File(s) not publicly available

Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity

journal contribution
posted on 06.12.2017, 00:00 authored by Ninghu SuNinghu Su, G Sander, F Liu, D Barry, V Anh
A specific form of the Fokker–Planck equation with a time- and scale-dependent dispersivity is presented for modelling solute transport in saturated heterogeneous porous media. By taking a dispersivity in the form of separable power-law dependence on both time and scale, we are able to show the existence of similarity solutions. Explicit closed-form solutions are then derived for an instantaneous point-source (Dirac delta function) input, and for constant concentration and constant flux boundary conditions on a semi-infinite domain. The solutions have realistic behaviour when compared to tracer breakthrough curves observedunder both field and laboratory conditions. Direct comparison with the experimental laboratory data of Pang and Hunt [J. Contam. Hydrol. 53 (2001) 21] shows good agreement between the source solutions and the measured breakthrough curves.

Funding

Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)

History

Volume

29

Issue

9

Start Page

852

End Page

870

Number of Pages

19

ISSN

0307-904X

Location

Amsterdam

Publisher

Elsevier

Language

en-aus

Peer Reviewed

Yes

Open Access

No

Era Eligible

Yes

Journal

Applied mathematical modelling : simulation and computation for engineering and environmental systems.