Char 16Free 17Char 17Free Mean ± SD 

Fiord 240 259 273 255 258 ± 22 c 

Fiesta VF 263 252 259 286 266 ± 29 c 

Farah 254 320 286 289 287 ± 38 c 

Nura 269 292 278 243 268 ± 27 c 

Doza 257 270 302 322 293 ± 33 c 

PBA Rana 519 546 588 604 571 ± 59 a 

PBA Warda 247 280 273 289 274 ± 21 c 

PBA Samira 351 356 350 374 358 ± 32 b 

PBA Zahra 288 290 330 264 294 ± 34 c 

PBA Nasma 247 306 284 317 277 ± 39 c 

Average 294 ± 86 317 ± 89 322 ± 96 324 ± 107  
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Figure 3-3: Total phenolic content of the 10 faba bean varieties at each of the growing 

sites (averaged across the 2016 and 2017 samples; n = 5 replicates for each bar). The 

letters (a–c) above each variety show the statistical significance of an ANOVA by variety 

averaged across both growing locations. Varieties with the same letter were not 

statistically different from one another at α = 0.05.  

3.4.1.3 Total monomeric anthocyanin contents 

The mean total monomeric anthocyanin contents of the faba bean samples are shown in Table 

3-5. There was no significant correlation between TMAC and FRAP or TPC (P>0.05 for both), 

although it did show a negative correlation with moisture content (r100 = -0.202, P<0.05).  

A three-way ANOVA showed a significant interaction between variety and year, as observed 

for FRAP. The TMAC was significantly impacted by all three variables – variety (P<0.001), site 

(P<0.05) and year (P<0.001), with the greatest impact from variety. The statistical differences 

are shown from the superscript annotations reported in Table 3-5. The variety Fiord contained 

the highest levels of anthocyanins, followed by PBA Warda. The anthocyanin content of Fiord 

was statistically higher than the five varieties containing the lowest anthocyanin levels, but not 

from the four remaining varieties.  

Samples from 2016 displayed a significantly higher anthocyanin content than the 2017 

samples, as can be seen from Table 3-5. Furthermore, closer examination of the impact of 

site revealed that most of the difference between sites occurred in 2017, with minimal 

difference observed in 2016 (Table 3-5).  
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Table 3-5: Average total monomeric anthocyanin content (TMAC; expressed in mg cyd-

3-glu equivalents 100 g-1 DW) of the faba bean varieties. Samples with the same letter 

in the last column were not statistically different at α = 0.05 according to post-hoc Tukey 

testing.  

Variety 16Char 16Free 17Char 17Free Average 

Fiord 18.9 18.6 19.2 18.0 18.6 ± 1.2 ab 

Fiesta VF 19.8 20.3 16.5 12.4 16.7 ± 3.8 abcd 

Farah 19.3 17.8 14.8 11.6 15.3 ± 3.7 bcde 

Nura 21.1 16.5 15.2 17.0 17.2 ± 2.9 abcd 

Doza 14.3 17.9 13.4 11.2 13.8 ± 3.6 de 

PBA Rana 14.7 16.9 17.2 15.3 16.1 ± 2.6 abcde 

PBA Warda 19.6 19.3 18.5 15.1 17.8 ± 2.8 abc 

PBA Samira 12.2 10.6 12.8 14.4 12.7 ± 3.4 e 

PBA Zahra 17.1 13.5 11.3 13.2 13.5 ± 2.9 de 

PBA Nasma 21.7 20.2 15.8 12.1 21.0 ± 4.3 cde 

Average 17.9 ± 3.7 17.2 ± 3.6 15.5 ± 3.1 14.0 ± 3.2  

 

3.4.1.4 PCA of moisture, antioxidant, phenolic and anthocyanin contents 

In order to further explore the variation in the moisture, antioxidant, phenolics and anthocyanin 

contents, principal component analysis was conducted on the data for these four parameters. 

As these parameters varied considerably in terms of their absolute values, each datapoint was 

weighted by dividing by the overall standard deviation for that parameter.  

The first two principal components (PCs) explained 78% of the total variation observed. Across 

PC1, broad separation was observed between PBA Rana and the remainder of the varieties 

(Figure 3-4). Examination of the loadings associated with this principal component indicated 

that PC1 scores were positively correlated with increased FRAP and total phenolics, 

confirming that levels of these compounds in PBA Rana were noticeably elevated compared 

to other varieties. PBA Samira also had higher scores along PC1 than the remainder of 

varieties, indicating that its FRAP and TPC levels were higher compared to other varieties, 

albeit not as distinct as those of PBA Rana.  
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Figure 3-4: Principal component analysis of four chemical parameters (moisture, FRAP, 

TPC and TMAC), with the samples separated by variety. The loadings for the first two 

principal components of the PCA are also indicated.  

Separation along the second PC was generally less clear. Both PBA Rana and Fiord were 

largely associated with positive scores along this axis, indicating above average anthocyanin 

levels and lower moisture contents. The negative PC2 scores observed for PBA Zahra 

indicated higher moisture contents and lower anthocyanin levels, as previously observed 

(Table 3-5). PBA Samira, which had the lowest mean anthocyanin levels of all faba bean 

varieties (Table 3-5), was also primarily associated with negative PC2 values.  

To further visualise the general relationship between the chemical composition of the varieties 

obtained through PCA, a cluster analysis was performed on the mean moisture, antioxidant, 

phenolic and anthocyanin contents (Figure 3-5). This confirmed that the composition PBA 

Rana was highly distinct from the remaining varieties, while the composition of PBA Samira 

was moderately different. The hierarchical cluster analysis also suggested that based on their 

chemical composition, two general groups could be made of the remaining eight varieties, one 

comprising Nura, Doza and PBA Zahra, and the other comprising Fiord, Fiesta VF, PBA 

Nasma, PBA Warda and Farah.  
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Figure 3-5: Hierarchical cluster analysis of the mean moisture, FRAP, TPC and TMAC 

of the ten faba bean varieties. The cluster analysis used Ward’s method and the 

squared Euclidean distance.  

3.4.1.5 General observations on the phytochemical composition 

The ten varieties of Australian faba bean investigated showed considerable variation in their 

anthocyanin, phenolic and antioxidant contents. In particular, PBA Rana contained much 

higher levels of total phenolics and total antioxidants than all other varieties tested, indicating 

the need for further investigation into the specific phenolic compounds present in this variety. 

These results were supported by PCA and hierarchical cluster analysis, which demonstrated 

uniquely high levels of TPC and FRAP in PBA Rana, in addition to highlighting moderately 

elevated levels of these analytes in PBA Samira.  

3.4.2 Phenolic profiles using HPLC-DAD 

Following on from the benchtop phytochemical testing, HPLC-DAD was used to quantify 

selected phenolic compounds in a subset of the faba bean extracts (2017 samples only). This 

was considered appropriate as there were no significant differences in antioxidant capacity or 

total phenolic content between the 2016 and 2017 samples. The aim was to provide context 

data on the typical phenolic composition of Australian-grown faba bean, as well as to highlight 

potential differences in phenolic profiles between different commercial varieties of this crop. 

The results are presented and discussed throughout the remainder of this section.  

3.4.2.1 Identification and quantification of phenolic compounds 

A total of 10 phenolic compounds were putatively identified in the faba bean extracts based 

on their UV spectra and retention times (Figure 3-6). These comprised four hydroxybenzoic 
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acids, three hydroxycinnamic acids and three flavonoid-related compounds (Table 3-6). 

Additionally, the following compounds were all determined to be below the limit of detection in 

the extracts: gallic acid, gentisic acid, isovanillic acid, caffeic acid, sinapic acid, cinnamic acid 

and quercetin-3-glucoside.  

 

Figure 3-6: HPLC chromatograms of the phenolic compounds in the 10 faba bean 

varieties. The compounds indicated are (1) protocatechuic acid, (2) catechin, (3) 

chlorogenic acid, (4) p-hydroxybenzoic acid, (5) vanillic acid, (6) syringic acid, (7) p-

coumaric acid, (8) vitexin, (9), trans-ferulic acid, (10) rutin.  
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Table 3-6: Mean phenolic acid and flavonoid contents in the 10 faba bean varieties (2017 samples only). Values given in µg/g (mean ± 

SD from 6 replicates, comprising 3 within-field triplicates from 2 field locations). The P value column indicates the significance between 

varieties, with results obtained from a two-way ANOVA between site × variety. Note that entries in the same row containing the same 

superscript letter (a–d) were not significantly different from one another at α = 0.05. 

Compound Doza Farah Fiesta VF Fiord Nura PBA Nasma PBA Rana PBA Samira PBA Warda PBA Zahra P value 

Protocatechuic acid 1.88 ± 0.83 b 1.45 ± 0.61 b 1.44 ± 0.50 b 1.66 ± 0.77 b 1.29 ± 0.22 b 1.65 ± 0.60 b 2.93 ± 1.07 a 2.09 ± 0.77 ab 1.83 ± 0.56 b 1.81 ± 0.36 b *** 

p-hydroxybenzoic acid 0.57 ± 0.06 bcd 0.52 ± 0.07 cd 0.52 ± 0.11 cd 0.64 ± 0.18 bcd 0.44 ± 0.08 d 0.62 ± 0.13 bcd 1.11 ± 0.21 a 0.73 ± 0.15 bc 0.61 ± 0.10 bcd 0.79 ± 0.11 b *** 

Vanillic acid 2.46 ± 0.59 ab 1.87 ± 0.37 b 1.96 ± 0.36 b 1.88 ± 0.43 b 2.40 ± 0.24 ab 1.96 ± 0.29 b 2.24 ± 0.68 ab 2.81 ± 0.52 a 2.71 ± 0.40 a 2.76 ± 0.85 a *** 

Syringic acid 77.6 ± 11.2 c 72.4 ± 7.9 c 80.5 ± 13.1 c 77.6 ± 11.8 c 149.8 ± 14.8 a 77.8 ± 9.5 c 72.5 ± 7.3 c 109.6 ± 21.6 b 80.9 ± 14.1 c 122.5 ± 14.4 b *** 

Sum of hydroxybenzoic acids 82.5 ± 12.6 c 76.2 ± 8.5 c 84.4 ± 13.7 c 81.8 ± 12.7 c 153.9 ± 14.9 a 82.0 ± 10.3 c 78.8 ± 8.8 c 115.2 ± 22.8 b 86.0 ± 14.8 c 127.9 ± 15.4 b *** 

Chlorogenic acid 0.89 ± 0.96 0.85 ± 0.52 1.27 ± 1.30 2.88 ± 2.56 0.78 ± 0.41 0.89 ± 0.44 3.02 ± 3.31 1.14 ± 0.73 1.70 ± 2.48 1.98 ± 3.41 NS 

p-coumaric acid 1.21 ± 0.21 bc 1.64 ± 0.25 ab 1.86 ± 0.40 a 1.69 ± 0.28 ab 1.26 ± 0.16 abc 1.52 ± 0.37 abc 1.70 ± 0.27 ab 1.52 ± 0.38 abc 1.62 ± 0.54 ab 0.95 ± 0.17 c *** 

trans-ferulic acid 1.27 ± 0.22 b 0.96 ± 0.21 b 1.11 ± 0.27 b 1.42 ± 0.42 b 1.36 ± 0.32 b 1.22 ± 0.35 b 2.99 ± 0.65 a 1.34 ± 0.25 b 1.26 ± 0.30 b 1.82 ± 0.18 b *** 

Sum of hydroxycinnamic acids 3.37 ± 1.09 b 3.45 ± 0.76 b 4.24 ± 1.81 ab 5.99 ± 2.97 ab 3.40 ± 0.68 b 3.63 ± 0.85 ab 7.71 ± 2.83 a 4.00 ± 1.17 ab 4.58 ± 3.22 ab 4.11 ± 3.60 ab * 

Catechin 216 ± 64 ab 191 ± 37 b 215 ± 52 ab 245 ± 52 ab 232 ± 27 ab 207 ± 37 b 297 ± 53 a 240 ± 55 ab 258 ± 63 ab 220 ± 33 ab * 

Vitexin 0.88 ± 0.24 b 1.70 ± 1.82 ab 0.97 ± 0.39 b 1.52 ± 1.82 ab 0.58 ± 0.41 b 0.80 ± 0.28 b 3.50 ± 1.43 a 0.75 ± 0.43 b 1.21 ± 0.82 b 1.43 ± 1.52 ab ** 

Rutin 5.55 ± 5.02 7.34 ± 5.11 7.66 ± 6.36 13.91 ± 11.81 4.04 ± 3.00 4.50 ± 2.30 15.87 ± 14.22 7.67 ± 4.09 10.48 ± 10.60 9.43 ± 16.29 NS 

Sum of flavonoids 223 ± 61 ab 200 ± 37 b 223 ± 57 ab 261 ± 61 ab 237 ± 28 ab 212 ± 37 b 316 ± 45 a 248 ± 56 ab 269 ± 71 ab 231 ± 35 ab * 

NS = not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001
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The hydroxybenzoic acids found here (protocatechuic acid, p-hydroxybenzoic acid, vanillic 

acid and syringic acid) have all been previously reported from faba bean, as have two of the 

hydroxycinnamic acids (p-coumaric acid and trans-ferulic acid) (Choudhary et al., 2020; Liu et 

al., 2020b; Ryszard & Fereidoon, 2018). In addition, several of these phenolic acids have been 

found in faba bean pods (Valente et al., 2018). The concentrations of free p-coumaric and 

ferulic acids found here were similar to that reported by Liu et al. (2020b) in Canadian faba 

bean, although only one variety was included in that study. However, the concentration of 

syringic acid was much higher compared to previous studies (Liu et al., 2020b; Sosulski & 

Dabrowski, 1984). Although the reason for this difference is unclear, it is worth noting that 

levels of this compound varied significantly between the different genotypes studied (Table 3-

6) and that previous research has indicated that the soil microbiota composition can have a 

significant impact on its concentration (Dong et al., 2016). Similarly, although chlorogenic acid 

does not appear to have been previously found in faba bean seed, it is produced in the roots 

of this plant (El-Akkad et al., 2002). The low concentrations and high levels of environmental 

variability may account for its absence in previous work.  

The levels of catechin reported here (ranging from 191–297 mg/kg for different varieties) were 

at the lower range of concentrations reported by Baginsky et al. (2013) in the immature seed 

material of 10 Chilean faba bean varieties, with catechin contents varying between 85–978 

mg/kg. 

Although vitexin is more commonly known to occur in mungbean (Yao et al., 2011), it has 

been previously reported from faba bean using UHPLC-ESI-QTOF-MS-based metabolic 

profiling (Abu-Reidah et al., 2014), although it was not quantified by these authors. Similarly, 

although rutin (quercetin-3-rutinoside) does not appear to have been previously reported from 

faba bean seed, numerous other types of quercetin glycosides have been found in this matrix 

(Spanou et al., 2012; Valente et al., 2018). In addition, rutin has been reported from the flower 

tissue of several faba bean genotypes, indicating that the synthetic pathways for the 

production of this compound do occur in faba bean (Zanotto et al., 2020).  

A two-way ANOVA, using variety and growing location as the independent variables, revealed 

that the content of all constituents, apart from chlorogenic acid and rutin, varied significantly 

with variety (Table 3-6). For most of these compounds, the highest concentrations were found 

in PBA Rana, which also contained the highest total phenolic content (Figure 3-6). However, 

Nura showed the highest levels of syringic acid and total hydroxybenzoic acids.  

Similarly, the two-way ANOVA demonstrated that in the case of the 2017 growing season, the 

site had a significant impact on the content of protocatechuic acid, vanillic acid, chlorogenic 

acid, vitexin and rutin, as well as on the total amounts of hydroxybenzoic acids and 
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hydroxycinnamic acids (Table 3-7). For both hydroxybenzoic acids (protocatechuic acid and 

vanillic acid), samples grown at the Freeling site showed higher contents; while for chlorogenic 

acid and the flavonoids catechin and rutin, the Charlick samples showed higher concentrations.  

Table 3-7: Impact of the growing site on phenolic acid and flavonoid contents. Values 

given in µg/g (mean ± SD from 3 replicates for each location). The P value column 

indicates the significance between sites, with results obtained from a two-way ANOVA 

between site × variety. 

Compound Charlick (n = 30) Freeling (n = 30) 
Site P 
Value 

Variety × Site 
Interaction 

Protocatechuic acid 1.43 ± 0.36 2.17 ± 0.87 *** NS 

p-hydroxybenzoic acid 0.67 ± 0.19 0.64 ± 0.25 NS NS 

Vanillic acid 2.11 ± 0.41 2.50 ± 0.67 *** ** 

Syringic acid 89.3 ± 28.2 94.9 ± 27.9 NS * 

Sum of hydroxybenzoic acids 93.5 ± 28.3 100.2 ± 28.4 * * 

Chlorogenic acid 2.22 ± 2.57 0.86 ± 0.68 ** NS 

p-coumaric acid 1.45 ± 0.42 1.55 ± 0.38 NS NS 

trans-ferulic acid 1.45 ± 0.47 1.38 ± 0.77 NS ** 

Sum of hydroxycinnamic acids 5.11 ± 3.00 3.78 ± 1.39 * NS 

Catechin 224 ± 45 240 ± 60 NS NS 

Vitexin 1.67 ± 1.56 0.98 ± 0.86 * NS 

Rutin 12.21 ± 11.59 5.07 ± 3.54 ** NS 

Sum of flavonoids 238 ± 52 246 ± 62 NS NS 

      * P < 0.05, ** P < 0.01, *** P < 0.001 

For the 2017 growing season, no significant effects of growing location were found for p-

hydroxybenzoic acid, syringic acid, p-coumaric acid, trans-ferulic acid, catechin or the total 

amount of flavonoids. Significant interactions were found between the variety and growing site 

for several parameters, namely vanillic acid, syringic acid, trans-ferulic acid and the sum of 

the hydroxybenzoic acids. However, it should be noted that the present study investigated 

only one growing season; hence it remains for future work to generalise the results found here 

across a wider range of seasons and locations.  

There appears to be limited previous literature investigating the impact of growing site and 

variety × growing site interaction on phenolic acid content in faba bean; however, Mpofu et al. 

(2006) found a significant impact of growing location on six phenolic acids in wheat. In contrast, 

Oomah et al. (2011) found minimal impact of growing location on the total phenolic content of 

13 faba bean genotypes grown at two locations in Canada. 
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3.4.2.2 PCA of phenolic compounds 

Overall, PBA Rana appeared to have the highest levels of most phenolic acids and flavonoids, 

possessing a distinct chemical profile compared to the other varieties. This observation was 

supported by the results of the principal component analysis performed on the normalised 

phenolic data, which revealed that most samples of PBA Rana were clustered toward the 

lower right of the scores plot, separated from the majority of other genotypes (Figure 3-7). 

Examination of the loadings plot revealed that this corresponded with higher concentrations 

of catechin and protocatechuic acid, and lower concentrations of syringic acid. In addition, this 

concurred with previous observations on the unique phytochemical profile of this genotype 

(Section 3.4.1.4). The unique phenolic acid profile of PBA Rana could be most easily 

visualised in its UV isoplot (Figure 3-8), where the plot showed the presence of a larger number 

of phenolic compounds and greater absorbance intensities for the compounds observed, 

particularly between elution times between 9-11 minutes.   

 

Figure 3-7: Scores plot showing the results of the principal component analysis 

performed on the normalised phenolic data. Each faba bean variety is indicated by a 

different symbol colour and shape. 
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Figure 3-8: Isoplot showing the UV absorbance of various compounds eluting at 

various points throughout the HPLC run for PBA Samira (a) and PBA Rana (b). The x-

axis shows the run time (from 0-25 minutes) and the y-axis shows the UV wavelength 

(from 200-400 nm). The colour of each pixel shows the relative absorbance (blue = low; 

red = high). 

In contrast to the PCA results observed for PBA Rana, the variety Nura was clustered toward 

the lower left of the scores plot. Syringic acid was weighted on this region of the two PCs, 

corresponding with the higher concentrations of this compound found in Nura. The remaining 

varieties were more or less clustered around the centre of the scores plot, indicating a 

relatively similar phenolic composition between them.  

3.4.2.3 Correlation analysis of phenolics 

Correlation analysis was performed between the 10 phenolic compounds to ascertain if the 

concentrations of any specific compounds were closely linked to the concentrations of another 

compound. This may occur due to similar biosynthetic pathways between the compounds 

(Santos-Sánchez et al., 2019) or result from regulatory genes controlling multiple synthesis 

pathways. The correlation results demonstrated moderate to strong correlations between 

several compounds, most notably between rutin and chlorogenic acid (r60 = 0.979, p < 0.001), 

and between ferulic and p-hydroxybenzoic acid (r60 = 0.812, P < 0.001) (Figure 3-9). Rutin is 
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a quercetin glycoside, while chlorogenic acid is the ester of caffeic acid and quinic acid, hence 

these compounds are not closely structurally related. However, both can be synthesised 

through the phenylpropanoid pathway (Fraser & Chapple, 2011), suggesting that a regulatory 

gene may be responsible for the correlation between these compounds. Similarly, although 

ferulic acid is a hydroxycinnamic acid and p-hydroxybenzoic acid is a simple hydroxybenzoic 

acid, both can be produced through the shikimate biosynthesis pathway (Marchiosi et al., 

2020).  

 

Figure 3-9: Correlogram showing the correlations between the various phenolic acids 

and flavonoids quantified in the faba bean samples (n = 60 samples). The numbers 

inside each square show the Pearson R correlation values.  

3.4.2.4 Summary of phenolic profiling results 

This work was the first study to profile the phenolic acid and flavonoid composition of >5 

commercial Australian faba bean varieties. The most abundant compounds identified were 

catechin and syringic acid, with rutin, vitexin, protocatechuic, vanillic, p-hydroxybenzoic, 

chlorogenic, p-coumaric, and trans-ferulic acid all found in lower concentrations. The content 
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of most individual phenolics varied significantly with the variety, while growing location had a 

significant effect for around half of these compounds. Genotype × location interactions were 

only observed for vanillic, syringic, and trans-ferulic acids. Significant correlations were 

observed between a number of constituents, including between rutin and chlorogenic acid, 

and between ferulic and p-hydroxybenzoic acid. Notably, PBA Rana showed a distinct 

phenolic profile compared to the remaining nine varieties, supporting prior observations on the 

uniquely high levels of total phenolics and antioxidant capacity found in this variety (see 

Section 3.4.1.5).  

3.4.3 Qualitative assessment using MIR spectroscopy 

Infrared spectroscopy, particularly MIR spectroscopy, has shown considerable promise for the 

quality assurance of grain crops (Achten et al., 2019; Cozzolino, 2014b, 2016; Gordon et al., 

2019; Pandiselvam et al., 2021), including product authentication, discrimination of origin and 

the detection of adulterants. Consequently, this section investigated the use of MIR 

spectroscopy for the qualitative analysis of faba bean flour, specifically, its potential for the 

discrimination of variety, growing location and season.  

3.4.3.1 Qualitative examination of MIR spectra 

The main spectral peaks observed in the MIR spectra were attributed to a range of constituent 

compounds, including water, compositional polysaccharides and protein (Table 3-8). There 

was a visible difference in the amplitude of the MIR absorbance between 2016 and 2017 

samples, with the 2017 samples showing greater absorbance overall. However, the location 

of spectral peaks was virtually identical between the two years. There was little visible 

difference in the average spectra between the Charlick and Freeling sites, although a slightly 

larger peak at 2990-2950 cm-1 was observed in the Freeling samples. There was also little 

visible difference in the average spectra of the ten faba bean varieties, although varietal 

differences in the size of the 2990-2950 cm-1 peak (CH2 vibration) were noted (Figure 3-10).  
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Table 3-8: Main spectral peaks observed in spectra obtained from the faba bean 

samples.  

Range 
(cm-1) 

Centre 
(cm-1) 

Peak 
strength 

Correlating 
bond(s) 

Likely aetiological 
compound(s) 

References 

3600-3000 3260 S, broad OH stretch Water  (Gordon et al., 2019) 

3000-2940 2980 M 
Symmetric CH3 
stretch 

Lipids, fatty acids 
(Gordon et al., 2019; Li et 
al., 2013) 

2980-2890 2920 M 
Asymmetric CH2 
vibration 

Lipids, fatty acids 
(Gordon et al., 2019; Li et 
al., 2013) 

1760-1720 1740 W O-C=O stretch Triglycerides (Vlachos et al., 2006) 

1700-1580 1640 S 
N-H-C=O (amide 
bond) 

Amide I in protein (Bratu et al., 2007) 

1580-1480 1540 M 
N-H-C=O (amide 
bond) 

Amide II in protein (Bratu et al., 2007) 

1480-1410 1440 W CH2, CH3 bend Lipids (Yang et al., 2015) 

1430-1350 1390 M-W CH3 bend Lipids (Pavia et al., 2001) 

1350-1290 1330 W C-O stretch Polysaccharides 
(Hoffmann & De Paola, 
1984) 

1270-1190 1240 M-W C-O bond Polysaccharides (Gordon et al., 2019) 

1170-1130 1150 M C-O stretch Polysaccharides 
(Ambigaipalan et al., 
2011) 

1080-1060 1075 M C-OH stretch Polysaccharides 
(Ambigaipalan et al., 
2011) 

1050-1030 1040 W CH2, C-OH bend Starch/carbohydrates 
(Ambigaipalan et al., 
2011) 

1050-950 995 v. S CH2, C-OH bend Starch/carbohydrates 
(Ambigaipalan et al., 
2011) 

950-910 930 W C-OH bend Starch (Gordon et al., 2019) 

870-820 850 M-W C-O-C vibration Amylopectin (Bratu et al., 2007) 

770-740 760 W C-O-C ring vibration Starch/carbohydrates (Chen et al., 2008) 

Abbreviations: v. = very, S = strong, M = medium, W = weak 
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Figure 3-10: Average MIR spectra of the faba bean samples, before and after spectral 

processing through the use of the second derivative.  

Prior to further analysis, the individual spectra were pre-processed to the second derivative 

(Savitzky-Golay algorithm; 41 smoothing points) to remove any differences in the absorbance 

amplitudes resulting from variation in the level of contact between the sample and the 

reflection module. This successfully removed any baseline amplitude variation, while 

amplifying the differences in peak positions, shapes and relative amplitude.  

To further explore the spectral variation, principal component analysis was conducted on the 

second derivative of the MIR spectra. The first two principal components of the PCA explained 

75% of the observed variation, while subsequent PCs explained <2% of the variation each. 

There was some incomplete separation by growing year (Figure 3-11A) and no clear 
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separation by site (Figure 3-11B). Most faba bean varieties were spread across the PCA 

scores plot (Figure 3-11C), again with no clear separation. However, some varieties, such as 

Fiesta VF, appeared to show a larger amount of intra-varietal spectral variation, being 

distributed much further across both PC1 and PC2, when compared to other varieties such as 

Fiord.  

 

Figure 3-11: Principal component analysis of the second derivative of the MIR spectra, 

coloured by growing year (A), growing site (B) and variety (C).   

Examination of the loadings plot revealed that the major differences between samples were 

due to bonds in the CH2 and CH3 stretch region (3000-2800 cm-1), amide region (1700-1500 

cm-1) and C-OH bend region from starch/carbohydrates (1050-900 cm-1) (Figure 3-12).  
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Figure 3-12: Loadings plot for the PCA performed on the MIR spectra.  

3.4.3.2 PLS-DA of MIR spectra 

Partial least squares discriminant analysis (PLS-DA) applied to MIR spectra has previously 

been highlighted as a powerful tool for the discrimination and authentication of grains of 

different origins (Gordon et al., 2019). Hence PLS-DA was performed on the second derivative 

of the faba bean spectra. The growing year was able to be correctly classified in 87.4% of the 

samples (Table 3-9), indicating that this technique may be suitable for some authentication 

purposes when applied to faba bean flour. However, the successful classification rate by 

growing site was much lower, with an average of 60.2% of samples correctly assigned to their 

growing site (Table 3-9). Further refinement of the PLS regression is required before this 

technique can be utilised for authentication of growing site in faba bean flour, including 

analysing samples from a wider range of growing locations and perhaps identifying and 

selecting the key model wavelengths responsible for site discrimination.  

Overall, the MIR analysis was found to provide valuable qualitative information on the chemical 

composition of the faba bean varieties. The preliminary results presented here are quite 

promising, indicating that agronomic aspects such as the year of growth can be determined 

from the MIR spectra with moderately high accuracy. This could potentially be used for quality 

assurance/product authentication purposes. However, it should be noted that these results 

are for the calibration model only and were not tested on new populations. Nevertheless, with 
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the development of more sophisticated methods of data analysis, the usefulness of MIR 

spectroscopy for product authentication/discrimination is anticipated to only increase.  

Table 3-9: PLS-DA classification of the faba bean samples by growing year and growing 

site.  

 Actual growing year Actual growing site 

Classified as 2016 

(n=200) 

2017 

(n=300) 

Charlick 

(n=250) 

Freeling 

(n=250) 

2016 87.0% 1.3%   

2017 1.0% 87.7%   

Ambiguous 12.0% 11.0%   

Charlick    55.5% 2.3% 

Freeling    6.0% 63.3% 

Ambiguous   38.5% 34.3% 

 

Following on from the qualitative investigation of the infrared spectra, its use for the 

quantitative prediction of nutritional and bioactive analytes in the faba bean samples was 

investigated. These results are discussed in the following section.  

3.4.4 Prediction of bioactive compounds using IR spectroscopy 

The final aspect of the work on faba bean was to investigate the prospect of using infrared 

spectroscopy (NIRS or MIRS) for the quantification of bioactive compounds and other 

nutritional-related analytes in this matrix.  

As previously mentioned in Section 3.2, Wang et al. (2014a) was the only study to date to 

investigate the use of NIRS for the prediction of total polyphenol content in faba bean. These 

authors reported good performance of the calibration model but did not validate their results 

using an independent test set. Furthermore, no quantitative use of MIRS has been reported 

in this crop. Consequently, this work aimed to investigate the use of these two techniques 

(NIRS and MIRS) for the prediction of various analytes (nutritional-related and bioactive 

compounds), using an independent test set for model validation.  

3.4.4.1 Descriptive statistics 

The descriptive statistics for the calibration and test sets are provided in Table 3-10. Although 

the samples were sourced from ten different varieties and two different growing sites, the level 

of variation in many of the analytes was not exceptionally high. For example, there was only 
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~1% coefficient of variation (CV) in the protein content for the calibration set (2017 samples). 

Other analytes such as starch, amylose and amylopectin also showed minimal variation, which 

could potentially lead to difficulty in creating predictive models. The amount of variation in the 

FRAP and TPC was moderately high, with CVs of 34 and 31%, respectively.  

Table 3-10: Descriptive statistics for the parameters measured in this study, in the 

calibration and test sets.  

 
Calibration set – 2017 

samples (n=60) 

Test set – 2016 samples 

(n=40) 

Parameter Range Mean ± SD Range Mean ± SD 

Moisture (%) 9.13-10.65 9.79 ± 0.32 9.13-10.42 9.68 ± 0.29 

Protein (%) 26.46-30.23 27.78 ± 0.88 26.78-29.40 28.35 ± 0.54 

FRAP (mg TE/100 g) 202-730 301 ± 102 191-488 287 ± 68 

TPC (mg GAE/100 g) 223-691 323 ± 100 214-567 305 ± 87 

TMAC (mg cyd-3-glu/100 g) 7.0-20.5 14.7 ± 3.2 8.7-23.0 17.5 ± 3.6 

Starch (g/kg) 370-483 405 ± 20 372-412 395 ± 10 

Amylose (g/kg) 135-195 166 ± 12 93-158 123 ± 16 

Amylopectin (g/kg) 201-327 239 ± 23 230-304 272 ± 16 

Vicine (mg/g) 4.38-7.32 5.63 ± 0.70 4.66-7.48 6.06 ± 0.70 

Convicine (mg/g) 1.62-3.15 2.31 ± 0.36 2.04-3.18 2.52 ± 0.32 

Total VC (mg/g) 6.19-9.22 7.93 ± 0.78 6.71-9.68 8.58 ± 0.77 

Note: Total VC = total of vicine and convicine 

3.4.4.2 NIR spectra 

The raw and pre-processed NIR spectra are shown in Figure 3-13. Major peaks were located 

at 1200, 1470 and 1936 nm, corresponding to the CH second overtone from structural 

carbohydrates, OH second overtone from moisture, and OH first overtone, respectively 

(Manley, 2014). More minor peaks were observed between 1700-1840 nm (attributed to the 

first overtones of CH and CH2), 2050-2200 nm (first overtones of the amide A/II and amide I/III 

bonds in protein) and 2270-2370 nm (combination bands of CH, CH2 and CH3 bonds) (Gergely 

& Salgó, 2007). Overall, the spectra were quite comparable to those reported by Wafula et al. 

(2020) from common bean (Phaseolus vulgaris). There was some minor variation in the 

spectral amplitude between samples (Figure 3-13A), which was successfully removed 

following application of the standard normal variate (SNV) algorithm (Figure 3-13B).  
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Figure 3-13: The raw absorbance NIR spectra (A) and SNV-processed spectra (B) of the 

faba bean flour samples.  

3.4.4.3 NIR models 

PLSR models were developed for each of the 11 analytes specified in Table 3-10, trialling 18 

different pre-processing methods for each analyte. The following combinations of pre-

processing methods were examined: none (raw spectra), SNV smoothed, 1d5 (1st derivative 

with 5 smoothing points), 1d11, 1d15, 1d21, 2d5 (2nd derivative with 5 smoothing points), 2d11, 

2d15, 2d21, SNV + 1d5, SNV + 1d11, SNV + 1d15, SNV + 1d21, SNV + 2d5, SNV + 2d11, 

SNV + 2d15 and SNV + 2d21. For each analyte, the optimum model was selected from the 

R2, RMSECV and ratio of performance to deviation (RPD) values from LOO cross-validation. 

The optimum number of components (“factors”) for each model was identified from the location 

of the local minima on the model scree plot, which shows the RMSECV plotted against the 

number of components (see the example shown in Figure 3-14).  
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Figure 3-14: Scree plot showing the selection of the optimum number of components 

(7) for the PLSR model for the prediction of TP content, selected from the minimum 

RMSECV.  

The optimised PLSR models for each analyte are shown in Table 3-11, along with their 

corresponding figures of merit. A summary of the results obtained on the independent test set 

are also included in this table, namely the R2
test coefficient, root mean square error of prediction 

(RMSEP), and the bias, slope and intercept of the calibration model.  

The best performing model was found for protein content, followed by TPC, FRAP and 

convicine. Certain other analytes (e.g., moisture, starch, amylopectin, vicine and total 

vicine/convicine) showed reasonable cross-validation statistics for the calibration, but much 

poorer results for the independent test set. Similarly, the models for the TMAC, amylose and 

amylopectin contents showed no predictive power.  
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Table 3-11: Optimum PLSR models found for the prediction of the specified analytes using NIR spectroscopy. The calibration set 

comprised the 2017 samples (n = 60) and the test set comprised the 2016 samples (n = 40).   

Parameter 
Spectral pre-
processing^ 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

Moisture (%) 2d11 6 0.65 0.19 1.69 0.19 0.52 -0.37 0.33 6.37 

Protein (%) 1d5 7 0.94 0.21 4.15 0.86 0.35 -0.26 0.78 5.93 

FRAP (mg TE/100 g) SNV + 1d15 7 0.73 53 1.94 0.59 87 -61 0.53 102 

TPC (mg GAE/100 g) SNV + 1d15 7 0.88 35 2.86 0.66 76 -54 0.77 28 

TMAC (mg cyd-3-glu/100 g) 2d15 1 0.01 3.12 1.01 0.12 4.96 3.6 0.99 3.7 

Starch (g/kg) 2d15 6 0.63 12.1 1.66 0.12 20.8 -12.0 0.20 315 

Amylose (g/kg) 2d11 2 0.39 9.14 1.29 0.04 34.9 -31.1 0.50 46.5 

Amylopectin (g/kg) 2d15 6 0.55 15.3 1.50 0.05 37.1 20.4 -0.16 311 

Vicine (mg/g) SNV + 1d21 10 0.76 0.34 2.07 0.16 1.02 0.30 0.20 4.89 

Convicine (mg/g) SNV 10 0.78 0.16 2.17 0.48 0.41 0.34 0.73 0.93 

Total VC (mg/g) SNV + 1d21 9 0.70 0.42 1.84 0.15 2.93 0.67 0.26 6.5 

^ As stated in the materials and methods (Section 3.3.11), the numerical codes refer to Savitzky-Golay derivative pre-processing. For example, 1d15 would be the Savitzky-

Golay first derivative of the spectra, using a 15-point window (7 points on either side).  

SNV = standard normal variate normalisation 
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Despite the low range of protein contents found among the calibration samples, the PLSR 

model for protein showed a high level of linearity (R2) for both the calibration and test sets 

(Figure 3-15). The RMSEP of the test set was 0.35, indicating that the model could predict the 

protein content in independently sourced faba bean samples with ± 0.35% absolute error. As 

shown in Figure 3-15B, the model was slightly biased towards under-predicting protein 

contents (bias = -0.26), which appears to be due to the under-representation of high-protein 

content samples found in the calibration set (Figure 3-15A). Examination of the loadings plot 

for the protein prediction model (Figure 3-16) revealed the strongest influence at 1898 nm, 

apparently corresponding to the shoulder of the amide A/II region (Gergely & Salgó, 2007).  

 

Figure 3-15: (A) Actual vs predicted protein contents for the calibration set (n=60). (B) 

Actual vs predicted protein contents for the test set (n=40). 
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Figure 3-16: Loadings plot for the prediction of protein content in faba bean flour. 

Compared to the protein model, the PLSR model for the prediction of TPC (Figure 3-17) did 

not perform as well, as anticipated for analytes that are present at lower concentrations. 

Although the cross-validation statistics showed a high linearity (R2
cv of 0.88), the RMSEP (76 

mg GAE/100 g) was almost twice that of the RMSECV (35 mg GAE/100 g), indicating relatively 

poorer performance of the model on independently sourced samples. This RMSEP value was 

also considerably higher than the standard laboratory error of the reference 

spectrophotometric method (mean SD of 8.3 mg GAE/100 g for n=100 samples analysed in 

duplicate). The TPC of most samples were under-predicted by the PLSR model, giving it an 

overall negative bias (-54 mg GAE/100 g). It is worthwhile noting that despite the broad range 

of genotypes and growing sites represented in the faba bean samples, there were relatively 

few samples containing moderate or high TPC levels, which is likely the source of bias in this 

model. Nevertheless, the model could still discriminate between samples with low and high 

TPC.  

Interestingly, the loadings plot showed a strong influence of wavelengths around 1901 nm 

(Figure 3-18), which may be attributable to the amide bond region, as previously discussed 

for the protein model loadings. This may hint that the TPC model was using a secondary 

correlation between protein and TPC in order to estimate the TPC of the unknown samples.  

Other influential wavelengths were 1960 and 2149 nm, which may correspond to the first 

overtones of OH stretch and CH stretch, respectively (Toledo-Martín et al., 2018). These 

wavelengths were found by previous authors to be important in the prediction of total phenolic 
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content in raspberries using NIRS (Toledo-Martín et al., 2018) and likely correspond to the OH 

of polyphenol groups and CH of aromatic rings, respectively.  

 

Figure 3-17: Actual vs predicted TP contents for the calibration set (A) and test set (B). 

 

Figure 3-18: Loadings plot for the prediction of TP content in faba bean flour. 

The calibration and test set results for the FRAP PLSR model (Figure 3-19) were quite similar 

to those found for the TPD model. Again, the model did not perform as well on the independent 

test set, with the results limited to discriminating between samples with high or low FRAP 

values.  
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The loadings plot was almost identical to that observed for the TPC model (compare Figures 

3-18 and 3-20), with the predominating wavelengths being 1901, 1960 and 2149 nm. This 

indicates that the same analyte(s) were being measured by the TPC and FRAP models, which 

is a logical outcome if the phenolic compounds present in faba bean are primarily responsible 

for its antioxidant activity.  

 

Figure 3-19: Actual vs predicted FRAP values for the calibration set (A) and test set (B). 

 

Figure 3-20: Loadings plot for the prediction of FRAP in faba bean flour. 
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3.4.4.4 MIR spectra 

The raw and SNV-processed MIR spectra of the faba bean flour samples are shown in Figure 

3-21. The spectra were more complex compared to the NIR region, with major peaks centred 

around 3250 cm-1 (attributable to OH stretch from moisture), 3000-2850 cm-1 (CH2 and CH3 

stretch), 1640 cm-1 (C=O stretch of amides or other carbonyl-containing compounds), 1550-

1200 cm-1 (various amide and phenol bonds) and 1000 cm-1 (aromatic rings in cellulose) 

(Abbas et al., 2017; Dufour, 2009; Karoui et al., 2010; Mecozzi & Sturchio, 2017). Compared 

to the NIR spectra, there was greater variation in the amplitude of the MIR spectra between 

different samples; however, most of this was removed through the SNV algorithm (Figure 3-

21B). Although one sample appeared to be an outlier (Figure 3-21B), it was included in the 

PLSR model development in order to avoid artificially improving the reported model statistics 

(Williams et al., 2017).  

 

Figure 3-21: The raw MIR spectra (A) and SNV-processed spectra (B) of the faba bean 

flour samples. 
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3.4.4.5 MIR models 

As detailed for the NIR spectra, PLSR models were created for each analyte, with the optimum 

pre-processing method determined through the LOO cross-validation statistics. The best-

performing models for each analyte are detailed in Table 3-12. In contrast to the results found 

for the NIRS models, accurate calibration models were unable to be created from the MIR 

spectra (RPD < 1.5 for all). Similarly, the models had no predictive power when applied to the 

independent test set. For this reason, no calibration plots or loading plots are shown for the 

MIRS models.  
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Table 3-12: Optimum PLSR models found for the prediction of various analytes using MIR spectroscopy.  

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

Moisture (%) None 4 0.47 0.23 1.38 0.09 0.46 -0.36 0.70 2.68 

Protein (%) SNV 2 0.17 0.80 1.11 0.11 1.20 0.90 0.23 22.00 

FRAP (mg TE/100 g) SNV + 2d21 2 0.26 87.1 1.18 0.00 79.0 2.10 0.09 260 

TPC (mg GAE/100 g) SNV + 1d21 5 0.37 79.2 1.27 0.04 112 -38.6 0.21 232 

TMAC (mg cyd-3-glu/100 g) SNV 1 0.10 3.0 1.06 0.00 4.45 1.57 0.09 16.10 

Starch (g/kg) SNV + 2d15 2 0.27 17.0 1.18 0.02 23.2 -15.5 -0.17 462 

Amylose (g/kg) SNV + 2d21 2 0.05 11.4 1.04 0.10 49.2 -46.7 0.57 26.3 

Amylopectin (g/kg) SNV + 2d11 8 0.45 17.0 1.36 0.01 37.7 27.2 -0.06 287 

Vicine (mg/g) None 1 -0.05 0.71 0.98 0.01 0.73 0.25 0.80 1.39 

Convicine (mg/g) SNV 6 0.14 0.33 1.09 0.29 0.49 0.39 0.55 1.34 

Total VC (mg/g) None 1 -0.06 0.79 0.98 0.00 0.89 0.47 0.10 7.74 
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3.4.4.6 General discussion on the IR models 

The NIRS model for the prediction of protein content performed acceptably on the independent 

test set, confirming the suitability of this method for the rapid assessment of proximate analysis, 

as reported by numerous previous authors (El-Sherbeeny & Robertson, 1992; Wang et al., 

2014a). The model performance on the independent test set (R2
test = 0.86; RMSEP = 0.35%) 

was quite comparable to the (dependent) test set results reported by Wang et al. (2014a) 

(R2
test of 0.94 and RMSECV of 0.33%). However, Wang et al. (2014a) used a much broader 

range of protein contents for calibration (23.8-33.1%) compared to those used here (26.5-

30.2%), indicating that the model accuracy could be retained when using a narrower 

calibration range for this analyte. Examination of the model loadings plot confirmed that the 

selected wavelengths (principally 1898 nm) corresponded to the absorbance of amide bonds, 

which are found in protein. In other words, the model was looking in the correct region(s) of 

the NIR spectrum to be able to detect protein.  

Although the NIRS models for TPC and FRAP did not perform as accurately as it did for the 

protein content, they showed some potential for the estimation of these parameters. Several 

of the key predictive wavelengths (1960 and 2149 nm) appeared to correspond to the first 

overtones of OH stretch and CH stretch of phenol-containing compounds, while the 1901 nm 

wavelength also showed a large contribution. This may indicate that at least part of the 

predictive power of the model was due to a potential secondary correlation between protein 

and TPC/FRAP levels.  

There does not appear to be any previous work reporting the non-invasive prediction of 

antioxidant capacity in faba bean; however, Wang et al. (2014a) used NIRS to create 

prediction models for the total phenolic content in Chinese faba bean. The reported 

performance on the (dependent) test set was somewhat better than that reported here, with a 

R2
test of 0.78 and RMSEP of 37 mg/100 g. However, this reported accuracy is likely somewhat 

over-optimistic, as the test set was not sourced independently from the calibration samples.  

One of the challenges in creating accurate prediction models for TPC and FRAP from the 

present dataset may stem from the lack of samples containing intermediate TPC or FRAP 

values. This was despite the fact that this dataset included samples from ten different 

genotypes and two different growing locations, which would be anticipated to provide a wide 

range of phytochemical diversity. Consequently, the models developed here would appear to 

be only useful for screening purposes (e.g., classifying samples into high or low phenolic or 

FRAP contents) and not the absolute quantification of these analytes.  

Although MIRS has previously been reported for the prediction of total phenolic content in 

common bean flour (Carbas et al., 2020), no accurate calibration models could be developed 
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from the MIR spectra in this study for any of the analytes investigated. Although several of the 

analytes showed moderate R2 values in the calibration models, none showed acceptable 

performance when applied to the independent test set. This is likely due to the difficulty in 

applying a consistent level of pressure between the sample and the interface of the MIR 

instrument across all of the samples analysed. In turn, the amount of pressure applied has a 

strong influence on the signal amplitude and sensitivity. Consequently, the lack of predictive 

power observed here appears to be due to the lack of reproducibility in the MIR spectra. 

Although the main peak locations remain the same at different levels of pressure, the peak 

details can be obscured or altered in their relative heights at lower contact pressures (see the 

example shown in Figure 3-22). In future work, it might be possible to develop an automated 

device to apply a consistent amount of pressure between samples.  

 

Figure 3-22: MIR spectra collected with increasing levels of pressure applied to the 

sample. Note that turns = the number of turns of the pressure collar following the first 

contact of the tip with the sample; higher values correspond to more applied pressure.  

The NIR instrument used in this work does not suffer from the same drawback, as the sample 

was presented in a sample cup placed on top of the instrument, thus ensuring consistent 

presentation between different samples. Some authors have solved this issue with MIRS 

through the use of internal standards which are mixed with the sample (Sastre Toraño & 

Hattum, 2001). Although this is relatively minimal sample preparation, it would partially defeat 

the benefit of IR spectroscopy as a rapid analytical technique requiring no sample preparation.  
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Other authors have reported using ATR-MIR for the analysis of bioactive compounds without 

any special modifications to the instrument or sample matrices (Amanah et al., 2020; Carbas 

et al., 2020; Cozzolino et al., 2020; Kokalj Ladan et al., 2017; Uncu et al., 2019). However, it 

should be noted the majority of these studies did not confirm the model performance using 

independent test sets. Furthermore, most of studies using MIR spectroscopy for the analysis 

of bioactive compounds have been performed on liquid samples/extracts (see Table 2-3 in 

Section 2.5), which improves the reproducibility of sample presentation. On the other hand, 

phenolic concentrations are even lower in liquid extracts compared to the raw samples, 

meaning that the MIR analysis of grain extracts is unlikely to be a viable option.  

3.5 Summary  

The ten varieties of Australian faba bean investigated here displayed considerable variation 

in their anthocyanin, phenolic and antioxidant contents. In particular, the PBA Rana variety 

showed the highest level of total phenolics and the highest antioxidant capacity, followed by 

PBA Samira. Furthermore, PBA Rana contained significantly higher concentrations of most of 

the 10 individual phenolic compounds quantified in the faba bean samples.  

In addition to being the first work to profile the phenolic acid and flavonoid composition in >5 

commercial varieties of Australian faba bean, the impact of growing location on phenolic 

composition was also assessed. Location had a significant impact on the levels of five phenolic 

compounds (protocatechuic, vanillic and chlorogenic acids, vitexin and rutin), while genotype 

× location interactions were observed for three phenolic acids (vanillic, syringic and trans-

ferulic acids).  

Although most of the nutritional and anti-nutritional analytes included here could not be 

predicted using NIRS in this study (i.e., starch, amylose, amylopectin, vicine and convicine), 

good performance was found for the prediction of protein content, and acceptable 

performance for the estimation (i.e., high or low content) of TPC and FRAP values. In contrast, 

none of the MIR models showed acceptable results for any analyte. The results suggest that 

NIRS may be used for the rapid approximation of TPC and FRAP in faba bean. As NIRS is 

routinely used for the determination of protein in pulse crops for quality assurance purposes, 

application of such models for TPC/FRAP could potentially be utilised to extract further 

information from the spectra which are already collected for protein determination purposes.   
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Chapter 4. Wheat 

4.1 Introduction 

Following on from the promising results found for the use of infrared spectroscopy in faba 

bean (Section 3.7), the second grain crop chosen for investigation was wheat. In addition to 

its economic importance as the most widely grown grain crop in Australia, wheat contains 

lower phenolic levels compared to faba bean (Benayad et al., 2021). This makes it an ideal 

matrix to test the performance of infrared spectroscopy at low phenolic/antioxidant 

concentrations.  

As with faba bean, there have been few studies reporting the use of infrared spectroscopy for 

the estimation of bioactive compounds in this crop, aside from a very recent study using NIRS 

to predict TPC in whole wheat flour (Tian et al., 2021c). Preliminary work by the author, 

presented at the 69th Australasian Grain Science Association Conference (Johnson et al., 

2019), suggested that MIRS may show promise for the prediction of total phenolics and 

antioxidant capacity in wheat flour, although only a limited number of samples (n=17) were 

investigated in that study. Consequently, the work presented in this chapter aimed to 

investigate and compare the potential of NIRS and MIRS for the rapid prediction of total 

phenolic content and antioxidant capacity in Australian wheat flour using a larger sample size.  

4.2 Background 

Common or bread wheat (Triticum aestivum L.) is the second-most grown grain crop 

worldwide (after corn), with over 760 million tonnes harvested in 2020 (FAO, 2022). It is a vital 

crop for ensuring global food security, supplying approximately 20% of dietary calorie 

requirements across the globe (Shiferaw et al., 2013). Furthermore, wheat is the largest 

broadacre crop in Australia, with 14 million tonnes produced in the 2019-2020 season 

(Australian Bureau of Statistics, 2021).  

Although the health benefits of wheat are generally considered to be lower than that of pulse 

crops (Curran, 2012; Rebello et al., 2014), it does contain a number of potentially health-

benefitting compound classes, including polyphenols, carotenoids, vitamin E and phytosterols 

(Baublis et al., 2000; Dalton et al., 2012). Although these compounds are most abundant in 

whole grain products (Dalton et al., 2012), they are also found in refined wheat products, albeit 

at lower levels (Lu et al., 2014). The major polyphenol compounds previously identified from 

wheat include gallic acid, 4-hydroxybenzoic acid, vanillic acid protocatechuic acid, syringic 

acid, ferulic acid, caffeic acid, chlorogenic acid, sinapic acid, p-coumaric acid, cinnamic acid, 

rutin, quercetin, kaempferol, vitexin, isovitexin and resveratrol (Kaur et al., 2021; Tian et al., 
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2021b). There is also increasing interest in developing wheat lines with elevated phenolic acid 

contents (Li et al., 2008; Tian et al., 2021a).  

As with other grain crops, near-infrared spectroscopy has been widely applied for the quality 

assessment of wheat and wheat flour, including the prediction of protein (Ye et al., 2018), fibre 

(Stubbs et al., 2010), starch (Peng & Zhang, 2010) and other quality parameters important for 

bread-making (Williams, 2020). A recent study by Tian et al. (2021c) investigated the use of 

NIRS for the prediction of TPC in whole wheat flour, reporting a high level of linearity (R2
val = 

0.90) and precision (RMSEV = 7.1 mg GAE/100 g) on a dependent test set. However, the 

authors did not consider the prediction of antioxidant capacity in this study. Additionally – as 

with faba bean – there are few studies investigating the use of MIRS for the quality assessment 

of wheat.  

Consequently, this work investigated and evaluated the performance of NIRS and MIRS for 

the prediction of phenolic content, anthocyanin content and antioxidant capacity in Australian-

grown wheat.  

4.3 Materials and methods 

4.3.1 Wheat samples 

A total of 65 wheat samples were sourced from the Australian Export Grains Innovation Centre 

(AEGIC). In order to provide maximum variability in their anticipated bioactive contents, these 

comprised samples sourced from a range of different wheat grades and production areas 

(n=17 samples), as well as samples from a pearling trial (n=48 samples from 3 different wheat 

grades). The samples from the pearling trial had varying levels of bran remaining on the kernel 

after the different pearling times (0-20 secs); thus, would be expected to display significantly 

different phenolic and antioxidant contents.  

The sample details are provided in Appendix A. As commercial Australian wheat samples are 

sold by grade rather than variety, each sample likely comprised batches of wheat from a range 

of different varieties, rather than being from one pure wheat variety. Consequently, analysis 

by wheat variety was not performed here.  

At AEGIC, the samples were impact milled to produce whole seed flour (Falling No. grinder, 

0.8 mm screen), following the methods described for faba bean in Section 3.3.1. Moisture 

content was also determined by AACC International Method 44-15.02 and protein using a 

LECO TruMac N protein analyser, as described in Section 3.3.1. All results were expressed 

on an oven-dried weight basis.  
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4.3.2 Analysis of TPC, FRAP and TMAC 

Following extraction of the polar phenolic compounds using 90% methanol (as described for 

faba bean in Section 3.3.3), the TPC, FRAP and TMAC were analysed following the methods 

in Sections 3.3.4, 3.3.5 and 3.3.6, respectively. Extractions and subsequent analyses were 

performed in duplicate. All results were expressed as mg of the corresponding standard per 

100 g of sample.  

Phenolic profiling by HPLC-DAD was not conducted on these samples as the phenolic 

composition of wheat flour is already well documented (Barros Santos et al., 2019; Liu et al., 

2010; Lu et al., 2014; Mazzoncini et al., 2015; Mpofu et al., 2006; Tomé-Sánchez et al., 2020).  

4.3.3 NIR and MIR spectroscopy 

NIR and MIR spectra were collected from the wheat flour using the instruments and settings 

described in Sections 3.3.8 and 3.3.9. Five replicate MIR spectra and three replicate NIR 

spectra were collected from each flour sample, repacking the instrument with fresh flour each 

time. The mean of replicate scans was used in subsequent data analysis.  

4.3.4 Spectral data analysis 

Partial least squares regression analysis of the spectra was conducted in R Studio, using 

different pre-processing combinations of SNV and 1st or 2nd derivatives, as described in 

Section 3.3.11.  

To create the calibration set, 50 of the samples (~75% of the total) were selected from the 

dataset using the Kennard-Stone algorithm, using the Mahalanobis distance across the first 

two 2 principal components. The remaining 15 samples (~25%) were used as a dependent 

test set to assess the performance of the optimised models. No outliers were removed from 

the dataset. The full range of wavelengths was used in the PLS regressions. The optimum 

pre-processing method and number of model components were determined through full LOO 

cross-validation performed on the calibration samples.  

4.4 Results and discussion 

4.4.1 Correlation analysis 

To investigate the relationships that existed between the various phytochemical analytes, 

Pearson R linear correlation analysis was conducted on this data and a correlogram produced 

(Figure 4-1). The only significant positive correlation was between TPC and FRAP (r63 = 0.250, 

P<0.05). In addition, the FRAP was negatively associated with moisture content (r63 = -0.337, 

P<0.01), and the TPC was negatively correlated with protein content (r63 = -0.632, P<0.001). 
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This stood in contrast to the positive correlation between TPC and protein previously observed 

in faba bean (Section 3.4.1.2).  

 

Figure 4-1: Correlogram showing the correlations between the phytochemical 

constituents and physical parameters of the wheat samples (n = 65). Correlations with 

R values above 0.24 or below -0.24 were statistically significant at α = 0.05.  

4.4.2 Prediction of bioactive compounds using IR spectroscopy 

4.4.2.1 Descriptive statistics 

The descriptive statistics for the calibration and test sets are provided in Table 4-1. The range, 

mean and standard deviation were comparable between the calibration and test sets for most 

analytes, indicating that the Kennard-Stone algorithm did an adequate job of partitioning the 

spectra between these groups. The moisture and protein content showed a reasonably large 

level of variation between samples, with a moderate amount of variation also found in the 

FRAP content. However, the variation in the TPC was much lower, suggesting that it would 

be more difficult to create an accurate model for this analyte.  
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Table 4-1: Descriptive statistics for the parameters measured in the wheat flour samples, 

for both the calibration and test sets.  

Parameter 
Calibration set (n=50) Test set (n=15) 

Range Mean ± SD Range Mean ± SD 

Moisture (%) 10.1-14.5 11.90 ± 1.39 8.7-14.0 11.70 ± 1.30 

Protein (%) 10.66-17.46 14.16 ± 1.98 11.43-16.84 13.97 ± 2.25 

FRAP (mg TE/100 g) 14.4-64.0 32.8 ± 16.4 19.4-53.5 25.3 ± 8.5 

TPC (mg GAE/100 g) 129.7-179.8 149.5 ± 11.3 139.0-167.6 151.9 ± 9.7 

TMAC (mg cyd-3-glu/100 g) 0.0-10.0 2.5 ± 2.2 0.0-3.9 2.0 ± 1.1 

 

4.4.2.2 NIR spectra 

Figure 4-2 shows the mean raw and SNV-processed NIR spectra of all 65 wheat flour samples. 

The NIR spectra showed major peaks at 1467 nm and 1934 nm, corresponding to the second 

and first overtone of the OH bond (from moisture in the sample or other R-OH bonds), 

respectively (Ziegler et al., 2016a). Other smaller peaks included 1205 nm (CH second 

overtone from lipids and structural carbohydrates), 2107 nm (amide bond from protein), broad 

peaks between 1680-1850 nm (CH first overtone stretch) and 2260-2370 nm (CH stretching 

deformation of CH2 and CH3 bonds), and shoulders at 1360 nm (second overtone of CH3 or 

ArOH) and 1580 nm (tentatively assigned to CH3/ArCH first overtone from starch) (De 

Girolamo et al., 2019; Rodríguez et al., 2019).  
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Figure 4-2: The absorbance raw NIR spectra (A) and SNV-processed spectra (B) of the 

wheat flour samples.  

4.4.2.3 NIR models 

The PLSR models with the optimised spectral pre-processing methods for each analyte are 

detailed in Table 4-2. The best-performing model was for protein content (Figure 4-3), which 

showed a R2
test of 0.991 and RMSEP of 0.22%. Furthermore, the model showed minimal bias 

and the slope and intercept were extremely close to their ideal values of 1 and 0, respectively 

(Table 4-2). Examination of the loadings plot for the protein prediction model (Figure 4-4) 

showed predominant contributions in the N-H asymmetric stretch and amide II region (1928-

1941 nm), as anticipated for a model measuring protein content (Kays et al., 2000). Other 

minor contributions were at 2226 nm (potentially corresponding to the amide I and III region) 

and 1732 nm (which may be due to CH first overtones in gluten, the major protein found in 

wheat) (Kays et al., 2000).  
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Table 4-2: Optimum PLSR models found for the prediction of the specified analytes using NIR spectroscopy, using separate calibration 

and dependent test sets.  

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

Moisture (%) SNV + 1d15 6 0.84 0.56 2.49 0.76 0.62 -0.04 0.966 0.35 

Protein (%) SNV 5 0.974 0.32 6.25 0.991 0.22 -0.06 0.998 -0.03 

FRAP (mg TE/100 g) SNV 6 0.88 5.6 2.95 0.917 5.4 -0.64 0.620 9.2 

TPC (mg GAE/100 g) SNV + 1d21 5 0.61 7.0 1.62 0.83 3.9 -0.10 0.907 14.1 

TMAC (mg cyd-3-glu/100 g) 1d11 4 0.05 2.1 1.03 0.00 1.9 -0.63 0.02 1.98 

 

Table 4-3: Optimum PLSR models found for the prediction of various analytes using MIR spectroscopy, using separate calibration and 

dependent test sets.  

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

Moisture (%) 1d21 4 0.86 0.52 2.65 0.83 0.65 0.08 1.45 -5.10 

Protein (%) SNV + 2d15 6 0.92 0.55 3.65 0.93 0.62 -0.10 0.89 1.40 

FRAP (mg TE/100 g) SNV + 1d15 6 0.88 5.2 2.93 0.83 7.0 1.56 1.20 -4.21 

TPC (mg GAE/100 g) SNV 5 0.51 7.8 1.45 0.73 5.6 -1.53 0.76 33.8 

TMAC (mg cyd-3-glu/100 g) None 1 -0.04 2.1 0.99 0.02 1.6 0.54 -1.25 5.55 
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Figure 4-3: Actual vs NIRS-predicted protein values for the calibration (A) and test (B) 

samples.  

 

Figure 4-4: Loadings plot for the NIRS prediction of protein content in wheat flour.  

The NIRS model for moisture content performed acceptably, with acceptable linearity, very 

low bias and a slope close to 1 (Table 4-2). However, the RPD was considerably lower than 

that for protein, indicating relatively higher error associated with the moisture model. The 

predominant loading for the moisture content model was at 1900, corresponding to the first 

overtone of the OH bond (Ziegler et al., 2016a), with more minor contributions at 1949 and 

2156 nm.  
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In contrast to the results for protein and moisture, the model for TMAC showed no predictive 

power, likely due to the very low concentrations of this analyte.  

The NIRS model for FRAP content also performed well, although it should be cautioned that 

there were no samples with intermediate FRAP values (Figure 4-5). For example, in the test 

set, only one sample had a high FRAP value, which was moderately underpredicted by the 

model. If this point was removed, then the R2
test fell significantly to 0.46, although the RMSEP 

improved to 2.9 mg TE/100 g. Nevertheless, most of the other sample points fell very close to 

the regression line (Figure 4-5B). The main loadings for the FRAP model (Figure 4-6) showed 

a negative peak at 1934 nm (the N-H asymmetric stretch and amide II region) and a positive 

peak at 2102 nm (potentially resulting from the combination bands of ROH groups). Thus it 

appears that the antioxidant capacities of the samples were negatively correlated with their 

protein contents and positively associated with their levels of phenolic compounds (containing 

ROH groups).  

 

Figure 4-5: Actual vs NIRS-predicted FRAP values for the calibration (A) and test (B) 

samples.  
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Figure 4-6: Loadings plot for the NIRS prediction of FRAP in wheat flour.  

The TPC of the samples was more evenly distributed compared to the FRAP (for both the 

calibration and test sets), containing samples of a range of TPCs throughout the calibration 

range (Figure 4-7). Although the linearity was lower compared to the FRAP model (R2
test = 

0.73), the RMSEP was better at just 3.9 mg GAE/100 g. This was evidenced in most of the 

test set samples being very close to their true values across the entire calibration range (Figure 

4-7B). The loadings plot for the TPC model (Figure 4-8) appeared visually different to the 

FRAP model due to the use of the first derivative of the spectra in the former. However, the 

main influential wavelengths were quite similar, being centred at approximately 1930 nm and 

2110 nm. Again, these are likely to correspond to amide and ROH bonds, respectively.  
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Figure 4-7: Actual vs NIRS-predicted TPC values for the calibration (A) and test (B) 

samples.  

 

Figure 4-8: Loadings plot for the NIRS prediction of total phenolic content in wheat flour.  

4.4.2.4 MIR spectra 

The MIR spectra of the wheat samples are shown in Figure 4-9A. The spectra appeared 

broadly similar to that observed for faba bean (Section 3.4.4.2), indicating the presence of 

similar aetiological compounds/bonds. As can be seen from this figure, there was considerable 

variation in the amplitude of the MIR signal, resulting from inconsistencies in applying each of 

the samples to the ATR crystal with the same degree of pressure. For example, the spectra 

from one batch of samples showed a lower amplitude compared to another batch of samples 

analysed on the following day (Figure 4-9A). However, application of the SNV pre-processing 

algorithm removed most of this variation (Figure 4-9B).  



 

Page 137 of 248 
 

 

Figure 4-9: The raw MIR spectra (A) and SNV-processed spectra (B) of the wheat flour 

samples.  

4.4.2.5 MIR models 

Compared to the NIRS results, the MIRS models showed lower R2
test and higher RMSEP 

values for all analytes (Table 4-3); although the magnitude of this difference was not very high 

for most analytes. For example, the RMSEP values for FRAP and TPC were only slightly 

higher, while the RMSEP for moisture content was almost identical between the two 

instrument types.  

However, the MIRS results for the prediction of protein were less than half as accurate 

compared to NIRS (Figure 4-10). The loadings for the protein model (Figure 4-11) showed 

that the primary influences were from regions corresponding to CH stretch (~3050-2870 cm-

1), amide I and II bands (1760-1400 cm-1) and aromatic groups from cellulose (~970 cm-1) (Ji 

et al., 2020).  
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Figure 4-10: Actual vs MIRS-predicted protein values for the calibration (A) and test (B) 

samples.  

 

Figure 4-11: Loadings plot for the MIRS prediction of protein content in wheat flour.  

Again, the included wheat samples displayed only low or high FRAP values (with no samples 

of intermediate values), while the TP contents of the samples were distributed roughly equally 

throughout the calibration range. Consequently, the prediction accuracy of the FRAP model 

(Figure 4-12) would likely be improved through inclusion of samples of intermediate values. 

The loadings for the FRAP model (Figure 4-13) were somewhat similar to those of the protein 

content model, but with the strongest influences from the CH stretch (~3000 cm-1) and 



 

Page 139 of 248 
 

cellulose bond (~1000 cm-1) regions, with moderate influence from the carbonyl (~1700 cm-1) 

and amide regions (1600-1400 cm-1).  

 

Figure 4-12: Actual vs MIRS-predicted FRAP values for the calibration (A) and test (B) 

samples.  

 

Figure 4-13: Loadings plot for the MIRS prediction of FRAP in wheat flour.  

As observed for FRAP, the prediction accuracy of the MIRS model for TPC (Figure 4-14) was 

somewhat poorer than the NIRS model for this analyte (cf. Figure 4-7); however, MIRS still 

appeared suitable for the estimation (although not exact quantification) of TPC. In contrast to 
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the FRAP loadings, the loadings plot for the TPC prediction model showed influences from 

the OH (~3400 cm-1), carbonyl (~1700 cm-1) and cellulose (~1000 cm-1) regions (Figure 4-15).  

 

Figure 4-14: Actual vs MIRS-predicted TPC values for the calibration (A) and test (B) 

samples.  

 

Figure 4-15: Loadings plot for the MIRS prediction of total phenolic content in wheat 

flour.  

4.4.2.6 General discussion on the IR models 

Overall, the NIRS results showed promise for the rapid, non-invasive prediction of most of the 

analytes investigated in the wheat samples, including proximate analytes (protein and 
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moisture) and the bioactive components (FRAP and TP). Although models for these proximate 

analytes have been previously reported by numerous authors, their success demonstrates 

that the NIRS instrumentation was functioning correctly and that there were no issues with 

sample degradation.  

The best performing NIRS model was found for protein content (R2
test = 0.991; RMSEP = 

0.22%). This model showed ideal statistics – with minimal bias, a slope close to 1 and an 

intercept close to 0. Furthermore, the RPD of the test set (RPDtest) was 10.23, well above the 

limit of an excellent prediction model (RPD of 3) (Nicolaï et al., 2007). The model developed 

here was more accurate than NIRS models previously reported for Turkish wheat (R2
test = 0.97, 

RMSEP = 0.38%; dependent test set) (Başlar & Ertugay, 2011) and triticale, a hybrid cross of 

wheat and rye (R2
test = 0.96, RMSEP = 0.32%; test set from a different growing season) (Igne 

et al., 2007). It was not quite as accurate as the model reported by Ye et al. (2018) (R2
test = 

0.999, RMSEP = 0.05%; dependent test set), likely due to the smaller calibration sample size 

used in this study.  

Although the model linearity was somewhat lower for the prediction of TPC (R2
test = 0.83), the 

RMSEP for this analyte was exceptionally low at just 3.9 mg TE/100 g. This corresponds to a 

RPDtest of 2.49, indicating good prediction accuracy (Nicolaï et al., 2007). The only previous 

study found using NIRS for the prediction of TPC in wheat flour was performed by Tian et al. 

(2021c), who reported a higher R2 value (R2
val = 0.90), but lower precision (RMSEV = 7.1 mg 

GAE/100 g) on a dependent test set.  

No previous studies were found using infrared spectroscopy for the prediction of antioxidant 

capacity in wheat flour, although several studies have attempted this in other crops such as 

maize (Redaelli et al., 2016), rice (Zhang et al., 2008) and gluten-free grains (Wiedemair et 

al., 2019). Although the FRAP prediction model developed here showed high linearity and a 

relatively low RMSEP, it should be cautioned that there were relatively few points with higher 

FRAP values included in the calibration and test sets. Consequently, this model had a slope 

that deviated from 1, indicating relative under-prediction of the highest-content sample. 

Nevertheless, the similar wavelength loadings between the TPC and FRAP models supports 

the observation that this model was looking at the “correct” wavelengths to measure 

compounds with antioxidant activity. While it is likely that analysis of a larger number of wheat 

samples containing a broader array of FRAP values would be required to create a robust NIRS 

model for the prediction of this analyte, the current model appeared suitable for rough 

estimation (not exact quantification) of FRAP values. Its RPDcal was 2.95, although this fell to 

a RPDtest of 1.57 for the test set, indicating that it would be best suited to screening purposes 

only (Nicolaï et al., 2007).  
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Neither NIRS or MIRS were able to predict the total monomeric anthocyanin content, likely 

due to the very low concentration of this compound (mean content of just 2.5 mg cyd-3-glu/100 

g in the calibration set).  

In general, the MIRS models performed more poorly compared to the NIRS models in both 

the calibration and test sets (cf. Tables 4-2 and 4-3). The only exception to this trend was for 

the prediction of moisture content, which showed a higher R2
test and similar RMSEP in the 

MIRS model.  

In contrast to the results previously found in faba bean (Section 3.4.4.5), MIRS was able to 

predict the protein content of wheat with acceptable accuracy (R2
test = 0.93; RMSEP = 0.62%). 

However, its accuracy was approximately three times lower compared to the use of NIRS for 

the same analyte (R2
test = 0.991; RMSEP = 0.22%), reflecting the challenge in obtaining 

reproducible spectra when using ATR-MIR instrumentation.  

Similarly, the linearity (R2) and RMSEP were slightly poorer for the MIRS prediction of TPC 

and FRAP compared to their respective NIRS models. However, the slope of the FRAP MIRS 

model (1.20) was closer to the ideal value of 1. In contrast to the similar loadings seen in the 

NIRS models for TPC and FRAP prediction, the MIRS models for these analytes were 

noticeably different in their loadings. While both included the carbonyl region (~1700 cm-1), 

the OH (~3400 cm-1) and cellulose (~1000 cm-1) regions showed greater influence in the TPC 

model, while the FRAP model included more influence from the CH stretch (~3000 cm-1) and 

amide regions (1600-1400 cm-1). This indicated that the FRAP model was relatively specific 

for the prediction of antioxidant compounds (potentially including non-phenolic antioxidant 

compounds such as tocopherols and or carotenoids), rather than just relying on the correlation 

between FRAP and TPC values to predict the former analyte.  

4.5 Summary 

The models developed here showed a high level of accuracy for the prediction of protein and 

considerable promise for the estimation of TPC and FRAP, particularly using the NIR spectra. 

However, the loadings plots for FRAP suggested that the MIRS model was more specific to 

antioxidant compounds, while the NIRS FRAP model loadings were very similar to the TPC 

model loadings.  

As mentioned for faba bean (Section 3.4.4.6), NIR spectra are routinely collected from wheat 

samples for the prediction of protein content. Consequently, NIRS models for the estimation 

of TPC/FRAP – such as those demonstrated here – could be applied to these spectra to gain 

further information about the bioactive composition of the samples. This would provide an 
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additional layer of quality assurance information at no extra cost and minimal additional 

effort/setup.  

It should be noted that the wheat samples investigated in this study were unable to be sourced 

from growing trials and consequently the models were validated using a dependent test set 

instead of an independent test set. Consequently, the reported accuracies may be over-

optimistic. Future studies should incorporate a larger sample size and also confirm the model 

accuracy using an independent test set, ideally sourced from a different growing season to 

the samples comprising the calibration set.  
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Chapter 5. Mungbean 

This chapter uses information from one previously published paper:  

Johnson, J.B., Mani, J.S., Skylas, D., Walsh, K.B., Bhattarai, S.P. and Naiker, M., 2021. 

Phenolic profiles and nutritional quality of four new mungbean lines grown in northern 

Australia. Legume Science, 3(2), p.e70. DOI: 10.1002/leg3.70 

 

5.1 Introduction 

The third crop chosen for investigation in this study was mungbean. Although it is not as widely 

grown in Australia as other grain crops such as wheat or faba bean, production has expanded 

rapidly in recent years. Furthermore, there is considerable opportunity to expand the 

production of this crop into the northern regions of Australia (Johnson et al., 2021d), as 

evidenced by recent field trials of this crop in northern Queensland and the Northern Territory 

(Surya Bhattarai, pers. comm.). In addition to this, there is considerable interest in the health-

benefiting properties of mungbean, particularly in major international markets such as China.  

Consequently, there is a need for context data on the typical levels of bioactive compounds in 

Australian-grown mungbean samples. Similarly, the development of rapid analytical 

techniques for the estimation of bioactive compound levels would be greatly beneficial for the 

quality assurance of mungbean samples, particularly those destined for the international 

export market.  

For this study, a total of 100 mungbean samples (from 5 different varieties) were sourced from 

a controlled field trial conducted in Home Hill, north Queensland. Although samples could only 

be procured from one location and growing season, they did incorporate 20 within-field 

replicates of each variety. The first stage of work was the benchtop analysis of the 

phytochemical composition of all samples, in order to gain an understanding of the 

composition of different varieties and the level of within-field variation of the analytes.  

Subsequently, the concentrations of selected phenolic compounds were measured in a subset 

of the mungbean samples (25 samples; comprising 5 field replicates of each variety) using 

HPLC-DAD. This aimed to provide more detailed insight into the specific phenolic profiles 

found in Australian-grown mungbean. This information could be useful for supporting specific 

health claims if the major phenolic compounds present in the samples have been clearly linked 

with certain health benefits via prior in vitro or in vivo studies. Basic proximate nutritional 

parameters (e.g., protein, ash) were also measured on this sample subset.  
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Finally, NIR and MIR spectra were collected from all 100 samples. As with faba bean and 

wheat, PLSR modelling was used to investigate the potential of IR spectroscopy for predicting 

the levels of bioactive compounds in mungbean.  

5.2 Background 

Mungbean (Vigna radiata L.) has traditionally been considered a relatively minor crop in the 

Australian pulse sector, with around 120,000 tonnes harvested annually (Chauhan & Williams, 

2018). However, its popularity among producers has increased considerably in recent years, 

with the market value of Australian mungbean industry rapidly approaching $100 million p.a. 

(Australian Mungbean Association, 2017). Around 90% of the harvested crop is exported 

overseas, with the major importers including India, Vietnam, China and other south-east Asian 

countries. The Australian mungbean industry is considered to be a world leader in the 

development and adoption of industry-wide standards, in order to deliver the highest-quality 

produce possible (Australian Mungbean Association, 2017). This opens a huge potential to 

increase the production of mungbean in Australia, both for export purposes and to supply 

increasing demand in the domestic food market.  

Mungbean is currently used in soups or dhal, milled to produce flour for various culinary uses, 

dried and roasted as snack products, or germinated and consumed as sprouts (Dahiya et al., 

2015). The uses of mungbean continue to diversify, driven by opportunity for generating 

income at various points along the value chain. Hence an increasing number of mungbean-

based value-added products are appearing on market shelves worldwide. Maintaining the high 

quality of both the mungbean seed and its value-added products are fundamental for the 

successful commercial future of the mungbean crop.  

One of the major anticipated demands for this crop in the future is related to its high protein 

content, leading to the potential for meat replacement products (Alexeev et al., 2020). In 

addition to providing a valuable source of protein, mungbean also contain high levels of 

antioxidant and phenolic compounds (Ganesan & Xu, 2018; Hou et al., 2019). The major 

phenolic acids present in mungbean have been reported to be trans-ferulic acid, caffeic acid 

and coumaric acid, while the flavonoids present in the highest concentrations are isovitexin, 

vitexin and catechin (Hou et al., 2019; Meenu et al., 2016b). These and other bioactive 

compounds present in mungbean have been reported to possess a wide range of beneficial 

physiological activities, including scavenging free radicals (Tiwari et al., 2013), increasing 

insulin sensitivity (Yao et al., 2013), reducing plasma triglyceride levels (Tachibana et al., 

2013), inhibiting the growth of pathogenic microbes (Hafidh et al., 2015), reducing 

hypertension (Hsu et al., 2011) and inflammation (Venkateshwarlu et al., 2016), and exerting 

anti-cancer effects (Hafidh et al., 2015). Increased research activities into the potential health 
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benefits of mungbean (e.g. Amaral et al., 2017; Hou et al., 2019; Hou et al., 2020) has led to 

increased consumer awareness and interest in this crop and its derived products as functional 

foods (Sehrawat et al., 2020), raising the profile and market value of this commodity.  

Consequently, this study aimed to profile the bioactive composition of five mungbean varieties 

grown in Australia, using benchtop spectrophotometric methods, HPLC-DAD and infrared 

spectroscopy.  

5.3 Materials and methods 

5.3.1 Seed material 

The mungbean seed material comprised a total of 100 samples, sourced from a variety-

comparison field trial conducted near Home Hill, northern Queensland (19.8462°S, 

147.2448°E). The samples comprised five different mungbean varieties: four newly developed 

varieties from AgriVentis Technology Ltd Australia (AVTMB 1-4), and one established 

commercial variety (Jade-AU). As samples were unable to be procured from more than one 

location or growing season, 20 within-field replicates of each variety were collected from 

different locations across the field at harvest maturity. The growing conditions, harvest details 

and physical seed quality – including yield, seed size and colour – are described in detail in 

Appendix B.  

For each field replicate (n=20 per variety), approximately 20 g of seed material was ground to 

a fine flour (Breville Coffee & Spice Grinder; Botany, NSW) for subsequent extraction and 

analysis. The seed material was not dehulled before being processed.  

Moisture content of the flour was determined according to AOAC Official Method 925.10. 

Briefly, flour samples (~3 g) were dried in a laboratory oven (Memmert 400; Buechenbach, 

Germany) at 105°C and the loss in mass quantified.   

5.3.2 Analysis of FRAP, TPC, TMAC and CUPRAC 

Polar phenolic compounds were extracted with 90% methanol, following the protocol 

described in Section 3.3.3, but using 1 g of flour and a final volume of 15 mL. Extractions and 

subsequent assays were performed in duplicate for each sample.  

Ferric reducing antioxidant potential (FRAP), total polyphenolic content (TPC) and total 

monomeric anthocyanin content (TMAC) were determined from the extracts as described in 

Sections 3.3.4, 3.3.5 and 3.3.6. The results for FRAP were expressed in Trolox equivalents 

(TE), TPC results in gallic acid equivalents (GAE) and TMAC results in equivalents of cyanidin-

3-glucoside (cyd-3-glu).  
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As an alternative measure of antioxidant capacity, the cupric reducing antioxidant potential 

(CUPRAC) assay was also performed on the samples. To perform the CUPRAC analysis, 1 

mL of 10 mM aqueous copper (II) chloride, 1 mL of 1 M aqueous ammonium acetate, 1 mL of 

freshly prepared 7.5 mM neocuproine ethanol solution and 1 mL of Milli-Q water were 

combined with 100 µL of the sample extract. After vortexing for 30 seconds, the samples were 

incubated in a covered water bath at 50°C for 30 minutes. The resulting absorbances were 

measured at 450 nm using a UV-Vis spectrophotometer. As with the FRAP assay, the 

CUPRAC was derived as a function of the equivalent absorbance of Trolox standards in 

ethanol solution over the range of 50-600 mg L-1 (R2 = 0.999; Figure 5-1). Results were 

expressed as milligrams of Trolox equivalents (TE) per 100 g of sample weight (mg TE/100 

g).  
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Figure 5-1: Calibration curve of Trolox used in the CUPRAC assay.  

5.3.3 Analysis of basic proximate nutritional quality 

As the results from the benchtop phytochemical analysis (Section 5.3.2) did not show a high 

level of variation between the within-field replicates, proximate nutritional analysis was only 

performed on a subset of the mungbean samples (5 within-field replicates for each variety, for 

a total of 25 samples).  

Nitrogen and carbon content were determined on a LECO TruMac Series Carbon and Nitrogen 

Analyser (LECO, USA). Protein content was obtained by multiplying the nitrogen content by 

the standard conversion factor of 6.25 (Skylas et al., 2017). The ash content was determined 

as the proportion of mass remaining after combustion of the samples in a muffle furnace 

(ModuTemp; Midvale, WA) at 500°C for 8 h (Kalra, 1997).  
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5.3.4 Phenolic profiling by HPLC-DAD 

To further characterise and investigate the individual phenolic compounds present in the 

different mungbean varieties, HPLC-DAD was used to conduct phenolic profiling on the subset 

of 25 samples described in Section 5.3.3.  

Each methanol extract (10 mL) was concentrated (in duplicate) using a rotary evaporator with 

the water bath temperature kept at 27°C, before being reconstituted in 1 mL of methanol and 

syringe filtered (Livingstone 0.45 µm PTFE). The phenolic composition of these extracts was 

analysed using the Agilent 1100 HPLC system and methods described in Section 3.3.7.  

Sixteen phenolic acids and flavonoids (Figure 5-2) were identified in the mungbean extracts 

based on comparison of their retention times and UV spectra to authentic standards (Sigma-

Aldrich Australia). Additionally, isovitexin was tentatively identified in the extracts from its UV 

characteristics (λmax and peak shapes) and relative retention time. This tentative identity was 

later confirmed using LC-MS (see Section 5.3.5), making a total of 17 identified compounds. 

All compounds were quantified using their respective standards (Table 5-1), except for 

isovitexin, for which no standard was available. This compound was quantified as equivalents 

of its structural isomer, vitexin (Figure 5-2).  

Although hydroxybenzoic acids have been quantified at a detection wavelength of 280 nm by 

some authors (Xiang et al., 2019c), a wavelength of 210 nm was found to provide improved 

linearity and detection limits for most of these standards in this work (Table 5-1). This 

wavelength corresponds to the primary λmax of most benzoic acids and has also been used by 

several previous researchers for their quantification (Chirinos et al., 2008; Pereira et al., 2010). 

The typical reproducibility (coefficient of variation) associated with the HPLC analysis, as 

measured by triplicate injections of quercetin, gallic acid and p-coumaric acid standards, was 

2.5%, 0.73% and 0.25%, respectively.  
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Figure 5-2: The structure of the phenolic acids and flavonoids analysed in the mungbean samples.  
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Table 5-1: Quality-of-analysis parameters associated with the phenolic acid and flavonoid standards. All standards were calibrated 

across the range of 1-100 mg L-1.  

No. Compound 
Retention 
time (min) 

UV peaks (λmax) (nm) 
Quantification 

wavelength (nm) 
Slope 

Calibration 
R2 

Hydroxybenzoic acids 

1 Gallic acid 2.47 216, 272 210  40.1 0.9999 

2 Protocatechuic acid 4.00 206, 218sh, 261, 295 250  15.0 1 

5 p-hydroxybenzoic acid 5.79 214sh, 256 250  25.5 1 

6 Gentisic acid 6.08 213, 238sh, 330 210  39.7 1 

7 Vanillic acid 6.36 206, 218, 262, 293 210  28.4 1 

9 Isovanillic acid 6.58 206, 219, 260, 294 210  32.2 1 

10 Syringic acid 6.68 218, 276 210  30.5 1 

Hydroxycinnamic acids 

4 Chlorogenic acid 5.25 218, 246sh, 303sh, 327 320  13.2 0.9999 

11 p-coumaric acid 8.25 211, 228, 300sh, 310 
320  32.3 1 

8 Caffeic acid 6.43 218, 239, 298sh, 325 320  25.0 0.9999 

12 Sinapic acid 8.47 224sh, 238, 325 320  23.6 1 

13 trans-ferulic acid 8.54 218, 237, 298sh, 324 320  25.5 0.999 

17 Cinnamic acid 12.50 205, 218, 278 280  44.5 1 

Flavonoids 

3 Catechin 4.86 204, 230sh, 280 280  52.9 1 

14 Vitexin 8.76 216, 269, 338 320  8.1 1 

15 Isovitexin 9.34 215, 270, 338 320  (8.1)^ (1)^ 

16 Quercetin-3-glucoside 9.89 205, 257, 357 250  11.7 1 

^quantified as equivalents of vitexin 

sh = shoulder 
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5.3.5 LC-MS/MS identification of isovitexin 

As mentioned in Section 5.3.4, isovitexin was tentatively identified in the mungbean extracts 

from the similarity of its UV spectrum to vitexin. Vitexin showed λmax peaks at 2166, 269 and 

338 nm, while the compound identified as isovitexin showed peaks at 215, 270 and 338 nm 

(Figure 5-3). Furthermore, the spectra showed a smoother dip between 280-310 nm compared 

to vitexin (compare Figures 5-3A and B), a characteristic feature of this compound (Jang et 

al., 2019). In addition, isovitexin showed a similar – albeit slightly longer – retention time than 

vitexin, consistent with the elution order found in previous literature analysing these two 

compounds using reversed-phase HPLC with a C18 column (Chen et al., 2013; Liu et al., 2009).  

 

Figure 5-3: UV spectra of vitexin (A) and the compound tentatively identified as 

isovitexin (B), from the HPLC-DAD analysis.  
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To confirm the presence of isovitexin in the samples, liquid chromatography with tandem mass 

spectrometry (LC-MS/MS) analysis was performed on one of the concentrated methanol 

extracts used for HPLC-DAD analysis.  

The LC-MS/MS analysis was performed on a Nexera X2 system coupled to a Shimadzu 

LCMS-8040 system, comprising a CBM-20A communications bus module, DGU-20A 5R 

degassing unit, LC-30AD pumps, SIL-30AC autosampler and CTO-20AC column oven. 

Chromatographic separation was achieved using a Raptor biphenyl column (100 mm × 2.1 

mm, 2.7 µm), with an oven temperature of 40°C. Mobile phase A was water containing 5 mM 

ammonium formate and 0.1% formic acid, while mobile phase B comprised methanol 

containing 5 mM ammonium formate and 0.1% formic acid. The elution gradient began at 5% 

phase B, where it was held for 2 mins, before ramping to reach 85% phase B at 12 mins, 

where it was held for a further 2 mins. Between samples, the post-run equilibration time was 

2 mins. The flow rate was 0.6 mL/min, with an injection volume of 5 µL.  

The eluent from the LC was analysed using a Shimadzu LCMS-8040 model triple quadrupole 

mass spectrometer, equipped with an ESI source. The following ESI conditions were used: 

interface temperature of 350°C, DL temperature 250°C, heat block temperature 400°C. 

Nitrogen was used as both the nebulizing gas and drying gas, at flow rates of 3 L/min and 15 

L/min, respectively. The interface voltage was set at 4.50 kV. Analysis was performed in 

positive and negative ionization modes, with Q3 scans collected in each mode. For the Q3 

scans, all ions between m/z 100-700 were monitored.  

In addition, product ion scans (PISs) were conducted using a precursor ion of m/z 431 in 

negative ionization mode and m/z 433 in positive mode, based on the expected values of 

isovitexin drawn from previous literature (Fu et al., 2008; Pereira et al., 2005). The collision 

energies for the PISs were set to 35 V and -35 V, respectively, with monitoring of all ions 

between m/z 50-450. The LC-MS/MS data were collected and analysed in the LabSolutions 

software (Shimadzu, Kyoto, Japan).  

The identity of the vitexin peak was established by injecting an authentic standard of this 

compound (Sigma Aldrich, Australia).  

5.3.6 NIR and MIR spectroscopy 

NIR and MIR spectra were collected from all 100 samples of the mungbean flour using the 

instruments and settings described in Sections 3.3.8 and 3.3.9. Three replicate spectra were 

collected from each sample for both MIRS and NIRS, with the mean of the replicate scans 

used in subsequent data analysis.  
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5.3.7 Statistical analysis of phenolic data 

Statistical tests were performed on the phytochemical and phenolic data using IBM SPSS 

(v26) and R Studio running R 4.0.5. Where applicable, results are presented as mean ± 1 

standard deviation.  

5.3.8 Spectral data analysis 

Quantitative regression analysis of the infrared spectra was conducted in R Studio, as 

described in Section 3.3.11. Again, the model performance of the calibration set was evaluated 

through full LOO cross-validation. For model development, all of the AgriVentis samples 

(n=80) were used as a calibration set, while the Jade-AU samples (n=20) were used as an 

independent test set. A maximum of 10 components were considered for each PLSR model.  

5.4 Results and discussion 

5.4.1 Phytochemical and proximate composition 

5.4.1.1 FRAP, CUPRAC, TPC and TMAC 

The FRAP, CUPRAC, TPC and TMAC of the five mungbean varieties are provided in Table 

5-2. The FRAP was exceptionally low in the mungbean samples (mean of 13.5-20.4 mg 

TE/100 g across the varieties) compared to the results found for faba bean. Furthermore, there 

was no significant difference in FRAP between the mungbean varieties (one-way ANOVA, 

F4,95 = 1.79, P>0.05). However, the antioxidant capacity measured by the CUPRAC assay did 

vary significantly between varieties (one-way ANOVA, F4,95 = 6.81, P<0.001). The varieties 

AVTMB 1-3 showed very similar CUPRAC levels, while that of AVTMB 4 and Jade-AU were 

significantly higher. The CUPRAC was at the higher end of the range of antioxidant capacities 

found by Johnson et al. (2020a) in five commercial mungbean samples from Australian and 

international growers.  

The TPC showed a similar trend to CUPRAC, with significant variance between the mungbean 

varieties (one-way ANOVA, F4,95 = 8.78, P<0.001). Again, AVTMB 4 showed a significantly 

higher TPC (104.7 ± 8.4 mg GAE/100 g) than all other varieties except Jade-AU (93.1 ± 14.5 

mg GAE/100 g). The level of variation between samples was comparable to international 

studies on this crop (Kim et al., 2013; Shi et al., 2016; Zhang et al., 2013). Furthermore, the 

TPC was considerably higher than the range of TPCs (8-28 mg GAE/100 g) found in methanol 

extracts of 10 commercial Chinese mungbean samples (Zhang et al., 2013) and comparable 

to TPC values found by Yang et al. (2020) in nine mungbean cultivars from Sri Lanka (110-

150 mg/100 g).  
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The mungbean varieties also displayed a significant difference in their TMAC (one-way 

ANOVA, F4,95 = 28.2, P<0.001), with AVTMB 4 showing very low anthocyanin levels, followed 

by Jade-AU. The three remaining AVTMB varieties all contained comparable TMAC values 

(12.4-15.5 mg cyd-3-glu/100 g).   
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Table 5-2: Phytochemical contents of the five mungbean varieties (n = 20 field replicates for each; results given as mean ± 1 SD). 

Varieties with the same superscript were not statistically different according to a post hoc Tukey test at α = 0.05.  

Parameter AVTMB 1 AVTMB 2 AVTMB 3 AVTMB 4 Jade-AU P value 

CUPRAC (mg TE/100 g) 500 ± 63b 498 ± 78b 504 ± 60b 584 ± 83a 567 ± 70a <0.001*** 

FRAP (mg TE/100 g) 20.4 ± 9.0 15.6 ± 9.7 13.5 ± 5.2 14.3 ± 5.0 16.8 ± 13.6 0.137 (NS) 

TPC (mg GAE/100 g) 83.0 ± 14.3bc 79.4 ± 11.4c 90.5 ± 22.1bc 104.7 ± 8.4a 93.1 ± 14.5ab <0.001*** 

TMAC (mg cyd-3-glu/100 g) 14.4 ± 4.6a 15.5 ± 3.6a 12.4 ± 5.7a 3.3 ± 4.5c 7.3 ± 2.5b <0.001*** 

NS = not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 

 

Table 5-3: Physical characteristics and nutritional parameters for the five mungbean varieties (n = 5 field replicates for each; results 

given as mean ± 1 SD). Varieties with the same superscript were not statistically different according to a post hoc Tukey test at α = 

0.05.  

Parameter AVTMB 1 AVTMB 2 AVTMB 3 AVTMB 4 Jade-AU P value 

Moisture (%) 14.3 ± 2.1b,c 10.1 ± 0.3a 15.4 ± 1.8c 16.0 ± 1.7c 11.7 ± 0.9a,b <0.001*** 

Ash content (%) 4.26 ± 0.21a 3.72 ± 0.13c 3.90 ± 0.12b,c 3.97 ± 0.12b,c 4.15 ± 0.12a,b <0.001*** 

Protein (%) 28.01 ± 0.69a 26.14 ± 0.05b 27.34 ± 0.79a 27.45 ± 0.65a 27.32 ± 0.23a <0.001*** 

Carbon content (%) 47.33 ± 1.02a,b 44.88 ± 0.14c 47.56 ± 1.00b 48.28 ± 0.88b 46.00 ± 0.47a,c <0.001*** 

C:N ratio 10.56 ± 0.08a 10.73 ± 0.06b 10.88 ± 0.11b,c 10.99 ± 0.09c 10.52 ± 0.09a <0.001*** 

NS = not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 
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5.4.1.2 Proximate nutritional composition 

As previously stated (Section 5.3.3), proximate nutritional analysis was only performed on 5 

field replicates from each variety (n=25 samples in total), as the phytochemical results (Section 

5.4.1.1) indicated relatively low within-field variation of their composition.  

In terms of proximate composition (Table 5-3), there was a significant difference between 

varieties in moisture content at harvest (one-way ANOVA, F4,20 = 14.452, P<0.001), ash 

content (F4,20 = 10.799, P<0.001), protein content (F4,20 = 7.358, P=0.001), carbon content 

(F4,20 = 15.077, P<0.001) and the C:N ratio (F4,20 = 27.743, P<0.001). The moisture content 

ranged between 10.1% in AVTMB 2 to 16.0% in AVTMB 4, with Jade-AU also possessing 

quite a low moisture content (11.7%). This is likely to be principally due to varietal differences 

rather than the genotypes being at different stages of maturity, given that all varieties displayed 

the onset of senescence directly prior to the application of defoliant and subsequent harvest 

of the crop.  

The ash content was also the lowest in AVTMB 2 (3.72%) and highest in AVTMB 1 (4.26%), 

a similar range to that found in previous work on commercial varieties of Australian mungbean 

(Skylas et al., 2017). The protein content of AVTMB 2 (26.1%) was significantly lower than 

that of the remaining varieties, which ranged from 27.3-28.0%. Given that this variety (AVTMB 

2) also had a significantly lower yield compared to the other varieties (Appendix B), its lower 

protein content may be indicative of increased susceptibility to environmental stressors in this 

particular variety. The C:N ratio was highest for AVTMB 3 and 4, and lowest for AVTMB 1 and 

Jade-AU.  

5.4.1.3 Correlation analysis of phytochemical and proximate contents 

As with faba bean and wheat, correlation analysis was performed on the phytochemical and 

proximate data for the 25 mungbean samples. The resultant correlogram is shown in Figure 

5-4. There were a large number of significant correlations, most notably between TPC, 

CUPRAC and FRAP. Protein was positively correlated with the TPC and CUPRAC, but not 

FRAP. Positive correlations of varying strength were also found between protein, carbon, 

moisture and ash contents.  
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Figure 5-4: Correlogram showing the correlations between the phytochemical and 

proximate constituents of the mungbean samples (n = 25). Correlations with R values 

above 0.39 or below -0.39 were statistically significant at α = 0.05. Note that the “Seed” 

and “Flour” entries correspond to the CIE Lab colour of the mungbean whole seed and 

flour, respectively.  

5.4.2 Identification of isovitexin using LC-MS/MS 

Initial investigation of the m/z 431 ion chromatogram collected in negative ionization mode 

revealed the presence of two major peaks eluting at 6.66 and 6.97 minutes (labelled as peaks 

1 and 2 in Figure 5-5). The precursor ions [M - H]– of both peaks were found to be m/z 

430.6 (Table 5-4), agreeing closely with literature values of m/z 431 for both vitexin and 

isovitexin (Yan et al., 2013; Zhang et al., 2014). Furthermore, the positive precursor ions 

[M + H]+ were both m/z 433.1, again agreeing with literature values (m/z 433.1) for the 

analysis of these compounds in positive ionization mode (Pereira et al., 2005).  
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Figure 5-5: Ion chromatogram at 431 m/z showing the presence of vitexin (1) and 

isovitexin (2) in the mungbean extract. Analysis was conducted in negative ionization 

mode.  

Table 5-4: Characteristics of vitexin and isovitexin analysed in the mungbean extract 

using LC-MS/MS.  

Parameter Peak 1 (vitexin) Peak 2 (isovitexin) 

Retention time (mins) 6.66 6.97 

Peak area at m/z 431 (% of total) 159,664 (40.2%) 237,692 (59.8%) 

Precursor ion [M - H]– 430.6 430.6 

Product ions (negative mode) 281.8, 310.0 281.9, 310.2 

Precursor ion [M + H]+ 433.1 433.1 

Product ions (positive mode) 282.8, 312.9 283.1, 312.8 

 

The product ion scan in negative ionisation showed major ions at m/z 281.8 and 310.0 for 

peak 1, and at m/z 281.9 and 310.2 for peak 2 (Figure 5-6). Similarly, the major product ions 

observed in positive ionisation mode were m/z 282.8 and 312.9 (for peak 1) and m/z 283.1 

and 312.8 (for peak 2), as shown in Figure 5-7. Again, this agreed with values from previous 

LC-MS studies of vitexin and isovitexin (Pereira et al., 2005; Yan et al., 2013). Other minor 

peaks (e.g., m/z 121.2 and 165.0 in positive mode) also agreed with literature observations 

(Pereira et al., 2005).  
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Figure 5-6: Product ion scans of peaks 1 and 2 from the mungbean extract, using 

negative ionization mode.  
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Figure 5-7: Product ion scans of peaks 1 and 2 from the mungbean extract, using 

positive ionization mode.   

Finally, injection of an authentic standard of vitexin (5 ppm) revealed that it eluted at 6.67 

mins; therefore, the identity of peak 1 was confirmed as vitexin. Given the high level of 

similarity observed in the mass spectra of peaks 1 and 2, as well as the similarity between 

the mass spectral features of peak 2 and literature values for isovitexin, the identity of peak 2 

was assigned as isovitexin with a high level of confidence.  

5.4.3 Phenolic profiles using HPLC-DAD 

From the HPLC-DAD analysis of the mungbean sample extracts, 13 phenolic acids were 

identified (comprising seven hydroxybenzoic acids and six hydroxycinnamic acids), in addition 

to four flavonoids (Table 5-5). The elution order, relative abundance and UV spectral features 

of the compounds are illustrated in the HPLC chromatogram in Figure 5-8 and the UV isoplot 

in Figure 5-9.  

The predominant hydroxybenzoic acid present was syringic acid, followed by vanillic and 

isovanillic acid in much lower concentrations. Protocatechuic acid, p-hydroxybenzoic acid, 

gentisic acid and gallic acids were also found in low concentrations. All hydroxycinnamic acids 
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were found in low concentrations, with chlorogenic, p-coumaric and caffeic acids found in the 

largest amounts, followed by cinnamic, sinapic and trans-ferulic acids. These trends broadly 

agreed with previous international studies profiling phenolic acids in mungbean (Hou et al., 

2019; Meenu et al., 2016b; Yao et al., 2013). The predominant flavonoids were vitexin and 

isovitexin, followed closely by catechin. Quercetin-3-glucoside was found in low levels, while 

apigenin was below the limit of quantification in all varieties.  

 

Figure 5-8: Annotated HPLC chromatogram from one of the mungbean samples 

(AVTMB 1). The numbered compounds correspond to those provided in Table 5-1.  

 

Figure 5-9: Isoplot showing the UV absorbance of various compounds eluting at 

various points throughout the HPLC run. The x-axis shows the run time (from 0-25 

minutes) and the y-axis shows the UV wavelength (from 200-400 nm). The colour of 

each pixel shows the relative absorbance (blue = low; red = high).  
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Significant differences between the mungbean varieties were found for two hydroxybenzoic 

acids (p-hydroxybenzoic acid and vanillic acid), four hydroxycinnamic acids (caffeic acid, 

sinapic acid, trans-ferulic acid and cinnamic acid) and one flavonoid (vitexin). For p-

hydroxybenzoic acid, and sinapic acid, the content found in the AVTMB 1 cultivar was 

significantly higher than that found in Jade-AU (P<0.05), with no significant differences found 

between the remaining cultivars and either AVTMB 1 or Jade-AU (P>0.05). For both caffeic 

acid and vitexin, the content found in AVTMB 4 was significantly higher than Jade-AU, while 

the vanillic acid content was higher in both AVTMB 3 and 4 compared to Jade-AU. Additionally, 

the cinnamic acid content of all varieties aside from AVTMB 1 were higher than Jade-AU. 

Although the one-way ANOVA for trans-ferulic acid indicated a significant difference between 

varieties (P<0.05), post-hoc Tukey testing was unable to determine which varieties were 

significantly different to one another. For this phenolic acid, AVTMB 2 had the highest 

concentration and AVTMB 1 the lowest. As all mungbean varieties were grown under the same 

environmental conditions, the differences in phenolic acid profiles between varieties can be 

attributed to their genetic differences, leading to differential expression of key enzymes in 

phenolic synthesis pathways, primarily the shikimic acid pathway (Santos-Sánchez et al., 

2019). Although no genetic analysis was performed in this study, similar observations of 

upregulated gene expression have previously been made for varieties of other grain crops 

displaying increased content of specific phenolic acids (Laddomada et al., 2017; Ma et al., 

2016).  

Despite these differences in contents of individual phenolic acids and flavonoids, no significant 

differences were observed between varieties for the sum of hydroxybenzoic acids or 

flavonoids. AVTMB 4 did show a significantly higher content of total hydroxycinnamic acids 

compared to Jade-AU, but not to any other variety.  
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Table 5-5: Phenolic acid and flavonoid contents in the mungbean samples. Values given in µg/g (mean ± SD from 5 replicates for each 

variety).  

Compound AVTMB 1 AVTMB 2 AVTMB 3 AVTMB 4 Jade-AU P value 

Gallic acid 0.78 ± 0.04 0.70 ± 0.25 0.65 ± 0.15 0.66 ± 0.16 0.65 ± 0.27 0.848 

Protocatechuic acid 1.18 ± 0.19 1.21 ± 0.20 1.30 ± 0.12 1.41± 0.41 1.42 ± 0.17 0.338 

p-hydroxybenzoic acid 0.93 ± 0.29a 0.83 ± 0.09a,b 0.81 ± 0.06a,b 0.81 ± 0.37a,b 0.60 ± 0.19b 0.043* 

Gentisic acid 0.75 ± 0.26 0.53 ± 0.09 0.68 ± 0.25 0.80 ± 0.25 0.45 ± 0.19 0.058 

Vanillic acid 2.40 ± 0.12a,b 2.37 ± 0.53a,b 2.70 ± 0.17a 3.00 ± 0.60a 1.83 ± 0.42b 0.002** 

Isovanillic acid 2.00 ± 0.47 2.18 ± 0.19 2.52 ± 0.45 2.78 ± 0.63 2.16 ± 0.65 0.111 

Syringic acid 31.0 ± 2.7 30.8 ± 5.1 28.7 ± 5.1 38.9 ± 8.5 30.4 ± 5.0 0.082 

Sum of hydroxybenzoic acids 38.3 ± 1.0 37.1 ± 4.4 39.2 ± 3.8 48.4 ± 9.9 38.0 ± 5.4 0.103 

Chlorogenic acid 0.82 ± 0.26 0.71 ± 0.16 0.77 ± 0.07 0.97 ± 0.37 0.73 ± 0.19 0.362 

p-coumaric acid 0.70 ± 0.12 0.78 ± 0.21 0.82 ± 0.14 0.81 ± 0.17 0.57 ± 0.12 0.051 

Caffeic acid 0.84 ± 0.18a,b 0.74 ± 0.10a,b 0.85 ± 0.09a,b 0.92 ± 0.22a 0.61 ± 0.09b 0.015* 

Sinapic acid 0.17 ± 0.04a 0.15 ± 0.03a,b 0.13 ± 0.04a,b 0.17 ± 0.05a,b 0.11 ± 0.01b 0.036* 

trans-ferulic acid 0.11 ± 0.04a 0.20 ± 0.08a 0.19 ± 0.02a 0.22 ± 0.08a 0.14 ± 0.06a 0.046* 

Cinnamic acid 0.17 ± 0.02a,b 0.18 ± 0.03a 0.19 ± 0.03a 0.18 ± 0.03a 0.13 ± 0.04b 0.017* 

Sum of hydroxycinnamic acids 2.64 ± 0.30a,b 2.65 ± 0.40a,b 2.90 ± 0.23a 3.26 ± 0.82a 2.29 ± 0.45b 0.049* 

Catechin 93.8 ± 7.0 93.4 ± 3.5 94.2 ± 2.9 105.2 ± 19.6 98.4 ± 18.7 0.607 
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Vitexin 117.9 ± 12.5a,b 132.0 ± 21.1a,b 140.4 ± 14.3a,b 148.9 ± 21.7a 114.9 ± 23.5b 0.029* 

Isovitexin 143.8 ± 28.9 152.6 ± 26.9 163.0 ± 15.4 173.5 ± 27.6 132.0 ± 26.9 0.078 

Quercetin-3-glucoside 0.99 ± 0.27 0.88 ± 0.19 0.84 ± 0.17 0.89 ± 0.17 0.65 ± 0.12 0.071 

Apigenin <LOQ <LOQ <LOQ <LOQ <LOQ n/a 

Sum of flavonoids 349 ± 36 370 ± 38 402 ± 37 429 ± 68 346 ± 67 0.103 

LOQ = limit of quantification 
* P<0.05, ** P<0.01, *** P<0.001 
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The vitexin and isovitexin concentrations found here (115-149 µg/g and 132-174 µg/g, 

respectively) were comparable to or slightly higher than that found by Zhang et al. (2013) in 

methanol extracts from ten varieties of commercial mungbean in China (44-144 µg/g and 37-

112 µg/g, respectively). The vitexin and isovitexin concentrations were highly correlated (R2 = 

0.969), with the isovitexin content consistently around 20% higher than vitexin content (Figure 

5-10). This strong correlation is expected, as vitexin and isovitexin are structural isomers of 

apigenin glucoside. Vitexin is apigenin-8-C-glucoside, while isovitexin is apigenin-6-C-

glucoside (Figure 5-2); hence both would be expected to form via a similar metabolic pathway 

(Abdullah et al., 2017). However, despite the structural similarity between these compounds, 

they differ in their biological activities, with vitexin displaying greater spasmolytic activity and 

inhibition of α-glucosidase compared to isovitexin (Choo et al., 2012; Ragone et al., 2007). 

However, isovitexin shows a higher antioxidant activity in many bioassay methods (He et al., 

2016).  

 

Figure 5-10: Relationship between vitexin and isovitexin content in the mungbean 

samples.  

Notably, the free apigenin content was below the limit of quantification (<0.1 µg/g; Table 5-1), 

indicating that virtually all apigenin present in mungbean is in a glycosylated form, either as 

vitexin or isovitexin. Previous work has shown that vitexin and isovitexin contents decrease to 
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below detection limits when mungbean is sprouted (Yao et al., 2011), suggesting that these 

compounds may be hydrolysed into apigenin during germination. Furthermore, this agrees 

with separately conducted research that found apigenin concentrations increase during 

sprouting (Pająk et al., 2014). However, magnitude of reported increase in apigenin content 

(increasing from 0 to 1.9 µg/g) does not correspond directly to the decrease in combined 

vitexin/isovitexin content (decreasing from ~300 to 0 µg/g), suggesting that some intermediate 

form of these compounds or another side reaction may be at play during the germination 

process.  

Correlation analysis revealed moderate to strong correlations between several phenolic acids 

and flavonoids (Figure 5-11), particularly between caffeic and coumaric acids, vanillic and 

coumaric acids, and vanillic and syringic acids. In contrast, the levels of gallic, protocatechuic 

or gentisic acid were not strongly correlated with any other compounds. Such correlations 

between individual phenolic and flavonoid constituents are likely related to their similar 

synthesis pathways (Santos-Sánchez et al., 2019), or upregulation of regulatory genes 

increasing expression of multiple unrelated synthesis pathways.  

The TPC and antioxidant capacity were positively correlated with one another (r = 0.47-0.57; 

P<0.05), as observed in previous research (Johnson et al., 2020b; Xiang et al., 2019b), 

although the antioxidant capacity was not correlated with the total monomeric anthocyanin 

content (Table 5-6). However, the TPC was negatively correlated with the TMAC (r = -0.41, 

P<0.05), indicating that anthocyanins were not major contributors toward the overall phenolic 

content of this matrix. The sinapic acid content was also positively correlated with the FRAP 

and TPC (r = 0.40 and r = 0.53, respectively; P<0.05), although no other individual phenolic 

acids showed any significant correlation (Table 5-6).  
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Figure 5-11: Correlations plot showing the relationships between the levels of different 

phenolic acid and flavonoid constituents.  
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Table 5-6: Correlation coefficients between the CUPRAC, FRAP, TPC, TMAC and 

individual phenolic acids in the mungbean samples (n=25).  

Parameter CUPRAC FRAP TPC TMAC 

CUPRAC 1 - - - 

FRAP 0.57** 1 - - 

TPC 0.47* 0.57** 1  

TMAC -0.06 -0.38 -0.41* 1 

Gallic acid -0.12 0.12 0.23 -0.19 

Protocatechuic acid -0.08 -0.49 -0.29 0.10 

p-hydroxybenzoic acid -0.03 0.14 0.23 -0.23 

Gentisic acid -0.14 -0.01 -0.25 -0.03 

Vanillic acid -0.12 -0.04 0.23 -0.11 

Isovanillic acid -0.18 -0.20 0.02 0.01 

Syringic acid -0.14 -0.07 0.12 -0.14 

Chlorogenic acid -0.05 -0.19 -0.20 0.01 

Coumaric acid -0.23 -0.09 0.01 0.16 

Caffeic acid 0.14 -0.06 -0.04 0.07 

Sinapic acid 0.21 0.40* 0.53** -0.25 

Ferulic acid -0.09 -0.15 0.04 0.10 

Cinnamic acid -0.22 -0.06 -0.10 -0.17 

Catechin -0.15 -0.05 0.31 -0.08 

Vitexin -0.20 -0.07 0.29 0.00 

Isovitexin -0.23 -0.12 0.24 0.04 

Quercetin-3-glucoside 0.14 0.33 0.22 -0.27 

* P<0.05, ** P<0.01, *** P<0.001 

5.4.4 Prediction of bioactive compounds using IR spectroscopy 

The final stage of investigation into the mungbean samples was attempting the prediction of 

bioactive compounds using infrared spectroscopy. As was the case with the previous crops, 

PLSR was used to create prediction models for each analyte, using a variety of pre-processing 

techniques.  
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5.4.4.1 Descriptive statistics 

The descriptive statistics for the calibration and test sets are provided in Table 5-7. The range 

of most analytes were comparable between the calibration and test sets, supporting this 

choice of the Jade-AU samples for use as an independent test set.  

Table 5-7: Descriptive statistics for the parameters measured in this study, in the 

calibration and test sets.  

Parameter 
Calibration set (n=80) Test set (n=20) 

Range Mean ± SD Range Mean ± SD 

FRAP (mg TE/100 g) 10.0-55.3 16.0 ± 7.9 9.9-65.8 16.8 ± 13.6 

CUPRAC (mg TE/100 g) 405.7-736.5 521.3 ± 79.1 499.2-776.3 567.2 ± 70.4 

TPC (mg GAE/100 g) 65.7-130.0 89.4 ± 17.6 74.8-136.9 93.1 ± 14.5 

TMAC (mg cyd-3-glu/100 g) 0.0-21.2 11.4 ± 6.6 2.7-11.6 7.3 ± 2.5 

 

5.4.4.2 NIR spectra 

The raw and SNV-processed NIR spectra are shown in Figure 5-12. These appeared very 

similar to those obtained for faba bean and chickpea, with major peaks at 1468 and 1935 nm 

(OH 2nd and 1st overtones), and other large peaks at 1198 nm (CH 2nd overtone), 1751 nm 

(CH 1st overtone), 2112 nm (amide combination band) and 2316 nm (CH deformation 

combination band).  
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Figure 5-12:The raw absorbance NIR spectra (A) and SNV-processed spectra (B) of the 

mungbean samples.  

5.4.4.3 NIR models 

The optimum PLSR models found for each analyte are presented in Table 5-8. In contrast to 

the results found in faba bean (Section 3.4.4.3) and wheat (Section 4.4.2.3), none of the NIRS 

models showed good performance in the calibration and independent test sets. While the 

model for FRAP performed acceptably for the calibration samples (R2
cv = 0.57, RMSECV = 

5.1 mg TE/100 g), it was unable to predict this analyte in the test set (R2
test = 0.20, RMSEP = 

13.0 mg TE/100 g).  

No other models for the investigated analytes (CUPRAC, TPC or TMAC) showed any 

predictive power, even for the calibration set (Table 5-8). This contrasted with the results of 

Meenu et al. (2016a), who used NIRS to predict the concentrations of 10 different phenolic 

acids and flavonoids in Chinese mungbean samples, with a high reported accuracy (R2
val of 

up to 0.99 and RMSEs of <1.8%). However, it should be noted that these authors only used a 
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relatively small calibration set (42 samples) and did not report how many components were 

required for the PLSR models. Additionally, they used a dependent test set (18 samples) for 

model validation, rather than an independent test set. Consequently, it is likely that the results 

reported by these authors may be over-optimistic compared to the performance of the model 

when applied to an independent test set.  

Nevertheless, the lack of predictive power observed even in the calibration set indicates that 

no spectral signal from the target analytes could be detected in the NIR region. This lack of 

predictive power may be due to several factors. Firstly, the lower concentrations of most 

analytes (e.g., compared to faba bean) would make it more difficult to detect using NIR 

wavelengths. However, this fact alone cannot account for the observation that accurate 

models could be created for the prediction of these analytes in wheat flour.  

It is possible that matrix complexity could also play a role in the poor model performance. For 

example, other compounds present in varying concentrations may absorb in the same NIR 

regions as the compounds of interest (i.e., phenolic and antioxidant compounds), thus 

obscuring their signal.  

Conversely, it is possible that variations in non-target constituents of the chickpea samples 

could be influencing model performance in another way. As discussed in Chapter 2, many 

NIRS applications targeting microconstituents actually rely on secondary or surrogate 

correlations with other macroconstituents which are more readily measured using NIRS 

(Walsh et al., 2020). If these correlations hold true for all samples, then the use of such 

secondary correlations is quite acceptable. However, these correlations may change between 

different sample populations or harvest years (Velasco et al., 1998), which might explain the 

poor performance in the independent test set.  

Finally, and perhaps most likely, it is possible that the calibration set did not contain samples 

from a sufficiently wide range of origins and analyte concentrations. Specifically targeting 

samples to obtain a wider range of phenolic contents or antioxidant capacities may aid in this 

– perhaps through the inclusion of samples of different maturation stages or exposed to 

different environmental stressors. 
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Table 5-8: Optimum PLSR models found for the prediction of the specified analytes using NIR spectroscopy. 

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

FRAP (mg TE/100 g) None 7 0.57 5.1 1.54 0.20 13.0 3.67 2.96 -22.1 

CUPRAC (mg TE/100 g) 1d21 5 0.16 72.1 1.10 0.06 115.8 94.2 0.60 279.5 

TPC (mg GAE/100 g) SNV + 1d21 10 0.21 15.5 1.13 0.07 25.6 21.2 0.44 61.6 

TMAC (mg cyd-3-glu/100 g) SNV 7 0.29 5.6 1.19 0.00 11.9 -11.1 -0.05 8.3 

 

Table 5-9: Optimum PLSR models found for the prediction of the specified analytes using MIR spectroscopy.  

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

FRAP (mg TE/100 g) None 2 0.00 7.8 1.01 0.30 12.3 -0.21 3.70 -46.2 

CUPRAC (mg TE/100 g) None 1 -0.01 79.1 1.00 0.01 83.4 45.1 -0.97 1072 

TPC (mg GAE/100 g) None 0 -0.03 17.7 0.99 0.06 14.3 3.89 1.29 -21.5 

TMAC (mg cyd-3-glu/100 g) None 0 -0.03 6.7 0.99 0.00 4.8 -4.1 -0.13 8.8 
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5.4.4.4 MIR spectra 

The MIR spectra (shown in Figure 5-13) appeared similar to the spectra from faba bean 

(Section 3.4.4.4), with major peaks centred around 3300 cm-1 (attributable to OH stretch from 

moisture), 3000-2850 cm-1 (CH2 and CH3 stretch), 1640 cm-1 (C=O stretch of amides or other 

carbonyl-containing compounds), 1550-1200 cm-1 (various amide and carbohydrate features) 

and 1000 cm-1 (pyranose rings in starch/cellulose) (Abbas et al., 2017; Dufour, 2009; Karoui 

et al., 2010; Mecozzi & Sturchio, 2017).  

 

Figure 5-13:The raw MIR spectra (A) and SNV-processed spectra (B) of the mungbean 

flour samples.  

5.4.4.5 MIR models 

As with the NIRS models, none of the MIRS models were able to predict any of the bioactive 

analytes in the mungbean flour (Table 5-9). For this reason, no calibration plots or loadings 

are shown for these models.  



 

Page 174 of 248 
 

The factors impacting on the NIRS models (see Section 5.4.4.3) are also likely to negatively 

influence the MIRS models. In particular, the relatively low range of analyte concentrations 

make the development of accurate models much more difficult. In addition, MIRS has the 

added challenge of trying to maintain a consistent level of pressure between the sample matrix 

and the ATR platform for each of the samples analysed. Although most of the visible impact 

of this variation is removed through use of SNV or derivative processing, it is possible that 

small variations between samples remain and consequently impact negatively on the model. 

5.5 Summary 

The five mungbean varieties investigated here showed significant variation in their CUPRAC, 

TPC and TMAC, although not in their FRAP. Additionally, the varietal differences in phenolic 

composition were supported by HPLC-DAD profiling of 17 individual phenolic acids and 

flavonoids in a subset of the mungbean samples. The greatest differences were seen for p-

hydroxybenzoic, vanillic, caffeic, sinapic, ferulic and cinnamic acids, and the flavonoid 

glycoside vitexin.  

In contrast to the previous results for faba bean and wheat, neither NIRS nor MIRS were able 

to predict any of the bioactive analytes (FRAP, CUPRAC, TPC or TMAC) measured in the 

mungbean samples.  
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Chapter 6. Chickpea 

The introduction and discussion of this chapter uses information from a previously published 

paper:  

Johnson, J.B., Walsh, K.B., Bhattarai, S.P. and Naiker, M., 2021. Partitioning of nutritional and 

bioactive compounds between the kernel, hull and husk of five new chickpea genotypes grown 

in Australia. Future Foods, 4, p.100065. DOI: 10.1016/j.fufo.2021.100065 

 

6.1 Introduction 

The fourth and final crop selected for investigation in this study was chickpea. Although a 

relatively recent addition to the Australian cropping rotation, its popularity has grown rapidly in 

recent decades to position Australia as the largest global exporter of chickpea. As with 

mungbean, there has been increasing interest in the health benefits of this crop, with 

publications on this topic growing rapidly over the last decade. With Australian chickpea 

already internationally recognised for their high quality, there is potential to build on this 

reputation to market our produce with an emphasis on its health-benefiting constituents.  

As with the previous crops investigated, the aim of this chapter was firstly to provide context 

data on the typical levels of phenolics and antioxidant compounds found in Australian-grown 

chickpea and secondly, to investigate the use of IR spectroscopy for the rapid, non-destructive 

prediction of these analytes. Only desi type chickpeas were investigated here, as kabuli type 

chickpeas comprise only around 5-10% of the total Australian production.  

Due to time constraints in sample procurement, the chickpea samples were unable to be 

sourced from controlled trials growing the same varieties across the same locations in different 

years. However, they were sourced from a seedbank/collection containing archived seed from 

a large number of varieties, grown across several different locations and seasons. 

Consequently, they were considered to incorporate most of the variation that would typically 

be observed in the Australian desi chickpea crop. Furthermore, the inclusion of samples from 

a wide variety of growing conditions was anticipated to aid in the development of robust 

prediction models using infrared spectroscopy.  

As with previous chapters, the basic phytochemical composition of the chickpea samples was 

characterised using benchtop spectrophotometric techniques. This was followed by more 

detailed examination of the phenolic composition using HPLC-DAD. Finally, the use of infrared 

spectroscopy (NIRS and MIRS) for the prediction of total phenolics, antioxidant capacity, and 

total anthocyanin content was investigated.  
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6.2 Background 

Chickpea (Cicer arietinum L.) is one of the oldest known pulse crops and is widely grown 

across the world (Abbo et al., 2003b; Yadav & Chen, 2007). Globally, it is ranked as the 

second-most produced legume crop, with 14.8 million tonnes harvested in 2020 (FAO, 2022). 

Although this crop was not grown commercially in Australia until the 1970s (Pendergast et al., 

2019; Siddique et al., 2000), Australia has grown to become the 8th largest producer and the 

largest exporter of chickpea. A total of 281,000 tonnes were harvested in 2020 (FAO, 2022), 

with over 95% of this being exported, primarily to the Indian subcontinent (Pulse Australia, 

2016a). The current value of the Australian chickpea industry is estimated at AU $1.33 billion 

(Wood & Scott, 2021). Furthermore, Australian chickpeas are highly regarded on the 

international market for their quality (Wood & Scott, 2021).  

There is considerable potential for Australian growers to expand the production of chickpea, 

particularly in northern Australia (Johnson et al., 2021c). Notably, data from the International 

Trade Centre estimates the current untapped demand for chickpea in international export 

markets to be worth over $400 million USD (KPMG, 2019).  

One notable nutritional characteristic of chickpea is its high protein content (Clemente et al., 

1999), making it an excellent replacement for meat in vegetarian diets. Furthermore, proteins 

and protein hydrolysates can be readily extracted from chickpea using wet or dry extraction 

methods (Boukid, 2021). These protein fractions can then be used in the production of 

artificial meat analogues and other protein-fortified products such as noodles, bread and 

cookies (Boukid, 2021).  

In addition to this, chickpea has recently attracted interest due to its potential health-

benefitting activity (de Camargo et al., 2019; Faridy et al., 2020; Kaur & Prasad, 2021; 

Wallace et al., 2016). Previous work has shown that chickpeas or compounds isolated from 

chickpea display a broad range of advantageous biological activities, including antioxidant 

activity (Domínguez-Arispuro et al., 2018), anti-cancer activity (Bochenek et al., 2019; Gupta 

& Bhagyawant, 2019; Gupta et al., 2018), hypocholesterolemic activity (Myint et al., 2017; 

Yust et al., 2012), hypoglycaemic activity (Akhtar et al., 2019; Ercan & El, 2016; Sreerama et 

al., 2012), anti-hypertensive activity (Mamilla & Mishra, 2017; Mokni Ghribi et al., 2015), and 

anti-inflammatory activity (Mahbub et al., 2021; Milán-Noris et al., 2018). The major 

compound classes believed to be responsible for these beneficial effects include 

polyphenols, carotenoids, tannins, sterols and peptides (Faridy et al., 2020; Wallace et al., 

2016). International research has shown that the content of these phytochemicals – 

including phenolics and carotenoids – can vary significantly between different chickpea 

varieties (Bhagyawant et al., 2018; Heiras-Palazuelos et al., 2013; Quintero-Soto et al., 
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2018; Rezaei et al., 2019; Serrano et al., 2017; Sharma et al., 2013), similar to that observed 

in other pulse species (Kim et al., 2013; Valente et al., 2018; Xiang et al., 2019a). 

Consequently, it is important to understand the variation in key phytochemical constituents 

between different varieties and growing conditions in the Australian setting.  

Only desi type chickpeas were investigated in this study, as these are the predominant type 

grown in Australia. Desi chickpea comprises 90-95% of total production, with the remaining 5-

10% being the kabuli type (Wood & Scott, 2021).  

6.3 Materials and methods 

6.3.1 Seed material 

The 97 desi chickpea samples included in this study were sourced from archived samples 

stored at Agriculture Victoria Research (Horsham Victoria). The samples comprised 18 

different varieties, grown in a range of field trials across four sites in Victoria and 3 growing 

seasons (2017, 2019 and 2020). The number of samples from each variety ranging from 1 to 

20 (mean = 5 samples/variety; see Appendix D for more detail). When conducting varietal 

analysis, only varieties with ≥10 samples were included (n=5 varieties) to ensure a high level 

of statistical power. However, all samples were included in the analysis by year or location. 

The majority of samples (55) were grown under ambient conditions with no imposed 

treatments; however, 16 of the samples were from herbicide treatment trials and 25 samples 

were part of pathology trials. More details on the exact field conditions for each sample are 

provided in Appendix D.  

6.3.2 Seed processing and analysis of physical characteristics 

The hundred kernel weight of the whole seed was determined using an IC-VA seed counter 

(AIDEX Co, Japan), with measurements performed in triplicate for each sample. Following this, 

approximately 20 g of seed material from each sample was ground to a fine flour (Breville 

Coffee & Spice Grinder; Botany, NSW) prior to subsequent extraction and analysis. As with 

mungbean, the seed material was not dehulled before being processed.  

The colour of the chickpea flour was quantified using a calibrated Konica Minolta chroma 

meter (CR-400), reported as CIE values of lightness (L*), yellow/blue (b*) and red/green 

colouration (a*). Again, measurements were performed in triplicate for each sample.  

Finally, the moisture content of the flour was determined according to AOAC Official Method 

925.10, as described in Section 5.3.1. All subsequent results were expressed on an oven-dry 

weight basis.  
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6.3.3 Analysis of FRAP, CUPRAC, TPC and TMAC 

Polar phenolic compounds were extracted with 90% methanol, following the protocol 

described in Section 3.3.3, but using 1 g of flour and a final volume of 14 mL. Extractions 

and subsequent assays were performed in duplicate for each sample.  

In order to reduce analysis times and costs, rapid analysis protocols using 96-well 

microplates were developed for each of the phytochemical assays (FRAP, CUPRAC, TPC 

and TMAC). In addition to reducing wastage of reagents and plasticware by a factor of 10 or 

more, this has the added benefit of reducing handling time for each sample and increasing 

throughput.  

6.3.3.1 Microplate method for TPC 

The TPC was determined using a 96-well microplate method developed by the author for the 

analysis of TPC in other sample extracts. Full details of the method development process 

are provided in Johnson et al. (2021b). Briefly, this involved investigation of the impacts of 

the measurement wavelength, incubation temperature and incubation time, as well as 

comparison of the reproducibility and correlation between the methods.  

To perform the TPC microplate assay, 20 µL of sample extract was combined with 100 µL of 

1:10 diluted Folin-Ciocalteu reagent in each well, followed by 10 mins incubation in darkness 

and addition of 100 µL of 7.5% aqueous sodium carbonate solution. After a further 10 mins 

incubation in darkness, the 96-well plate was shaken for 300 seconds (speed setting: mid) in 

a microplate reader (Bio-Rad iMark) and the absorbance measured at 750 nm. The results 

were expressed in gallic acid equivalents (GAE), based off the absorbances of a gallic acid 

calibration curve (20-120 mg L-1; R2 = 0.994). Each duplicate extract was analysed in 

duplicate wells, with the results averaged for each sample.  

6.3.3.2 Microplate method for FRAP 

The 96-well microplate method for FRAP was also previously published in Johnson et al. 

(2021c), although validation statistics were not reported there. The method development 

process, along with the relevant validation statistics, are presented in Appendix C.  

To perform the assay, 10 µL of sample extract was combined in each well with 200 µL of 

FRAP reagent (prepared as described in Section 3.3.5) and shaken for 300 seconds (speed 

setting: mid), before the absorbance was measured at 593 nm. Results were expressed in 

Trolox equivalents (TE), based off the absorbances of Trolox standards between 50-300 mg 

L-1 (R2 = 0.998).  
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6.3.3.3 Microplate method for CUPRAC 

The 96-well microplate method for CUPRAC was also developed by the author, based on a 

20× reduction in the proportion of reagents used in the full-scale assay (Section 5.3.2). The 

method development process, along with detailed validation statistics, are presented in 

Appendix C.  

To perform the CUPRAC assay, 10 µL of sample extract was combined with 50 µL each of 

10 mM aqueous copper (II) chloride, 1 M aqueous ammonium acetate, 7.5 mM neocuproine 

ethanol solution and Milli-Q water in a 96-well plate. After 30 mins incubation (in darkness), 

the plate was shaken for 60 seconds (speed setting: mid) and the absorbance measured at 

450 nm. The results were expressed in Trolox equivalents (TE), based off the absorbances 

of Trolox standards between 100-1000 mg L-1 (R2 = 0.999).  

6.3.3.4 Microplate method for TMAC 

The 96-well microplate method for TMAC was modified slightly from the protocol reported by 

Kwiatkowski et al. (2020). After combining 40 µL of sample extract in a 96-well plate with 

either 160 µL of pH 1 buffer (containing 0.025 M KCl) or 160 µL of pH 4.5 buffer (containing 

0.4 M sodium acetate), the plate was shaken for 300 seconds (speed setting: mid). The 

absorbance of each well was measured at 510 nm and 700 nm, with the TMAC calculated 

from the difference in absorbance readings between the pH 1 and pH 4.5 extracts for each 

sample. Results were expressed in cyanidin-3-glucoside (cyd-3-glu) equivalents, following 

the formula given in Section 3.3.6, but using a path length of 0.6 cm instead of 1 cm.  

6.3.4 Phenolic profiling by HPLC-DAD 

Profiling of the phenolic compounds present in the chickpea extracts was conducted using 

HPLC-DAD. The analysis was conducted using the Agilent 1100 HPLC system and methods 

described in Section 3.3.7; however, the extracts were not concentrated prior to HPLC 

analysis. Analysis was conducted on all methanol extracts (n=194), with the results 

averaged for each sample. Results were expressed in mg/kg of the flour, on an oven-dried 

weight basis.  

As only one of the major compounds matched the retention time and UV spectra of the 

authentic phenolic standards available (see the list in Section 5.3.4), the remaining 

compounds were identified through comparison of their UV spectra and relative retention 

times to previous literature profiling phenolic compounds from chickpea.  
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6.3.5 NIR and MIR spectroscopy 

NIR and MIR spectra were collected from all 100 samples of the mungbean flour using the 

instruments and settings described in Sections 3.3.8 and 3.3.9. Three replicate spectra were 

collected from each sample for both MIRS and NIRS, with the mean of the replicate scans 

used in subsequent data analysis.  

6.3.6 Statistical analysis of phenolic data 

Statistical tests were performed on the phytochemical and phenolic data using R Studio 

running R 4.0.5. Where applicable, results are presented as mean ± 1 standard deviation.  

6.3.7 Spectral data analysis 

Quantitative regression analysis of the infrared spectra was conducted in R Studio, as 

described in Section 3.3.11. Again, the model performance of the calibration set was evaluated 

through full LOO cross-validation. For model development, the 2017 and 2019 samples (n=83) 

were used as a calibration set, while the 2020 samples (n=14) were used as an independent 

test set. A maximum of 10 components were considered for each PLSR model.  

6.4 Results and discussion 

6.4.1 Phytochemical profiles 

6.4.1.1 Impact of variety, location and season 

The first stage of investigation was the impact of variety, location and season on the 

phytochemical content of the chickpea samples. As the samples were not from a balanced 

genotype × environment × year trial with equal numbers of samples for each condition (see 

Appendix D), the impact of these variables was unable to be explored through a three-way 

ANOVA. However, each of these variables was investigated separately, thus averaging out 

the impacts of the other two variables (Tables 6-1 to 6-3). Consequently, while the interactions 

between these terms were unable to be investigated, their broad impacts on phytochemical 

composition and physical seed parameters could be observed.  

Examination of these parameters by variety (Table 6-1) revealed a significant level of variation 

in the FRAP, TPC and TMAC between the major chickpea varieties, as well as in the seed 

size (HKW) and the yellow-blue colouration of their flour (CIE b value). The variety Howzat 

displayed the highest FRAP and TPC, while PBA Slasher showed the lowest concentrations 

of these analytes. However, this latter variety did contain the highest TMAC.  

The FRAP of the chickpea samples was approximately 7-8 times lower than the results 

previously found for faba bean (Section 3.4.1.1), but higher than the values found for wheat 
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(Section 4.4.2.1) and mungbean (Section 5.4.1.1). However, the CUPRAC was around three 

times lower than that found for mungbean. Overall, the FRAP values were lower than the 

results reported by Johnson et al. (2021c) in the kernel flour of five new chickpea genotypes 

from Australia. No literature values were found for the CUPRAC analysis of chickpea.  

The TPC of the chickpea extracts was around three times lower compared to faba bean, but 

comparable to the results observed in mungbean. Interestingly, the wheat samples were 

observed to contain a higher TPC than the chickpea samples, despite the latter showing higher 

FRAP values for most samples. The TPC of these chickpea samples were also comparable 

to those found by Johnson et al. (2021c). Furthermore, the TPC was comparable to values 

reported by Heiras-Palazuelos et al. (2013) for desi chickpea cultivars from Mexico, but lower 

than most values found by Segev et al. (2011) for Australian chickpeas.  
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Table 6-1: Impact of variety on the size, colour and phytochemical composition of desi chickpea. Note that only varieties with ≥10 

samples were included. Varieties with the same superscript were not statistically different according to a post hoc Tukey test at α = 

0.05.  

Parameter 
Howzat 
(n=10) 

Kyabra 
(n=14) 

PBA Slasher 
(n=11) 

PBA Striker 
(n=20) 

Sonali (n=10) P value 

HKW (g/100) 18.6 ± 1.7bc 23.0 ± 1.9a 18.8 ± 1.2bc 20.2 ± 2.6b 16.6 ± 0.8c <0.001*** 

Flour colour – L* 78.05 ± 1.41 80.66 ± 0.79 78.18 ± 6.30 79.28 ± 1.37 77.72 ± 1.10 0.066NS 

Flour colour – a* 1.93 ± 0.86 1.74 ± 0.39 1.78 ± 0.20 1.41 ± 0.60 1.51 ± 0.41 0.096NS 

Flour colour – b* 27.04 ± 1.65a 26.09 ± 1.28ab 24.96 ± 1.27b 26.27 ± 1.52ab 26.44 ± 0.30ab 0.013* 

Moisture (%) 9.21 ± 0.86 9.13 ± 0.83 9.24 ± 0.83 8.86 ± 0.72 8.39 ± 0.75 0.087NS 

FRAP (mg TE/100 g) 40.3 ± 16.2a 29.5 ± 6.7ab 24.9 ± 8.9b 33.1 ± 10.4ab 28.5 ± 13.3ab 0.028* 

CUPRAC (mg TE/100 g) 124 ± 20 129 ± 21 123 ± 17 132 ± 42 150 ± 26 0.232NS 

TPC (mg GAE/100 g) 93.7 ± 11.6a 80.3 ± 14.1ab 72.6 ± 8.8b 91.1 ± 9.5a 82.2 ± 13.7ab <0.001*** 

TMAC (mg cyd-3-glu/100 g) 5.8 ± 1.5ab 5.0 ± 3.2ab 7.2 ± 1.5a 4.2 ± 2.0b 4.5 ± 1.4b 0.006** 

NS – not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 
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All parameters differed significantly with the growing location (Table 6-2). The highest FRAP 

and TPC were found for the Curyo site, while the highest CUPRAC was at observed Horsham. 

Conversely, the highest TMAC was at Banyena.  

Table 6-2: Impact of growing location on the size, colour and phytochemical 

composition of desi chickpea. Note that one location (Rupanyup) was excluded as it 

contained only 5 samples. Locations with the same superscript were not statistically 

different according to a post hoc Tukey test at α = 0.05.  

Parameter 
Banyena 

(n=25) 
Curyo 
(n=18) 

Horsham 
(n=49) 

P value 

HKW (g/100) 20.1 ± 2.6a 17.4 ± 1.2b 19.8 ± 3.1a 0.003** 

Flour colour – L* 79.80 ± 1.06a 77.81 ± 1.17b 79.70 ± 1.46a <0.001*** 

Flour colour – a* 1.67 ± 0.25a 1.26 ± 0.74b 1.98 ± 0.56a <0.001*** 

Flour colour – b* 24.95 ± 0.68c 26.86 ± 1.04b 27.77 ± 0.98a <0.001*** 

Moisture (%) 9.34 ± 0.51a 9.05 ± 0.48a 8.20 ± 0.96b <0.001*** 

FRAP (mg TE/100 g) 27.0 ± 6.9b 38.3 ± 13.9a 34.9 ± 11.6a 0.002** 

CUPRAC (mg TE/100 g) 114 ± 18b 133 ± 23b 157 ± 36a <0.001*** 

TPC (mg GAE/100 g) 74.1 ± 6.9b 92.8 ± 13.9a 87.0 ± 11.6a <0.001*** 

TMAC (mg cyd-3-glu/100 g) 6.6 ± 2.5a 5.0 ± 1.5b 3.5 ± 1.4c <0.001*** 

NS – not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 

Similarly, the growing season had a significant impact on all parameters measured (Table 6-

3). Both FRAP and CUPRAC were higher in the 2020 samples, while the TPC was significantly 

lower in the 2017 samples. It is important to caution that as all samples were stored following 

harvest, there may have been some change in their composition over this period, particularly 

for the older samples. Although there does not appear to be any work documenting this 

specifically in chickpea, Nasar-Abbas et al. (2009) noted a minor reduction in the TPC of faba 

bean samples over the period of one year, with the loss accelerated under higher 

temperatures or exposure to light. However, Ziegler et al. (2016b) found contrasting results in 

soybean, with the free phenolic content increasing slightly over a storage period of one year.  

In addition to possessing the highest TMAC, the oldest samples (2017) also tended to have a 

larger kernel size and higher moisture content. This latter parameter may be related to the 

absorption of moisture by the chickpea samples over the longer storage time.  
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Table 6-3: Impact of growing year on the size, colour and phytochemical composition 

of desi chickpea. Years with the same superscript were not statistically different 

according to a post hoc Tukey test at α = 0.05.  

Parameter 
2017 

(n=30) 
2019 

(n=53) 
2020 

(n=14) 
P value 

HKW (g/100) 20.2 ± 2.4a 19.3 ± 2.8a 18.5 ± 3.1a 0.045* 

Flour colour – L* 80.00 ± 1.14a 79.09 ± 1.71b 79.57 ± 1.12ab 0.0498* 

Flour colour – a* 1.68 ± 0.27b 1.62 ± 0.65b 2.42 ± 0.40a 0.027* 

Flour colour – b* 24.82 ± 0.74b 27.54 ± 1.12a 27.48 ± 0.88a <0.001*** 

Moisture (%) 9.46 ± 0.56a 8.45 ± 0.97b 8.35 ± 0.81b <0.001*** 

FRAP (mg TE/100 g) 26.9 ± 6.4c 33.8 ± 11.9b 43.7 ± 10.1a <0.001*** 

CUPRAC (mg TE/100 g) 116 ± 18c 142 ± 32b 181 ± 28a <0.001*** 

TPC (mg GAE/100 g) 76.4 ± 8.8b 88.7 ± 12.2a 88.3 ± 10.6a <0.001*** 

TMAC (mg cyd-3-glu/100 g) 6.4 ± 2.4a 4.0 ± 1.6b 3.6 ± 1.0b <0.001*** 

NS – not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 

6.4.1.2 Correlation analysis 

To further investigate the inter-relationships that may exist between the bioactive 

phytochemical constituents and the physical characteristics of the seed, Pearson R linear 

correlation analysis was performed. The results are summarised in the correlogram presented 

in Figure 6-1. Significant correlations were observed between TPC and FRAP, but not 

between TPC and CUPRAC or FRAP and CUPRAC. The CUPRAC was positively correlated 

with the b* colour, but negatively correlated with moisture content.  
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Figure 6-1: Correlogram showing the correlations between the phytochemical 

constituents and physical parameters of the chickpea seed (n = 97 samples). 

Correlations with R values above 0.21 or below -0.21 were statistically significant at α 

= 0.05.  

6.4.2 Phenolic profiles using HPLC-DAD 

Following on from the results of the benchtop phytochemical assays, phenolic profiling was 

performed on all of the chickpea extracts using HPLC-DAD. Analysis was performed in 

duplicate, with the results averaged for each sample. As mentioned in the methods (Section 

6.3.4), the extracts were not concentrated prior to analysis.  

A typical chromatogram obtained from the HPLC-DAD analysis is shown in Figure 6-2. Aside 

from the solvent front and glycosylated compounds emerging between 1-2 mins, two 

predominant compounds were observed at 2.93 and 4.68 mins, with another large peak 

occurring at 13.65 mins. In addition to this, a number of compounds were also present in lower 

concentrations. These appear as upward spikes on the UV isoplot (Figure 6-3) and can also 
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be seen on the 3D HPLC plot (Figure 6-4). Overall, a total of 12 compounds were found to 

occur in the majority of the chickpea extracts (Table 6-4).  

 

Figure 6-2: Annotated HPLC chromatogram from one of the chickpea samples, showing 

the absorbance trace at 250 nm.  

 

Figure 6-3: Isoplot showing the UV absorbance of various compounds eluting at 

various points throughout the HPLC run. The x-axis shows the run time (from 0-25 

minutes) and the y-axis shows the UV wavelength (from 200-400 nm). The colour of 

each pixel shows the relative absorbance (blue = low; red = high).  
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Figure 6-4: Three-dimensional plot showing the UV absorption (from 230 nm in blue to 

400 nm in red) at different times throughout the HPLC run. Note that the time axis runs 

from 0 mins (on the right-hand side) to 25 mins (on the left-hand side).  

As the majority of peaks did not match the retention times of the authentic phenolic standards 

available (see Section 5.3.4), the compounds were tentatively identified from their relative 

retention times and UV spectral features (Table 6-4) using relevant literature (Aguilera et al., 

2011; Escarpa & González, 2000; Klejdus et al., 2007; Quintero-Soto et al., 2018; Wu et al., 

2012). As these identities were only tentative, these compounds are referred to as Peaks 1-

12 throughout the remainder of this section.  

As shown in Table 6-5, there was a significant amount of variation found between the desi 

chickpea varieties for most of the phenolic compounds quantified. Howzat appeared to show 

the highest concentrations of most compounds, most notably for Peaks 2, 3 and 6. On the 

other hand, PBA Slasher typically contained lower levels of the phenolics.  

Similar to the variation observed between genotypes, there was a significant difference 

observed between growing locations and year for most compounds. In nearly all cases, the 

2017 samples showed the lowest concentrations of each compound. Likewise, the Banyena 

site showed the lowest concentrations for most compounds, while the Curyo site typically 

showed the highest concentrations.  
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Table 6-4: Tentative identifications of the compounds found in the chickpea methanol extracts using HPLC-DAD.  

No. 
Retention 

time (min) 

UV peaks (λmax) 

(nm) 
Tentative identification 

Quantification 

wavelength (nm) 

Quantified as 

equivalents of 

1 2.25 236, 263 Gallic acid 250 4-hydroxybenzoic acid 

2 2.46 251 
p-hydroxybenzoic acid 

hexoside 
250 4-hydroxybenzoic acid 

3 2.93 250 
p-hydroxybenzoic acid 

pentoside? 
250 4-hydroxybenzoic acid 

4 3.33 211, 237, 318 Sinapic acid hexoside 320 Gentisic acid 

5 4.13 219, 280 Catechin 280 Gallic acid 

6 4.68 219, 280 Epicatechin 280 Gallic acid 

7 5.05 251 4-hydroxybenzoic acid 250 4-hydroxybenzoic acid 

8 5.64 212sh, 254 
Methoxybenzyl alcohol 

glycoside? 
250 4-hydroxybenzoic acid 

9 6.95 263 Genistein hexoside 250 4-hydroxybenzoic acid 

10 12.43 254, 306sh Pseudobaptigenin 250 4-hydroxybenzoic acid 

11 13.65 262 Biochanin A 250 4-hydroxybenzoic acid 

12 16.42 255, 302sh Daidzein 250 4-hydroxybenzoic acid 

sh = shoulder  
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Table 6-5: Individual phenolic contents of the chickpea samples (all values in mg/kg on a dry-weight basis), broken down by variety, 

growing location and year. Only varieties and locations with >9 samples each were included. The P value rows show the results of a 

one-way ANOVA performed for each variable. Entries with the same superscript were not statistically different according to a post hoc 

Tukey test at α = 0.05.  

 Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8 Peak 9 Peak 10 Peak 11 Peak 12 

Variety 

Howzat 
(n=10) 

10.7 ± 
5.7a 

22.2 ± 
7.7a 

191.5 ± 
29.6a 

11.4 ± 
3.5a 

24.9 ± 
5.6bc 

123.2 ± 
19.5a 

17.9 ± 
5.2a 

2.2 ± 
3.0bc 

6.1 ± 1.6a 17.1 ± 
5.8a 

20.9 ± 
8.0a 

19.1 ± 
5.9ab 

Kyabra 
(n=14) 

2.9 ± 
4.8bc 

9.6 ± 2.7b 36.7 ± 
14.9d 

9.4 ± 
2.2a 

27.7 ± 
2.2ab 

94.9 ± 
26.9b 

10.7 ± 
7.2bc 

0.5 ± 1.8c 1.4 ± 2.1c 13.6 ± 
6.4ab 

17.6 ± 
8.8ab 

13.7 ± 
6.3b 

PBA 
Slasher 
(n=11) 

0.0 ± 0.0c 8.8 ± 1.0b 74.5 ± 
16.8c 

6.0 ± 
0.7b 

27.3 ± 
1.6ab 

72.0 ± 
25.3bc 

9.3 ± 7.4c 4.3 ± 
2.7ab 

3.7 ± 1.6b 7.8 ± 3.2c 9.9 ± 1.9c 19.7 ± 
13.1ab 

PBA 
Striker 
(n=20) 

9.2 ± 3.9a 12.1 ± 
3.0b 

149.7 ± 
31.1b 

6.6 ± 
0.7b 

30.3 ± 
6.0a 

95.7 ± 
28.5b 

11.6 ± 
5.6abc 

1.8 ± 
2.7bc 

6.1 ± 1.0a 11.5 ± 
4.0bc 

14.7 ± 
3.6bc 

18.5 ± 
3.4ab 

Sonali 
(n=10) 

7.1 ± 
3.3ab 

8.5 ± 1.9b 64.4 ± 
15.8cd 

5.2 ± 
0.4b 

20.3 ± 
2.1c 

58.0 ± 
19.4c 

17.7 ± 
5.0ab 

6.6 ± 3.3a 5.8 ± 0.8a 13.5 ± 
3.6abc 

16.2 ± 
3.1abc 

23.3 ± 
1.6a 

P value <0.001*** <0.001*** <0.001*** 0.161NS <0.001*** <0.001*** <0.001*** 0.041* <0.001*** <0.001*** <0.001*** <0.001*** 

Year 

2017 
(n=30) 

1.6 ± 3.3b 9.1 ± 2.1b 76.7 ± 
42.8a 

6.8 ± 1.1 28.5 ± 
3.1 

83.0 ± 
33.6 

7.5 ± 3.5c 1.9 ± 2.6b 3.0 ± 2.3b 8.8 ± 1.9c 11.0 ± 
3.6c 

14.2 ± 
8.9b 

2019 
(n=53) 

8.2 ± 4.4a 12.0 ± 
5.9ab 

105.5 ± 
60.3a 

7.9 ± 3.0 28.2 ± 
7.1 

85.9 ± 
30.8 

18.0 ± 
6.5b 

4.3 ± 5.6b 5.5 ± 1.5a 13.4 ± 
5.0b 

18.0 ± 
5.9a 

22.2 ± 
2.2a 

2020 
(n=14) 

10.0 ± 
7.5a 

13.7 ± 
9.6a 

106.7 ± 
45.3a 

7.5 ± 3.6 30.3 ± 
6.0 

88.4 ± 
35.1 

28.6 ± 
7.2a 

9.0 ± 2.5a 5.4 ± 0.7a 18.8 ± 
8.8a 

12.5 ± 
5.7b 

23.6 ± 
2.3a 
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P value <0.001*** 0.008** 0.020* 0.136NS 0.654NS 0.590NS <0.001*** <0.001*** <0.001*** <0.001*** 0.001** <0.001*** 

Location 

Banyena 
(n=25) 

1.8 ± 3.5b 8.8 ± 1.7b 67.4 ± 
36.4b 

6.9 ± 1.0 27.7 ± 
2.3b 

70.0 ± 
17.8b 

6.4 ± 1.7b 1.7 ± 2.4b 2.8 ± 2.4c 8.6 ± 1.7b 10.6 ± 
1.4b 

14.7 ± 
9.6b 

Curyo 
(n=18) 

10.5 ± 
3.6a 

16.4 ± 
7.8a 

153.5 ± 
60.4a 

7.7 ± 3.3 22.1 ± 
4.3c 

96.7 ± 
22.9a 

18.0 ± 
3.4a 

4.5 ± 
3.5ab 

6.7 ± 1.0a 13.8 ± 
5.0a 

19.3 ± 
4.5a 

21.6 ± 
1.8a 

Horsham 
(n=49) 

7.9 ± 5.5a 10.8 ± 
5.8b 

88.2 ± 
45.0b 

7.9 ± 3.1 31.0 ± 
6.1a 

82.7 ± 
33.6ab 

21.0 ± 
8.9a 

5.5 ± 6.0a 5.0 ± 1.2b 14.8 ± 
6.7a 

16.0 ± 
6.5a 

22.8 ± 
2.4a 

P value <0.001*** <0.001*** <0.001*** 0.292NS <0.001*** 0.012* <0.001*** 0.006** <0.001*** <0.001*** <0.001*** <0.001*** 

NS – not significant (P > 0.05), * P < 0.05, ** P < 0.01, *** P < 0.001 
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Finally, correlation analysis was performed on the HPLC-DAD data to determine if there were 

any significant correlations between any of the phenolic compounds and the phytochemical 

measurements (FRAP, CUPRAC, TPC, TMAC). This revealed significant positive correlations 

between a number of compounds and the FRAP, CUPRAC and TPC (Figure 6-5), the most 

notable of which was between Peak 6 and the TPC. Peak 7 was strongly correlated with the 

CUPRAC, while only correlations of moderate strength were found between FRAP and the 

phenolic compounds.  

In addition, strong positive correlations were observed between several of the phenolic 

compounds (e.g., Peaks 1 & 2, 2 & 3, 7 & 8, 3 & 9). Overall, the correlation results were similar 

to those observed for faba bean (Section 3.4.2.3) and mungbean (Section 5.4.3), although 

there appeared to be fewer strong correlations in chickpea.   

 

Figure 6-5: Correlogram showing the relationships between the 12 phenolic 

compounds measured by HPLC-DAD and the phytochemical constituents. Correlations 

with R values above 0.20 or below -0.20 were statistically significant at α = 0.05. 
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6.4.3 Prediction of bioactive compounds using IR spectroscopy 

As with the preceding grain crops, infrared spectroscopy was applied for the prediction of 

bioactive analytes in the chickpea flour. The results are detailed throughout this section.  

6.4.3.1 Descriptive statistics 

The descriptive statistics for the calibration and test sets are provided in Table 6-6. The range 

and mean values were mostly comparable between the calibration and test sets, although the 

FRAP and CUPRAC were moderately higher in the latter.  

Table 6-6: Descriptive statistics for the parameters measured in this study, in the 

calibration and test sets.  

Parameter 

Calibration set – 2017 and 
2019 samples (n=83) 

Test set – 2020 samples 
(n=14) 

Range Mean ± SD Range Mean ± SD 

Moisture (%) 6.40-10.67 8.81 ± 0.97 7.20-9.84 8.35 ± 0.81 

FRAP (mg TE/100 g) 9.6-56.7 28.3 ± 10.0 19.6-56.3 40.1 ± 9.3 

CUPRAC (mg TE/100 g) 65.3-211.3 121.5 ± 28.6 137.9-224.7 165.5 ± 25.2 

TPC (mg GAE/100 g) 53.8-106.1 76.8 ± 11.5 61.7-98.1 81.0 ± 10.0 

TMAC (mg cyd-3-glu/100 g) 0.0-7.9 4.4 ± 2.0 1.7-4.8 3.3 ± 0.9 

 

6.4.3.2 NIR spectra 

The raw and pre-processed NIR spectra are shown in Figure 6-6. As observed in the NIR 

spectra of the other grain crops, the major peaks for the chickpea flour samples were located 

at 1470 and 1936 nm (OH 2nd and 1st overtones), with smaller peaks at 1202 nm (CH 2nd 

overtone), 1761 nm (CH 1st overtone), 2110 nm (amide 1st overtone) and 2311 nm (CH 

combination bands). However, it was noted that the spectra displayed a more prominent minor 

peak at 2346 nm (the right-most peak in the 2280-2360 nm region) compared to other crops 

such as faba bean and wheat. 
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Figure 6-6: The raw absorbance NIR spectra (A) and SNV-processed spectra (B) of the 

chickpea flour samples.  

6.4.3.3 NIR models 

The optimum NIR models developed for each analyte are shown in Table 6-7. Although the 

model for FRAP performed acceptably in the calibration set, no predictive power was observed 

when it was applied to the independent test set (R2 of 0). Similarly, none of the other analytes 

showed any predictive power in the independent test set. For this reason, no prediction plots 

or model loadings are shown.  

As discussed for mungbean (Section 5.4.4.3), the failure of NIRS to predict these bioactive 

compounds is most likely related to the low concentrations and relatively low level of variation 

in the analytes, combined with other non-target matrix constituents obscuring the NIR signals 

that were successfully used for prediction in faba bean and wheat.  
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Table 6-7: Optimum PLSR models found for the prediction of the specified analytes using NIR spectroscopy. 

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

FRAP (mg TE/100 g) SNV + 2d5 7 0.78 0.46 2.13 0.00 0.95 0.17 0.03 8.12 

CUPRAC (mg TE/100 g) SNV + 2d11 4 0.08 9.52 1.05 0.31 11.5 8.73 0.97 9.72 

TPC (mg GAE/100 g) SNV + 2d5 5 0.54 19.3 1.48 0.02 33.8 21.7 -0.54 242.4 

TMAC (mg cyd-3-glu/100 g) 2d5 3 0.37 9.06 1.26 0.09 13.1 5.75 -0.68 131.7 

 

Table 6-8: Optimum PLSR models found for the prediction of the specified analytes using MIR spectroscopy.  

Parameter 
Spectral pre-
processing 

Factors R2
cv RMSECV RPD R2

test RMSEP Bias Slope Intercept 

FRAP (mg TE/100 g) SNV + 2d5 3 0.59 0.62 1.58 0.07 1.13 -0.28 -0.36 11.4 

CUPRAC (mg TE/100 g) 2d5 1 0.05 9.7 1.03 0.21 15.6 10.9 -1.13 72.9 

TPC (mg GAE/100 g) 2d21 10 0.61 17.8 1.61 0.06 40.3 28.5 0.27 128.8 

TMAC (mg cyd-3-glu/100 g) 1d5 6 0.48 8.2 1.40 0.00 11.7 0.83 -0.07 86.8 
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6.4.3.4 MIR spectra 

The MIR spectra of the chickpea flour samples are shown in Figure 6-7. Again, the MIR spectra 

appeared broadly similar to that of the other grain crops, but with more prominent peaks at 

2854 nm (attributed to CH2 asymmetrical stretch) and 1744 nm (attributed to the C=O stretch 

of carbonyl groups). There was a moderate degree of variation in amplitude between the 

spectra, which was removed through use of the SNV algorithm (Figure 6-7) or derivative pre-

processing.  

 

Figure 6-7: The raw MIR spectra (A) and SNV-processed spectra (B) of the chickpea 

flour samples.  

6.4.3.5 MIR models 

The optimum PLSR models developed from the MIR spectra of the chickpea samples are 

shown in Table 6-8. As with the NIR spectra, several models (i.e., FRAP, TPC) performed 

moderately well in the calibration stage, but were unable to provide any level of prediction in 
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the independent test set. Potential reasons for this prediction failure are likely to be the same 

as those discussed for the MIRS models in other crops (see Sections 3.4.4.6 and 5.4.4.5).  

The only previous study using MIR spectroscopy for the assessment of bioactive constituents 

in chickpeas was performed by Kadiroğlu et al. (2018), who attempted the prediction of total 

phenolic content, iron chelating activity and free radical scavenging activity (a measure of 

antioxidant activity) in aqueous extracts from chickpeas, amongst other more proximate 

measures of quality (water soluble protein content, water binding capacity, oil binding capacity). 

The error found for the prediction of total phenolic content was the highest of all analytes 

investigated, but still appeared suitable for screening purposes (R2
CV = 0.951, RMSECV = 

5.03 mg/100 g GAE). However, it is important to note that this study used only 36 chickpea 

samples and did not examine the performance of the model on a test set (either dependent or 

independent), but only using internal cross-validation results. Given that the authors also used 

8 latent variables for this regression, it is probable that model over-fitting in this study gave 

over-optimistic results.  

6.5 Summary 

The results demonstrated significant variation in the TPC, TMAC and antioxidant capacity 

(FRAP but not CUPRAC) of different desi chickpea cultivars grown in Victoria. Similarly, the 

growing location and year had a significant impact on the levels of these phytochemical 

constituents. The major phenolic compounds present were characterised using HPLC-DAD.  

Similar to the results seen for mungbean, neither NIRS nor MIRS were able to predict any of 

the bioactive analytes (FRAP, CUPRAC, TPC or TMAC) quantified in the chickpea flour 

samples.  
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Chapter 7. General discussion and recommendations 

7.1 General discussion 

7.1.1 Typical phytochemical composition of Australian-grown grain 
crops 

Despite its limitations, this work represents one of the largest conducted to date on the 

phytochemical and bioactive composition of Australian-grown grains. Consequently, it 

provides important context information on the typical levels of these compounds that can be 

expected in grain crops grown in Australia under comparable conditions. Furthermore, 

detailed HPLC-DAD phenolic profiles are reported for three of the less-studied crop types, 

allowing for future researchers to rapidly create targeted HPLC or LC-MS methods for the 

analysis of the major phenolic compounds in these crops.  

Of the four grain crops investigated, the highest levels of phenolics and antioxidants were 

found in faba bean. This pulse also displayed the highest anthocyanin content. In the three 

remaining crops, wheat showed the highest TPC, followed by mungbean. However, chickpea 

showed the highest antioxidant activity (as measured by the FRAP assay), followed by wheat. 

In contrast, the CUPRAC was higher in mungbean compared to chickpea. This indicates that 

TPC is not necessarily an accurate indicator of antioxidant activity. The lack of clear correlation 

between TPC and antioxidant activity in some of the crops studied here stands in contrast to 

results reported by Li et al. (2016) in soybean, where it was found that the main quantitative 

trait loci regulating total antioxidants, phenolics, and flavonoids were found in one overlapping 

genomic region. This emphasises that correlations observed in one grain crop may not 

necessarily be extrapolated to other species. Furthermore, the results presented here 

demonstrate that the estimated antioxidant activity of a particular matrix varies depending on 

the assay method used. Consequently, this supports the recommendations of previous 

authors that at least two different assays should be used to measure antioxidant activity in a 

sample (Apak et al., 2013; Bartosińska et al., 2016).  

In most cases, the levels of bioactive compounds found here were comparable to those 

previously reported in international studies. Although these results cannot be extrapolated to 

all pulse and grain crops, this suggests that for the four grain crops studied, Australian-grown 

produce should contain comparable or higher levels of health-benefiting compounds 

compared to other produce on the international market. This is in spite of the harsher growing 

conditions in this country (Page et al., 2018; Unkovich et al., 2020), principally poor soil quality 

and low rainfall. The maintenance of high quality in Australian grain crops may be attributable 

to a number of factors, including the selection of high-quality genotypes for breeding programs 
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(Aziz et al., 2018; Ryan, 2018; Sadras et al., 2021), the adoption of informed agronomic 

practices (Thomas et al., 2018; Wood et al., 2021b), such as crop rotations (Armstrong et al., 

2019), targeted irrigation (Ara et al., 2021; Wood et al., 2021a) and targeted application of 

fertiliser (Page et al., 2018). These practices have been reported to provide increases in 

protein content (Armstrong et al., 2019) and consequently are likely to positively impact the 

contents of other phytochemical constituents.  

Furthermore, it has been noted that both heat stress and drought stress generally increase 

the phenolic content and antioxidant capacity of grain crops (Britz & Kremer, 2002; Dwivedi et 

al., 2019; Laddomada et al., 2017; Rayee et al., 2018), although this impact is genotype-

dependent (Liu et al., 2018a). Accordingly, the harsher Australian growing conditions may 

actually enhance the levels of these health-benefiting compounds compared to more mild 

climates such as Europe or Northern America.  

7.1.2 Variation in phytochemical composition 

In general, significant genotypic variation in phenolic content and antioxidant capacity was 

observed between different varieties of each grain crop. This was most notable in faba bean, 

where PBA Rana contained almost double the total phenolic content of the other nine varieties. 

A significant level of variation was also observed in the mungbean and chickpea varieties, 

albeit to a lesser magnitude.  

This broadly agreed with the results of previous studies, which have highlighted a relatively 

high level of genotypic variation in the phenolic contents of most grain crops (Cai et al., 2015; 

MeiXiong et al., 2020; Oomah et al., 2011; Valente et al., 2019; Zhou et al., 2020). This is 

perhaps an unexpected finding in light of numerous authors warning of genetic bottlenecks 

and a lack of diversity existing among many grain crops (Abbo et al., 2003a; Furbank & Tester, 

2011; Muñoz et al., 2017; Smýkal et al., 2015). However, this high degree of genetic diversity 

with regard to phytochemical constituents is likely to have arisen from the fact that grain 

breeders primarily select lines for their elevated yield, protein content and superior disease 

resistance (Iqbal et al., 2007; Michel et al., 2019; Miedaner et al., 2020; Siddique et al., 2000), 

with no regard for their phenolic content or antioxidant capacity. It is only very recently that 

selective breeding for bioactive compounds has been proposed in the grains sector (Gordeeva 

et al., 2020; Loskutov & Khlestkina, 2021).  

Although genes controlling the production of phenolic compounds may be linked to some 

physical grain quality parameters, such as malting suitability (Cai et al., 2015), kernel size (Cai 

et al., 2016) and grain colour (Shao et al., 2011), they do not appear to be strongly linked to 

traits such as yield and protein content (Nigro et al., 2017; Rhodes et al., 2014). Consequently, 

there is unlikely to be any unidirectional selection pressure for high/low phenolic contents 
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imposed by previous and current breeding programs. Nevertheless, researchers are still 

working to identify the genes responsible for the quantitative production of many phenolic 

compounds found in grain crops (Czyczyło-Mysza et al., 2019; Han et al., 2020; Li et al., 2010; 

Sharma et al., 2020).  

Compared to the influence of genotype, environmental factors (specifically growing location 

and season) had less of an impact on phenolic content and antioxidant capacity in faba bean 

and chickpea. However, the environmental influence was more obvious for chickpea, possibly 

due to the larger number of growing locations and seasons sampled. Similar results were 

found by Zrckova et al. (2018), who reported that genotype had the strongest impact on 

antioxidant capacity in wheat, while season had a stronger influence on TPC. Similarly, 

Sanghamitra et al. (2018) noted a high level of heritability in anthocyanin capacity and 

flavonoid content in pigmented rice. Interestingly, previous research on wheat has suggested 

lesser impacts of genotype × environment interactions under Australian conditions compared 

to international studies from North America and Europe (Williams et al., 2008). This contrasts 

with expected results, given the geographically diverse range of Australian growing locations 

studied; however, the reasons for this difference remain unclear (Williams et al., 2008). 

Nevertheless, this observation indicates the phytochemical composition of a given genotype 

should be more predictable when grown in Australia under known environmental conditions.  

7.1.3 Performance of NIRS and MIRS models for the rapid prediction of 
nutritional and bioactive analytes 

The application of NIRS and MIRS for the rapid prediction of nutritional and bioactive analytes 

showed mixed results. Excellent performance was found for the prediction of protein in the 

faba bean and wheat samples using NIRS; MIRS was also able to predict protein content in 

wheat, but not in faba bean. Furthermore, NIRS showed promise for the estimation (i.e., 

prediction of high or low content) of TPC and antioxidant capacity in faba bean and wheat, but 

not in mungbean or chickpea. Similar to the results for protein, MIRS could predict TPC and 

antioxidant capacity (FRAP) in wheat with reasonable accuracy, but was unable to predict 

TPC or antioxidant capacity in any of the three pulse crops. In the wheat samples, the loadings 

differed between the MIRS models for TPC and FRAP, whereas the loadings for the NIRS 

models of these analytes appeared very similar to one another. Consequently, the MIRS 

models appeared to be more specific for the analyte of interest, although the overall model 

performances were comparable between MIRS and NIRS in this matrix.  

No predictive models were found for anthocyanin content in any crop. This was anticipated, 

given the very low concentration of this analyte. Furthermore, the only previous study 

attempting the prediction of anthocyanin content using infrared spectroscopy was Amanah et 
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al. (2020), who reported the prediction of anthocyanins in soybean using NIRS. However, the 

only model validation used by these authors was using spectra collected from the same 

samples included in calibration set – making the reported results extremely over-optimistic.  

Nevertheless, NIRS appears to show promise for the prediction of the major bioactive analytes 

(TPC and antioxidant capacity) in some – but not all – grain crops. Given that NIR spectra are 

routinely collected from grain samples for the determination of protein content, application of 

models for the approximation of TPC and/or antioxidant capacity could be one way to gain 

further information about the bioactive composition of the samples. It is important to caution 

that this could only be the case if the wavelength range of the NIR spectra collected for protein 

determination included the key wavelengths involved in the TPC/FRAP prediction models 

(approximately 1800-2400 nm). However, if this was the case, there would be no extra cost or 

time required, aside from the initial investment of setting up the model and occasional 

calibration checks.  

7.2 Recommendations  

7.2.1 Recommendations for researchers  

Based on the results found throughout this study, the following recommendations are made 

for researchers in this field:  

• At least two different assays should be used to measure antioxidant activity in a sample, 

as measured antioxidant activities can vary significantly between matrices depending 

on the assay used.  

• Future studies using infrared spectroscopy for the non-invasive prediction of bioactive 

(or other) compounds in grain crops should incorporate the use of an independent test 

set for model validation (i.e., samples grown in a different season or location to the 

samples used in the calibration set).  

• More work is required to determine if NIRS/MIRS can predict TPC or antioxidant 

capacity in mungbean or chickpea flour, using a larger and/or more diverse calibration 

set.  

• As all of the samples investigated in this study were ground to a flour before the 

collection of NIR/MIR spectra, it is unknown whether the levels of bioactive compounds 

could be predicted in samples of intact grain. Based on literature results it appears that 

this could be possible, although potentially with the trade-off of reduced accuracy.  

• Future studies could also investigate whether non-linear regression techniques, such 

as neural networks or support vector regression, provide more accurate prediction 

compared to PLSR.  



 

Page 201 of 248 
 

7.2.2 Recommendations for industry (buyers, wholesalers and 
processors) 

Similarly, the following points are noted for industry stakeholders in the grains sector:  

• Pulse crops with a higher bioactive content, such as faba bean, may potentially be 

marketed as functional foods products and attract a moderate price premium.  

• NIRS may be able to predict the phenolic content/antioxidant capacity of some grain 

crops; hence it would bear investigating whether this can be conducted using 

instrumentation already in place for the measurement of protein content.  

• Similarly, NIRS may be a suitable method for the routine quality assurance of functional 

food products by processors/manufacturers.  

7.2.3 Recommendations for policy makers 

Finally, there are several points of relevance for policy makers responsible for determining 

research directions/priorities:  

• It would be worth investigating the feasibility of paying premiums to grain growers 

based on the overall nutritional properties of their crop – including the levels of 

bioactive compounds for functional food crop – rather than just the physical grain 

quality and protein content.  

• Similarly, more detailed comparison between the levels of bioactive compounds found 

in Australian-grown and internationally grown grains would prove useful. If Australian 

grains can be marketed in international markets with an emphasis on their higher levels 

of bioactive compounds, then this could provide a significant competitive edge for 

Australian growers.  
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Chapter 8. Conclusions 

The following conclusions are derived from the results presented throughout this thesis: 

1. There is a significant level of genotypic variation in the phenolic content and antioxidant 

capacity of all the pulse crops studied (faba bean, mungbean and chickpea).  

2. There is also a significant impact of environmental conditions (growing location and 

season) on the phenolic content and antioxidant capacity; however, this is generally less 

than genotypic effects.  

3. Influences of genotype and environmental conditions on individual phenolic compounds 

often differ from their influence on the total phenolic content.  

4. Infrared spectroscopy (both NIRS and MIRS) shows promise for the estimation of TPC 

and antioxidant capacity in some of the grain crops studied, with the matrix type strongly 

impacting on the relative performance of these techniques.  

5. The prediction performance of NIRS for these bioactive analytes is typically higher than 

that of MIRS.  

6. NIRS and MIRS were unable to determine anthocyanin content of any crop.  

7. The optimal data pre-processing methods for creating prediction models varied between 

the compound classes and crop types; hence should be optimised for each application.  

8. Preliminary results also suggest that infrared spectroscopy may show promise for the 

qualitative authentication of grain crops (e.g., growing location/variety).  
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Data availability 

The main datasets associated with this thesis are available from Mendeley Data (DOI: 

10.17632/8bb2d725sd.1). These include the sample information, mean NIR/MIR spectra for 

each sample, the chemical reference data, and HPLC phenolic results.  
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Appendix A – Wheat sample details 

The sample details (grade and growing location) for the 65 wheat samples sourced from 

Australian Export Grains Innovation Centre (AEGIC) are provided in Table A1. In Australia, 

wheat grades are primarily based on the protein content and rheological properties of the 

wheat.  

Table A1: Sample details for the 65 wheat samples.  

Sample 
code 

Grade/description^ Location Notes 

W1 H2 NSW  

W2 APH2 NSW  

W3 APW1 NSW  

W4 H2 Qld  

W5 APH2 Qld  

W6 H2 Qld  

W7 APH1 Qld  

W8 ASW1 NSW  

W9 Sunco# NSW  

W10 H2 Qld  

W11 APH2 NSW  

W12 APH1 NSW  

W13 APW1 WA  

W14 ASW1 WA  

W15 APW1 NSW  

W16 H2 NSW  

W17 APH (mix of grades 1+2) NSW  

W18 APH1 Qld Un-pearled sample 

W19 APH1 Qld Pearling time: 4 secs 

W20 APH1 Qld Pearling time: 4 secs 

W21 APH1 Qld Pearling time: 4 secs 

W22 APH1 Qld Pearling time: 8 secs 

W23 APH1 Qld Pearling time: 8 secs 

W24 APH1 Qld Pearling time: 8 secs 

W25 APH1 Qld Pearling time: 12 secs 

W26 APH1 Qld Pearling time: 12 secs 

W27 APH1 Qld Pearling time: 12 secs 

W28 APH1 Qld Pearling time: 16 secs 

W29 APH1 Qld Pearling time: 16 secs 

W30 APH1 Qld Pearling time: 16 secs 

W31 APH1 Qld Pearling time: 20 secs 

W32 APH1 Qld Pearling time: 20 secs 

W33 APH1 Qld Pearling time: 20 secs 

W34 ASW1 NSW Un-pearled sample 

W35 ASW1 NSW Pearling time: 4 secs 

W36 ASW1 NSW Pearling time: 4 secs 

W37 ASW1 NSW Pearling time: 4 secs 

W38 ASW1 NSW Pearling time: 8 secs 

W39 ASW1 NSW Pearling time: 8 secs 
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W40 ASW1 NSW Pearling time: 8 secs 

W41 ASW1 NSW Pearling time: 12 secs 

W42 ASW1 NSW Pearling time: 12 secs 

W43 ASW1 NSW Pearling time: 12 secs 

W44 ASW1 NSW Pearling time: 16 secs 

W45 ASW1 NSW Pearling time: 16 secs 

W46 ASW1 NSW Pearling time: 16 secs 

W47 ASW1 NSW Pearling time: 20 secs 

W48 ASW1 NSW Pearling time: 20 secs 

W49 ASW1 NSW Pearling time: 20 secs 

W50 Grist (from Allied Mills) Unknown Un-pearled sample 

W51 Grist (from Allied Mills) Unknown Pearling time: 4 secs 

W52 Grist (from Allied Mills) Unknown Pearling time: 4 secs 

W53 Grist (from Allied Mills) Unknown Pearling time: 4 secs 

W54 Grist (from Allied Mills) Unknown Pearling time: 8 secs 

W55 Grist (from Allied Mills) Unknown Pearling time: 8 secs 

W56 Grist (from Allied Mills) Unknown Pearling time: 8 secs 

W57 Grist (from Allied Mills) Unknown Pearling time: 12 secs 

W58 Grist (from Allied Mills) Unknown Pearling time: 12 secs 

W59 Grist (from Allied Mills) Unknown Pearling time: 12 secs 

W60 Grist (from Allied Mills) Unknown Pearling time: 16 secs 

W61 Grist (from Allied Mills) Unknown Pearling time: 16 secs 

W62 Grist (from Allied Mills) Unknown Pearling time: 16 secs 

W63 Grist (from Allied Mills) Unknown Pearling time: 20 secs 

W64 Grist (from Allied Mills) Unknown Pearling time: 20 secs 

W65 Grist (from Allied Mills) Unknown Pearling time: 20 secs 

^ APH1 = Australian Prime Hard 1; APH2 = Australian Prime Hard 2; APW1 = Australian Premium White 1; ASW1 

= Australian Standard White 1; H2 = Hard 2.  

# Note that Sunco is a pure wheat variety, not a grade of wheat  
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Appendix B – Mungbean field trials  

This appendix provides details on the field trial results for the mungbean samples investigated 

in Chapter 5.  

B1. Seed material 

The mungbean seed material comprised four new varieties from AgriVentis Technology Ltd 

Australia (AVTMB 1-4), which had previously been grown in small-scale field trials in 2017 

(Rockhampton, Queensland) and 2018 (Biloela, Queensland). A well-established commercial 

variety (Jade-AU) was used for comparative purposes. Marketed by the Australian Mungbean 

Association, Jade-AU is a large-seeded, shiny green variety typically grown in the region 

between central Queensland and northern New South Wales. Compared to other large-

seeded varieties such as Crystal, it displays improved yield and increased resistance to 

powdery mildew. 

B2. Growing conditions and harvest 

The mungbean varieties were grown on a commercial farm in northern Queensland as a 

sugarcane break crop. The farm site was 25 km SW of Home Hill, adjacent to the Burdekin 

River (19.8462°S, 147.2448°E) (Figure B1), with a sandy clay loam soil type (type 6Umb in 

the DPI classification system). This location is just north of the potential range currently 

deemed suitable for mungbean cropping (Figure B1), with the aim being to demonstrate the 

versatility of these new varieties for extending this crop to the northern regions of Queensland.  

 

Figure B1: Location of the growing trial at Home Hill (19.8462°S, 147.2448°E). Map of 

mungbean production areas provided by the Australian Mungbean Association. Used 

with permission.  
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Between 6-18 ha of each new variety (1 ha for Jade-AU) was sown into seed beds (prepared 

with 100 kg/ha diammonium phosphate) between 25-27 August 2019 as a spring season crop. 

Pre-emergent and post-emergent herbicides were utilised for weed control, alongside two 

sprays of micro-nutrients. Furrow irrigation commenced after the soil water deficit reached the 

refill point. This period of the year is generally dry (Figure B2), with just 7 mm of cumulative 

rainfall received throughout the growing trial (BOM, 2020). The daily minimum and maximum 

temperatures ranged between 7.7 and 38.7°C, respectively, with a mean maximum 

temperature of 30.3°C (BOM, 2020).  

 

Figure B2: Climate graph showing the mean temperature and rainfall at the mungbean 

trial site (data sourced from the Australian Bureau of Meteorology).  

Upon commencement of senescence, the crop was chemically defoliated (200 g/L diquat 

dibromide monohydrate) on 25th November and harvested on 27th November 2019 (93 days 

after sowing). Twenty within-field replicates were collected for each variety from different, 

randomly selected locations throughout the field. 

B3. Measurement of seed quality 

Thousand kernel weight (TKW) was determined using an IC-VA seed counter (AIDEX Co, 

Japan) (n=3 replicates for each variety).  

The colour of the intact mungbean seed material and subsequent flour was quantified using a 

Konica Minolta chroma meter (CR-400), reported as CIE values of brightness (L*), yellowness 

(b*) and red/green colouration (a*). Measures were made in triplicate for each sample and the 

results averaged.  
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Seed sprouting tests were conducted by the Agricultural Testing Laboratory for Seed and 

Grain (AgEtal; Toowoomba, Qld), following standard methods for the Primary Production and 

Processing Standard for Seed Sprouts (FSANZ 2010). Resultant sprouts were classified as 

acceptable or unacceptable for human consumption, and also tested for the presence of three 

common bacterial contaminants (Escherichia coli, Salmonella and Listeria).  

B4. Results of the physical seed quality assessment 

The graded seed yield (Table B1) ranged from 0.87-1.32 tonne/ha. Higher seed yield was 

recorded for AVTMB 1 (1.32 ± 0.10 t/ha), AVTMB 3 (1.32 ± 0.14 t/ha) and AVTMB 4 (1.32 ± 

0.15 t/ha), followed by Jade-AU (1.16 ± 0.16 t/ha). A significantly lower yield was found for 

AVTMB 2 (0.87 ± 0.13 t/ha). The grower and exporter of these mungbean samples were 

asked to qualitatively rank their preference of these varieties at the point of harvest, with the 

higher yield and seed quality (size, uniformity, and colour) for three of the new varieties 

(AVTMB 1, AVTMB 3, AVTMB 4) being reported as the most attractive characteristics. For 

these reasons, the grower also expressed preference in choosing these varieties for planting 

in the following season.  

The long-term average yield for the mungbean crop in Australia is approximately 0.9 t/ha, 

with annual averages ranging from 0.6 to 1.1 t/ha between 2005 and 2017 (Chauhan & 

Williams, 2018). However, in 2019 – the year that this trial was conducted – the Australian 

mungbean industry average yield was exceptionally low due to severe drought stress, 

ranging from 0.3-0.5 t/ha (Lyon, 2019). Hence the high mean yields found in the present 

study (>1.3 t/ha) demonstrate the viability of mungbean cropping in the northern Australian 

region, if grown under irrigation. Several of the new varieties demonstrating greater 

adaptation to warmer temperatures may provide improved and more stable yield under the 

subtropical and tropical north Australian environments, consistent with their yield 

performance in earlier seasons at Biloela, Rockhampton, and Georgetown (Queensland) 

(unpublished data).  

The seed size (TKW) of the five varieties ranged from 61.6-70.6 g / 1000 seeds (Table B1). 

One of the higher yielding mungbean varieties (AVTMB1) recorded a significantly smaller 

seed size (61.6 g/1000) compared to all other new varieties and Jade-AU. However, the 

sprouting rates were quite comparable between varieties (Table B1). Combined with the 

absence of microbial contamination across all samples, this indicated high suitability of all 

varieties for sprouting purposes.   
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Table B1: Physical characteristics of the five mungbean varieties (given as mean ± 1 

SD). Where applicable, results are expressed on a dry weight basis. Varieties with the 

same superscript were not statistically different according to a post hoc Tukey test at 

α = 0.05.  

Parameter AVTMB 1 AVTMB 2 AVTMB 3 AVTMB 4 Jade-AU 

Yield (t/ha) 1.32 ± 0.10a 0.87 ± 0.13b 1.32 ± 0.14a 1.32 ± 0.15a 1.16 ± 0.16a 

TKW (g/1000 

kernels) 
61.6 ± 1.01a 67.3 ± 1.04b 69.2 ± 1.12b,c 69.8 ± 1.10b,c 70.6 ± 1.63c 

Sprouting 

suitability (%) 
80-90% 90-100% 90-100% 90-100% 90-100% 

Microbiological 

contamination 
Nil detected Nil detected Nil detected Nil detected Nil detected 

 

In terms of the seedcoat colour, a significant difference between varieties was found for 

luminosity (L*), with AVTMB 4 found to be lighter overall and Jade-AU darker (Table B2). No 

significant differences were observed for a* (red-green colouration). The colour of AVTMB 4 

was significantly less yellow compared to AVTMB 2 (lower value of b*), but not to any other 

variety. In general, lighter coloured samples (higher L* values) were positively correlated 

with increased yellowness (higher b*) (Pearson linear correlation; r75 = 0.435, P<0.001) and 

increased greenness (lower a*) (r75 = -0.335, P<0.01). Yellowness (higher b*) and greenness 

(lower a*) were also correlated (r75 = -0.437, P<0.001). Overall, there was no significant 

difference (at α = 0.05) between the seed colour of Jade-AU and the varieties AVTMB 2 and 

3 for any colour parameter, while the varieties AVTMB 1 and 4 were both significantly lighter 

in colour compared to Jade.  

The flour colour may also play an important role in the consumer acceptability of mungbean 

flour products (Liu et al., 2018b); hence it was also assessed in this study. The luminosity of 

the flour was much lighter than that found for the seed colour (Table B2), while the other 

parameters (a* and b*) were relatively similar to those found for the seed colour. In contrast 

to the correlations observed for mungbean seedcoat colour, lighter coloured flours (higher 

L*) tended to have greater blueness (lower b*) (r75 = -0.587, P<0.001) and greenness (lower 

a*) (r75 = -0.396, P<0.001). Increased levels of yellowness (higher b*) were positively 

correlated with redness (higher a*) (r75 = 0.579, P<0.001). No significant differences were 

observed in the flour colour from Jade-AU and any other variety, however, that of the 

AVTMB 1 variety was significantly darker compared to AVTMB 3 and 4 (Table B2).  
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Table B2: Colour of the mungbean samples (n=5 field replicates for each variety). 

Varieties with the same superscript were not statistically different according to a post 

hoc Tukey test at α = 0.05.  

Variety 
Seed material Flour 

L* a* b* L* a* b* 

AVTMB 1 35.86 ± 0.78a,b -4.03 ± 0.38 24.53 ± 1.00a,b 76.87 ± 1.41a -3.39 ± 0.16 24.98 ± 0.58 

AVTMB 2 37.93 ± 1.35c -4.47 ± 0.28 26.69 ± 1.31b 78.01 ± 1.22a,b -3.29 ± 0.31 25.26 ± 2.40 

AVTMB 3 37.52 ± 1.02b,c -4.29 ± 0.58 24.50 ± 1.87a,b 80.44 ± 0.60b -3.49 ± 0.06 23.40 ± 0.86 

AVTMB 4 34.12 ± 1.27a -3.91 ± 0.72 22.12 ± 1.64a 80.24 ± 1.10b -3.55 ± 0.11 22.93 ± 0.36 

Jade 38.56 ± 0.53c -4.68 ± 0.45 24.09 ± 1.27a,b 78.84 ± 1.92a,b -3.43 ± 0.09 24.46 ± 1.36 

P value <0.001 0.145 0.002 0.002 0.203 0.050 

L = 100 (white), L = 0 (black); +a = red, -a = green; +b = yellow, -b = blue 

B5. Summary of field trial results 

Overall, the field trial results suggest that new mungbean lines tested for adaptation to 

warmer northern Australia environment performed equal to or better than a currently 

established commercial line. Furthermore, the physical seed quality analysis demonstrated 

desirable characteristics in several of the new lines (e.g., large seed size, bright green 

colouration) which should make them highly desirable in the domestic and international 

markets.  
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Appendix C – Development of 96-well microplate methods 

C1. FRAP microplate method development 

As the benchtop FRAP assay used a measurement wavelength of 593 nm but the microplate 

reader was fitted only with a 595 nm filter, the first stage of method development was to 

ascertain whether there was any significant difference in absorbance values obtained at these 

two wavelengths. This was conducted by preparing triplicate sets of 7 Trolox standards 

(between 0-300 mg/L). These were analysed following the standard benchtop protocol for 

FRAP (as described in Section 3.3.5), with the resultant absorbances measured at 593 and 

595 nm using the Genesys 10S UV-Vis spectrophotometer. There was no significant 

difference in the average absorbance of each standard concentration at 593 compared to 595 

nm (paired samples t-test, t6 = -2.44, P>0.05), indicating that a wavelength of 595 nm could 

be successfully used in the FRAP assay.  

The second step in the method development process was to determine the impact of 

incubation temperature on the resultant absorbances. For this, two sets of Trolox standards 

(0-300 mg/L) were prepared following the benchtop protocol, with one set incubated in a 

waterbath at 37°C, and the other incubated at room temperature. Again, there was no 

significant difference between standards incubated at 37°C and those incubated at room 

temperature (paired samples t-test, t6 = -1.73, P>0.05), demonstrating no significant effect of 

incubation temperature.  

The third stage of method development was assessment of the repeatability of the microplate 

reader and microplate FRAP method. Duplicate absorbance measurements from the 

microplate reader – conducted on five Trolox standards (50-400 mg/L) each analysed in 

triplicate (n=15 standards in total) – demonstrated an average coefficient of variation (CV) of 

0.30%, indicating a high level of instrument repeatability.  

The repeatability of the FRAP microplate method was determined by calculating the average 

CV for the chickpea samples (each of which was analysed in duplicate). The average CV 

across these samples was 9.21%, indicating acceptable repeatability for the method.  

Finally, the Trolox standards showed a high level of linearity (R2 = 0.998; Figure C1) and their 

absorbances were strongly correlated between the benchtop and microplate methods (R2 = 

0.987; Figure C2). This provided a high level of certainty in the accuracy of the values obtained 

using this method.  
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Figure C1: Linearity of the Trolox standards analysed using the FRAP microplate 

method.  

 

Figure C2: Correlation of the absorbance readings for Trolox standards using the 

benchtop and microplate methods for FRAP.  

C2. CUPRAC microplate method development 

The development of the CUPRAC microplate method involved similar steps to those described 

for the FRAP microplate method. However, as the microplate reader had a 450 nm filter, no 

change in the measurement wavelength was required.  

To determine the impact of incubation temperature on the resultant absorbance, two sets of 

six Trolox standards (0-500 mg/L) were analysed using the benchtop method, with one set 
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incubated at 50°C for 30 minutes and one set incubated at room temperature. Although those 

incubated at 50°C showed significantly higher absorbance values (paired samples t-test, t5 = 

16.44, P<0.001), the magnitude of this difference was very small, at approximately 1.2% of 

the total absorbance. Furthermore, the absorbance values were highly correlated between the 

two incubation temperatures (R2 = 0.994; Figure C3). Consequently, incubation at room 

temperature was considered appropriate for the microplate method.  

 

Figure C3: Correlation of the absorbance readings for Trolox standards incubated at 

50°C and room temperature using the CUPRAC method. 

The second stage of method development was determining the effect of incubation time, for 

incubation at room temperature. For this, nine Trolox standards (0-1000 mg/L) were analysed 

in quintuplicate using the microplate method (n=45 samples in total), with their absorbances 

measured every 5 minutes for one hour. The results are shown in Table C1.  

While the absorbance values of the higher Trolox standards (300-1000 mg/L) showed very 

little variation throughout the 60 minute period, the absorbances of the blank (0 mg/L) and 100 

mg/L standard increased considerably over this time. Most of this change took place in the 

first 45 minutes for 0 mg/L and the first 25 minutes for 100 mg/L. Consequently, 30 minutes 

incubation was chosen as a trade-off between time efficiency and the maximum absorbance 

development.  
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Table C1: Time dependence of the absorbance of Trolox standards using the CUPRAC 

microplate method. Results are given as the ratio of absorbances compared to the 

initial absorbance measured after 5 minutes incubation.  

Time 

(mins) 

Trolox concentration (mg/L) 

0 100 200 300 400 500 600 800 1000 

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 1.006 1.055 1.004 0.993 0.985 0.990 0.986 0.987 0.986 

15 1.036 1.117 1.022 1.001 0.988 0.990 0.976 0.993 0.985 

20 1.046 1.143 1.030 1.007 0.998 1.000 0.977 0.995 0.989 

25 1.078 1.156 1.045 1.023 0.995 1.004 0.981 0.990 0.997 

30 1.092 1.140 1.043 1.019 0.996 1.003 0.981 0.992 0.997 

35 1.102 1.111 1.042 1.010 0.996 1.023 0.986 0.989 0.987 

40 1.127 1.118 1.036 1.012 0.999 1.019 0.986 0.991 0.987 

45 1.165 1.118 1.044 1.011 1.002 1.013 0.992 0.993 0.985 

50 1.160 1.114 1.050 1.016 1.006 1.011 1.001 0.992 0.985 

55 1.170 1.160 1.063 1.012 1.007 1.017 0.994 0.992 0.985 

60 1.185 1.165 1.073 1.013 1.010 1.024 0.999 0.991 0.984 

% change 18.5 16.5 7.3 1.3 1.0 2.4 -0.1 -0.9 -1.6 

 

Again, the microplate reader possessed a high level of repeatability in the absorbance 

readings, with duplicate readings of the 45 Trolox standards showing an average CV of 0.59%. 

The repeatability of the CUPRAC microplate method was determined from duplicate analysis 

of the 97 chickpea samples, with the CV calculated to be 8.5%.  

Finally, the microplate method showed good linearity for the Trolox standards (R2 = 0.999; 

Figure C4) and the absorbance values obtained through this method were strongly correlated 

with those obtained using the benchtop method (R2 = 0.971; Figure C5). Consequently, the 

optimised microplate CUPRAC method was deemed suitable for the analysis of antioxidant 

activity in the chickpea extracts.  
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Figure C4: Linearity of the Trolox standards analysed using the CUPRAC microplate 

method.  

 

Figure C5: Correlation of the absorbance readings for Trolox standards analysed using 

the benchtop and microplate methods for CUPRAC. 
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Appendix D – Chickpea sample details 

The sample details and physical parameters (hundred kernel weight and flour colour) for the 

97 desi chickpea samples analysed are provided in Table D1. 

 

Table D1: Sample details and physical parameters for the 97 desi chickpea samples.  

ID Location Year Variety 
Trial 

type^ 
Treatment 

HKW 
(g/100) 

Flour colour 
L* a* b* 

CPJ-01 Rupanyup 2017 Howzat D Chem1 21.20 79.86 2.14 25.19 

CPJ-02 Rupanyup 2017 Howzat D Chem2 19.42 79.83 2.21 23.51 

CPJ-03 Rupanyup 2017 PBA Maiden D Chem2 21.85 81.21 1.61 23.93 

CPJ-04 Rupanyup 2017 PBA Maiden D Chem2 20.77 82.34 1.33 24.53 

CPJ-05 Rupanyup 2017 PBA Slasher D Chem1 20.81 81.70 1.45 23.56 

CPJ-06 Banyena 2017 Kyabra P PathA 21.56 81.40 1.34 25.68 

CPJ-07 Banyena 2017 Kyabra P PathA 21.44 78.62 2.11 24.89 

CPJ-08 Banyena 2017 Kyabra P PathA 23.02 80.75 1.56 25.42 

CPJ-09 Banyena 2017 Kyabra P PathA 22.84 80.87 1.19 24.72 

CPJ-10 Banyena 2017 Kyabra P PathA 22.25 80.66 1.91 26.02 

CPJ-11 Banyena 2017 Kyabra P PathB 21.87 79.71 1.57 24.51 

CPJ-12 Banyena 2017 Kyabra P PathB 25.05 81.02 1.33 25.68 

CPJ-13 Banyena 2017 Kyabra P PathB 18.75 80.49 1.19 24.93 

CPJ-14 Banyena 2017 Kyabra P PathB 26.64 79.95 1.69 26.03 

CPJ-15 Banyena 2017 PBA Slasher P PathA 19.17 80.43 1.62 23.48 

CPJ-16 Banyena 2017 PBA Slasher P PathA 18.54 80.16 1.74 24.28 

CPJ-17 Banyena 2017 PBA Slasher P PathA 17.24 79.98 1.85 25.34 

CPJ-18 Banyena 2017 PBA Slasher P PathA 17.85 79.31 1.84 24.27 

CPJ-19 Banyena 2017 PBA Slasher P PathA 18.33 79.33 1.93 24.59 

CPJ-20 Banyena 2017 PBA Slasher P PathB 18.45 79.79 2.07 25.31 

CPJ-21 Banyena 2017 PBA Slasher P PathB 19.40 80.12 1.70 25.19 

CPJ-22 Banyena 2017 PBA Slasher P PathB 18.85 78.93 1.68 25.20 

CPJ-23 Banyena 2017 PBA Slasher P PathB 17.25 80.23 1.60 25.14 

CPJ-24 Banyena 2017 PBA Striker P PathA 22.01 80.77 1.48 25.82 

CPJ-25 Banyena 2017 PBA Striker P PathA 19.28 78.88 1.66 24.73 

CPJ-26 Banyena 2017 PBA Striker P PathA 21.67 80.88 1.44 24.54 

CPJ-27 Banyena 2017 PBA Striker P PathB 18.44 79.25 1.52 25.57 

CPJ-28 Banyena 2017 PBA Striker P PathB 15.93 76.97 1.84 24.20 

CPJ-29 Banyena 2017 PBA Striker P PathB 17.73 78.45 1.79 24.36 

CPJ-30 Banyena 2017 PBA Striker P PathB 18.76 78.06 1.98 23.83 

CPJ-31 Horsham 2019 Kyabra C Nil 23.83 80.99 2.04 28.42 

CPJ-32 Horsham 2019 Kyabra C Nil 24.30 81.66 2.11 27.89 

CPJ-33 Horsham 2019 Kyabra C Nil 23.95 81.30 1.89 26.03 

CPJ-34 Horsham 2019 PBA Boundary C Nil 21.03 80.99 1.15 27.80 

CPJ-35 Horsham 2019 PBA Boundary C Nil 18.77 79.29 1.86 27.27 

CPJ-36 Horsham 2019 PBA Boundary C Nil 18.69 80.00 1.72 28.45 

CPJ-37 Horsham 2019 PBA Hattrick C Nil 17.90 80.00 1.48 27.94 

CPJ-38 Horsham 2019 PBA Hattrick C Nil 19.73 79.87 1.30 28.49 

CPJ-39 Horsham 2019 PBA Hattrick C Nil 19.00 79.49 2.21 28.94 
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CPJ-40 Horsham 2019 PBA Striker C Nil 22.35 81.62 1.06 27.39 

CPJ-41 Horsham 2019 PBA Striker C Nil 23.55 81.13 1.13 27.20 

CPJ-42 Horsham 2019 PBA Striker C Nil 21.54 80.34 1.68 27.16 

CPJ-43 Horsham 2019 Rupali C Nil 19.60 79.42 2.19 26.91 

CPJ-44 Horsham 2019 Rupali C Nil 18.59 81.59 1.77 28.22 

CPJ-45 Horsham 2019 Rupali C Nil 19.35 81.76 1.87 26.73 

CPJ-46 Curyo 2019 Howzat D Chem1 17.05 78.53 1.93 28.20 

CPJ-47 Curyo 2019 Howzat D Chem1 17.14 78.92 1.46 27.93 

CPJ-48 Curyo 2019 Howzat D Chem1 18.86 75.96 2.90 28.04 

CPJ-49 Curyo 2019 Howzat D Nil 17.24 75.98 1.23 26.86 

CPJ-50 Curyo 2019 Howzat D Nil 16.83 76.75 1.61 26.87 

CPJ-51 Curyo 2019 Howzat D Nil 17.67 78.15 0.15 27.73 

CPJ-52 Curyo 2019 PBA Striker D Chem1 17.67 77.83 1.85 26.00 

CPJ-53 Curyo 2019 PBA Striker D Chem1 20.14 79.86 1.39 27.19 

CPJ-54 Curyo 2019 PBA Striker D Nil 18.43 79.26 0.19 24.87 

CPJ-55 Curyo 2019 PBA Striker D Nil 17.77 76.86 0.15 28.95 

CPJ-56 Curyo 2019 PBA Striker D Nil 17.59 77.85 0.25 25.31 

CPJ-57 Curyo 2019 Sonali D Chem1 15.36 78.50 1.20 26.26 

CPJ-58 Curyo 2019 Sonali D Chem1 16.31 77.40 1.65 26.49 

CPJ-59 Curyo 2019 Sonali D Chem1 17.21 77.21 1.69 26.24 

CPJ-60 Curyo 2019 Sonali D Nil 16.77 78.25 0.83 26.40 

CPJ-61 Curyo 2019 Sonali D Nil 16.63 77.53 1.16 26.09 

CPJ-62 Curyo 2019 Sonali D Nil 15.53 76.34 1.18 27.00 

CPJ-63 Horsham 2019 PBA Striker D Nil 22.77 79.20 1.35 27.88 

CPJ-64 Horsham 2019 PBA Striker D Chem3 26.08 78.93 1.62 28.03 

CPJ-65 Horsham 2019 Sonali D Chem4 16.95 76.65 1.56 26.86 

CPJ-66 Horsham 2019 Sonali D Chem1 17.01 77.57 2.14 26.17 

CPJ-67 Horsham 2019 Amethyst V Nil 15.17 78.83 1.95 28.58 

CPJ-68 Horsham 2019 Genesis 509 V Nil 16.91 77.30 2.59 28.53 

CPJ-69 Horsham 2019 Genesis 836 V Nil 16.95 80.87 0.99 28.98 

CPJ-70 Horsham 2019 Howzat V Nil 21.56 78.24 2.85 29.25 

CPJ-71 Horsham 2019 Jimbour V Nil 19.51 76.95 2.01 30.26 

CPJ-72 Horsham 2019 Kyabra V Nil 24.33 81.26 2.42 28.02 

CPJ-73 Horsham 2019 Neelam V Nil 18.73 77.74 2.37 29.83 

CPJ-74 Horsham 2019 PBA Drummond V Nil 21.71 76.94 2.71 26.06 

CPJ-75 Horsham 2019 PBA Hattrick V Nil 19.44 79.71 0.70 28.30 

CPJ-76 Horsham 2019 PBA Maiden V Nil 25.03 81.37 1.74 28.09 

CPJ-77 Horsham 2019 PBA Seamer V Nil 21.96 81.81 1.01 28.76 

CPJ-78 Horsham 2019 PBA Slasher V Nil 20.44 79.97 2.08 28.20 

CPJ-79 Horsham 2019 PBA Striker V Nil 22.55 80.84 1.64 27.57 

CPJ-80 Horsham 2019 Sonali V Nil 18.21 77.49 1.99 26.36 

CPJ-81 Horsham 2019 Tyson V Nil 13.19 79.32 1.39 28.27 

CPJ-82 Horsham 2019 Yorker V Nil 20.22 80.78 2.57 27.14 

CPJ-83 Horsham 2020 Amethyst B Nil 14.29 79.85 2.23 28.00 

CPJ-84 Horsham 2020 Genesis 509 B Nil 14.55 76.90 3.14 26.74 

CPJ-85 Horsham 2020 Genesis 836 B Nil 17.17 79.39 2.73 27.59 

CPJ-86 Horsham 2020 Howzat B Nil 18.92 78.31 2.77 26.84 

CPJ-87 Horsham 2020 Jimbour B Nil 18.30 79.71 2.39 29.20 

CPJ-88 Horsham 2020 Kyabra B Nil 21.87 80.55 2.06 27.04 

CPJ-89 Horsham 2020 PBA Drummond B Nil 20.09 79.78 2.21 26.24 

CPJ-90 Horsham 2020 PBA Hattrick B Nil 18.60 78.34 2.23 26.40 
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CPJ-91 Horsham 2020 PBA Maiden B Nil 23.54 80.82 2.33 27.59 

CPJ-92 Horsham 2020 PBA Seamer B Nil 21.30 81.09 2.15 28.52 

CPJ-93 Horsham 2020 PBA Striker B Nil 21.31 79.07 2.35 27.74 

CPJ-94 Horsham 2020 Sonali B Nil 15.99 80.25 1.66 26.59 

CPJ-95 Horsham 2020 Tyson B Nil 13.32 79.77 2.63 27.82 

CPJ-96 Horsham 2020 Yorker B Nil 18.98 80.17 3.04 28.42 

CPJ-97 Curyo 2019 PBA Striker D Chem1 18.62 79.48 1.87 27.05 

^ B = Variety bulk up trial; C = Cold tolerance trial; D = Disease management trial; P = Pathology trial; V = Variety 

demo trial 

 


