“I Want to Be Safe and Not Still Half Asleep”: Exploring Practical Countermeasures to Manage the Risk of Sleep Inertia for Emergency Service Personnel Using a Mixed Methods Approach
Purpose: The aim of this exploratory cross-sectional mixed methods study was to determine 1) whether sleep inertia, the temporary state of impaired vigilance performance upon waking, is perceived to be a concern by emergency service personnel, 2) what strategies are currently used by emergency service workplaces to manage sleep inertia, 3) the barriers to implementing reactive sleep inertia countermeasures, and 4) what strategies personnel suggest to manage sleep inertia. Participants and Methods: A sample (n = 92) of employed and volunteer Australian emergency service personnel (fire and rescue, ambulance, police, state-based rescue and recovery personnel) completed an online survey. Data collected included demographic variables and work context, experiences of sleep inertia in the emergency role, barriers to sleep inertia countermeasures, and existing workplace sleep inertia countermeasures and recommendations. Quantitative data were analysed using descriptive statistics, and qualitative data were thematically analysed. Results: Approximately 67% of participants expressed concern about sleep inertia when responding in their emergency role. Despite this, there were few strategies to manage sleep inertia in the workplace. One major barrier identified was a lack of time in being able to implement sleep inertia countermeasures. Fatigue management strategies, such as reducing on-call periods, and operational changes, such as screening calls to reduce false alarms, were suggested by participants as potential strategies to manage sleep inertia. Conclusion: Sleep inertia is a concern for emergency service personnel and thus more research is required to determine effective sleep inertia management strategies to reduce the risks associated with sleep inertia and improve personnel safety and those in their care. In addition, future studies could investigate strategies to integrate reactive sleep inertia countermeasures into the emergency response procedure.