CQUniversity
Browse

The impact of injector hole diameter on spray behaviour for butanol-diesel blends

Download (1.99 MB)
journal contribution
posted on 2023-11-14, 00:35 authored by SJM Algayyim, AP Wandel, Talal YusafTalal Yusaf
Optimising the combustion process in compression ignition (CI) engines is of interest in current research as a potential means to reduce fuel consumption and emission levels. Combustion optimisation can be achieved as a result of understanding the relationship between spraying technique and combustion characteristics. Understanding macroscopic characteristics of spray is an important step in predicting combustion behaviour. This study investigates the impact of injector hole diameter on macroscopic spray characteristics (spray penetration, spray cone angle, and spray volume) of butanol-diesel blends. In the current study, a Bosch (0.18 mm diameter) and a Delphi (0.198 mm) injector were used. Spray tests were carried out in a constant volume vessel (CVV) under different injection conditions. The test blends were injected using a solenoid injector with a common rail injection system and images captured using a high-speed camera. The experimental results showed that the spray penetration (S) was increased with larger hole diameter. Spray penetration of a 20% butanol-80% diesel blend was slightly further than that of neat diesel. Spray penetration of all test fuels was increased as a result of increased injection pressure (IP), while spray cone angle (θ) was slightly widened due to the increase in either hole diameter or injection pressure. Spray volume of all test fuels was increased as a result of increased hole diameter or injection pressure. Thus, an efficient diesel engine performance can be achieved as a result of controlling injection characteristics, especially when using a promising additive like butanol blended with diesel.

History

Volume

11

Issue

5

Start Page

1

End Page

12

Number of Pages

12

eISSN

1996-1073

Publisher

MDPI AG

Additional Rights

CC BY 4.0 DEED

Language

en

Peer Reviewed

  • Yes

Open Access

  • Yes

Acceptance Date

2018-05-10

Era Eligible

  • Yes

Journal

Energies

Article Number

1298

Usage metrics

    CQUniversity

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC