File(s) not publicly available

Probabilistic design models for ultimate strength and strain of FRP-confined concrete

journal contribution
posted on 09.09.2019, 00:00 by Hassan BajiHassan Baji, HR Ronagh, CQ Li
This paper presents a probabilistic procedure for deriving design models for the ultimate strength and strain of fiber-reinforced-polymer (FRP)-confined concrete. First, a large database of axial compression tests performed on circular FRP-confined concrete specimens is collected for calibrating an ultimate strength model, based on the Drucker-Prager criterion, and an ultimate strain model, based on the ultimate dilation rate. The database is also employed for deriving a probabilistic model for the FRP strain efficiency factor. The calibrated models, though simple, show superior performance over some of the models in the literature. Then, using the Central Limit Theorem and considering uncertainty in the mechanical properties of the concrete and FRP material as well as their correlation, analytical probabilistic design models for the ultimate strength and strain of FRP-confined concrete are derived. These models can be used in the design and reliability analysis of FRP-confined columns. © 2016 American Society of Civil Engineers.

History

Volume

20

Issue

6

Start Page

04016051-1

End Page

04016051-17

Number of Pages

17

eISSN

1943-5614

ISSN

1090-0268

Publisher

American Society of Civil Engineers

Peer Reviewed

Yes

Open Access

No

Acceptance Date

16/02/2016

External Author Affiliations

Western Sydney University; RMIT University

Era Eligible

Yes

Journal

Journal of Composites for Construction