posted on 2017-12-06, 00:00authored byMichael Kingsley, D Cunningham, L Mason, L Kilduff, J McEneny
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an in direct and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at post-exercise by 17 ± 5% above pre-exercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxideconcentrations), resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene,α-tocopherol, γ-tocopherol, lycopene and vitamin C). Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Funding
Category 1 - Australian Competitive Grants (this includes ARC, NHMRC)