File(s) not publicly available
Visual navigation method for indoor mobile robot based on extended BoW model
journal contribution
posted on 2020-10-27, 00:00 authored by X Li, Mohammad KhyamMohammad Khyam, C Luo, Y TanThis article proposes a new navigation method for mobile robots based on an extended bag of words (BoW) model for general object recognition in indoor environments. The scale-invariant feature transform (SIFT)- detection algorithm with the graphic processing unit (GPU) acceleration technology is used to describe feature vectors in this model. First, in order to add some redundant image information, statistical information of the spatial relationships of all the feature points in an image, i.e. relative distances and angles, is used to extend the feature vectors in the original BoW model. Then, the support vector machine (SVM) classifier is used to classify objects. Also, in order to navigate conveniently in unknown and dynamic indoor environments, a type of human–robot interaction method based on a hand-drawn semantic map is considered. The experimental results show that this new navigation technology for indoor mobile robots is very robust and highly effective.
History
Volume
4Issue
2Start Page
142End Page
147Number of Pages
6eISSN
2468-2322ISSN
2468-6557Publisher
Institution of Engineering and TechnologyPublisher DOI
Additional Rights
CC BY 3.0Peer Reviewed
- Yes
Open Access
- Yes
Acceptance Date
2017-11-10External Author Affiliations
Southeast University, PRC; University of Detroit Mercy, USAEra Eligible
- Yes