CQUniversity
Browse

Segment confidence-based binary segmentation (SCBS) for cursive handwritten words

Download (385.99 kB)
journal contribution
posted on 2017-12-06, 00:00 authored by Brijesh Verma, Hong Suk Lee
A novel segment confidence-based binary segmentation (SCBS) for cursive handwritten words is presented in this paper. SCBS is a character segmentation strategy for off-line cursive handwriting recognition. Unlike the approaches in the literature, SCBS is an unordered segmentation approach. SCBS is repetition of binary segmentation and fusion of segment confidence. Each repetition generates only one final segmentation point. The binary segmentation module is a contour tracing algorithm to find a segmentation path to divide a segment into two segments. A set of segments before binary segmentation is called pre-segments, and a set of segments after binary segmentation is called post-segments. SCBS uses over-segmentation technique to generate suspicious segmentation points on pre-segments. On each suspicious segmentation point, binary segmentation is performed and the highest fusion value is recorded. If the highest fusion value is greater than the one of pre-segments, the suspicious segmentation point becomes the final segmentation point for the iteration. If not, no more segmentation is required. Segment confidence is obtained by fusing mean character, lexical and shape confidences. The proposed approach has been evaluated on local and benchmark (CEDAR) databases.

History

Volume

38

Issue

9

Start Page

11167

End Page

11175

Number of Pages

9

ISSN

0957-4174

Location

USA

Publisher

Elsevier

Language

en-aus

Peer Reviewed

  • Yes

Open Access

  • No

External Author Affiliations

Centre for Intelligent and Networked Systems (CINS); Institute for Resource Industries and Sustainability (IRIS);

Era Eligible

  • Yes

Journal

Expert systems with applications.