Recent trends and long-range forecasts of water resources of Northeast Iraq and climate change adaptation measures
Version 2 2022-07-27, 05:22Version 2 2022-07-27, 05:22
Version 1 2021-01-17, 10:08Version 1 2021-01-17, 10:08
journal contribution
posted on 2022-07-27, 05:22 authored by Nahlah Abbas, Saleh Wasimi, N Al-Ansari, SN BabyIraq has been experiencing water resources scarcity, and is vulnerable to climate change. Analysis of historical data revealed that the region is experiencing climate change to a degree higher than generally reported elsewhere. The relationship between climate change and its effect on water resources of a region has been sparsely addressed in published literature. To fill that gap this research work first investigates if there has been a significant change in climate in the region, which has been found to be true. In the next stage, the research projects future climatic scenarios of the region based on six oft-used General CirculationModel (GCM) ensembles, namely CCSM4, CSIRO-Mk3.6.0, GFDL-ESM2M, MEROC5, HadGEM2-ES, and IPSL-CM5A-LR. The relationship between climate change and its impact on water resources is explored through the application of the popular, widely used SWAT model. The model depicts the availability of water resources, classified separately as blue and green waters, for near and distant futures for the region. Some of the findings are foreboding and warrants urgent attention of planners and decision makers. According to model outputs, the region may experience precipitation reduction of about 12.6% and 21% in near (2049-2069) and distant (2080-2099) futures, respectively under RCP8.5. Those figures under RCP4.5 are 15% and 23.4%, respectively and under RCP2.6 are 12.2% and 18.4%, respectively. As a consequence, the blue water may experience decreases of about 22.6% and 40% under RCP8.5, 25.8% and 46% under RCP4.5, and 34.4% and 31% under RCP2.6 during the periods 2049-2069 and 2080-2099, respectively. Green water, by contrast, may reduce by about 10.6% and 19.6% under RCP8.5, by about 14.8% and 19.4% under RCP4.5, and by about 15.8% and 14.2% under RCP2.6 during the periods 2049-2069 and 2080-2099, respectively. The research further investigates how the population are adapting to already changed climates and how they are expected to cope in the future when the shift in climate is expected to be much greater. © 2018 by the authors.
Funding
Other
History
Volume
10Issue
11Start Page
1End Page
19Number of Pages
19eISSN
2073-4441ISSN
2073-4441Publisher
MDPI AG, SwitzerlandPublisher DOI
Full Text URL
Additional Rights
CC BY 4.0Peer Reviewed
- Yes
Open Access
- Yes
Acceptance Date
2018-10-31External Author Affiliations
Luleå University of Technology, Sweden; RMIT UniversityEra Eligible
- Yes
Journal
Water (Switzerland)Usage metrics
Keywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC