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State Feedback Controller Design of
Networked Control Systems

Dong Yue, Qing-Long Han, and Chen Peng

Abstract—This paper is concerned with the controller design of
networked control systems (NCSs). A new model of the NCSs is
provided under consideration of both the network-induced delay
and the data packet dropout in the transmission. In terms of the
given model, a controller design method is proposed based on a
delay-dependent approach. The feedback gain of a memoryless
controller and the maximum allowable value of the network-in-
duced delay can be derived by solving a set of linear matrix
inequalities. Two examples are given to show the effectiveness of
our method.

Index Terms—Lyapunov functional, networked control system
(NCS), network-induced delay, stability.

I. INTRODUCTION

RECENTLY, much attention has been paid to the study of
stability analysis and control design of networked control

systems (NCSs) [2], [11], [15] due to their low cost, reduced
weight and power requirements, simple installation and main-
tenance, and high reliability. In an NCS, one of the important
issues to treat is the effect of the network-induced delay on the
system performance. For NCSs with different scheduling proto-
cols, the network-induced delay may be constant, time-varying,
or even random variable [15].

A basic problem in an NCS is the stability of the system.
Based on a hybrid system technique or stability region method,
stability of the NCSs has been investigated in [15] under an as-
sumption that the network-induced delay is less than the sam-
pling period. Moreover, most of the results in [15] were de-
rived for the case of constant delay. Under the assumption that
only data messages from a sensor are transmitted through a net-
work and the considered NCS can be approximated by a contin-
uous-time model, a perturbation method of stability analysis of
the NCSs was given in [13]. A model-based method for stability
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analysis of the NCSs was recently proposed in [9], which how-
ever can only be used to treat the systems with sensor-to-con-
troller delay case. The sampling time scheduling method was
first proposed by Hong [4], which was used to appropriately
select a sufficiently long sampling period for a discrete-time
network-based system such that network-induced delays do not
influence the control performance and the system can remain
stable. However, it is necessary that the control delay in a control
loop is less than the sampling period of the loop. In addition, the
technique in [4] can only be used in the one-dimensional case.
Park et al. [12] and Kim et al. [6] extended the concept of max-
imum allowable bound in [4] to develop another algorithm for
the multidimensional cases. However, only the time-invariant
delay case was considered in [6] and [12]. On the other hand, in
all of the above works, for the stability analysis, the control law
used was designed in advance without considering the presence
of the network. No controller synthesis method was given for
the NCSs.

The focus has been on the controller design of the NCSs in
recent years, and several controller design methods have been
proposed under different assumptions on the considered NCS.
The design methods of stochastic optimal controller were pro-
posed based on a discrete-time model for the cases when the
network-induced delay is shorter [11] or larger [5] than the sam-
pling period. The drawback of these methods is a large require-
ment of controller memory to store a large amount of past infor-
mation from the initial point [2]. Moreover, to implement the
controller, the information of all past delays must be known
a priori and the dynamic model of the plant has to be very
precise. In [1], a predictor-based delay compensation method
was employed to design the memory feedback controller. How-
ever, in these methods, the effect of controller-to-actuator delays
was neglected. It should be noted that the discrete-time model
was used in the above references, which may lose the informa-
tion on the intersample behavior when discretizing the contin-
uous-time plant. Moreover, no method was given in the above
references of how to estimate the maximum allowable value of
the network-induced delay that guarantees the stabilizability of
the NCSs.

In this paper, we will be concerned with the controller design
for the NCSs. Under consideration of network-induced delay
and data packet dropout phenomenon in the transmission, a new
model of the NCS is presented, in which the sensor is clock-
driven, the controller and actuator are event driven, and the data
are transmitted with a single packet. In our method, the dis-
cretization of the system model and the assumption that the con-
troller dynamics are continuous are not needed for controller
design. In contrast with the controller design method based on
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discrete-time models, our method is in the continuous-time do-
main, i.e., the intersample behavior is taken into account. More-
over, the network-induced delay considered in this paper is com-
posed of the sensor-to-controller delay and the controller-to-ac-
tuator delay as well as the computation delay and can be slowly
or quickly time-varying. Then, a controller design method is
proposed based on a delay-dependent approach. From the de-
rived criteria, the memoryless controller can be designed and the
maximum allowable value of the network-induced delay can be
determined by solving a set of linear matrix inequalities (LMIs).
Furthermore, the relation between the lower bound on the trans-
mission rate and the sampling period and the network-induced
delay can also be determined by using the criteria. Two exam-
ples are finally given to show the effectiveness of our method.

II. MODELING OF NETWORKED CONTROL SYSTEMS

In an NCS, the plant is a continuous system, which can be
described as

(1)

where and are the state vector and
control input vector, respectively, and and are two constant
matrices.

Suppose that the sensor is chosen clock-driven, the controller
and actuator are chosen event driven, and the data are trans-
mitted with a single packet. Then, the real input realized
through a zeroth-order hold in (1) is a piecewise constant func-
tion. Furthermore, if we consider the effect of the network-in-
duced delay and network packet dropout on the NCSs, the real
control system can be modeled as

(2)

where is the sampling period, are some
integers and . is the time
delay, which denotes the time from the instant when sensor
nodes sample sensor data from a plant to the instant when actua-
tors transfer data to the plant. Obviously,

, . In this paper, we assume that
before the first control signal reaches the plant and a constant

exists such that , .
Remark 1: In (2), is a subset of

. Moreover, it is not required that .
When , it means that no packet
dropout occurs in the transmission. If , it implies
that , which includes and as the
special cases. Therefore, (2) can be viewed as a general form
of the NCS model, where the effect of the network-induced
delay and data packet dropout are simultaneously considered.

III. CONTROLLER DESIGN

In this section, we assume that the full state variables are
available for measurements. Since the actuator is event driven,
therefore, the system (2) can be rewritten as the following equiv-
alent form:

(3)

(4)

where can be viewed as the initial condition function of
the system. It is easy to see that the solutions of (3) and (4) are
continuous on .

Next, we present a controller design method for system (3)
and (4) based on a Lyapunov functional method.

Definition 1: The system (3) and (4) with a feedback
gain is said to be exponentially asymptotically stable
if there exist constants and such that

, . Also, if
there exists a matrix such that the system (3) and (4) with the
feedback gain is exponentially asymptotically stable, then
the system (2) is said to be stabilizable.

Theorem 1: For given scalars and ,
if there exist matrices , , a nonsingular and
matrices and of appropriate dimensions such
that (5) and (6), shown at the bottom of the page, are true, then
the system (3) and (4) with , and consequently, (2),
is exponentially asymptotically stable.

Proof: Construct a Lyapunov functional as

(7)

where and .
Taking the time derivative of for

and using (3) and formula
yields

(8)

where and are arbitrary ma-
trices of appropriate dimensions and

[3].

(5)

(6)
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From (6), it can be seen that, when

(9)

and

(10)

where and
.

Combining (8)–(10), we obtain

(11)

where is given in the first equation shown at the bottom of the
page.

By Schur complements, is equivalent to (12), shown
at the bottom of the page.

Define , , and , where
. Thus, implies that is nonsingular. Further-

more, defining , , ,
, , and and then pre, post-

multiplying both sides of (12) with and
its transpose, respectively, we can show that the solvability of
(5) implies that of (12). From (11), we obtain

(13)

where .
Defining a new function and then using the

similar analysis method in [8], it can be seen that there exist a
small enough constant and a constant such that

(14)

which can further imply from (7) that

Then, by the Definition 1, we can complete the proof.

Remark 2: Since , define
, , , then (3)

becomes

(15)

From the definition of , it can be seen that is discon-
tinuous at the points , . In every internal

, .
If and are upper bounded, then is a bounded
piecewise continuous function. Therefore, the NCS system (3)
and (4) is equivalent to a linear system with a bounded time-
varying delay. For the case when is time-invariant, i.e.,

, where is a constant, the controller design problem
of (15) has been investigated in [6], [10], [12], and [14] based
on a reduction method or a first-order transformation. However,
the results there cannot be applicable to the system (15) since

here is a time-varying and discontinuous function.
Remark 3: means that the new data packet may

reach the plant before the old one. However, from Theorem 1,
it can be shown that this phenomena may lead to a conservative
result. In fact, suppose and satisfying (5) is
solved; from (6), it is required that .
Since , thus, for the same , dis-
carding the old data packet containing may result in a
less conservative result. On the other hand, suitably discarding
the old data packet can save network bandwidth and thus re-
duce the networked-induced delay , which in
turn makes the system be able to tolerate a larger amount of data
packet loss. Therefore, it is necessary to find an appropriate net-
work scheduling method that can discard the old untransmitted
message when the new packet is transmitted. In the following
discussion, we assume that , .

For the following use, we give two definitions.
Definition 2: The maximum transmission index is defined

as the supremum of , , satisfying (6).
Remark 4: Obviously, is an integer.
Definition 3: The lower bound on transmission rate is de-

fined as , where is as defined in Definition 2.
Remark 5: in Definition 3 is a parameter, which denotes

the degree of the data packet dropout that the feedback control
system can tolerate. Different from [15], the data packet dropout
considered in this paper may occur in the network not only from
the plant to control but also from the controller to actuator.

(12)
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Remark 6: When satisfying (5) is found and is known
to be less than a constant , one can show that

(16)

implies (6). If is defined as the supremum of ,
, satisfying (16), it is easy to see that .

Therefore, the lower bound on transmission rate is a number
less than . From (16), it can be shown that fast sampling,
i.e., decreasing , can allow for a larger , which in turn leads
to reducing the lower bound on transmission rate .

Remark 7: If , namely, no data packet dropout occurs
in the transmission, (6) becomes . Furthermore,
if is a constant, which may be implemented by using
static scheduling network protocols, such as a token ring or a
token bus, we obtain . From this relation, it can
be concluded that faster sampling can allow for a larger net-
worked-induced delay. Moreover, different from the method in
[15, Example 2 and Corollary 4], it is not required that .
For the conventional computer control systems, the data packet
dropout due to the bandwidth limit does not exist and the net-
worked-induced delay can be ignored, therefore, and

. In this case, (6) becomes . Therefore, Theorem 1
provides a criterion that can determine the maximum allowable
size of the sampling period.

Remark 8: From the proof of Theorem 1, to derive the condi-
tion (5), and are set as and , which results in
that (12) and (5) are not equivalent. Therefore, it can be expected
that the controller designed by the condition (5) can guarantee
the asymptotic stability of the system with a larger bound on
than the one derived based on (5).

From the proof of Theorem 1, we can conclude the following
corollary.

Corollary 2: For given a scalar and a matrix , if there
exist matrices , , , and of ap-
propriate dimension such that (17) and (18), shown at the bottom
of the page, are true, then the system (3) and (4), and, conse-
quently, (2) with the feedback gain , is exponentially asymp-
totically stable.

Step 1) Set and and choose a small con-
stant and a constant , where .
Find the maximum allowable value of satis-
fying (5) and solve the feedback gain .
Set and .

Step 2) Set . If , go to Step 3. Otherwise,
find the maximum allowable value of satis-
fying (5) and solve the feedback gain .
If , then set and .
Repeat Step 2.

Step 3) Set . If , go to Step 4. Otherwise,
set and go to Step 2.

Step 4) Substituting in Step 2 into (17) and find
the maximum allowable value of .

Step 5) Output and and then Stop.
Remark 9: It is easy to see that solved based on the

above algorithm is larger than the one directly obtained from
Theorem 1.

IV. NUMERICAL EXAMPLE

Example 1: Consider a system [15, Example 1]

(19)

The nonnetworked controller is designed as ,
where the feedback gain . From [12]
and [15], the maximum allowable transfer interval (MATI), also
called MADB [6], that guarantees the stability of the system
(19) controlled over a network is 4.5 and 0.0538, re-
spectively. By using [6, Theorem I], it can be computed that the
MATI is 0.7805. As pointed in [6], determination of the MATI
for an NCS is important for us to choose a suitable sampling
period. If the sampling period exceeds the given MATI, then
the stability of the overall system could not be guaranteed [6].
It should be noted that the maximum stable constant sampling
period for this feedback system by using a stability region tech-
nique [15] is 1.7, which shows that the above given results may
be conservative. Applying Corollary 1, it shows that the MATI is
0.8695 even for the fast time-varying delay case. Obviously, our
result is less conservative than the ones based on the methods in
[6], [12], and [15].

In [6], [12], and [15], it was assumed that the controller dy-
namics in (19) is continuous and/or the communication medium
is error-free [13]. However, the real controller in an NCS is
a piecewise-constant function and the network-induced delay
is often time-varying [2], therefore, the methods in [6], [12],
and [15] cannot be applicable to the system (19) when the con-
troller is computer-based and the control input signal reaches the
plant through the network. In this case, (19) can be expressed

as (2) with and , which is de-

noted as (19). It has been computed that is 0.8695 when
. From the relation (18), it can be seen

that, when the sampling period is sufficiently small, the max-
imum allowable value of the time delay will approach 0.8695.
When the sampling period is chosen as in [15], i.e., s,
and furthermore the network-induced delay is bounded by 0.1,
that is, , , then it can be computed that the
lower bound on transmission rate is less than 1/2.

(17)

(18)
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Among the above references, no controller synthesis method
was given for this example when considering the presence of
a network. Next, we consider this problem and derive the max-
imum allowable value of that guarantees the stabilizability
of the system (19). For this purpose, we apply Algorithm 1. Ap-
plying Algorithm 1 with and , it has been
found that the maximum allowable value of is 402 and the
corresponding feedback gain is . In
other words, as long as , ,
(19) with is asymptotically stable.
If is chosen as 1 and , then

. Therefore, it can be computed that the lower bound
on transmission rate is less than 1/392.

Example 2: Consider a simplified model of the inverted
system process [5]

(20)

When the controller is implemented through a network, the
system (20) can be written in the form of (2). A stochastic
optimal control of (20) was designed in [5]. However, only the
case when the network-induced delay is less than the sampling
period was considered in [5]. Suppose that the full state vari-
ables are available for measurement. Applying Algorithm 1
with and , it has been found that the maximum
allowable value of that guarantees the stabilizability of
the system (20) is 0.97. If s and the data packet
dropout in the transmission can be neglected, from (18), the
time delay h. That means that, if s,
the designed controller can stabilize the system (20) as long as
the network-induced delay is less than 18.4 h. Furthermore, if
the upper bound of the network-induced delay is known as
0.3, i.e., 6 h, then it can be computed that the lower bound on
transmission rate is less than 1/13.

V. CONCLUSION

The methods of stability analysis and controller design have
been proposed based on a new model of the NCS. In the given
model, both the network-induced delay and the data packet
dropout were simultaneously, considered and no discretization
of the continuous-time plant was needed for modeling. There-
fore, our analysis was in the continuous-time domain, i.e., the
intersample behavior was taken into account. The stability anal-
ysis and controller design can be performed and furthermore
the relation between the sampling period and the network-in-
duced delay can also be determined by solving a set of LMIs.
Combining the robustness analysis approaches proposed for the
nonnetworked control systems [7], our method in this paper can
be further extended to the study of stability and controller de-
sign for the NCSs when modeling errors or even nonlinearities

exist in the systems. In addition, since (2) is a general model for
the NCS with a direct structure or a hierarchical structure [2],
the methods of analysis and controller design in this paper can
be available for the real NCSs cited in many existing works [6],
[15]. It should be pointed out that we only consider the case
of single-packet transmission in this paper, which is available
for the systems based on Ethernet. Furthermore, by emplying a
FIFO queue [2] before the controller and actuator, the methods
in this paper can be easily extended to deal with the controller
design of the NCSs with multiple-packet transmission, such as
the systems based on DeviceNet. This work will be left for our
future research.
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