PhD_Thesis_Md Zillur Rahman Analysing Housing Price to Account for the Spatial Accessibility of Locational Amenities in Melbourne, Australia.pdf (5.61 MB)

Analysing Housing Price to Account for the Spatial Accessibility of Locational Amenities in Melbourne, Australia

Download (5.61 MB)
posted on 2024-04-30, 23:48 authored by Md Zillur RahmanMd Zillur Rahman
Urban housing location and locational amenities play an important role in median house price distribution and growth among the suburbs of many metropolitan cities in developed countries, such as Australia. In particular, distance from the central business district (CBD) and access to the transport network plays a vital role in house price distribution and growth over various suburbs in a city. However, Australian metropolitan cities have experienced increases in housing prices by up to 120% over the last 20 years, and the growth pattern was different across all suburbs in a city, such as Melbourne. Therefore, this study examines the impacts of locational amenities on house price changes across various suburbs in Melbourne over the three census periods of 2006, 2011, and 2016, and suggests some strategic guidelines to improve the availability and accessibility of locational amenities in the suburbs with less concentrated amenities. This study chose three Local Government Areas (LGAs) of Maribyrnong, Brimbank and Wyndham in Melbourne. Each LGA has been selected as a case study because many low-income people live in these LGAs’ areas. Further, some suburbs of these LGAs have maintained similar housing prices for an extended time, while some have not. The study applied a quantitative spatial methodology to examine the housing price distribution and growth patterns by evaluating the concentration and accessibility of locational urban amenities using GIS-based techniques and a spatial data set. The spatial data analyses were performed using spatial statistics methods to measure central tendency, Local Moran’s I of LISA clustering, Kernel Density Estimation (KDE), and Kernel Density Smoothing (KDS). These tests were used to find the patterns of house price distribution and growth. The study also identified the accessibility of amenities in relation to median house price distribution and growth. Spatial Autoregressive Regression (SAR), Spatial Lag, and Spatial Errors models were used to identify the spatial dependencies to test the statistical significance between the median house price and the concentration and access of local urban amenities over the three census years. This study found three median house price distribution and growth patterns among the suburbs in the three selected LGAs. There are growth differences in the median house price for different census years between 2006 and 2011, 2011 and 2016, and 2006 and 2016. The Low-High (LH) median house price distribution clusters between 2006 and 2011 became High-High (HH) clusters between the census years 2011 and 2016, and 2006 and 2016. The median house price growth rate increased significantly in the census years between 2006 and 2011. Most of the HH median house price distribution and growth clusters’ tendencies were closer to the Melbourne CBD. On the other hand, the Low-Low (LL) distribution and growth clusters were closer to Melbourne’s periphery. The suburbs located further away had low access to amenities. The HH median house price clusters are located closer to stations and educational institutes. Better access to locational amenities led to more significant HH median house price clusters, as the median house price increased at an increasing rate between 2011 and 2016. The HH median house price clusters recorded more growth between 2006 and 2016. The suburbs with train stations had better access to most other locational amenities. Almost all HH median house price clusters had train stations with higher access to amenities. There was a consistent relationship between median house price distribution, growth patterns, and locational urban amenities. The spatial lag and spatial error model tests showed that between 2006 and 2011, and 2006 and 2016, there were differences in the amenities. Still, these did not affect the outcomes in observations, and were related only to immeasurable factors for some reason. Therefore, the higher house price in the neighbouring suburb could increase the price in that suburb. The research also found from the regression analysis that highly significant amenities confirming travel time to the CBD by bus, and distance to the CBD, were negatively related in all three previous census years. This negative relationship estimates that the house price growth is lower when the distance is longer. Due to this, travel to the CBD by bus is not a popular option for households. Train stations are essential for the growth of high house prices. The growth of house prices is low when homes are further away from train stations and workplaces. This thesis has three contributions. Firstly, it uses the Rational Choice Theory (RCT), providing a theoretical basis for analysing households’ mutually interdependent preferences of urban amenities that are found to regulate house price growth clusters. Secondly, the methodological contribution uses the GIS-defined cluster mapping and spatial statistics in queries and reasoning, measurements, transformations, descriptive summaries, optimisation, and hypothesis testing models between house price distribution and growth, and access to urban locational amenities. Thirdly, this research contributes to designing practical guidelines to identify local urban amenities for planning local area development. Overall, this thesis demonstrates that the median house price distribution and growth patterns are highly correlated with the concentration and accessibility of locational urban amenities among the suburbs in three selected LGAs in Melbourne over the three census years (i.e., 2006, 2011, and 2016). The findings bring to the fore the need for research at the local and state levels to identify specific amenities relevant to the middle-class house distribution strategy, which can be helpful for investors, estate agents, town planners, and builders as partners for effective local development. Future studies might use social, psychological, and macroeconomic variables that have not been considered or used in this research.


Start Page


End Page


Number of Pages



Central Queensland University

Additional Rights


Open Access

  • Yes

Acceptance Date


Era Eligible

  • No


Prof Delwar Akbar; Prof John Rolfe; A Prof Yogi Vidyattama

Thesis Type

  • Doctoral Thesis

Usage metrics




    Ref. manager